

1

Graphical Query Interfaces for Semistructured Data:
The QURSED System∗

Michalis Petropoulos
Computer Science and Eng. Dept.
University of California, San Diego

mpetropo@cs.ucsd.edu

Yannis Papakonstantinou
Computer Science and Eng. Dept.
University of California, San Diego

yannis@cs.ucsd.edu

Vasilis Vassalos
Department of Informatics

Athens University of Econ. & Business
vassalos@aueb.gr

Abstract

We describe the QURSED system for the declarative specification and automatic generation of web-

based query forms and reports (QFRs) for semistructured XML data. In QURSED, a QFR is formally

described by its query set specification (QSS), which captures the complex query and reporting

capabilities of the QFR, and the associations of the query set specification with visual elements that

implement these capabilities on a web page. The design-time component of QURSED, called

QURSED Editor, semi-automates the development of the query set specification and its association

with visual elements by translating intuitive visual actions taken by a developer into appropriate

specification fragments. The run-time component of QURSED produces XQuery statements by

synthesizing fragments from the query set specification that have been activated during the interaction

of the end-user with the QFR, and renders the query results in interactive reports, as specified by the

QSS. We describe the techniques and algorithms employed by QURSED, with emphasis on how it

accommodates the intricacies introduced by the semistructured nature of the underlying data. We

present the formal model of the query set specification, as well as its generation via the QURSED

Editor, and focus on the techniques and heuristics the Editor employs for translating visual designer

input into meaningful specifications. We also present the algorithms QURSED employs for query

generation and report generation. An on-line demonstration of the system is available at

http://www.db.ucsd.edu/qursed/.

Contact Author: Michalis Petropoulos – Phone: +1 858 587 1771, Fax: +1 707 336 5469

∗ Preliminary portions of this paper appear in: Y. Papakonstantinou, M. Petropoulos, V. Vassalos: QURSED: Querying and
Reporting Semistructured Data, in ACM SIGMOD International Conference on Management of Data, 2002.

2

1 INTRODUCTION

XML is a simple and powerful data exchange and representation language, largely due to its self-describing

nature. Its advantages are especially strong in the case of semistructured data, i.e., data whose structure is not rigid

and is characterized by nesting, optional fields, and high variability of the structure. An example is a catalog for

complicated products such as sensors: they are often nested into manufacturer categories and each product of a

sensor manufacturer comes with its own variations. For example, some sensors are rectangular and have height and

width, and others are cylindrical and have diameter and barrel style. Some sensors have one or more protection

ratings, while others have none. The relational data model is cumbersome in modeling such semistructured data

because of its rigid tabular structure.

The database community perceived the relational model’s limitations early on and responded with labeled graph

data models [1] that evolved into XML-based data models [53]. XML query languages (most notably the emerging

XQuery standard [52]), XML databases [40] and mediators [8,13,16,25,41] have been designed and developed.

They materialize the in-principle advantages of XML in representing and querying semistructured data. Indeed,

mediators allow one to export XML views of data found in relational databases [16,41], XHTML pages, and other

information sources, and to obtain XML’s advantages even when one starts with non-XML legacy data. QURSED

automates the construction of web-based query forms and reports for querying semistructured, XML data.

Web-based query forms and reports are an important aspect of real-world database systems [5,42] - albeit semi-

neglected by the database research community. They allow millions of web users to selectively view the information

of underlying sources. A number of tools [27,28,32] facilitate the development of web-based query forms and reports

that access relational databases. However, these tools are tied to the relational model, which limits the resulting user

experience and impedes the developer in his efforts to quickly and cleanly produce web-based query forms and

reports. QURSED is, to the best of our knowledge, the first web-based query forms and reports generator whose

focus is semistructured XML data.

QURSED produces query form and report pages that are called QFRs. A QFR is associated with a Query Set

Specification (QSS). A QSS describes formally the complex query and reporting capabilities [44] of a QFR. These

capabilities include the large number of queries that a form can generate to the underlying XML query processor and

the different structure and content of the query result. The emitted queries are expressed in XQuery and the query

results are expressed directly in XHTML that renders the report page.

3

1.1 System Overview and Architecture

We discuss next the QURSED system architecture, shown in Figure 1, the process and the actions involved in

producing a QFR, and the process by which a QFR interacts with the end-user, emits a query, and displays the result.

We also introduce terms used in the rest of the paper. QURSED consists of the QURSED Editor, which is the

design-time component, the QURSED Compiler, and the QURSED Run Time Engine.

QURSED
Run-Time Engine

QURSED
Compiler

XML Data
Server

QURSED
Editor

Query Set
Specification

(QSS) XQuery
Expressions XML/XHTML

Query
Form
Page

Report
Pages

APP SERVER

BROWSER

XHTML
Query Form

Page
(Optional)

XHTML
Template

Report Page

Query Form
Page

Query/Visual
Association Dynamic

Server Pages

WYSIWYG
XHTML
Editor

Deployment

XML
Schema

Developer

Web Designer
End-User

Expanded
Schema
Tree (EST)

Figure 1 QURSED System Architecture

The Editor inputs the XML Schema [50] that describes the structure of the XML data to be queried and

constructs an Expanded Schema Tree (EST) from it. The EST is a structure that serves as the basis for building the

query set specification and is a visual abstraction of the XML Schema that the developer interacts with. The Editor

also inputs an XHTML query form page that provides the static part of the form page, including the XHTML form

controls [46], such as select ("drop-down menus") and text ("fill-in-the-box") input controls, that the end-user

will be interacting with. It may additionally input an optional template report page that provides the XHTML

structure of the report page. In particular, it depicts the nested tables and other components of the page. It is just a

template, since we may not know in advance how many rows/tuples appear in each table. The query form and

template report pages are typically developed with an external “What You See Is What You Get” (WYSIWYG)

editor, such as Macromedia HomeSite [29]. If a template report page is not provided, the developer can

automatically build one using the Editor.

The Editor displays the EST and the XHTML pages to the developer, who uses them to build the query set

specification of the QFR and the query/visual association. The QSS focuses on the query capabilities of the QFR and

describes the set of queries that the form may emit. The query description is based on the formalism of the Tree

4

Query Language (TQL) described in Section 4. The QSS’s key components are the parameterized condition

fragments, the fragment dependencies and the result tree generator (RTG). Each condition fragment stands for a set

of conditions (typically navigations, selections and joins) that contain parameters. The query/visual association

indicates how each parameter is associated with corresponding XHTML form controls [46] of the query form page.

The form controls that are associated with the parameters contained in a condition fragment constitute its visual

fragment. Dependencies can be established between condition fragments and between the values of parameters and

fragments, and provide fine-grained control on what queries can be submitted and which visual fragments are eligible

to appear on the query form page at each point (see Figure 11 in Section 6.1). Finally, the result tree generator

specifies how the source data instantiate and populate the XHTML template report page.

The QURSED Compiler takes as input the output of the Editor and produces dynamic server pages, which

control the interaction with the end-user. Dynamic server pages are implemented in QURSED as Java Server Pages

 [22], while Active Server Pages [30] is another possible option. The dynamic server pages, the query set

specification and the query/visual association are inputs to the QURSED Run-time Engine. In particular, the dynamic

server pages enforce the dependencies between the visual fragments on the query form page and handle the

navigation on the report page. The engine, based on the query set specification and the query/visual association,

generates an XQuery expression when the end-user clicks “Execute”, which is sent to the XML Data Server and its

XHTML result is displayed on the report page.

The primary function of QURSED is to generate and serve form interfaces and reports for semistructured data,

and not to offer an API to an XML Data Server, which is a function better provided by the Data Server itself.

QURSED of course can be used alongside applications that access the Data Server via such an API, being as it is

simply another client connected to the XML Data Server.

Notice also that QURSED displays the XML result as delivered by the underlying XML Data Server. The form

and structure of that result is mainly dependent on the result tree generator created by the QFR designer, as we will

see in Section 6. Given the primary function of QURSED, the RTGs created by QFR designers generally lead to

XQuery results structured as valid XHTML that has the form of a report. These results can be displayed on a

browser, which is the intended use given the primary focus of QURSED, or can be fed into an application as XML

input.

5

Finally, the QURSED infrastructure, in particular QSS and the QURSED run-time engine, can be used to

describe and access powerful data-centric web services. Developing a web services infrastructure around QSS is the

subject of future work, as is discussed in Section 8.

The rest of the paper is organized as follows. The related work and the list of contributions of QURSED are

presented in Section 2. In Section 3 the running example is introduced and the end-user experience is described.

Section 4 describes TQL, and Section 5 presents the query set specification formalism. Section 6 discusses how a

TQL query is formulated from a QSS during run-time and Section 7 presents the Editor that is the visual tool for the

development of a QFR and its query set specification. Section 8 presents some conclusions and discusses future

work.

2 RELATED WORK & NOVEL CONTRIBUTIONS OF QURSED

The QURSED system relates to three wide classes of systems, coming from both academia and industry:

1. Web-based Form and Report Generators, such as Macromedia DreamWeaver Ultradev [27], ColdFusion [28],

and Microsoft Visual Interdev [32]. All of the above enable the development of web-based applications that

create form and report pages that access relational databases, with the exception of [37], which targets XML data.

QURSED is classified in the same category, except for its focus on semistructured data.

2. Visual Querying Interfaces, such as QBE [56] and Microsoft’s Query Builder (part of Visual InterDev [32]),

which target relational databases, and XML-GL [10], EquiX [9], BBQ [33], VQBD [7], the Lorel’s DataGuide-

driven GUI [21], and PESTO [6], which target XML or object-oriented databases.

3. Schema Mapping Tools, such as IBM’s Clio [38], Microsoft’s BizTalk Mapper [31], TIBCO’s XML Transform

 [43] and Enosys’s Query Builder [14]. These are graphical user interfaces that facilitate the data transformation

from one or more source XML Schemas to a target XML Schema. The user constructs complex XQuery [52] or

XSLT [51] expressions through a set of visual actions. These tools are mainly used in integration scenarios.

4. Data-Intensive Web Site and Application Generators, such as Autoweb [19], Araneus [4], Strudel [17] and

Application Manifold [15]. These are recent research projects proposing new methods of generating web sites,

which are heavily based on database content. An additional extensive discussion on this class of systems can be

found in [18].

Web-based Form and Report Generators create web-based interfaces that access relational databases. The

developer uses a set of wizards to visually explore the tables and views defined in a relational database schema and

6

selects the one(s) she wants to query using a query form page. By dragging ‘n’ dropping the attributes of the desired

table to XHTML form controls [46] on the page, she creates conditions that, during run-time, restrict the attribute

values based on the end-user’s input. The developer can also select the tables or views to present on a report page,

and by dragging ‘n’ dropping the desired attributes to XHTML elements on the page, e.g., table cells, the

corresponding attribute values will be shown as the element’s content. The developer also specifies the XHTML

region that will be repeated for each record found in the table, e.g., one table row per record. These actions are

translated to scripting code or a set of custom XHTML tags that these products generate. The custom tags

incorporate common database and programming languages functionality and one may think of them as a way of

folding a programming/scripting language into XHTML. The three most popular custom tag libraries today are Sun’s

Java Server Pages (JSPs) [22], Microsoft’s Active Server Pages (ASPs) [30] and Macromedia ColdFusion Markup

Language [28].

