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Abstract— The available bandwidth (avail-bw) of a network
path is an important performance metric and its end-to-end
estimation has recently received significant attention. Previous
work focused on the estimation of the average avail-bw, ignoring
the significant variability of this metric in different time scales.
In this paper, we show how to estimate a given percentile of
the avail-bw distribution at a user-specified time scale. If two
estimated percentiles cover the bulk of the distribution (say
10% to 90%), the user can obtain a practical estimate for the
avail-bw variation range. We present two estimation techniques.
The first is iterative and non-parametric, meaning that it is
more appropriate for very short time scales (typically less than
100ms), or in bottlenecks with limited flow multiplexing (where
the avail-bw distribution may be non-Gaussian). The second
technique is parametric, because it assumes that the avail-bw
follows the Gaussian distribution, and it can produce an estimate
faster because it is not iterative. The two techniques have been
implemented in a measurement tool called Pathvar. Pathvar can
track the avail-bw variation range within 10-20%, even under
non-stationary conditions. We identify four factors that play a
crucial role in the variation range of the avail-bw: traffic load,
number of competing flows, rate of competing flows, and of course
the measurement time scale. Finally, we present a new way to
detect whether a probing rate is larger than the avail-bw, without
relying on the fluid traffic assumption or on static thresholds.

I. INTRODUCTION

Recently, the area of end-to-end available bandwidth (avail-
bw) estimation has attracted considerable interest. The avail-
bw is an important metric for several applications, such as
socket buffer sizing, overlay routing, p2p file transfers, server
selection, and interdomain path monitoring. As a result, several
estimation techniques and tools based on active measurements
have been developed, including Delphi [1], TOPP [2], Pathload
[3], IGI/PTR [4], Pathchirp [5], Spruce [6], and Bfind [7].
All previous work aimed to estimate the average avail-bw,
largely ignoring that the avail-bw is a time-varying quantity,
defined as an average over a certain measurement time scale.
If we view the avail-bw as a stationary random process, the
second-order statistics, namely the variance of the marginal
distribution and the autocorrelation function, are needed for a
more complete characterization of the avail-bw process. In this
work, we focus on the end-to-end estimation of the variability
of the avail-bw marginal distribution, leaving the identification
of the correlation structure for future work.

This work was supported by the DOE Office of Science (award DE-FC02-
01ER25467), by NSF (award 0230841), and by an equipment donation from
Intel.

The avail-bw, especially in sub-second scales, can exhibit
significant variations around its time average, making the latter
a rather poor-quality estimator or predictor. To illustrate this
point, Figure 1 shows the avail-bw time series, and the cor-
responding marginal distribution, for two measurement time
scales: 20msec and 1sec. This time series was obtained from
a packet trace collected at an OC-3 link, and it thus represents
an exact (rather than estimated) sample path of the avail-
bw process in that link. Notice that the 10%-90% variation
range of the distribution in the 20msec scale is approximately
30Mbps to 75Mbps, while the average avail-bw is 52Mbps.
We anticipate that information for the variation range of
the avail-bw distribution will actually be more important for
some applications than an estimate of the mean. For example,
a video streaming application with a nominal transmission
rate of 3Mbps may prefer to use a path with average avail-
bw 5Mbps and a very narrow variation range, rather than a
path with average avail-bw 10Mbps but a variation range of
1Mbps to 20Mbps. Also, the measurement time scale is an
application-specific parameter, and it represents the minimum
time interval in which the avail-bw variations matter for a
particular application.
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Fig. 1. Top: Time series of the avail-bw process at an OC-3 link in two
measurement time scales. Bottom: Empirical CDFs of the two time series.

A. Definitions

We first define the avail-bw at a network link and then at
an end-to-end path. Suppose that a network path consists of
H store-and-forward first-come first-served links. A link i has
an instantaneous utilization ui(t) at time t; ui(t)=0 if the link
is idle and ui(t)=1 if the link transmits a packet at time t.
The average utilization ui(t, t + τ) of link i during the time
interval (t, t + τ) is

ui(t, t + τ) =
1

τ

∫ t+τ

t

ui(t) dt (1)
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We refer to τ as the measurement time scale.
The available bandwidth Ai(t, t+τ) of link i during the time

interval (t, t + τ) is defined as the average residual capacity
in that interval,

Ai(t, t + τ) = Ci[1− ui(t, t + τ)] (2)

Consider now a network path that traverses a sequence of H
links. The end-to-end available bandwidth A(t, t + τ) of the
network path during (t, t+τ) is defined as the minimum avail-
bw among the H links in the same interval,

A(t, t + τ) = min
i=1...H

Ai(t, t + τ) (3)

We refer to the link with the minimum avail-bw as tight link
and denote its capacity by Ct. The link with the minimum
capacity is referred to as narrow link and has a capacity
Cn. Note that, in general, the narrow and tight links can
be different. Also, all existing avail-bw estimation techniques
assume that the tight link has much lower avail-bw than
the other links. Otherwise, the path avail-bw may be limited
by more than one links. Furthermore, if there are multiple
bottlenecks in a path then all existing avail-bw estimation
techniques suffer from underestimation errors [8]. In this
paper, we adopt the assumption that the path has a clearly
distinguishable tight link, meaning that the avail-bw in all
other links is significantly larger.

The average end-to-end avail-bw A(t, t + τ) is a function
of time t and therefore it can be viewed as a random process
Aτ (t), where τ is the measurement time scale. If we assume
that this process is stationary and identically distributed along
the time axis, then at any time instant t the process is described
by the same random variable Aτ . Let Fτ (a) be the cumulative
distribution function of Aτ , where Fτ (a) = P (Aτ ≤ a). The
p-th percentile of the avail-bw random variable Aτ , with p ∈
(0, 1), is the value Ap

τ such that Fτ (Ap
τ ) = p; in the rest of

the paper we assume that Ap
τ is unique.

Our main objective in this paper is to estimate the variability
of Aτ . One possibility could be to estimate the variance of
Aτ . That would be the obvious variability metric if we knew
that the avail-bw distribution is symmetric around the mean
and close to Gaussian. A more general metric, however, is
a percentile-based definition of variability. Specifically, if pL

is a low probability and pH is a high probability, then we
can define the variation range of Aτ as the interval [AL

τ , AH
τ ],

where AL
τ and AH

τ are the pL and pH percentiles of Aτ ,
respectively. In the rest of this paper, unless noted otherwise,
we assume that the user is interested in the 10%-90% variation
range, i.e., pL=0.1 and pH=0.9. Of course the actual definition
of the variation range would be application-specific.

Some further discussion on the relation between the mea-
surement time scale τ and the variability of the avail-bw
process is important. The mean of Aτ does not depend on τ .
The variance σ2

τ =Var[Aτ ], however, depends strongly on τ and
on the correlation structure of the random process Aτ (t). In
general, as τ increases, the variance σ2

τ decreases. The speed
with which the variance decreases, however, depends on the
correlation structure of the underlying process. For instance,
the variance of a self-similar process decreases much more

slowly with τ than the variance of an IID process [9]. We
return to this point in §VII-C.

B. Related Work

As previously mentioned, the existing avail-bw measure-
ment techniques aim to estimate the average avail-bw. These
techniques have been classified in two categories [8]. First, in
direct probing techniques, each probing packet stream results
in a sample of the avail-bw process. Assuming that the probing
rate Ri is larger than the avail-bw A during the probing stream,
the obtained avail-bw sample is given by

A = Ct −Ri(
Ct

Ro

− 1)

where Ro is the output rate of the probing stream and Ct is the
capacity of the tight link. The key point about direct probing
schemes is that it directly samples the avail-bw process, as
long as Ct is known and Ri > A. Delphi [1], IGI [4] and
Spruce [6] are based on this approach. Direct probing assumes
a fluid traffic model. Furthermore, direct probing assumes that
the tight link is the same with the narrow link, and thus the
capacity Ct=Cn can be estimated with standard packet-pair
capacity estimation techniques [10]. Because of the limitations
of the previous two assumptions, we do not use direct probing
in this paper.

The second estimation approach is referred to as iterative
probing. It includes TOPP [2], Pathload [3], Pathchirp [5], PTR
[4], and Bfind [7]. In iterative probing, each probing stream
is used to examine whether the stream’s rate is larger than the
avail-bw during the probing interval. The key idea is that if
the output rate of a probing stream is smaller than the input
rate, or if the one-way delays of consecutive packets in the
stream show increasing trend, then the probing rate is larger
than the avail-bw during the probing stream. An important
difference with direct probing is that iterative probing does not
require knowledge of the tight link capacity. The probing rate
is varied either linearly or based on what happened in previous
streams, until the probing process converges to an estimate of
the average avail-bw. An exception to the previous description
is Pathload [3]. Pathload was the first tool to consider the
variability of avail-bw process and to report a variation range
(called “grey region”) rather than a point estimate. However,
Pathload does not specify the percentiles that correspond to
the grey region, and it does not allow the user to control the
desired percentiles or the measurement time scale.

A related area in the literature is that of traffic modeling
and analysis, and in particular, the measurement of the second-
order statistics (variance and autocorrelation) in various time
scales using packet traces. That area, which started with the
seminal Bellcore work [11], revealed that the traffic count
process at a network link is asymptotically self-similar. The
reader is referred to [9] for a survey of the related literature.
Our approach and objectives in this work are significantly
different. First, instead of passive traffic measurements at a
single link we are interested in the active estimation of the
avail-bw in an end-to-end path. Second, instead of focusing
on the scaling properties of the avail-bw process, we focus on
the variability of the marginal distribution at a given time scale.
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Third, our high-level goal is to develop tools that can be used
in practice to measure important path characteristics, rather
than to statistically characterize or model network traffic.

C. Main Contributions and Overview

In this paper, we first present a measurement technique,
referred to as percentile sampling, that can associate a given
probing rate with a percentile of the avail-bw distribution.
We then use percentile sampling to design two estimation
algorithms for the avail-bw variation range.

The first algorithm is iterative in nature. We refer to it
as non-parametric, because it does not assume a specific
avail-bw distribution. The non-parametric algorithm is more
appropriate for very short values of the measurement time
scale (typically less than 100msec) or in bottlenecks with
limited flow multiplexing, where the avail-bw distribution may
be non-Gaussian.

The second algorithm is parametric, because it assumes that
the avail-bw follows the Gaussian distribution. This assump-
tion is typically valid when τ >100-200msec and when the
tight link carries a significant amount of aggregated traffic
[12]. The parametric algorithm can produce an estimate faster
than the non-parametric algorithm because it is not iterative.

The two estimation algorithms have been implemented in
a measurement tool called Pathvar. We have validated Path-
var with simulations and testbed experiments using realistic
Internet traffic. Pathvar can track the actual avail-bw variation
range within 10-20%, even under non-stationary conditions.

Pathvar also uses a novel mechanism to detect whether a
probing rate is larger than the avail-bw. This is a central
problem in avail-bw estimation. The proposed mechanism
does not rely on the fluid traffic assumption or on static
thresholds, which are limitations of previous work.

Finally, we focus on four factors that can significantly affect
the variation range of the avail-bw. These factors are the traffic
load, number of competing flows, rate of competing flows, as
well as the measurement time scale. The results of that study
explain why the avail-bw appears as less or more variable
depending on the load conditions and the degree of statistical
multiplexing at the tight link.

The rest of the paper is structured as follows. The percentile
sampling technique is described in §II. §III presents the
non-parametric estimation algorithm, while §IV presents the
parametric algorithm. §V describes how to determine whether
a probing rate is larger than the avail-bw. The implementation
of Pathvar, and a few typical validation results, are summarized
in §VI. Finally, we examine the four factors that affect the
variability of the avail-bw process in §VII. We conclude in
§VIII.

II. PERCENTILE SAMPLING

In this section, we first describe the basic technique of
percentile sampling, which forms the basis of the proposed
estimation algorithms in the next two sections. A number N
of probing streams of duration τ and rate R are sent to a path.
Each stream provides an indication of whether the avail-bw in
the corresponding time interval is higher than R. The resulting

N binary samples are used to estimate the percentile of the
avail-bw distribution that corresponds to rate R. We also derive
the required number of samples N for a given maximum error,
assuming independent sampling.

A. Basic idea

Consider a network path. The avail-bw random process
measured in time scale τ is Aτ (t). As mentioned in the
Introduction, we assume that this process is stationary and
identically distributed. Given the previous assumptions, we
can focus on the random variable Aτ and on its time-invariant
marginal distribution Fτ .

The sender transmits a probing packet stream of rate R
and duration τ during (t, t + τ) to the receiver. If M is the
packet size, then the interarrival between successive packets is
M/R and the number of probing packets is d τR

M
e. The avail-

bw during (t, t + τ) is given by a realization of the random
variable Aτ . The receiver classifies the stream as type-G if it
infers that the probing rate R is greater (or equal) than Aτ .
Otherwise, the stream is classified as type-L (for “lower”). The
classification of a stream as type-G or type-L is the subject
of §V; for now we just note that this classification can be
performed based on statistical analysis of the one-way delays
of the stream’s probing packets.

We use the indicator variable I(R) to represent whether a
stream is of type-G (I(R) = 1) or type-L (I(R) = 0). If
Fτ (a) is the Cumulative Distribution Function (CDF) of Aτ ,
we have that

I(R) =

{

1 with probability Fτ (R)
0 with probability 1− Fτ (R)

So, the expected value of I(R) is E[I(R)] = Fτ (R).
A single probing stream can only tell us if the probing rate R

is greater than the realization of the avail-bw random variable
in the corresponding time interval. To accumulate N such
samples, the sender transmits N identical probing streams1.
The indicator variable for each stream is denoted by Ii(R).
Because different streams will sample different realizations of
Aτ , some streams may be classified as type-G and others as
type-L. Let I(R, N) be the number of streams of type-G, i.e.,
I(R, N) =

∑N

i=1 Ii(R). The expected value of I(R, N) is

E[I(R, N)] =

N
∑

i=1

E[Ii(R)]

= Fτ (R)N (4)

The following proposition summarizes the basic idea of
percentile sampling:

Proposition 1: For a stationary avail-bw process, the frac-
tion I(R, N)/N of type-G probing streams of rate R is an
unbiased estimator of p = Fτ (R).