These tools are tightly coupled with the relational model and are able to generate automatically forms and reports

when flat uniform relational tables need to be displayed. However, these tools cannot be used to generate

semistructured query forms and reports; developing form and report pages that query and display semistructured data

can be accomplished by writing custom JSPs (or ASPs) that address the semistructured aspects of the data. In

contrast, we provide a system that generates such query forms and reports for semistructured data.

Visual Querying Interfaces are applications that allow the exploration of the schema and/or content of the

underlying database and the formulation of queries. Unlike the form and report generators, which produce web front-

ends for the “general public”, visual querying interfaces present the schema of the underlying database to

experienced users, who are often developers building a query, help them formulate queries visually, and display the

result in a default fashion. The user has to, at the very least, understand what the meaning of “schema” is and what

the model of the underlying object structure is, in order to be able to formulate a query. For example, the QBE user

has to understand what a relational schema is and the user of Lorel’s DataGuide GUI has to understand that the tree-

like structure displayed is the structure of the underlying XML objects. These systems have heavily influenced the

design of the Editor because they provide an excellent visual paradigm for the formulation of fairly complex queries.

In particular, EquiX allows the visual development of complex XML queries that include quantification, negation

and aggregation, based on a Document Type Definition (DTD) [45], a predecessor of XML Schema. EquiX and

BBQ use some form of the Expanded Schema Tree (EST) and of the corresponding visual concept, but they still

7

require basic knowledge of query language primitives. Simple predicates, Boolean expressions and variables can be

typed at terminal nodes and quantifiers can be applied to non-terminal nodes. In a QBE-like manner, the user can

select which elements of the DTD to “print” in the output but the XML structure of the query result conforms to the

XML structure of the source, i.e., there is no restructuring ability.

A more powerful visual query language is XML-GL that uniformly expresses XML documents, DTDs and

queries as graphs. Queries consist of a set of extraction query graphs, a set of construction query graphs, and a set of

bindings from nodes of one side to nodes of the other. In terms of expressiveness, XML-GL is more powerful than

BBQ and EquiX, because of its ability to construct complex results using grouping, aggregate and arithmetic

functions. It also supports heterogeneous union, in a fashion similar to TQL. XML-GL is less powerful than XQuery

though, since recursive queries are not expressible and nested subqueries are partially supported.

It is important to note that the described visual query formulation tools and the Editor have very different goals:

The goal of the former is the development of a query or a query template by a database programmer, who is familiar

with database models and languages. The goal of the latter is the construction by an average web developer of a form

that represents and can generate a large number of possible queries.

Schema Mapping Tools are graphical user interfaces that declaratively transform data between XML Schemas in

the context of integration applications. The transformation is a three-step process that is based on multiple source

XML Schemas and a single target XML Schema that are visualized and presented to user. The first step discovers

and creates correspondences between one or more elements of the source schemas and a single target element

without attaching any specific semantics to them. The second step turns correspondences to mappings by specifying

exactly how the source elements are transformed to the target element. Selection predicates, inner and outer joins,

arithmetic, string and user defined functions are a few examples of the supported functionality. Clio [38] goes one

step further and explains the difference between different mappings interactively by giving examples to the user

based on small datasets. The third step of the transformation process generates either an XQuery [52] or an XSLT

 [51] expression that actually implements the transformation.

Note that the first two steps above are carried out using visual actions only, so the user does not need to be aware

of the particular query language used by each tool. These visual actions greatly facilitate data integration by

simplifying the transformation process, especially when someone takes into account that the generated query

expressions are particularly complex and hard to write by hand.

8

QURSED’s Editor adopts part of the functionality provided by the schema mapping tools for a different purpose.

More specifically, the Editor creates two types of transformations without making a distinction between

correspondences and mappings. First, it creates query/visual associations that map form controls on the XHTML

query form page to parameters of selection predicates, in order to generate queries that filter the data. And second, it

creates a transformation between a single XML Schema and an XHTML template report page in order to construct

the report pages.

Data-Intensive Web Site and Application Generators. Autoweb [19], Araneus [4] and Strudel [17] are excellent

examples of the ongoing research on how to design and develop web sites heavily dependent on database content.

All of them offer a data model, a navigation model and a presentation model. They provide important lessons on how

to decouple the query aspects of web development from the presentation ones. (Decoupling the query from the

presentation aspects is an area where commercial web-based form and report generators suffer.) Strudel is based on

labeled directed graphs model for both data and web sites and is very close to the XML model of QURSED.

The query language of Strudel, called StruQL, is used to define the way data are integrated from multiple sources

(data graph), the pages that make up the web site, and the way they are linked (site graph). Each node of the site

graph corresponds to exactly one query, which is manually constructed. Query forms are defined on the edges of the

site graph by specifying a set of free variables in the query, which are instantiated when the page is requested,

producing the end node of the edge. Similarly, Autoweb and Araneus perceive query forms as a single query, in the

sense that the number of conditions and the output structure are fixed. In Strudel, if conditions need to be added or

the output structure to change, a new query has to be constructed and a new node added to the site graph. In other

words, every possible query and output structure has to be written and added to the site graph. QURSED is

complementary to these systems, as it addresses the problem of encoding a large number of queries in a single QFR

and also of grouping and representing different reports using a single site graph node.

Application Manifold [15] is the first attempt to expand a data integration framework to an application

integration one. The system is capable of generating web-based e-commerce applications by integrating and

customizing existing ones. Applications’ flow is modeled and visually represented using UML State Charts that

consist of states, corresponding to web pages that provide activities, linked by transitions, corresponding to

navigation links that the end user can follow, and containing actions, corresponding to method calls that trigger other

9

transitions and/or alter the application’s state. Application integration and customization is specified using a

declarative language that allows for optimization and verification of the generated application.

Related to QURSED is also prior work on capability-description languages and their use in mediator systems

[23,44]. The QSS formalism of QURSED is essentially a capability description language for query forms and reports

over XML data. The prior work on capabilities has focused on describing the capabilities of query processors with

an underlying relational data model. Instead the QSS captures the complex query and reporting capabilities of query

forms over semistructured data.

There is also the prior work of the authors on the XQForms system that declaratively generates Web-based query

forms and reports that construct XQuery expressions [37]. The paper describes a software architecture that allows an

extensible set of XHTML input controls to be associated with element definitions of an XML schema via an

annotation on the XML Schema. It also presents different "hard-wired" ways the system provides for customizing the

appearance of reports. The set of queries produced by the system are conjunctive and its spectrum is narrow because

of the limitations of the XML Schema-based annotation. The paper does not describe how the system encodes or

composes queries and results of queries based on end-user actions.

Finally, there is the emerging XForms W3C standard [48], which promotes the use of XML structured documents

for communicating to the web server the results of the end-user's actions on various kinds of forms. XForms also

tries to provide constructs that change the appearance of the form page on the client side, without the need of coding.

When XForms implementations become available, QURSED will use these constructs for the evaluation of

dependencies, thus simplifying the implementation.

2.1 Contributions

Forms and Reports for Semistructured Data. QURSED generates form and report pages that target the needs of

interacting with and presenting semistructured data. Multiple features contribute in this direction:

1. QURSED generates queries that handle the structural variance and irregularities of the source data by employing

appropriate forms of disjunction. For example, consider a sensor query form that allows the end-user to check

whether the sensor fits within an envelope with length X and width Y, where X and Y are end-user-provided

parameters. The corresponding query has to take into consideration whether the sensor is cylindrical or

rectangular, since X and Y have to be compared against a different set of dimension attributes in each case.

10

2. Condition fragment dependencies control what the end-user can ask at every point. For example, consider

another version of the sensor query form that contains a selection menu where the end-user can specify whether

he is interested in cylindrical or rectangular sensors. Once this is known, the form transforms itself to display

conditions (e.g., diameter) that pertain to cylindrical sensors only or conditions (e.g., height and width) that

pertain to rectangular sensors only.

3. On the report side, data can be automatically nested according to the nesting proposed by the source schema or

can be made to fit XHTML tables that have variance in their structure and different nesting patterns. Structural

variance on the report page is tackled by producing heterogeneous rows/tuples in the resulting XHTML tables.

Notice that existing web-based form and report generators are tightly coupled to the relational data model, as

explained in the previous section, and cannot be used to generate forms and reports on semistructured data.

Loose Coupling of Query and Visual Aspects. QURSED separates the logical aspects of query forms and reports

generation, i.e., the query form capabilities, from the presentation aspects, hence making it easier to develop and

maintain the resulting form and report pages. The visual component of the forms can be prepared with any XHTML

editor. Then the developer can focus on the logical aspects of the forms and reports: Which are the condition

fragments? What are their dependencies? How should the report be nested? The coupling between the logical and the

visual part is loose, simple, and easy to build: The query parameters are associated with XHTML form controls, the

condition fragments are associated with sets of XHTML form controls, and the grouped elements (see Section 4) of

the result tree are associated with the nested tables of the report.

Powerful and Succinct Description Language for Query Form Capabilities. We provide formal syntax and

semantics for the QFR query set specifications, which describe query form capabilities by succinctly encoding large

numbers of meaningful semistructured queries. The specifications primarily consist of parameterized condition

fragments and dependencies. The combinations of the fragments lead to large numbers of parameterized queries,

while the dependencies guarantee that the produced queries make sense given the XML Schema and the semantics of

the data.

The query set specifications use the Tree Query Language (TQL), which is a calculus-based language. TQL is

designed to handle the structural variance and missing fields of semistructured data. Nevertheless, TQL’s purpose is

not to be yet another general-purpose semistructured query language. Its design goals are to:

1. Facilitate the definition of query set specifications and, in particular, of condition fragments.

11

2. Provide a tree-based query model that captures easily the schema-driven generation of query conditions by the

forms component of the Editor and also maps well to the model of nested tables used by the reports.

XML, XHTML, and XQuery-Based Architecture. The QURSED architecture and implementation fully utilizes

XQuery and the interplay of XML/XHTML. The result is an overall uniform system, when compared either against

relational-based front-end generators or against conventional XML-based front-end architectures, such as Oracle’s

XSQL [34]. A representation-related uniformity is derived by the fact that XML is used throughout QURSED: XML

is the data model of the source on which XML queries, in XQuery syntax, are evaluated, and is also used to deliver

the presentation - in the form of XHTML. The elimination of internal model mismatches yields significant

advantages in the engineering and maintainability of the system.

3 PRELIMINARIES

This section describes an example XML Schema, the corresponding EST and the data model of QURSED, and

introduces as the running example a QURSED-generated QFR interface. It concludes by describing the end-user

experience with that interface.

3.1 Data Model, XML Schema and Expanded Schema Tree

QURSED models XML data as labeled ordered tree objects (lotos), such as the sample data set shown in Figure

2a that describes two proximity sensor products. Each internal node of the labeled ordered tree represents an XML

element and is labeled with the element’s tag name. The list of children of a node represents the sequence of

elements that make up the content of the element. A leaf node holds the string value of its parent node. Empty

elements are represented as nodes having a leaf node, labeled with the empty string, as child. If n is a node of a loto,

we denote as tree(n) the subtree rooted at n.

In the sample data set of Figure 2a, the top sensors node contains a manufacturer node, whose name is

“Turck”. This manufacturer contains a list of two product nodes, whose direct subelements contain the basic

information of each sensor. The first sensor’s part_number is “A123” and has an image, while the second’s one

is “B123” and has no image. The technical specification of each sensor is modeled by the specs node, whose

content is quite irregular. For example, the body_type of the first sensor is cylindrical, and has diameter

and barrel_style, while the second one is rectangular and has height and width. Also, both sensors

have more than one protection_rating node and have min and max operating temperature.

12

sensors
manufacturer
name

product
part_number

“Turck”

“A123”
image
“A123.jpg”

specs
sensing_distance
“11”

body_type
cylindrical

barrel_style

diameter
“17”

“Smooth”
protection_ratings
protection_rating
“NEMA1”

operating_temp
min

max
“-20”

“200”

protection_rating
“NEMA3”

product
part_number
“B123”

specs
sensing_distance
“25”

body_type
rectangular

width

height
“10”

“30”
protection_ratings
protection_rating
“NEMA3”

operating_temp
min

max
“-30”

“350”

protection_rating
“NEMA4”

(a) Data Set (loto)

manufacturer

SEQ

product

image

protection_ratings

cylindrical rectangular

barrel_style width

body_type

protection_rating

*

+

?

+

name

part_number specs

sensing_distance

diameter depth

operating_temp

min max

SEQ

SEQ

sensors

SEQ

CHOICE

SEQ SEQ

ALLSEQ

(b) XML Schema

(c) Visual Representation of the EST

sensors
manufacturer

product

body_type

cylindrical

diameter

specs

protection_ratings

protection_rating

$PROD

CHOICE

rectangular

width

$DIA

$WID

$PROT

$REC

$CYL

$S

(d) Internal Representation of the EST

$MAN*

SEQ

SEQ
+

SEQ

SEQ

SEQ

SEQ

$BODY

*

$PROTS

$SPEC

protection_rating $PROT1*

part_number $PART
image $IMG?

sensing_distance $DIST

barrel_style $BAR

height $HEI

operating_temp

min $MIN
ALL

$OPER

max $MAX

Figure 2 Example Data Set, XML Schema and Expanded Schema Tree

The XML Schema that describes the structure of the sample data set of Figure 2a is shown as a tree structure in

Figure 2b. Similar conventions for representing XML Schemas and DTDs have been used in previous work, e.g. [2]

and [16]. Indicated are the optional (? and * labeled edges) and repeatable (* and + labeled edges) elements and the

types of groups of elements (SEQ, CHOICE and ALL nodes [49].) The leaf nodes are of primitive type [50]. Like

many XML Schemas, it has nesting and many “irregular” structures such as choice groups, e.g. the body_type

may be rectangular or cylindrical, and optional elements [49], e.g. each sensor can optionally have an

image element.

Based on the XML Schema in Figure 2b, the Editor constructs the corresponding EST that serves as the basis for

building the query set specification. Figure 2c shows the Editor’s view of the EST as it is displayed to the developer,

and Figure 2d the internal representation used by the Editor. Formally, the EST is defined in the following.

13

Definition 1 (Expanded Schema Tree). An Expanded Schema Tree EST is a labeled tree that consists of:

• Element nodes n having an element name name(n), which is a constant. Element nodes are labeled with a unique

element variable var(n), which starts with the $ symbol, and an occurrence constraint occ(n), which can be ? (0-1

occurrence), 1 (only one occurrences), * (any number of occurrences) or + (one or more occurrences). An

element node n is optional if occ(n) is either ? or *. If occ(n) is either + or *, then n is repeatable. Element nodes

have a Boolean property report(n).

• SEQ nodes that are labeled with an occurrence constraint occ(n), which can be ?, 1, * or +.

• CHOICE nodes that are labeled with an occurrence constraint occ(n), which can be ?, 1, * or +.

• ALL nodes that are labeled with an occurrence constraint occ(n), which can be ? or 1. ■

The root node of an EST is a non-repeatable, non-optional element node.

An element node has a Boolean property report, which could be set to true by checking the corresponding

checkbox that appears next to the element node on the view of the EST (Figure 2c). The reason for doing that is to

indicate to the Editor which elements to include in the report. Report generation is described in Section 7.3.

Note that, even though element nodes are labeled with variables, the developer does not need to be aware of their

existence, as the Editor’s view of the EST in Figure 2c illustrates. Section 7 explains why the Editor doesn’t need to

expose the variables.

3.1.1 Aliasing and EST Expansion

There are cases where the developer needs to create “aliases” of element nodes. For example, assume that the

developer wants to give the end-user the ability to specify two desirable protection ratings, out of the multiple that a

single sensor might have. This case is depicted on Figure 3, where two “Protection Rating” form controls appear on

the query form page. To accomplish this, the developer expands the protection_rating element node on the

EST and creates two copies of it, as shown on Figure 2c. The EST of Figure 2d illustrates the internal effect of the

two aliases, where the two copies of the protection_rating element node have two different and unique

element variables, $PROT1 and $PROT2.

An expansion can be applied on a repeatable element node n, creating a copy c of the subtree rooted at n and

setting it as the last child of n’s parent node. All element nodes of c are labeled with new and unique element

variables. An expansion can also be applied on repeatable SEQ and CHOICE nodes.

14

3.2 Example QFR and End-User Experience

Using QURSED, a developer can easily generate a QFR interface like the one shown in Figure 3 that queries and

reports on proximity sensor products. This interface will be the running example and will illustrate the basic points of

the functionality and the experience that QURSED delivers to the end-user of the interface.

Figure 3 Example QFR Interface

The browser window displays a query form page on the left and a report page on the right. On the query form

page XHTML form controls are displayed for the end-user to select or enter desired values of sensors’ attributes and

customize the report page. The state of the query form page of Figure 3 has been produced by the following end-user

actions:

• Placed the equality condition “NEMA3” on “Protection Rating 1”.

15

• Left the preset option “No preference” on “Body Type” and placed the conditions on “Dimension X” being less

than 20 “mm” and “Dimension Y” less than 40 “mm”. These two dimensions define an envelope in which the

end-user wants the sensors to fit, without specifying a particular body type.

• Selected from the “Sort By Options” list to sort the results first by “Manufacturer” (descending) and then by

“Sensing Distance” (ascending). The selections appear in the “Sort By Selections” list.

• In the “Customize Presentation” section, selected to present (“P” column) all columns that she has control over.

Some columns, like “Part Number”, are always presented and can not be hidden by the end-user. Next to these

columns appears a disabled and selected checkbox.

After the end-user submits the form, she receives the report of Figure 3. The results depict the information of

product elements: the developer had decided earlier that product elements should be returned. By default,

QURSED organizes the presentation of the qualifying XML elements in a way that corresponds to the nesting

suggested by their XML Schema. Notice, for example, that each product display has nested tables for

rectangular and cylindrical values. Also notice that instead of the text of the manufacturer’s name, a

corresponding image (logo) is presented.

The following section illustrates the query model QURSED uses to represent the possible queries. Section 7

elaborates on the visual steps the developer follows on the Editor interface to deliver query form and report

interfaces, like the one shown in Figure 3, using QURSED.

4 TREE QUERY LANGUAGE (TQL)

End-user interaction with the query form page results in the generation of TQL queries, which are subsequently

translated into XQuery statements. TQL shares many common characteristics with previously proposed XML query

languages like XML-QL [10], XML-GL [10], LOREL [39], XMAS [25] and XQuery [52]. TQL facilitates the

development of query set specifications that encode large numbers of queries and the development of a visual

interface for the easy construction of those specifications. This section describes the structure and semantics of TQL

queries. The structure and semantics of query set specifications are described in the next section.

A TQL query q consists of a condition tree and a result tree. An example of a TQL query is shown in Figure 4,

and corresponds to the TQL query generated by the end-user’s interaction with the query form page of Figure 3.

16

sensors
manufacturer

product

sensing_distance
body_type

cylindrical
diameter

AND

specs

PROT1 = “NEMA3”

name

part_number

protection_ratings
protection_rating

$PROD

OR
AND

rectangular

width
height

AND

$DIA <= 20 AND $DIA <= 40

$HEI <= 20 AND $WID <= 40

tr
td

td
$PART

$N_BODY

$DIA

html

SORTBY ($NAME DESC, $DIST)

GROUPBY ($PART)

td
$DIST

td
table
tr
td

td
tr

$IMG
td

img$PART

$DIST

$DIA

$HEI
$WID

$PROT

GROUPBY ($DIA)

$NAME

GROUPBY ($CYL)

GROUPBY ($REC)

$REC

$CYL

GROUPBY ($IMG)

$S

image $IMG

OR
AND true

AND true

barrel_style $BAR

$BAR
td GROUPBY ($BAR)

body
table

(a) Condition Tree

(b) Result Tree

table
tr
td

$HEI
GROUPBY ($HEI)

$WID
td GROUPBY ($WID)

table
tr
td

“turck.gif”
img $NAME = “Turck”

“balluff.gif”
img $NAME = “Balluff”

“baumer.gif”
img $NAME = “Baumer”

$N_BODY

GROUPBY ($PROD, $NAME, $DIST)

protection_rating $PROT1

$PROT

table
tr
td

td

GROUPBY ($PROT)

GROUPBY ($N_BODY)

Figure 4 TQL Query Corresponding to Figure 3

Definition 2 (Condition Tree). The condition tree of a TQL query q is a labeled tree that consists of:

• Element nodes n having an element name name(n), which is a constant or a name variable, and an element

variable var(n). In a condition tree, there can be multiple nodes with the same constant element name, but

element and name variables must be unique. Element variables start with the $ symbol and name variables start

with the $N_.

• AND nodes, which are labeled with a Boolean expression b consisting of predicates combined with the Boolean

connectives ∧, ∨ and ¬. The predicates consist of arithmetic and comparison operators and functions that use

element and name variables and constant values as operands and are understood by the underlying query

processor. Each element and name variable used in b belongs to at least one element node that is either an

ancestor of the AND node, or a descendant of the AND node such that the path from the AND node to the

element node does not contain any OR nodes. The Boolean expression may also take the values true and false.

• OR nodes. ■

The following constraints apply to condition trees:

1. The root element node of a condition tree is an AND node.

2. OR nodes have AND nodes as children.

17

Figure 4 shows the TQL query for the example of Figure 3. Note that two conditions are placed on diameter of

cylindrical sensors corresponding to height and width of rectangular sensors. Omitted are the variables that are not

used in the condition or the result tree.