Proposition 1 provides us with a mapping from a given
probing rate R to the corresponding cumulative probability
in the avail-bw distribution. Since our goal is to estimate a
given percentile of the avail-bw distribution, we are interested

1The time period between streams should be sufficiently long for the
streams to not get queued behind each other while in transit.
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Fig. 2. Nmin as a function of ρ for p = 0.9 and ε = 0.05.

in the inverse mapping, from a certain probability to the
corresponding probing rate. We present two algorithms that
perform this inverse mapping in §III and §IV.

It is important to note that Equation (4) does not require the
statistical independence of the N avail-bw samples. Therefore,
Proposition 1 can be used even without information about the
(generally complex and unknown) correlation structure in the
process Aτ (t).

B. How large should N be?

Proposition 1 refers to the expected value of I(R, N). The
obvious question is how large should the sample size N be
so that the fraction I(R, N)/N is a good approximation of
Fτ (R)? In this section, we derive the minimum value of N
that is required for a given error tolerance.

Suppose that we aim to estimate the p-th percentile of Aτ ,
denoted by Ap

τ . Let ρ be the maximum allowed percentile
error in the estimation of Ap

τ . This means that probing rate R
would be an acceptable estimate of Ap

τ if the corresponding
fraction I(R, N)/N is between p− ρ and p + ρ. So, a rate R
will be correctly mapped to the p-percentile as long as

Prob[N(p− ρ) ≤ I(R, N) ≤ N(p + ρ)] > 1− ε (5)

where ε is a small mis-classification probability.
To derive the previous probability, we need to make the

additional assumption that the binary outcomes Ii(R) of the
N probing streams are independent. If that is the case, then
I(R, N) follows the binomial distribution with a success
probability of Fτ (R). So, the probability that i out of N
streams are of type-G is given by

P [I(R, N) = i] = (N
i )Fτ (R)i[1− Fτ (R)]N−i (6)

From Equations (5) and (6), we can calculate the minimum
value Nmin of streams required for a given error tolerance
ρ and a given mis-classification probability ε. The probability
Fτ (R) is determined based on the percentile that we aim to es-
timate. For instance, if we are interested in the 90% percentile
then Fτ (R)=0.9. Figure 2 shows Nmin as a function of ρ for
ε=0.05 and for estimating the 90% percentile. As expected,
N increases quickly as we decrease the error threshold ρ.
Specifically, as ρ becomes less than 4%, we need more than
100 samples (or probing streams).

In practice, generating a large number of probing streams
increases the measurement overhead and it slows down the
estimation process. Our objective in this work is to design a

measurement tool that can track the avail-bw variation range
in real time, even if the latter changes with time. For this
reason, we prefer to use a relatively small number of probing
streams, even if the resulting error tolerance ρ is significant.
Specifically, in the rest of the paper we typically use N =
40− 50 streams, limiting the maximum percentile error ρ to
about 0.05-0.06.

III. NON-PARAMETRIC ESTIMATION

In this section, we present a simple iterative algorithm for
the estimation of the variation range [AL

τ , AH
τ ] in a given time

scale τ . We refer to the following algorithm as non-parametric,
in the sense that it does not assume a specific marginal
distribution for the underlying avail-bw, or, equivalently, for
the traffic at the tight link.

A. Algorithm

Suppose that we want to first estimate the higher bound
AH

τ of the variation range. If AH
τ is the p-th percentile,

then p=Fτ (AH
τ ). The basic idea in the following algorithm

is to iteratively adjust the probing rate R so that, based on
Proposition 1, the fraction of probing streams that are of type-
G is approximately p.

Specifically, in the n-th iteration of the algorithm the sender
transmits N streams of rate Rn to the receiver. The receiver
classifies each stream as type-G or type-L, and calculates the
fraction fn = I(Rn, N)/N of streams that are of type-G.
Based on Proposition 1, the expected value of fn is equal to
Fτ (Rn). So, if the rate Rn is close to the target percentile
AH

τ , we expect that fn would be approximately equal to p.
Similarly, if Rn is larger than AH

τ then fn is expected to be
higher than p, while if Rn is less than AH

τ then fn is expected
to be lower than p. The information about fn is delivered
back to the sender, which then sets the probing rate Rn+1

accordingly.
In more detail, if fn is within p±ρ, where ρ is a maximum

percentile error, the rate Rn is reported as an estimate of the
p-th percentile and the probing rate remains the same, i.e.,
Rn+1 = Rn. If fn > p + ρ, the sender needs to reduce the
probing rate. Similarly, if fn < p − ρ, the sender needs to
increase the probing rate. The probing rate ratio Rn+1/Rn

in the next iteration is based on the difference fn − p. This
is just a heuristic, but it is reasonable given that we do not
have additional information about the shape of the underlying
avail-bw distribution.

To avoid strong oscillations, we impose an upper bound on
the rate variation between two successive iterations through
a parameter b. A larger value of b allows faster convergence,
especially under non-stationary conditions, but it also increases
the estimation error. As will be shown later, a value of b
around 0.10-0.20 is a good trade-off between accuracy and
responsiveness, at least based on our validation experiments.

Algorithm III.1 shows the pseudo-code of the non-
parametric algorithm. The input parameters are the number of
streams N , the probability p that corresponds to the desired
percentile, and the error tolerance ρ. To measure the variation
range [AL

τ , AH
τ ], the algorithm is executed twice in each
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iteration: N streams with probing rate RH to estimate AH
τ

(p = pH) and another set of N streams with rate RL to
estimate AL

τ (p = pL). The two sets of streams can be
interleaved so that the reported estimates of the variation range
cover the same time interval.

The non-parametric algorithm is iterative, and so it will be
unable to track the avail-bw variation range if the latter does
not remain roughly constant during at least a few iterations.
The total probing duration for each iteration of the previous
algorithm is 2N(τ +Tidle), where Tidle is the idle time which
may be introduced between successive streams to reduce
intrusiveness. For N=50, τ=20msec, and Tidle=80msec, two
successive iterations of the previous algorithm will sample the
same avail-bw distribution as a long as the underlying avail-bw
process remains stationary for at least 10 seconds.

�
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�
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Send N streams of duration τ at rate Rn

I(Rn, N)← 0
for i← 1 to N

do
{

if stream[i] = type-G
then I(Rn, N)← I(Rn, N) + 1

fn ← I(Rn, N)/N

if fn > p + ρ

then
{

diff ← MIN(b, fn − p)
Rn+1 ← Rn ∗ (1− diff)

else if fn < p− ρ

then
{

diff ← MIN(b, p− fn)
Rn+1 ← Rn ∗ (1 + diff)

else
{

Rn+1 ← Rn

output Rn

B. Estimation with non-stationary load in single-hop path

In this section, we show examples of how the previous
algorithm performs in a single-hop path with non-stationary
traffic load that includes level shifts and short spikes. To make
sure that the traffic load is realistic, we use packet traces
captured by NLANR-MOAT at various OC-3 links (BWY-
1063326722-1, COS-1049166362 and BWY-1063304167-1)
[13]. Since we know the actual traffic load, we can calculate
the exact 10%-90% percentiles of the avail-bw distribution,
and so we can validate the previous estimation algorithm. In
the following, the measurement time scale τ is 100msec. In
the experiments of this section we make sure that the the
classification of streams in type-G or type-L is always correct,
by comparing the actual avail-bw in each probing interval with
the probing rate.