The semantics of condition trees is defined in two steps: OR-removal and binding generation. OR-removal is the

process of transforming a condition tree with OR nodes into a forest of condition trees without OR nodes, called

conjunctive condition trees (CCTs) in the remainder of the paper. OR-removal for the condition tree of Figure 4a

results in the set of the four condition trees shown in Figure 5. The OR-removal is used to define the semantics of

condition trees. It is not part of the QURSED implementation.

sensors
manufacturer

product

sensing_distance
body_type

cylindrical
diameter

AND

specs

$PROT1 = “NEMA3” AND
$DIA <= 20 AND $DIA <= 40

name

part_number

protection_ratings

$PROD
$PART

$DIST

$DIA

$NAME

sensors
manufacturer

product

sensing_distance
body_type

AND

specs

$PROT1 = “NEMA3” AND
$HEI <= 20 AND $WID <= 40

name

part_number

protection_ratings
protection_rating

$PROD

rectangular

width
height

$PART

$DIST

$HEI
$WID

$PROT

$NAME

protection_rating $PROT

$CYL $REC

sensors
manufacturer

product

sensing_distance
body_type

cylindrical
diameter

AND

specs

$PROT1 = “NEMA3” AND
$DIA <= 20 AND $DIA <= 40

name

part_number

protection_ratings

$PROD
$PART

$DIST

$DIA

$NAME

sensors
manufacturer

product

sensing_distance
body_type

AND

specs

$PROT1 = “NEMA3” AND
$HEI <= 20 AND $WID <= 40

name

part_number

protection_ratings

$PROD

rectangular

width
height

$PART

$DIST

$HEI
$WID

$NAME

$CYL $REC

image $IMG

barrel_style $BAR

image $IMG

protection_rating $PROT

barrel_style $BAR

protection_rating $PROT

CCT1

CCT2

CCT3

CCT4

N_BODYN_BODY

N_BODYN_BODY

protection_rating $PROT1 protection_rating $PROT1

protection_rating $PROT1 protection_rating $PROT1

Figure 5 Conjunctive Condition Trees

A
OR

D

AND

B
C

AND
A

OR

B
D

AND
A
C
D

A
OR

OR

B
C

A
OR

B
C

A
OR

D

element_node

B
C

AND
A

OR

B
D

AND
A
C
D

element_node

AND
OR

AND

element_node

AND
element_node

OR

AND
element_nodereplace with replace with replace with

replace with

Figure 6 OR-Removal Replacement Rules

Intuitively, OR-removal is analogous to turning a logical expression into disjunctive normal form [20]. In

particular, we repeatedly apply the rules shown in Figure 6. Without loss of generality, the subtrees of Figure 6 are

presented with 2 or 3 children. At the point when we cannot apply the rules further, we have produced a tree with an

OR root node, which we replace with the forest of conjunctive condition trees consisting of all the children of the

root OR node. Notice that wherever this process generates AND nodes as children of AND nodes, these can merged,

18

and the Boolean expression of the merged node is the conjunction of the Boolean expressions of the original AND

nodes. Also notice that the Boolean expression of the root AND node in the first rule cannot contain any variables in

subtrees B or C, as per the earlier definition of condition trees. Finally, notice that in the course of OR-removal

“intermediate results” may not be valid condition trees as per Definition 2 (in particular, constraint 2 can be

violated), but the final results obviously are. The semantics of the original condition tree is given in terms of the

semantics of the resulting conjunctive condition trees.

A conjunctive condition tree C produces all bindings for which an input loto t “satisfies” C. Formally, a binding

is a mapping β from the set of element variables and name variables in C to the nodes and node labels of t, such that

the child of the root of C (which is an AND node) matches the root of t, i.e., β(var(child(root(C)))) = root(t), and

recursively, traversing the two trees top-down, for each child ni of an element node n in C, assuming var(n) is

mapped to a node x in t, there exists a child xi of x, such that β(var(ni)) = xi and, if xi is not a leaf node:

• if name(ni) is a constant, name(ni) = name(xi)

• if name(ni) is a name variable, β(name(ni)) = name(xi)

Importantly, AND nodes in C are ignored in the traversal of C. In particular, in the definition above, by "child of

the element", we mean either the element child of the element, or the child of an AND node that is the child of the

element. A binding is qualified if it makes true the Boolean expressions that label the AND nodes of C. Notice that it

is easy to do AND-removal on conjunctive condition trees. Let a1,…,an be the AND nodes in a conjunctive condition

tree with root a, and let b1,…bn, and b be their Boolean expressions respectively. We can eliminate a1,…an, and

replace b with b AND b1 and…and bn.

The result of C is the set of qualified bindings. For a conjunctive condition tree with element and name variables

$V1,…,$Vk, a binding is represented as a tuple [$V1:v1,…,$Vk:vk] that binds $Vi to node or value vi, where

ki ≤≤1 . The tuple variables are ordered according to a top-down, preorder traversal of the conjunctive condition

tree. A binding of some of the variables in a (conjunctive) condition tree is called a partial binding. Note that the

semantics of a binding requires total tuple assignment [39], i.e., every variable binds to a node or a string value.

The semantics of a condition tree is defined as the union of the bindings returned from each of the conjunctive

condition trees into which it is transformed by OR-removal. For example, the result of the four conjunctive condition

trees shown in Figure 5 on the source loto of Figure 2a is shown in Table 1. The union of the sets of bindings does

not need to remove duplicate bindings or bindings that are subsumed by other bindings (e.g., CCT2 rows are

19

subsumed by CCT1 rows in Table 1.) The necessary duplicate elimination is performed during construction. Notice

that three of the four conjunctive condition trees generate two bindings each. Notice also that the union is

heterogeneous, in the sense that the conjunctive condition trees can contain different element variables and thus their

evaluation produces heterogeneous binding tuples.

Table 1 Bindings for Conjunctive Condition Trees of Figure 5

$NAME $PROD $PART $IMG $DIST $N_BODY $CYL $DIA $BAR $PROT $PROT1
Turck product

part_number
“A123”

.

.

.

A123 A123.jpg 11 cylindrical cylindrical
diameter
“17”

..

.

17 Smooth NEMA1 NEMA3 CCT1

$NAME $PROD $PART $IMG $DIST $N_BODY $CYL $DIA $BAR $PROT $PROT1
Turck product

part_number
“A123”

.

.

.

A123 A123.jpg 11 cylindrical cylindrical
diameter
“17”

..

.

17 Smooth NEMA3 NEMA3 CCT1

$NAME $PROD $PART $DIST $N_BODY $CYL $DIA $BAR $PROT $PROT1
Turck product

part_number
“A123”

.

.

.

A123 11 cylindrical cylindrical
diameter
“17”

..

.

17 Smooth NEMA1 NEMA3 CCT2

$NAME $PROD $PART $DIST $N_BODY $CYL $DIA $BAR $PROT $PROT1
Turck product

part_number
“A123”

.

.

.

A123 11 cylindrical cylindrical
diameter
“17”

..

.

17 Smooth NEMA3 NEMA3 CCT2

$NAME $PROD $PART $DIST $N_BODY $REC $HEI $WID $PROT $PROT1
Turck product

part_number
“B123”

.

.

.

B123 25 rectangular rectangular
height
“10”

.

.

.

10 30 NEMA3 NEMA3 CCT4

$NAME $PROD $PART $DIST $N_BODY $REC $HEI $WID $PROT $PROT1
Turck product

part_number
“B123”

.

.

.

B123 25 rectangular rectangular
height
“10”

.

.

.

10 30 NEMA4 NEMA3 CCT4

The above shows that the semantics of an OR node is that of union and it cannot be simulated by a disjunctive

Boolean condition labeling an AND node. OR nodes therefore are necessary for queries over semistructured data

sources (e.g., sources whose XML Schema makes use of choice groups and optional elements.)

Definition 3 (Result Tree). A result tree of a TQL query q is a node-labeled tree that consists of:

• Element nodes n having an element name name(n), which is a constant if n is an internal node, and a constant or

a variable that appears in the condition tree of q, if n is a leaf node.

• A group-by list g and a sort-by list s on each node. A group-by list g is a (possibly empty) list of variables

[$V1,…,$Vn] from the condition tree of q. A sort-by list s is a list of ($Vi, Oi) pairs, where $Vi is a variable from

the condition tree of q, and Oi is the sorting order determined for $Vi. Oi can take the values “DESC” for

descending or “ASC” for ascending order. If Oi is missing, then “ASC” is taken as the default value. Each

variable in the sort-by list of a node must appear in the group-by list of the same node. Empty group-by and sort-

by lists are omitted from figures in the remainder of the paper.

• A Boolean expression b on each node consisting of predicates combined with the Boolean connectives ∧, ∨ and

¬. The predicates consist of arithmetic and comparison operators and functions that use element and name

variables appearing in the condition tree of q, and constant values as operands. ■

20

Every element or name variable must be in the scope of some group-by list or Boolean condition. Similar to

logical quantification, the scope of a group-by list or a Boolean condition of a node is the subtree rooted at that node.

Figure 4b shows the result tree for the example of Figure 3. Note that the rows of the XHTML tables that contain the

static column names are omitted from the result tree for presentation clarity. Group-by and sort-by lists are the TQL

means of performing grouping and sorting. The intuition behind Boolean expressions on nodes is that they provide

control on the construction of nodes in the result of a query: A node (and its subtree) is only added to the result of the

query if there is at least one qualified binding of the variables in the condition for that node that renders it true. For

example, in result tree of Figure 4b the “turck.gif” img node is added to the result of a query if a qualified

binding of the $NAME variable is equal to “Turck”.

Given a TQL query with condition tree and result tree, the answer of the query on given input is constructed from

the set of qualified bindings of the condition tree. In what follows, binding refers to qualified binding. The result is a

loto constructed by structural recursion on the result tree as formally described below. The recursion uses partial

bindings to instantiate the group-by variables and condition variables of element nodes.

Traversing the result tree top-down, for each subtree tree(n) rooted at element node n with group-by list

[$V1,…,$Vk] and, without loss of generality, sort-by list [$V1,…,$Vm] (m ≤ k), let µ=[$VA1:vA1,…,$VAn:vAn] be a

partial binding that instantiates all the group-by and condition variables of the ancestors of n, let the Boolean

expressions of n and its ancestors be b and bA1,…,bAh, and let the variables in these expressions that do not appear

among the [$VA1,…,$VAn,$V1,…,$Vk] be [$B1,…,$Bj]. Recursively replace the subtree tree(n) in place with a list

of subtrees, one for each qualified binding π=[$VA1:vA1,…,$VAn:vAn,$V1:v1,…,$Vk:vk] such that v1,…,vm are string

values, by instantiating all occurrences of $VA1,…,$VAn,$V1,…,$Vk with vA1,…,vAn,v1,…,vk, if and only if b,

bA1,…,bAh all evaluate to true for some qualified binding π'=[$VA1:vA1,…,$VAn:vAn,$V1:v1,…,$Vk:vk,

$B1:b1,…,$Bj:bj] (otherwise the subtree is not included in the list of subtrees produced.) The list of instantiated

subtrees is ordered according to the conditions in the sort-by list.

Figure 7 shows the resulting loto from the TQL query of Figure 4 and the bindings of Table 1. Note, for example,

that for each of the two distinct partial bindings of the triple [$PROD, $NAME, $DIST], one tr element node is

created, and that, for each such binding, different subtrees rooted at the nested table element nodes are created,

corresponding to different π bindings. Finally, out of the three Boolean expressions that label the img elements in

Figure 4b, only the first one evaluates to true, for both sensors, based on the bindings of variable $NAME in Table 1.

21

tr
td

td
“A123”

“cylindrical”

“17”

html

td
“11”

td
table
tr
td

td
tr

“A123.jpg”
td

img

“Smooth”
td

body
table

table
tr
td

“turck.gif”
img

NEMA1

table
tr
td

td

NEMA3

tr
td

tr

td

td
“B123”

“rectangular”

“10”

td
“25”

td
table
tr
td

td
tr

“turck.gif”

td

img

“30”
td

table
tr
td

NEMA3

table
tr
td

td

NEMA4

tr
td

Figure 7 Resulting loto for Bindings of Table 1

The QURSED system uses the TQL queries internally, but issues queries in the (upcoming) standard XQuery

language by translating TQL queries to equivalent XQuery statements. The algorithm for translating TQL queries to

equivalent XQuery statements is given in Appendix A. The XQuery specification is a working draft of the World

Wide Web Consortium (W3C); for a more detailed presentation of the language and its semantics see [52] and [55].

In the absence of structural disjunction, the condition tree of a TQL query corresponds to the FOR and WHERE

clauses of an XQuery expression that involve path expressions, conjunction and the SOME construct. Whether a path

appears in the FOR clause or the WHERE clause depends on whether the corresponding variable appears in a group-

by list in the result tree or not. Appendix A describes in detail the conversion of a TQL query to an XQuery

expression and illustrates the above points.

The TQL query generated by a query form page is a member of the set of queries encoded in the query set

specification of the QFR. The next section describes the syntax and semantics of query set specifications.

5 QUERY SET SPECIFICATION

Query set specifications are used by QURSED to succinctly encode in QFRs large numbers of possible queries.

In general, the QSS can describe a number of queries that is exponential in the size of the specification. The

specification also includes a set of dependencies that constrain the set of queries that can be produced.

The developer uses the Editor to visually create a query set specification, like the one in Figure 8. This section

formally presents the query set specification that is the logical underpinning of QFRs.

22

$DIA <= $#DIMX AND $DIA <= $#DIMY

$HEI <= $#DIMX AND $WID <= $#DIMY

$DIST

$DIA

$HEI

$WID

$CYL

$REC

$BAR

$IMG

$PART

$PROD

$NAME

$NAME = $#NAME

$PROT2

f1

tr

td

td
$PART

$N_BODY

$DIA

html

SORTBY ($NAME $#O_NAME, $DIST $#DIST, $N_BODY $#O_N_BODY)

GROUPBY ($PART)

td
$DIST

td
table
tr
td

td
tr

$WID

$HEI

table

td

td

tr

GROUPBY ($IMG)
td
img
$IMG

GROUPBY ($DIA)

GROUPBY ($HEI)

GROUPBY ($WID)

GROUPBY ($REC)

$DIST <= $#DIST

sensors

manufacturer

product

sensing_distance

body_type

cylindrical

diameter

AND

specs

name

part_number

protection_ratings

protection_rating

OR

AND

rectangular

width

height

AND

$PROT1 = $#PROT1

protection_rating $PROT1

max
min

operating_temp

image

OR
AND

AND true

true

$PROT2 = $#PROT2

barrel_style

$MIN <= $#MIN AND $MAX <= $#MAX

$MIN
$MAX

$BAR
td GROUPBY ($BAR)

f2 fR

body
table

(a) Condition Tree Generator (b) Result Tree Generator

“turck.gif”
img $NAME = “Turck”

“balluff.gif”
img $NAME = “Balluff”

“baumer.gif”
img $NAME = “Baumer”

$N_BODY

table GROUPBY ($CYL)

td
tr

GROUPBY ($PROD, $NAME, $DIST)

protection_rating $PROT

$PROT

td
table
tr
td

GROUPBY ($PROT)

GROUPBY ($N_BODY)

Figure 8 Query Set Specification

Definition 4 (Query Set Specification). A query set specification QSS is a 4-tuple <CTG, RTG, F, D>, where:

• CTG, the condition tree generator, is a condition tree with three modifications:

 AND nodes ai can be labeled with a set of Boolean expressions B(ai).

 The same element or name variable can appear in more than one condition fragment.

 Boolean expressions can use parameters (a.k.a. placeholders [24]) as operands of their predicates. Parameters

are denoted by the $# symbol and must bind to a value [50].

The same constraints apply to a CTG as to a condition tree.

• RTG, the result tree generator, is a result tree with two modifications. First, the variables that appear in the sort-

by list s on a node do not have a specified order (ascending or descending,) as in the case of a result tree, but they

have a parameter instead, called ordering parameter that starts with the $#O_. Second, the Boolean expressions

on nodes can use parameters as operands of their predicates. Boolean expressions on nodes involving only

parameters and constants as operands (no variables) are a special case since they can be evaluated as soon as the

parameters are instantiated. Their use is described later in Section 7.5.

23

• F is a non-empty set of condition fragments. A condition fragment f is defined as a subtree of the CTG, rooted at

the root node of the CTG, where each AND node ai is labeled with exactly one Boolean expression b∈B(ai).

Each variable used in b must belong to a node included in f. F always contains a special condition fragment fR,

called result fragment, that includes all the element nodes whose variables appear in the RTG, all its AND nodes

are labeled with the Boolean value true, and has no parameters. The result fragment intuitively guarantees the

“safety” of the result tree.

• D is an optional set of dependencies. Dependencies are defined in Section 6.1. ■

For example, the query set specification of Figure 8 encodes, among others, the TQL query of Figure 4. The CTG

in Figure 8a corresponds partially to the set F of condition fragments defined for the query form page of Figure 3.

Three condition fragments are indicated with different shades of gray:

1. condition fragment f1 is defined by the dark grey subtree and the Boolean expression on the root AND node of

the CTG that applies a condition to the name element node;

2. condition fragment f2 is defined by the medium gray subtee and the Boolean expressions that apply a condition to

the dimensions of cylindrical and rectangular sensors ; and

3. condition fragment fR (the result fragment) is defined by the light grey subtree that includes all the element nodes

whose variables appear in the RTG in Figure 8b, and imposes no Boolean conditions.

How the developer produces a query set specification via the Editor is described in Section 7.

6 QUERY FORMULATION PROCESS

Figure 9 summarizes the query formulation process of the QURSED run-time engine. The process starts by

accepting a QSS 〈CTG,RTG,F,D〉 and a query/visual association, provided by the interaction of the developer with

the Editor, and a partial valuation of its parameters, provided by the end-user’s interaction with the query form page.

The process terminates by outputting an XQuery expression.

Fragment
Activate

Algorithm

TQL2XQuery
Algorithm

XQuery
Expression

QSS2TQL
Algorithm

Partial Valuation
of Parameters

TQL Query

Active
Condition
Fragments<CTG,F,D>

<RTG>
<CT,RT>

QURSED Run-Time Engine

QURSED
Editor

Query
Form
Page

End-User

Developer
QSS

<CTG,RTG,F,D> Parameter
Instantiation

Query/Visual
Association

Figure 9 Query Formulation Process

24

Parameter Instantiation. The run-time engine first instantiates the parameters of the condition tree generator

CTG and the result tree generator RTG. In particular, during the end-user’s interaction with the query form page, and

based on which form controls she fills out and on the query/visual association, a partial valuation ν over P, where P

is the set of the parameters that appear in the QSS, is generated. As an example partial valuation, consider the one

generated by the query form page of Figure 3 from the constant values the end-user provides:

ν = {$#PROT1:“NEMA3”, $#DIMX:“20”, $#DIMY:“40”, $#O_NAME:“DESC”, $#O_DIST:“ASC”}

Based on ν, the run-time engine instantiates the parameters of condition fragments in F. For example, the above

partial valuation instantiates the parameters $#DIMX and $#DIMY of condition fragment f2 of Figure 8a, which

imposes a condition on the dimensions of the sensor’s body type. Similarly, the ordering parameters of the sort-by

lists of the RTG, and the parameters of Boolean expressions labeling nodes of the RTG, are instantiated. The

ordering parameters can take the values “DESC” or “ASC”, as in the case of $#O_NAME and $#O_DIST in the

above partial valuation. An example of an RTG, where parameterized Boolean expressions label its nodes, is shown

in Section 7.5. Finally, the run-time engine also instantiates the parameters of the set of dependencies D.

Dependencies are presented in the next section.

FragmentActivate Algorithm. As a second step on Figure 9, the FragmentActivate algorithm inputs the

instantiated CTG and the set of condition fragments F, and outputs the set of active condition fragments. The

algorithm renders a condition fragment active if it has all its parameters instantiated by the partial valuation ν. Since

the partial valuation ν might not provide values for all the parameters used in the CTG, some condition fragments are

rendered inactive. Based on the above example partial valuation, condition fragment f2 of Figure 8a and the

condition fragment that imposes a condition on protection rating (not indicated in Figure 8a) are rendered active,

while condition fragment f1 on manufacturer’s name is inactive, since parameter $#NAME is not instantiated by ν. As

a special case, the result fragment fR is always active, since it doesn’t have any parameters.

Note that the FragmentActivate algorithm in Figure 9 also inputs the set of dependencies D, which further

complicate the algorithm. Both the dependencies and the revised version of the FragmentActivate algorithm are

presented in the next section.

QSS2TQL Algorithm. The set of active condition fragments and the instantiated RTG are passed to the QSS2TQL

algorithm, which outputs a TQL query by formulating its condition tree CT and its result tree RT. The CT consists of

the union of the nodes of the active condition fragments f1,…,fn, along with the edges that connect them. Each AND

25

node nAND in the CT is annotated with the conjunction c1∧…∧cn of the Boolean expressions c1,…,cn that annotate the

node nAND in the fragments f1,…,fn respectively.

Similarly, in order to convert the RTG to the RT, the QSS2TQL algorithm first eliminates from the RTG the

subtrees rooted at nodes labeled with a Boolean expression b that has uninstantiated parameters or evaluates to false,

as further explained in Section 7.5. Then for every node that has a sort-by list s, we keep in the label only the

variables with instantiated ordering parameters.

As an example of the QSS2TQL algorithm, consider the CT of Figure 4a, which is formulated based on the active

condition fragments of Figure 8a, i.e., f2, the condition fragment that imposes a condition on protection rating, and

the result fragment fR. Accordingly, the RT of Figure 4b is formulated from the RTG of Figure 8b, where the variable

$#N_BODY is excluded from the top sort-by list, since its ordering parameter $#O_N_BODY is not instantiated by

the example partial valuation above.

TQL2XQuery Algorithm. The final step of the query formulation process on Figure 9 passes the TQL query as

input to the TQL2XQuery algorithm, presented in Appendix A. The TQL2XQuery algorithm outputs the final

XQuery expression, which is sent to the underlying XQuery processor.

6.1 Dependencies

Dependencies allow the developer to define conditions that include or exclude condition fragments from the

condition tree depending on the end-user’s input. Dependencies provide a flexible way to handle data irregularities

and structural variance in the input data, and a declarative way to control the appearance of visual fragments.

Definition 5 (Dependency). A dependency d is defined as a 3-tuple <f, B, H> over a set of condition fragments F,

where f∈F is the dependent condition fragment and B is the condition of the dependency consisting of predicates

combined with the Boolean connectives ∧, ∨ and ¬. The predicates consist of arithmetic and comparison operators

and functions that use parameters from the CTG and constant values as operands. The set H⊆F, called the head of

the dependency, contains the condition fragments that use at least one parameter that appears in B. ■

A dependency d holds if each parameter pi in B is instantiated in a condition fragment in H that is active, and B

evaluates to true. In the presence of dependencies, a fragment f is active if all its parameters are instantiated and at

least one of the dependencies, where f is the dependent condition fragment, holds. Intuitively, a set of dependencies

constrains the set of queries a query set specification can generate by rendering inactive the dependent condition

26

fragments when none of their dependencies hold. For example, consider the condition tree generator and condition

fragments of Figure 10a, and let us define two dependencies d1 and d2 as follows:

<f2, $#BODY = “cylindrical”, { f1}> (d1)
<f3, $#BODY = “rectangular”, { f1}> (d2)

$WID
$HEI

$BAR

$DIA

$HEI <= $#HEI AND $WID <= $#WID
$DIA <= $#DIA AND $BAR <= $#BAR
$N_BODY = $#BODY

f1

sensors

body_type

cylindrical

diameter

AND

rectangular
height

$N_BODY

width

barrel_style

f2 f3

f1

f2 f3

(b)

(a)

$#BODY = “cylindrical” $#BODY = “rectangular”

Figure 10 Condition Tree Generator and Dependencies Graph

The condition fragment f1 uses the parameter $#BODY that appears in the condition of both dependencies on f2

and f3. If a value is not provided for $#BODY, then neither dependency holds, and f2 and f3 are inactive. If the value

"cylindrical" is provided, then f1 is active, the condition for d1 is true, and so f2 is rendered active.