To create non-stationary traffic loads, we merge different
NLANR traces. Each trace is 90sec long, while the avail-bw
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Fig. 3. Actual and estimated variation range when b=.05
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Fig. 4. Actual and estimated variation range when b=.15

process in each trace is stationary. The non-stationary traffic
time series shown in Figure 3 and 4 was composed as follows:
trace-1 was “played-back” twice, followed by trace-2 twice,
followed from 20sec of trace-3 (to create the spike that occurs
at t=360sec), and finally 50sec of trace-2 again.

The time series of the actual 10%-90% variation range was
measured by segmenting the traffic trace in successive intervals
of length 2Nτ . At each segment, we calculate the empirical
CDF of the avail-bw measured in time intervals of length τ .
So, each successive interval of length 2Nτ results in a single
measurement of the actual variation range in the time scale
τ . The corresponding estimated variation range is inferred
from the previous non-parametric algorithm using the same
measurement time scale (τ ) and measurement period (2Nτ ).

Figures 3 and 4 show the actual and the estimated 10%-90%
variation range for two values of b. Notice that, overall, the
estimation algorithm is able to successfully track the avail-bw
variation range. During stationary time periods, the estimation
error is less than 5%. The estimation errors are larger, however,
during level shifts and short spikes.

The accuracy and responsiveness of the algorithm depend
on b. The parameter b determines the maximum allowed
rate variation in two successive iterations. When the avail-
bw process is stationary, and the estimated variation range is
already close to the actual variation range, a lower b performs
better because it causes lower oscillations around the actual
percentiles. For instance, the Root Mean Square Error (RMSE)
of the estimated AH

τ during the first 180 sec of the trace in
Figure 3 is 2.4 for b=0.05 and 4.4 for b=0.15. The RMSE
values for AL

τ are 2.1 and 3.6, respectively.
On the other hand, a higher value of b is better during

initialization, or when the traffic load exhibits frequent level
shifts or spikes. For instance, notice the spike that occurs in
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the time interval [360,390] in Figures 3 and 4. Such an intense
traffic spike can be due to a route flap or some form of network
anomaly. With b=0.05 the estimation algorithm does not track
successfully the magnitude of the traffic spike, while with
b=0.15 the algorithm is much more responsive. We note that
the selection of b should be made based on the nature of the
network path that is to be monitored. As it happens with most
estimation tools, their accuracy depends on the calibration of
certain parameters in the specific environment where these
tools are to be used.

IV. PARAMETRIC ESTIMATION

In this section, we present a parametric estimation algorithm
that is based on the assumption that the avail-bw marginal dis-
tribution is Gaussian. This is a reasonable assumption for links
with a large degree of flow multiplexing (high “vertical ag-
gregation”) and for sufficiently long measurement time scales
τ (high “horizontal aggregation”). The Gaussian assumption
in the context of network traffic and the required degrees of
vertical and horizontal aggregation have been examined in
[12] and the references therein. Specifically, the measurements
presented in [12] show that the vertical aggregation of at least
25 users, with an aggregate average traffic rate of 25Mbps,
is a good fit with the Gaussian model in time scales that are
longer than 128msec. Also, the Gaussian model is a good
approximation when the measurement time scale is longer than
1sec and the aggregate average rate is as small as a few Mbps.
When it is not likely that the previous conditions hold, the non-
parametric algorithm of the previous section should be used
instead.

A. Algorithm

A Gaussian distribution is completely described by its
mean and variance. Furthermore, the knowledge of any two
percentiles of the Gaussian distribution is sufficient to compute
the mean and variance. The basic idea in the following
algorithm is to estimate two arbitrary percentiles of the avail-
bw distribution based on Proposition 1. Then, we use these two
percentiles to estimate the mean and variance of Fτ , and finally
we estimate the user-specified variation range [AL

τ , AH
τ ].

In more detail, suppose that the avail-bw distribution has
mean µ and variance σ2

τ in the time scale τ . Exactly as in
the non-parametric algorithm, the sender generates N probing
streams of rate R1 and then it calculates the fraction f1

of streams that are of type-G. Based on Proposition 1, the
expected value of this fraction is equal to the cumulative
probability Fτ (R1) that corresponds to rate R1. So, if N is
sufficiently large, we expect that f1 ≈ Fτ (R1). The previous
process is repeated for a different probing rate R2, resulting
in an additional constraint f2 ≈ Fτ (R2). With the previous
two constraints, we can then calculate the standard deviation
and the mean of Fτ as follows:

στ =
R1 −R2

φ−1(f1)− φ−1(f2)
(7)

µ = R1 − στφ−1(f1) (8)

where φ−1 is the inverse of the standard normal distribution
CDF. Finally, the percentiles that correspond to the variation
range are:

AH
τ = µ + στφ−1(pH) (9)

AL
τ = µ + στφ−1(pL) (10)

It is important to note that the probing rates R1 and R2 need
not be equal to AH

τ or AL
τ , respectively. Instead, it is sufficient

to choose R1 and R2 so that the corresponding percentiles
p1 and p2 are significantly different, i.e., |p1 − p2| > ρ.
Furthermore, we can choose R1 and R2 so that they are at
the left half of the Gaussian distribution. Doing so reduces
the intrusiveness of the measurements, because the probing
streams are of lower rate than the average avail-bw.

In practice, the probing rates R1 and R2 can be chosen to
track two low percentiles, say the 20% and the 40%. This
can be achieved by adjusting the two rates at the end of each
repetition of the algorithm, based on the estimated Gaussian
distribution. Notice that even with this optimization, the para-
metric algorithm remains non-iterative because the estimate of
the variation range in each repetition of the algorithm does not
depend on the estimate in the last repetition.

The pseudo-code for the parametric algorithm is given
in Algorithm IV.1. As in the non-parametric algorithm, the
transmission of the N streams of rate R1 can be interleaved
with the streams of rate R2.
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Algorithm IV.1: PARAMETRIC(N, pH , pL, p1, p2)
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Send N streams of duration τ at rate R1

Send N streams of duration τ at rate R2

I(R1, N)← 0
for i← 1 to N

do
{

if stream[i, R1] = type-G
then I(R1, N)← I(R1, N) + 1

f1 ← I(R1, N)/N

I(R2, N)← 0
for i← 1 to N

do
{

if stream[i, R2] = type-G
then I(R2, N)← I(R2, N) + 1

f2 ← I(R2, N)/N

στ ← R1−R2

φ−1(f1)−φ−1(f2)

µ← R1 − στφ−1(f1)

AH
τ ← µ + στφ−1(pH)

AL
τ ← µ + στφ−1(pL)

R1 ← µ + στφ−1(p1)
R2 ← µ + στφ−1(p2)
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Fig. 5. Estimated and actual 10-90% variation range with Gaussian traffic.
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Fig. 6. Estimated and actual 10-90% variation range with non-Gaussian
traffic.

B. Validation examples

In this section, we illustrate the accuracy of the para-
metric algorithm for both Gaussian and non-Gaussian avail-
bw distributions. We are again interested in the 10%-90%
variation range. The probing rates are chosen based on the 10%
and 40% percentiles, i.e., p1=0.10 and p2=0.40. The actual
variation range is measured by calculating the empirical CDF
in successive time windows of legth 2Nτ , as described in
§III-B.