(b)(a)

Figure 11 Dependencies on the Query Form Page

Dependencies affect the appearance of a query form. In particular, QURSED hides from the query form page

those visual fragments whose condition fragments participate in dependencies that do not hold. For example, Figure

11 demonstrates the effect of dependencies d1 and d2 on the query form page of Figure 3. The two shown sets of

form controls are the visual fragments of the condition fragments shown in Figure 10a. For instance, the condition

fragment f1 applies a condition to the element node labeled with $BODY and its visual fragment consists of the “Body

Type” form control. End-user selection of the “Cylindrical” option in the “Body Type” form control results in having

d1 hold, which makes the visual fragment for f2 visible (Figure 11a). Notice that f2 is still inactive: values for

“Diameter” and “Barrel Style” need to be provided. Notice also that an inactive condition fragment whose

dependencies do not hold has no chance of becoming active in QURSED: its visual fragment is hidden, so there is no

way for the end-user to provide values for the parameters of the condition fragment.

27

Obviously, circular dependencies must be avoided, since the involved dependent fragments can never become

active. This restriction is captured by the dependency graph:

Definition 6 (Dependency Graph). A dependency graph for a set of dependencies D and a set of condition

fragments F is a directed labeled graph G = <V, E>, where the nodes V are the condition fragments in F and for

every dependency d in D there is an edge in E from every condition fragment fi in the head H of d to the dependent

condition fragment f, labeled with the condition B of d. ■

The dependency graph for the dependencies d1 and d2 defined above is shown in Figure 10b. QURSED enforces

that the dependency graph is acyclic.

The QURSED system activates the appropriate visual fragments (updating the query form page) and condition

fragments, based on which parameters have been provided and which dependencies hold. The algorithm for

"resolving" the dependencies to decide which fragments are active, called FragmentActivate, is based on topological

sort [26] (hence of complexity Θ(V+E)) and is outlined below. Note that, when evaluating a condition b of a

dependency, any predicates that contain uninstantiated parameters evaluate to false.

Algorithm FragmentActivate
Inputs: A dependencies graph G = <V, E>, and a partial valuation ν over P, where P is the set of the parameters that
appear in the QSS.
Output: The set A of active condition fragments.
Method:
1 A←Ø
2 Compute the set of fragments B whose parameters are all instantiated by ν
3 For each edge (n, u) in E
4 Evaluate the condition on edge (n, u)
5 Repeat
6 If node u belongs to B and has no incoming edges
7 A←{u}
8 If node u belongs to B, has an incoming edge (n, u) where n belongs in A, and the condition on (n, u) is true
9 A←{u}
10 Until A reaches fixpoint

Section 0 describes how the developer can define dependencies using the Editor.

7 QURSED EDITOR

The QURSED Editor is the tool the developer uses to build QFRs. Figure 12 shows the Editor’s architecture,

how the developer interacts with the graphical user interface, and how the Editor interprets these visual actions in

order to construct the QSS and the query/visual association of a QFR.

The developer builds a condition tree generator by constructing a set of Boolean expressions based on the input

XML Schema, in the form of an EST, and the input XHTML query form page that are displayed to her. Internally,

28

the Editor interprets the set of Boolean expressions as the set of condition fragments of the QSS and the query/visual

association. The Editor constructs the CTG by building each condition fragment f, as if f was the only fragment of the

condition tree generator, and then merging f with the CTG. A key step in that process is that the Editor checks if f is

meaningful by considering the presence of CHOICE elements in the EST and, if necessary, manipulates f by

introducing heuristically structural disjunction operators (OR nodes). The developer also builds the set of

dependencies on the set of condition fragments that become part of the QSS. These processes are described in

Sections 7.1 and 0.

QURSED Editor

Boolean
Expressions <D>

Schema Driven

Template
Driven

Expanded
Schema

Tree

XHTML
Query Form

Page

XHTML
Template

Report Page

Graphical User Interface

Developer

Dependencies

Report
Customization

Query/Visual
Association

QSS
<CTG,RTG,F,D>

Condition Fragment
Manipulation

Automatic Report
Construction

<RTG>

<CTG,F><F>

CTG Construction

Figure 12 QURSED Editor Architecture

For the construction of the result tree generator, the developer has two choices that are illustrated as a diamond

on Figure 12. Either an XTMHL template report page is automatically constructed based on the EST (schema-

driven), or one is provided as an input (template-driven). Either way, the Editor constructs internally an RTG that

becomes part of the QSS. This process is described in Section 7.3. The developer can also further customize the

template report page report by building Boolean expressions and adding dynamic projection functionality, presented

in Sections 7.4 and 7.5.

A key benefit of the Editor is that it enables the easy generation of semistructured queries with OR nodes by

considering the presence of CHOICE elements in the EST. The following subsections describe the visual actions and

their translation to corresponding parts of the query set specification, using the QSS of Figure 8 and the QFR of

Figure 3 as an example.

7.1 Building Condition Tree Generators

Figure 13a demonstrates how the developer uses the Editor to define the condition fragment f1 of Figure 8a. The

main window of the Editor presents the sample EST of Section 3.1 in the left panel, and the query form page in the

right panel. The query form page is displayed as an XHTML tree that contains a form element node and a set of

29

form controls, i.e., select and input element nodes [46]. The XHTML tree corresponds to the page shown on

Figure 13b rendered in the Macromedia HomeSite [29] WYSIWYG XHTML editor. Based on this setting, the

developer defines the condition fragment f1 of Figure 8a that imposes an equality condition on the manufacturer’s

name by performing the four actions indicated by the arrows on Figure 13a.

Action 1

Action 2

Action 3 Action 4

(b) WYSIWYG HTML Editor(a) QURSED Editor

Figure 13 Building a Condition Fragment

The developer starts by clicking on the “New Condition Fragment” button (Action 1 of Figure 13a) and

providing a unique ID, which is manufacturer_name in this case. The middle panel lists the condition

fragments defined so far, and the expression editor at the bottom allows their definition, inspection and revision.

Then, the developer builds a Boolean expression in the expression editor, by drag ‘n’ dropping the equality predicate

(Action 2) and setting its left operand to be the element node name (Action 3). The full path name of the node

appears in the left operand box and is also indicated by the highlighting of the name element node on the left panel.

As a final step, the developer binds the right operand of the equality predicate to the select XHTML form control

named man_name_select (Action 4) thus establishing a query/visual association and defining as the visual

fragment the “Manufacturer” form control shown in Figure 13b. Internally, the Editor creates the parameter

$#NAME, associated with the “Manufacturer” form control of Figure 13b, and sets it as the right operand of the

Boolean expression, as Figure 8a shows.

In order to build more complex condition fragments, Actions 2, 3 and 4 can be repeated multiple times, thus

introducing multiple variable and parameters and including more than one XHTML form control in the

corresponding visual fragment.

30

Note that, even though the visual actions introduce variables and parameters in the condition fragment, the

developer does not need to be aware of their names. In effect, variables correspond to path names and parameters to

XHTML form control names. The Editor interprets the Boolean expression as a condition fragment that

conjunctively combines all paths of the expression.

7.1.1 Automatic Introduction of Structural Disjunction

The semistructuredness of the schema (CHOICE nodes and optional elements) may render the Boolean

expression meaningless and unsatisfiable. The Editor automatically, and by employing a heuristic, manipulates a

condition fragment f by introducing structural disjunction operators (OR nodes) that render f meaningful.

For example, consider the query form page of Figure 13b, where the end-user has the option to input two

dimensions X and Y that define an envelope for the sensors, without specifying a particular body type. Sensors can

be either cylindrical or rectangular. The developer’s intention is to specify that either the diameter is less than

dimensions X and Y, or the height is less than dimension X and the width less than Y. The developer constructs the

following Boolean expression by following the previously described steps:

($DIA <= $#DIMX ∧ $DIA <= $#DIMY) ∨ ($HEI <= $#DIMX ∧ $WID <= $#DIMY)

The $DIA, $HEI and $WID variables label the diameter, height and width elements of the EST. The

$#DIMX and $#DIMY parameters are associated with the “Dimension X” and “Dimension Y” form controls.

However, the query where the above Boolean expression is interpreted as a condition fragment that conjunctively

combines the paths to diameter, height and width elements is unsatisfiable, since no sensor has all of them.

The Editor captures the original intention by automatically manipulating the ∨ Boolean connective and treating it as

an OR node of TQL, as the condition fragment f2 in Figure 8a indicates. The OR node corresponds to the CHOICE

node in the EST of Figure 2c. Two AND nodes are also introduced and are labeled with the conjunctions in the initial

Boolean expression, namely: ($DIA <= $#DIMX ∧ $DIA <= $#DIMY) and ($HEI <= $#DIMX ∧

$WID <= $#DIMY). The manipulation of a condition fragment is part of the ConstructCTG algorithm.

The ConstructCTG algorithm creates a condition tree generator by merging the condition fragments. It operates

incrementally by merging each condition fragment f with the condition tree generator already constructed from the

previous condition fragments. The main step of the algorithm manipulates f by employing a heuristic, such that f

produces meaningful satisfiable queries given the Boolean expression b. In particular, the algorithm introduces

structural disjunction operators into f by replacing Boolean connectives ∨ in b with OR nodes, as illustrated in the

31

example above. The manipulation is driven by the CHOICE nodes and optional elements in the schema. An initial

step of the algorithm checks if f can be manipulated to produce meaningful, satisfiable queries. This is accomplished

by bringing b to disjunctive normal form and identifying at least one unsatisfiable conjunction. If there is one, then

the algorithm terminates outputting an error. The final step of ConstructCTG merges f with the input CTG. The order

that the condition fragments are passed to the algorithm does not matter.

The ConstructCTG algorithm assumes a function node($V) that, given a variable $V in b, returns the node n of

the EST that the variable corresponds to, i.e., the node of the EST that the developer drag ’n’ dropped. In the case of

name variables, node($V) returns the parent of the node that the developer drag ’n’ dropped. It also assumes the

existence of a function copy(n) that, given a node n in the EST, returns the copy of it in f, or null, if one doesn’t exist.