Figure 5 shows the actual and the estimated variation range
for an OC-48 NLANR packet trace (IPLS-CLEV-20020814-
091000-1). The measurement time scale is τ=250msec. To
examine whether the avail-bw distribution is Gaussian in
that time scale, we calculate the kurtosis and skewness of
the corresponding distribution. A Gaussian random variable
has a skewness of zero and a kurtosis of 3. In this trace,
the skewnewss and kurtosis are 0.21 and 3.15, respectively,
meaning that the avail-bw distribution is reasonably close
to Normal even though it is not a perfect match. The main
observation in Figure 5 is that the parametric algorithm can
closely track the variation range within 5% or better. The
RMSE for this trace is 1.1.

On the other hand, Figure 6 shows the actual and estimated
variation range for an OC-3 packet trace (ANL-1070464136)
that deviates significantly from the Gaussian model. The
measurement time scale in this case is τ=50msec, while
the skewness and kurtosis are 0.46 and 5.23, respectively.
Although the parametric algorithm is still able to track the
variation range, there is a non-negligible bias in the estimation
of the lower percentile, and the estimation error is significantly
larger (RMSE=4.9) compared to the case of Gaussian traffic.

V. PROBING RATE CLASSIFICATION

So far, we have assumed that the receiver can correctly
infer whether a probing stream is of type-G or type-L, i.e.,
whether the stream’s input rate Ri is larger than the avail-bw
during the probing interval. We remind the reader that Ri is the
constant rate with which the sender transmits probing packets
to the receiver, while Ro is the average rate with which this
packet stream arrives at the receiver. The techniques that have
been used in the literature for comparing Ri with Aτ (t) have
some important limitations. Specifically, previous techniques
are either based on the oversimplifying fluid traffic assumption,
or they use static thresholds that should instead be path and
load dependent. Here, we propose a new inference technique
that does not have the previous two shortcomings.

The first existing approach to compare a probing rate with
the avail-bw was reported in [2]. Assuming that the cross
traffic follows the fluid model, i.e., ignoring the burstiness due
to discrete packet sizes and random interarrivals, it is easy to
show that Ri > Aτ (t) if and only if Ro < Ri. This is true
because, when the traffic follows the fluid model, the probing
packets are queued in the tight link only when their input rate
is sufficiently high to overload that link. This is not the case,
however, without the fluid model assumption. In that case,
queues build up even before the tight link becomes saturated,
causing underestimation of the avail-bw. This issue has been
recently studied in [14].

The second approach to compare Ri with Aτ (t) is based on
the time series of OWDs in a probing stream. This approach
was first followed in [15]. The basic idea is that if Ri > Aτ (t)
then the OWDs of the probing packets should exhibit an
increasing trend. This increasing trend in the delays is due
to the queueing build-up at the tight link when its avail-
bw is exhausted. This approach does not rely on the fluid
model assumption, but its effectiveness strongly depends on
the statistical technique and the related parameters that are
used to infer the presence of an “increasing trend”. In [15], the
authors first filter out some OWDs that appear to be outliers.
Then, they apply two statistical tests (Pairwise-Comparison-
Test and Pairwise-Difference-Test) on the remaining time
series to detect if the OWDs present an overall increasing
trend or not. Both tests, however, require a key threshold. In
[15], that threshold remains the same for all paths and load
conditions.

In this paper, we also use the OWD approach to classify
a stream as type-G or type-L. Instead of a static threshold,
however, we propose an adaptive algorithm to detect the
presence of increasing OWD trend. In more detail, suppose
that a probing stream consists of K packets. Let Di and Ai

be the OWD and receive time of the i’th packet, respectively.
Then, the pairwise OWD slope Si,j of two packets i and j < i
of the stream is given by

Si,j =
Di −Dj

Ai −Aj

We expect that if Ri > Aτ (t), then the OWDs of the probing
stream will exhibit increasing trend due to queueing at the tight
link, and so most of the Si,j values will be positive. Otherwise,
the Si,j values will be randomly distributed around zero. To
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filter out any outliers, and also to summarize the distribution
of Si,j into a point estimate, we work with the median S̃
of the Si,j values. Then, similarly with [15], we compare S̃
with a threshold β ≥0. If S̃ ≥ β, the corresponding stream is
classified as type-G; otherwise, it is of type-L. The appropriate
value of β, however, depends on the burstiness and the load
intensity of the traffic in that path [8], [14]. So, instead of
attempting to estimate an “optimal” but fixed β, we instead
propose an adaptive algorithm for the selection of β. The basic
idea behind this algorithm is that β should be chosen such that,
if rate R is the p’th percentile of the avail-bw distribution, then
the classification of N streams of rate R should report roughly
pN streams of type-G.

Specifically, suppose that we transmit N streams of rate
Rp. We compute the median slope of each probing stream,
and then order the streams so that S̃1 is the lowest slope
and S̃N the highest. Now, suppose that we somehow know
that rate Rp corresponds to the p’th percentile of the avail-bw
distribution Fτ . Then, based on Proposition 1, we expect that
on the average, pN out of the N probing streams will be of
type-G. So, the threshold β should be chosen so that it is

S̃bpNc ≤ β < S̃bpNc+1 (11)

Otherwise, if β is chosen outside this range, the classification
of streams in type-G or type-L will be biased and the p’th
percentile will not be estimated correctly. In the following,
we set β = S̃bpNc.

Of course the issue with the previous approach is that in
general we do not know any percentile of the avail-bw distri-
bution; this is actually what we aim to infer. Consider however
the following iterative approach, based on the principles of
stochastic optimization. If we start with a “sufficiently good”
value of β, then we can use the algorithms of §III or §IV to
roughly estimate any given percentile of Fτ . Then, we can use
that information in adjusting β based on (11). The new value
of β is probably better than the previous, given that it is based
on the estimation of the underlying avail-bw distribution rather
than on a fixed threshold.

The previous approach can be executed iteratively, adjusting
β after each round of the algorithms of §III or §IV. After
iteration n, the new threshold βn can be determined based on
a EWMA operator as follows

βn = ωS̃bpNc + (1− ω)βn−1 (12)

The use of EWMA, instead of just replacing β with S̃bpNc

after each iteration, aims to de-noise the estimation of β.
As it can happen with such adaptive algorithms, their

convergence depends on the selection of the initial point
and on the convergence parameters [16]. If the initial point
is not in the vicinity of the global optimum, it is possible
that the algorithm will converge to a local optimum. Also,
if the convergence parameter (in our case, the parameter ω)
is too large, the algorithm may fail to converge. Here, the
convergence depends on the initial selection of β and on the
parameter ω. We determine the initial threshold β based on the
statistical tests presented in [15]. The parameter ω was tuned
through simulations and is set to ω=0.05. We do not claim

however that these are optimal values or that the convergence
of β to its optimal value is guaranteed.

Since the adaptive selection of β is coupled with the
estimation of the avail-bw variation range, the two algorithms
are jointly evaluated in §VI. Here we simply present two
examples of how the adaptive selection of β can succeed or
fail to accurately estimate a certain percentile of the avail-
bw distribution (see Figures 7 and 8, respectively). These
results were obtained from testbed experiments with trace-
driven cross traffic (the experimental setup is described in
more detail in §VI). We emphasize that the cases of failed
convergence are rare, at least in all our validation experiments
and simulations. We show one such example however (in
Figure 8) to demonstrate that a failure to converge to the
optimal value of β can lead to a certain bias in the estimation
of a given percentile.
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Fig. 7. Example of successful convergence of β.