Algorithm ConstructCTG
Input: A condition fragment f with a Boolean expression b labeling its root AND node, a condition tree generator
CTG, and an EST.
Output: The condition tree generator CTG where f has been added, or an error if f cannot produce satisfiable
queries.
Method:
Step 1: Satisfiability Check of f
1 Rewrite b in disjunctive normal form such that b = c1 ∨ c2…∨ cn, where ci is a conjunction of predicates
2 If a conjunction ci, where 1 ≤ i ≤ n, uses two variables $Vix, $Viy such that the lowest common ancestor of

node($Vix) and node($Viy) in the EST is a CHOICE node
3 Output an error indicating the unsatisfiable conjunctions

Step 2: Manipulation of f

 // Introduces OR nodes to f based on CHOICE nodes in the EST
4 For any two variables $Vix, $Vjy used in conjunctions ci and cj of b, respectively, where 1 ≤ i,j ≤ n and i≠j
5 If both the paths from node($Vix) and node($Vjy) to their lowest element node common ancestor nANSC in the

 EST contain either a CHOICE node or an optional element, excluding nANSC
6 Apply the Rules 1 and 2 of Figure 14

 // Label AND nodes with Boolean expressions
7 For each conjunction ci of b, 1 ≤ i ≤ n
8 In f, identify the lowest AND node ai that is the common ancestor of all the element nodes labeled with the

 variables used in ci and label it with Boolean expression ci
9 If the AND node is labeled with more than one conjunction
10 Combine them with the ∨ Boolean connective

Step 3: Addition of f to the CTG
11 Set the children of the root AND node of f as children of the root AND node of the CTG
12 Take the union of the sets of Boolean expressions labeling the root AND node of f and the root AND node of the

CTG and label the root AND node of the latter with it

B

replace with

Y $Vjy

copy(nANSC)

A

B
Y

X

$Vjy

$Vix

copy(nANSC)
OR
AND

AND

Rule 1 Rule 2

A

subtreei

X $Vix

OR
AND

AND
subtreei

AND

A

Breplace with

Y

X

$Vjy

$Vix

copy(nANSC)

A

B
Y

X

$Vjy

$Vix

copy(nANSC)
OR
AND

ANDC

C

Figure 14 “OR Node Introduction” Rules

32

sensors

manufacturer

product

body_type

cylindrical

diameter

specs

protection_ratings

protection_rating

$PROD

CHOICE

rectangular

width

$DIA

$WID

$PROT

$REC

$CYL

$S

(a) Expanded Schema Tree (EST)

SEQ
$MAN*

SEQ

SEQ
+

SEQ

SEQ

SEQ

SEQ

$BODY

*

$PROTS

sensors
manufacturer
product

body_type
cylindrical

specs

protection_ratings
protection_rating

$PROD

$PROT1

$CYL

$S

(b) Initial Conditional Fragment f1

$MAN

$BODY

$PROTS

AND $DIA <= $#DIA OR $PROT1 = $#PROT1

$SPEC

$SPEC

sensors
manufacturer
product

body_type
cylindrical

specs

rectangular
width

$PROD

$WID

$CYL

$S

(c) Initial Conditional Fragment f2

$MAN

$BODY

$REC

AND $DIA <= $#DIA OR $WID <= $#WID

$SPEC

diameter $DIA

sensors
manufacturer
product

body_type
cylindrical

specs

protection_ratings
protection_rating

$PROD

$PROT1

$CYL

$S

(d) Conditional Fragment f1 after Step 2

$MAN

$BODY

$PROTS

AND

$SPEC

sensors
manufacturer
product

body_type

cylindrical

specs

rectangular
width

$PROD

$WID

$CYL

$S

(e) Conditional Fragment f2 after Step 2

$MAN

$BODY

$REC

AND

$SPEC

diameter $DIA

OR
AND OR

AND $PROT1 = $#PROT1 AND $WID <= $#WID

AND $DIA <= $#DIA

diameter $DIA

diameter $DIA

$DIA <= $#DIA

protection_rating $PROT1*

b1 b2

Figure 15 Example of the ConstructCTG Algorithm

Line 6 of the algorithm covers two cases that are illustrated in Figure 14. In the first case, the node copy(nANSC)

does not have an OR child node and Rule 1 shows how the condition fragment f is manipulated. In the second case

the node copy(nANSC) has an OR child node nOR and the subtree treeix that contains node($Vix) is a child of an AND

child node nAND of nOR, and treejy that contains node($Vjy) is a child of copy(nANSC). In this case, Rule 2 does not

introduce a new OR node, but places the subtree rooted at B under the existing OR node instead.

Figure 15 illustrates an example of the application of the ConstructCTG algorithm on the condition fragments

defined on the EST of Figure 15a. Assume the developer has built two Boolean expressions b1 and b2, and the Editor

has created the corresponding condition fragments f1 and f2, shown in Figure 15(b) and (c) respectively. f1 asks for

sensors either having diameter less than the parameter $#DIA or a protection rating equal to the parameter

$#PROT1, while f2 asks for sensors having either diameter less than the parameter $#DIA or width less than the

parameter $#WID so that they fit in a given space. Both condition fragments pass the check of Step 1 of the

ConstructCTG algorithm, since both conjunctions of b1 and b2 involve a single variable. In Step 2, structural

disjunction operators are introduced to both fragments, shown in Figure 15d and e, according to the rules of Figure

14. In f1, element node diameter is under a CHOICE node in the EST and element node protection_rating

is optional. So an OR node is introduced under their lowest common ancestor node specs. Similarly, in f2, the

nodes diameter and width are both under a CHOICE node in the EST, so an OR node is introduced under the

node body_type.

33

Step 3 of the ConstructCTG algorithm just puts f1 and f2 together, thus constructing the merged CTG shown in

Figure 17a, where the two fragments are indicated in two different tones of gray.

7.1.2 Eliminating Redundancies

The Editor eliminates redundancies in the merged CTG in order to improve the performance of the generated

TQL queries. As shown in [3], efficiency of tree pattern queries depends on the size of the pattern, so it is essential to

identify and eliminate redundant nodes. More specifically, according to the rule of Figure 16, the Editor renders

redundant an element node that has a sibling node labeled with the same variable.

B

Breplace withsubtreei

node node

Rule

subtreej

B
subtreei
subtreej

$B

$B

$B

Figure 16 “Node Elimination” Rule

The application of the rule takes time linear in the number of nodes of the CTG. The process of eliminating

redundant nodes could also be performed on TQL queries, instead of the CTG, at run-time. Either way, the final TQL

query is the same, so it is preferable to perform the optimization at compile-time.

$PROT1 = $#PROT1

(b) CTG after “Node Elimination” Rules
f2f1

sensors
manufacturer
product

body_type
cylindrical

specs

protection_ratings
protection_rating

$PROD

$PROT1

$CYL

$S
$MAN

$BODY

$PROTS

AND

$SPEC

sensors

manufacturer

product

body_type

cylindrical

specs

rectangular

width

$PROD

$WID

$CYL

$S

(a) Initial CTG

$MAN

$BODY

$REC

$SPEC

diameter $DIA

OR
AND

OR

AND

AND $WID <= $#WID

AND $DIA <= $#DIA

diameter $DIA

$DIA <= $#DIA

AND

sensors

manufacturer

product

specs

$PROD

$S

$MAN

$SPEC

body_type

cylindrical

rectangular

width $WID

$CYL

$BODY

$REC

diameter $DIA

OR

AND $WID <= $#WID

AND $DIA <= $#DIA

$PROT1 = $#PROT1

body_type
cylindrical

protection_ratings
protection_rating $PROT1

$CYL
$BODY

$PROTS

OR
AND

AND
diameter $DIA

$DIA <= $#DIA

Figure 17 Eliminating Redundant Nodes on the CTG

Notice that the rule is not complete for minimization of TQL queries. Indeed, the minimization problem for TQL

queries can easily be shown to be NP-hard, while the rule application is polynomial. The rule is introduced

specifically to eliminate those redundancies introduced during the construction of the CTG, presented in the previous

section. For example, the ConstructCTG algorithm constructs the CTG of Figure 17a by merging two fragments. The

34

path from the sensors node to the specs node appears in both condition fragments, and every element node

along the path is labeled with the same variable in both fragments. One of these paths is eliminated by parsing the

CTG top-down and iteratively applying the rule of Figure 16. The resulting CTG is shown in Figure 17b. Note that

the rule preserves the boundaries of the fragments as element nodes are being eliminated.

7.2 Building Dependencies

The Editor provides a set of actions to allow the developer to build a dependency, i.e., to select the dependent

condition fragment and to construct the condition of the dependency. As an example, Figure 18 demonstrates how

the developer builds dependency d1: <f2, $#BODY=“cylindrical”, {f1}> of Section 6.1 by performing a set

of actions indicated by the numbered arrows. Dependency d1 sets the condition fragment f2 on the cylindrical

dimensions (Figure 10a) active if the parameter $#BODY is set to “cylindrical”.

Action 1
Action 2

Action 3

Action 4

Action 5

Figure 18 Building Dependencies

First, the developer initiates a dependency (Action 1 of Figure 18) and enters a descriptive ID. On the middle

panel, a new row appears in the lower table that lists the dependencies, and the expression editor opens at the

bottom. She sets the dependent condition fragment to be the “cylindrical” one (Action 2), and builds the condition of

the dependency in the expression editor (Action 3). She specifies that the left operand of the equality predicate is a

parameter bound to the “Body Type” select form control (Action 4), and the right operand to be the string

constant “cylindrical” (Action 5). Note that only constant values and parameters that bind to form elements can be

used in the condition of the dependency, as defined in Section 6.1.

35

7.3 Building Result Tree Generators

The Editor provides two options for the developer to build the result tree generator RTG component of a query

set specification, each one associated with a set of corresponding actions. For the first (and simpler) option, called

schema-driven, the developer only specifies which element nodes of the EST she wants to present on the report page.

Then, the Editor automatically builds a result tree generator that creates report pages presenting the source data in

the form of XHTML tables that are nested according to the nesting of the EST. If the developer wants to structure the

report page in a different way than the one the EST dictates, the Editor provides a second option, called template-

driven, where the developer provides as input a template report page to guide the result tree generator construction.

Both options are described next.

Figure 19 Schema-Driven Constructed Report Page

7.3.1 Schema-Driven Construction of Result Tree Generator

The developer can automatically build a result tree generator based on the nesting of the EST. For example,

Figure 19 shows a report page created from the result tree generator for the data set and the EST of Figure 2. The

creation of the result tree generator and the template report page is accomplished by performing the two actions that

are indicated by the numbered arrows on the Editor’s window of Figure 20.

First, the developer uses the checkboxes that appear next to the element nodes of the EST to select the ones she

wants to present on the report page (Action 1 of Figure 20). This action sets the report property of the selected

element nodes in the EST to true and constructs the result fragment fR indicated in the condition tree generator of

Figure 21a. The variables that will be used in the result tree generator are also indicated. Then, the Editor

automatically generates the template report page (Action 2) displayed on the right panel of Figure 20 as a tree of

XHTML element nodes. Figure 21c shows how a WYSIWYG XHTML editor renders the template report page. The

Editor translates the above actions into a QSS as follows.

36

Action 2

Action 1

Figure 20 Selecting Elements Nodes and Constructing Template Report Page

In Action 2, the Editor automatically generates the result tree generator of Figure 21b that presents the element

nodes selected in Action 1 using XHTML table element nodes that are nested according to the nesting of the EST.

For illustration purposes, each table element node in Figure 21b is annotated with the EST element node that it

corresponds to. Notice, for example, that the “product” table is nested in the “manufacturer” table, as is the case in

the EST. The table headers in Figure 21c are created from the name labels of the selected element nodes. In the

tables, the Editor places the element variables of the element nodes selected in Action 1 as children of td (table data

cell) element nodes. For example, in the result tree generator of Figure 21b the element variable $NAME appears as

the child of the td element node of the “manufacturer” table.

We discuss next how optional and repeatable element nodes and CHOICE nodes in the EST are handled by the

Editor on the template report page.

Optional Element Nodes: When the developer includes an optional element node in the result, the corresponding

result fragment will produce results whether this optional element is present or not (see Figure 19). Figure 21a

demonstrates the effect of the visual action to select the optional element image to appear on the report page.

Repeatable Element Nodes: The Editor handles the repeatable element nodes in the EST by automatically

generating corresponding table elements and group-by lists in the result tree generator. For example, the path from

the root of the EST to the name element node that is selected in Action 1 contains the manufacturer repeatable

element node, which results in the generation of the “manufacturer” table element node, shown in Figure 21b, and

37

the group-by list of its tr (table row) child element node. This group-by list will generate one table row for each

binding of the $MAN element variable.