0 100 200 300 400 500
Time (sec)

10

20

30

40

50

60

A
va

il-
bw

 (
M

bp
s)

Actual A
L
τ

Estimated A
L
τ

Fig. 8. Example of unsuccessful convergence of β.

VI. PATHVAR

We have implemented both the non-parametric and para-
metric estimation algorithms in a tool called Pathvar. Pathvar
consists of two components: the sender is responsible for
transmitting the probing streams, while the receiver analyzes
the One-Way Delays (OWDs) in each stream and determines
whether a stream is of type-G or type-L. The two peers
use a TCP connection to reliably transfer control messages
and UDP datagrams for the probing streams. The number of
streams N , stream duration τ , and the avail-bw variation range
probabilities (pL, pH) are the key Pathvar inputs.
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N determines the number of probing streams of a certain
rate R that the sender will transmit to the receiver in each iter-
ation. As described in §II-B, N determines the accuracy with
which we can infer the probability Fτ (R) that corresponds to
the probing rate R. Based on the results of §II-B, Pathvar uses
N = 40 targeting for an error tolerance ρ = 0.05 − 0.06 in
the estimation of Fτ (R). The stream duration τ determines the
measurement time scale for the average avail-bw, and it has to
be chosen by the user based on the application requirements.
We note however that τ should not be more than a few
hundreds of milliseconds. The reason is that high-rate probing
streams that last for too long can be network intrusive, causing
congestion and packet losses.

Pathvar sends a total of 2N streams in each iteration: N
streams at each of two different rates (as described in §III
and §IV). A stream is sent only when the previous stream has
been acknowledged by the receiver, meaning that the duration
of each iteration is 2N(τ +RTT ), where RTT is the Round-
Trip Time between the two peers. Additionally, the probing
streams of the two rates are interleaved, i.e. a stream of rate R1

is followed by a stream of rate R2, so that Pathvar probes the
avail-bw distribution with the two rates almost simultaneously.
After all 2N streams are received, the receiving peer examines
whether each stream is of type-G or type-L, as described in
§V.

Pathvar invokes either the non-parametric or the parametric
algorithm depending on the specified time scale τ . If the
latter is larger than 100msec, we prefer to use the parametric
algorithm for three reasons. First, based on the measurement
results of [12], we expect that in those time scales the avail-
bw process will be sufficiently close to Normal. Second, with
large values of τ , and consequently with long probing streams,
the parametric algorithm gives us the advantage that we can
select lower probing rates, reducing the intrusiveness of the
measurements. Third, the parametric algorithm is not iterative
and so it is less dependent on the stationarity assumption; that
assumption can be questioned when τ is large.

In Pathvar, the sender timestamps each probing packet just
before transmission. Upon arrival, the receiver records the
arrival time and measures the OWD. The measured OWD
differs from the actual OWD due to the clock offset between
the two measurement peers. However, since we are only
interested in the OWD differences, the clock offset does not
affect the measurements as long as it is constant. The presence
of clock skew does not affect Pathvar because the stream
duration is less than a second, while the typical magnitude
of clock skew in modern quartz clocks is in the order of only
a few microseconds per second. Context switching is another
source of errors in the OWD measurements because buffering
of packets in the kernel adds a variable delay component in
the measured OWDs. Pathvar implements simple techniques
to detect context switching and remove its effects, similar with
the techniques developed for Pathload [15]. Finally, in the
current version of Pathvar, the initial probing rates have to
be provided by the user based on past experience with the
measured path.

A. Testbed examples

We have evaluated the accuracy of Pathvar with both sim-
ulations and testbed experiments. The tight link at the testbed
is a Fast Ethernet segment between two switches. The traffic
at the tight link is generated by replaying the aggregate packet
stream observed in NLANR traces. So, the packet sizes and
interarrivals are based on realistic Internet traffic. To create
non-stationary traffic conditions, and in particular level shifts,
we concatenate traces with significantly different load.
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Fig. 9. Pathvar experiment with non-parametric algorithm.

Figure 9 shows the actual and estimated 10%-90% per-
centile range, measured in a time scale τ=40msec, for a non-
stationary traffic load. The estimation in Figure 9 is performed
with the non-parametric algorithm (b=0.2). A first observation
is that, during the stationary epochs, Pathvar tracks the actual
variation range within 10% or better. A second observation
is that after level-shift events, the non-parametric estimation
algorithm needs some considerable amount of time (100-
200sec) to reconverge to the correct variation range. This
delay can be reduced by using a larger value of b, but with
an associated cost in the accuracy of the estimation during
stationary periods. A future improvement that we consider
is to dynamically increase b, upon the detection of frequent
level-shifts or other forms of non-stationarity, and to gradually
decrease b when the avail-bw remains at the same level.
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Fig. 10. Pathvar experiment with parametric algorithm.

In Figure 10, we use the parametric algorithm instead. The
actual and estimated 10%-90% percentile range are measured
in a time scale τ=250msec. The traffic load is non-stationary
(generated from replaying multiple times a 90-sec NLANR
trace), but with a marginal distribution that is quite close to
the Gaussian model.

A first observation is that the tool needs about 2N(τ +
RTT )=55 seconds to generate each estimate of the variation
range. Notice that this large latency is not an intrinsic charac-
teristic of the parametric algorithm, but it is due to the large
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measurement time scale τ and the associated long duration of
each probing stream. Second, the estimation error is in the
order of 10-20%. The reader should not conclude that the
parametric algorithm is less accurate than the non-parametric
algorithm. In general, the accuracy of the two algorithms is
comparable when they are both applied on the same traffic
and with the same value of τ , as long as the traffic process is
stationary and Gaussian.
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Fig. 11. Non-parametric and parametric estimates of 20% percentile for
τ=40msec.
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Fig. 12. Non-parametric and parametric estimates of 20% percentile for
τ=140msec.

Next, we compare the accuracy of the parametric and non-
parametric algorithms under the same traffic load. In the
following graphs, we show a single avail-bw percentile, rather
than a variation range, to avoid cluttering. For each algorithm,
we show the time series of the 20-th percentile avail-bw
estimates, as well as the 95-th Confidence Intervals (CI) of
those estimates.

Figures 11 and 12 show the effect of the measurement time
scale τ on the accuracy of the two algorithms. The traffic is
generated by replaying the NLANR trace MRA-1062182531.
The 20-th percentile of the avail-bw distribution during the
entire trace is 67.0Mbps at τ=40msec, and 72.1Mbps at
τ=140msec. The non-parametric algorithm estimates this per-
centile quite accurately in both measurement time scales. The
parametric algorithm, on the other hand, is accurate when
τ=140msec, but it underestimates the given percentile when
τ=40msec. The reason is that in that shorter measurement
time scale, the traffic deviates significantly from the Normal
distribution.

Figures 13 and 14 show the effect of the degree of statistical
multiplexing (“vertical aggregation”) on the accuracy of the
two algorithms. To generate traffic with a lower degree of
multiplexing we replay 20 large flows extracted from an
NLANR trace, and to generate traffic with higher multiplexing
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Fig. 13. Non-parametric and parametric estimates of 20% percentile for low
vertical aggregation.
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Fig. 14. Non-parametric and parametric estimates of 20% percentile for high
vertical aggregation.

we replay approximately 3000 smaller flows from the same
trace. The 20-th percentile of the avail-bw distribution during
the entire trace is 45.9Mbps and 44.9Mbps, respectively. In
both cases, the average traffic rate (and avail-bw) is about the
same. The non-parametric algorithm produces accurate esti-
mates of 20-th percentile with both degrees of multiplexing.
The parametric algorithm, on the other hand, is accurate only
when the traffic is highly aggregated. The reason is that in
the latter the traffic deviates significantly from the Normal
distribution.

To summarize the experiments of this section, the paramet-
ric algorithm performs better than the non-parametric algo-
rithm under non-stationary conditions (especially level shifts
and traffic spikes) because it is not iterative. On the other
hand, if the traffic is not Gaussian because of low horizontal
or vertical aggregation, then the non-parametric algorithm
performs better. Obviously, the accuracy of Pathvar is worse
when both previous assumptions do not hold, i.e., with non-
stationary and non-Gaussian traffic. This may be the case in
paths where the tight link is the host network interface or a
LAN link. In such environments, the traffic load is sporadic,
generated by only a few high-throughput flows, and so the
resulting avail-bw process can be both non-stationary and non-
Gaussian.

B. Internet Experiments

We have also used Pathvar to measure the avail-bw vari-
ation range in several Internet paths. The objective of these
experiments is not to perform validation, given that we do not
know the actual avail-bw distribution, but to observe how the
avail-bw variation range changes with time in real Internet
paths. In this section, we show some preliminary results from
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two Internet paths between Georgia Tech (in Atlanta GA) and
two universities in Greece (in Ioannina and Heraclion-Crete).
In both cases, we have evidence that the tight link is the
campus access link of the Greek universities (based on the
corresponding MRTG graphs).
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Fig. 15. Variation range estimates at the Internet path from Georgia Tech to
University of Ioannina.
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Fig. 16. Variation range estimates at the Internet path from University of
Crete to Georgia Tech.

Figure 15 shows the estimated 20%-80% variation range of
the avail-bw for the path from Georgia Tech to University of
Ioannina over a two-hour time period. The time reported in
the x-axis refers to local time in Greece. The measurement
timescale is 40msec and the estimates are obtained using
the non-parametric algorithm. A first observation is that the
avail-bw gradually increases, especially after 22:30pm. A
second, more interesting observation is that the variation range
decreases as the average avail-bw increases. We discuss the
relation between avail-bw variability and tight link utilization
in the next section.

Figure 16 shows the estimated 20%-80% variation range
for the avail-bw for a path from University of Crete (UoC)
in Heraclion to Georgia Tech over a three-hour window. The
time reported in the x-axis refers to local time in Greece.
The measurement timescale is 40msec and the estimates are
obtained using the non-parametric algorithm. A first observa-
tion is that the avail-bw shows a sharp increase at 8:00am.
We confirmed this unusual behavior with the MRTG graph
of the UoC campus access link. One possible explanation is
that certain applications (e.g., p2p file transfers) are blocked
during working hours. Another interesting observation is that
even though the average avail-bw is roughly constant between
6:00am and 8:00am, the variation range fluctuates signifi-
cantly. This illustrates that estimating only the average avail-
bw may be an insufficient indicator for the load of a network
path.

VII. VARIABILITY FACTORS

The previous sections focused on the estimation of the
avail-bw variation range through end-to-end measurements.
Which are the factors, however, that affect the variability of
the avail-bw distribution? Why does the traffic appear to be
more “bursty” in some paths than in other paths? Two pieces
of conventional wisdom are that “heavier load conditions also
produce wider traffic variations” and that “a higher degree
of multiplexing makes the traffic smoother”. Under which
conditions, however, are these statements true?

In this section, we focus on four different factors, and show
how they affect the variability of the avail-bw distribution.
These factors are the traffic load at the tight link, the number
of competing flows, the rate of competing flows, and of course
the measurement time scale. The first three factors are related
to the traffic characteristics at the tight link, while the last
factor is related to the way the avail-bw is measured. Even
though these factors have been examined in different contexts
before, our focus here is specifically on the way these factors
affect the variation range of the avail-bw distribution.

The following results are based on a simulation study
in which we measure the avail-bw variation range as we
vary each of the previous four factors. Specifically, we have
implemented an NS module for Pathvar that is identical to
the actual prototype described in §VI. Unless noted otherwise,
we use the following parameters in the simulation: τ=50msec
and N=40 streams. The simulation topology includes a tight
link with capacity Ct=50Mbps. The traffic at the tight link is
generated by a large number of edge nodes, and it resembles
short HTTP flows running over TCP NewReno. Each such
flow transfers 10-15 packets from a server to a client through
the tight link, sleeps for a random time interval (that is adjusted
based on the desired average load), and then repeats the
previous cycle.

During each simulation Pathvar runs M=25 consecutive
times, estimating a 10%-90% variation range [AL

τ (i), AH
τ (i)],

for i = 1 . . .M , after each run. To summarize the M ranges
into a single figure, we calculate the average width V̂ of the
estimated variation ranges as follows

V̂ =

∑M

i=1(A
H
τ (i)−AL

τ (i))

M
(13)

We also calculate the standard deviation Ê of these M
samples, to quantify their dispersion around V̂ .

The following simulations also serve as a validation study
of Pathvar. To do so, we collect a traffic trace at the tight link
during the simulation and then measure the width V = AH

τ −
AL

τ of the actual variation range [AL
τ , AH

τ ]. The comparison of
V̂ with V indicates whether Pathvar can successfully estimate
the avail-bw variation range width.

A. Effect of tight link utilization

The first factor we consider is the average utilization u
at the tight link. From queueing theory we know that the
variance of the queueing delay or backlog in most queueing
systems increases as the utilization increases [17]. How does
the utilization affect the avail-bw variability however?
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Fig. 17. Effect of tight link utilization on the variation range width (left
Y-axis) and CoV (right Y-axis).

In Figure 17, we show the estimated and the actual variation
range width for six values of u. The utilization is controlled by
adjusting the number of TCP clients. The measurement time
scale is τ=30msec. The first observation, in terms of validating
Pathvar, is that the actual variation range width V is very close
to the estimation V̂ , and always within a range of ±Ê/2.

Second, the variation range width increases with u up to
a certain point. After that point, the variation range width
decreases with u. The point of the maximum variability in
this particular simulation occurs when the utilization is around
70%, but this depends on the measurement time scale and on
the characteristics of the traffic mix. What is the reason for
this non-monotonic variation of V with u? Intuitively, when
u is relatively low, i.e., in light load conditions, V increases
with u because of the increasing variability in the offered load.
With Poisson traffic, the variance of the offered load increases
linearly with the average traffic rate. As u approaches 100%,
however, the tight link often becomes saturated. During the
time periods that the tight link is saturated, the departure rate
at the output of the tight link remains constant, and so the
avail-bw variability drops. In the extreme case that the tight
link is always fully utilized, the avail-bw remains constantly
zero, and so its variability is also zero. Note that it is important
to distinguish between the traffic variability at the input of a
link versus at the output. Even if the input rate has high traffic
spikes, the traffic rate at the output is essentially “clamped”
by the link capacity. It is this clamping effect that causes the
variation range reduction at high loads. This effect has been
also studied in [18], examining the relation between load and
traffic variance.

It is interesting that the Coefficient of Variation (CoV) of
the traffic at the output of the tight link follows a different
trend than the variation range (see Figure 17). Specifically, the
CoV, which is defined as the standard deviation of the avail-
bw over the average avail-bw, increases monotonically with u.
This trend should not be misinterpreted as an indication that
heavier loads cause wider traffic variability. This is only true in
relative terms, when the avail-bw variability is normalized by
the average avail-bw. In absolute terms, instead, the avail-bw
variability reaches its maximum when the link is significantly
loaded but not congested.
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Fig. 18. Effect of capacity scaling on the variation range width (left Y-axis)
and CoV (right Y-axis).

B. Statistical multiplexing effects and scaling models

Another conventional wisdom is that a higher degree of
statistical multiplexing, under the same load conditions, makes
the traffic smoother. To examine the validity of this statement,
we first need to clarify what it means to increase the degree
of multiplexing at a link.

We distinguish between two scaling models. In the first,
referred to as “capacity scaling”, we increase the capacity of
the tight link proportionally to the number of competing flows.
The average rate of each flow, as well as the utilization of the
tight link, remain constant. In the second, referred to as “flow
scaling”, we increase the number of competing flows at the
tight link while proportionally decreasing their average rate;
the capacity and utilization of the tight link remain constant.
Note that in both scaling models the number of competing
flows at the tight link increases, while the utilization of that
link remains the same.

1) Capacity Scaling: To simulate capacity scaling, we
increase the number of TCP clients U proportionally to the
capacity Ct of the tight link. Specifically, U is increased from
3 to about 90, Ct is increased from 10Mbps to 300Mbps, while
the tight link utilization is kept constant at 50%. Each TCP
client transmits an average of 1000 packets, then sleeps for a
random time interval between 2-5 secs, and then repeats the
previous cycle. The capacity of the access link of each client
is fixed to 2Mbps, and the average rate of each TCP flow also
remains constant.

Figure 18 shows the effect of capacity scaling on the avail-
bw variation range width and CoV. Interestingly, capacity scal-
ing has a different effect on the avail-bw variability, depending
on whether we look at the variation range width or at the
CoV. The former increases with Ct, while the latter decreases.
To understand why, suppose that Xi is the traffic process
generated by flow i, while Y =

∑U

i=1 Xi is the aggregate traffic
process at the tight link generated by U flows. If the U flows
are independent, which is a reasonable assumption when the
tight link is not congested, and if we assume for simplicity that
the flows are identically distributed with Var[Xi] = Var[X ],
then we have that Var[Y ] = UVar[X ]. So, the variation range
width of Y will increase with U . Actually, if Y is Gaussian,
then the width V of a symmetric variation range is proportional
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Fig. 19. Effect of flow scaling on the variation range width (left Y-axis) and
CoV (right Y-axis).

to the standard deviation of Y .2 In that case, V increases
proportionally to

√
U . The CoV of the avail-bw, on the other

hand, is equal to

CoV =

√

C − UVar[X ]

C − UE[X ]
=

√

UVar[X ]

C − UE[X ]
(14)

In capacity scaling, U increases proportionally with C, and
so the CoV decreases as 1/

√
C. So, the relative variability of

the avail-bw decreases with capacity scaling, even though the
absolute width of the variation range increases.

2) Flow scaling: To simulate flow scaling, we increase the
number of users U (TCP clients) decreasing proportionally
the average traffic rate of each user. This rate reduction is
achieved by decreasing the capacity Ce of the edge link that
connects each user to the tight link. The throughput of the TCP
transfers is determined by Ce in these simulations. Figure 19
shows the effect of capacity scaling on the avail-bw variation
range width and CoV. In the case of flow scaling, note that
both the absolute variation range as well as the CoV decrease
as the number of users increases.

An interesting question is, why does the variation range
width decrease with flow scaling, but it increases with capacity
scaling? Consider again the simple model of the previous
paragraph. The variance of Y is Var[Y ] = UVar[X ], assuming
independence among the U users. The difference with capacity
scaling, however, is that in flow scaling the variance Var[X ]
of each flow decreases as U increases. This is at least the
case for most traffic processes: their variance decreases as the
average rate decreases. In the Poisson process, the variance is
simply equal to the average rate. In the Poisson Pareto Burst
Process [19], which creates self-similar traffic, the variance is
proportional the square of the average rate. As long as Var[X ]
decreases faster than the increase in U , the variance Var[Y ]
will decrease as we increase the number of users. This is the
case for the traffic mix that we simulate in Figure 19, or for the
Poisson Pareto Burst Process. On other hand, this would not
be the case for the Poisson process, in which Var[Y ] remains
constant as we increase U .

The fact that the CoV decreases with flow scaling also
depends on the relation between U and Var[X ]. As in the
previous paragraph, the avail-bw CoV is given by (14). Since
the denominator (average avail-bw) remains constant, the CoV

2For instance, if Y is Gaussian, then it is easy to calculate that the 10%-
90% variation range width is equal to 2.56σ, where σ is the std-deviation of
Y .
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Fig. 20. Effect of time scale τ on the variation range width.

decreases if the variance of individual flows decreases faster
than the flow average rate.

C. Effect of measurement timescale

As mentioned in the Introduction, the variability of the avail-
bw decreases with τ . The rate of decrease, however, can be
very different depending on the correlation structure of the
underlying traffic process. If Aτ (t) is an IID random process,
then the variance decreases inversely proportional with the
length of the averaging time scale

Var[Akτ ] =
Var[Aτ ]

k
(15)

On the other hand, if Aτ (t) is an exactly self-similar process
with Hurst parameter 0.5 < H < 1, the variance decreases
slower

Var[Akτ ] =
Var[Aτ ]

k2(1−H)
(16)

A tool such as Pathvar can estimate the variation range in dif-
ferent time scales. Consequently, it is possible to infer through
end-to-end measurements whether the avail-bw process is an
IID or a self-similar process, and in the latter, to measure the
local Hurst parameter in a certain range of time scales.

Figure 20 shows the actual and the estimated variation range
width of the avail-bw in six measurement time scales: τ=50,
100, 200, 300, 400, and 500msec. As we expected, V de-
creases with τ . More interestingly, however, the decrease rate
is consistent with a self-similar process with Hurst parameter
H=0.7. Of course this scaling behavior is valid locally in the
previous range of τ ; the Hurst parameter may be different in
larger time scales.

VIII. CONCLUSIONS

This paper focused on the estimation of the avail-bw vari-
ation range using end-to-end network measurements. To the
extent of our knowledge, this is the first work that aimed to
measure the variability of the avail-bw, rather than its mean.
We developed and evaluated two complementary estimation
algorithms. The selection among the two algorithms depends
on the measurement time scale, the degree of multiplexing at
the tight link, and the stationarity of the traffic at the measured
path. The accuracy of the proposed algorithms will probably
be satisfactory for most applications, with relative errors up to
10-20%.
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Several important problems remain open for future work.
First, it is not clear whether the avail-bw variability estimation
is feasible when the traffic at the tight link is both non-
stationary and non-Gaussian. Second, the proposed estimation
techniques cannot be applied for larger measurement time
scales (say more than one second) because the corresponding
probing streams would be very network intrusive and they
would probably cause packet drops. Finally, the presence of
multiple bottlenecks at a path causes underestimation errors
in all avail-bw estimation techniques, and it would also affect
the algorithms presented in this paper.
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