CHOICE Nodes: CHOICE nodes in the EST require the Editor to automatically generate OR nodes in the result

fragment fR, as in the case where the CHOICE node above the cylindrical and rectangular element nodes

in the EST is translated to an OR node in the result fragment fR.

true

true

sensors
manufacturer

product

sensing_distance
body_type

cylindrical
diameter

AND

specs

name

part_number
$PROD

OR
AND

rectangular

width
height

AND

$PART

$DIST

$DIA

$HEI
$WID

$NAME

$CYL

$REC

image $IMG

OR
AND

AND true

true

barrel_style $BAR

fR

product

manufacturer

cylindrical

rectangular

(a) Condition Tree Generator

(c) Template Report Page

$MAN
tr
td

td
$PART

$DIA

html

GROUPBY ($PART)

td
$DIST

td

$WID

$HEI

table

td

td

tr

GROUPBY ($PROD)

td
table
tr

GROUPBY ($DIA)

GROUPBY ($HEI)

GROUPBY ($WID)

$REC
$BAR

td GROUPBY ($BAR)

body
table

(b) Result Tree Generator

$NAME GROUPBY ($NAME)

table $CYL

td
tr

GROUPBY ($MAN)

$PROT

td
table
tr
td

GROUPBY ($PROT)

protection_ratings
protection_rating $PROT

GROUPBY ($DIST)

td
img
$IMG

GROUPBY ($IMG)

protection_rating

$PROT2protection_rating
protection_rating $PROT1

max
min

operating_temp
$MIN
$MAX

Figure 21 Automatically Generated Result Fragment, Result Tree Generator and Template Report Page

The complete algorithm, called AutoReport, for constructing the result fragment and the result tree generator, is

presented below. The AutoReport algorithm inputs the EST, where some or all of the element nodes are selected for

presentation on the report page, i.e., their report property is set to true, the result fragment fR, and proceeds in two

steps. The first step manipulates the result fragment fR by introducing OR nodes based on CHOICE nodes and

optional elements in the EST. The second step automatically constructs the result tree generator.

38

The AutoReport algorithm assumes the existence of a function node($Vi) that, given a variable name $Vi in fR,

returns the node ni of the EST that the variable corresponds to. In the case of name variables, node($Vi) returns the

parent of the node(s) that the name variable corresponds to. It also assumes the existence of a function copy(ni) that,

given a node ni in the EST, returns the copy of it in fR, if one exists, or null, otherwise.

Algorithm AutoReport
Input: The EST where some or all of the nodes are selected for presentation on the report page, and the result
fragment fR.
Output: The result fragment fR and the result tree generator RTG.
Method:
Step 1: Manipulation of fR

 // Introduce OR nodes in fR based on CHOICE nodes and optional elements in the EST
1 Traversing fR top-down, for an element node ni
2 If ni is labeled with a variable $Vi and parent(node($Vi)) is a CHOICE node and parent(ni) isn’t an OR node
3 If there is a sibling nj of ni labeled with a variable $Vj such that node($Vj) is a sibling of node($Vi)
4 For all sibling element nodes nj of ni labeled with a variable $Vj such that node($Vj) is a sibling of

 node($Vi)
5 Apply Rule 1 of Figure 22
6 Else
7 Apply the Rule 2 of Figure 22 // Treat ni as optional element
8 If ni is labeled with a variable $Vi and node($Vi) is optional, or ni is named with a variable $Vi and at least

 one child of node($Vi) is optional
9 Apply the Rules 2 and 3 of Figure 22 correspondingly

Step 2: Construction of the result tree generator RTG
10 Create a node nr named “html”, a node nb named “body”, a node nt named “table”, and a node ntr named “tr”
11 Set nr as the root of the RTG, nb as a child of nr, nt as a child of nb, and ntr as a child of nt
12 Traversing the EST top-down and left to right, ignoring SEQ, CHOICE and ALL nodes, for an element node ni
13 BuildTable(ni, ntr)

BuildTable (ni, ntr)
14 If ni is either repeatable or parent(ni) is a CHOICE node
15 Create a node ntd named “td” and a node nt named “table”
16 Set ntd as a child of ntr and nt as a child of ntd
17 Create a node named “tr” and set it as the current ntr
18 If parent(ni) is a CHOICE node
19 Attach the Boolean expression var(ni) to nt
20 If ni is repeatable
21 Add var(ni) to the group-by list of ntr
22 If ni is a selected element node
23 Create a node nth named “th” and add it as a child of ntr
24 Create a node named name(ni) and add it as a child of nth
25 If ni is a leaf element node
26 Create a node named “td”, add it as a child of ntr, and set it as the current ntd
27 Create a node named var(ni) and add it as a child of ntd
28 If var(ni) is not in any group-by list of an ancestor node
29 Add var(ni) to the group-by list of ntd
30 For every child element node nc of ni
31 BuildTable(nc, ntr)

39

Rule 2 Rule 3

A

B
replace with

ni $Vi OR
AND

ni $Vi

B

true

AND true

A A

B
replace with

$Vi OR
AND
$Vi

B

true

AND true

A

Rule 1

A

replace with

ni $Vi
A
OR
AND

ANDB

B

nj $Vj ni $Vi

nj $Vj

…
… …

…

Figure 22 “OR Node Introduction” Rules for Result Fragment fR

The result fragment fR that is manipulated during Step 1 of the AutoReport algorithm is merged with the

condition tree generator CTG of a QSS according to Step 3 of the ConstructCTG algorithm of Section 7.1.1 and

redundant nodes are eliminated using the rule of Figure 16.

7.3.2 Template-Driven Construction of Result Tree Generator

The developer can create more sophisticated report pages and result tree generators by providing to the Editor a

template report page she has constructed with an XHTML editor. For example, on the report page of Figure 3 the

developer wants to display the manufacturer’s name for each sensor product, unlike the report page on Figure 19 that

followed the nesting pattern of the EST, where the product is nested in the manufacturer element node. To

accomplish that, she constructs the template report page shown in Figure 23 and provides it to the Editor.

Figure 23 Editing the Template Report Page

On the right panel of Figure 24 the template report page is displayed. Using the EST panel and the template

report page panel, the developer constructs the result tree generator of the query set specification of Figure 8. In

particular, the structure of the result tree generator is the structure of the template report page. The rest of the result

tree generator (element variables, group-by and sort-by lists) is constructed by performing the actions that are

indicated by the numbered arrows on Figure 24.

First, the developer creates a new element, group-by or sort-by mapping (Action 1). Depending on what mapping

was created, one of Actions 2, 3, or 4 is performed.

40

Action 2

Action 3

Action 4

Action 1

Action 5

Figure 24 Performing Element and Group-By Mappings on the Template Report Page

In the case of element mapping, the developer drags element nodes from the EST and drops them to leaf nodes of

the template report page (Action 2). This action places the variable labeling or naming the dragged element node in

the result tree generator, and adds the path from the root of the EST to the dragged element node to the result

fragment fR. For example, by mapping the part_number element node to the td element node on the template

report page, the $PART variable is implicitly placed in the result tree generator of Figure 8b.

In the case of group-by mapping, the developer maps element nodes from the EST to any nodes of the template

report page (Action 3). For example, by mapping the product element node to the tr element node of the

outermost table in the template report page, the $PROD element variable is added to the group-by list of the tr. This

action will result in one tr element node for each binding of the $PROD element variable.

The case of sort-by mapping is the same as the group-by mapping, but the developer additionally specifies an

optional order. For example, by mapping the sensing_distance element node to the tr element node of the

outermost table, the sort-by list of that element, shown in Figure 8b, is generated. The Editor defines automatically a

group-by mapping for each sort-by mapping, if there isn’t one. Note though that the developer did not specify a fixed

order, ascending or descending, thus generating the ordering parameter $#O_DIST. This choice allows the end-user

to choose the order or exclude sensing_distance from the sort-by list altogether.

Finally, the Editor automatically generates and appends the XHTML representation of the “Sort by Options” and

“Sort By Selections” drop-down lists to the query form page of Figure 3 (Action 5). The “Sort by Options” list

contains the sort-by mappings defined in Action 4 for which a fixed order has not been specified. The “Sort By

41

Selections” list is initially empty. During run-time, the end-user can select any item from the “Sort by Options”,

select “ASC” or “DESC” order, and, using the “+” button, add it to the “Sort By Selections” list. When the end-user

submits the query form, the corresponding ordering parameters are instantiated with the order the end-user selected,

as explained in the QSS2TQL algorithm in Section 6.

An engineering benefit from the way the developer builds the result tree generator is that the template report page

can easily be opened from any external XHTML editor and further customized visually, even after the mappings

have been defined.

Based on the above actions, the result fragment fR is defined as the set of variables used in the result tree

generator that the developer manually constructs. The fR is constructed by Step 1 of the AutoReport algorithm of

Section 7.3.1, merged with the condition tree generator of a QSS according to Step 3 of the ConstructCTG algorithm

of Section 7.1.1, and redundant nodes are eliminated using the rule of Figure 16.

7.4 Building Result Boolean Expressions

In Figure 3, the manufacturer’s column does not display the name as text, but a corresponding image (logo) is

presented instead. This effect is accomplished by the three img elements, corresponding to the three possible

manufacturers, shown in the result tree generator RTG of the QSS in Figure 8 and the Boolean expressions that label

them. These expressions are visually defined by the developer on the template report page and are translated by the

Editor to Boolean expressions labeling nodes of the RTG.

In order to build these Boolean expressions, the Editor provides to the developer a set of actions that is similar to

the actions provided for the specification of dependencies as it is presented in Section 0. The setting of the Editor is

the same with the one in Figure 18, except that the “Report” tab is selected in the middle panel and the “Template

Report Page” tab is selected in the right panel. The developer builds the Boolean expressions by performing the

same set of actions as the ones described in Section 0 with two differences:

• In Action 2, the developer selects a node from the template report page from the right panel, instead of a

condition fragment, to the expression editor’s “Activate” box in Figure 18. The subtree rooted at the selected

node will be included in the report if the Boolean expression defined in the expression editor evaluates to true at

run-time.

• In Actions 4 and 5, the developer need not specify only parameters and constants as operands of the predicates in

the Boolean expression, but also any variable, by dragging any element node from the EST on the left panel.

42

Note that the Boolean expressions containing variables are translated to XQuery conditional expressions [52],

according to TQL2XQuery algorithm in Appendix A. For example, the three Boolean expressions that label the img

elements in Figure 4b are translated to three conditional expressions, as the XQuery expression in Appendix A

shows. If the Boolean expressions contain parameters, then they are evaluated during the formulation of the TQL

query, as the QSS2TQL algorithm shows in Section 6. An example of Boolean expressions containing parameters is

given in the next section.

7.5 Dynamic Projection Functionality

On the query form page of Figure 3, the “Customize Presentation” section allows the end-user to control which

columns she wants to project on the report page by selecting the corresponding checkboxes in the “P” column. This

dynamic projection functionality is provided through the use of Boolean expressions in the result tree generator RTG

of a QSS. Figure 25 shows the RTG of the QSS of Figure 8, where Boolean expressions controlling the dynamic

projection label td (table data cell) element nodes and are indicated with gray shade. These Boolean expressions

contain projection parameters that start with $#P_ and correspond to the checkboxes of the “Customize

Presentation” section on the query form page of Figure 3. If a checkbox is checked, then the corresponding Boolean

expression evaluates to true and the subtree is included in the result tree of the TQL query formulated during run-

time. These Boolean expressions are defined by the developer using the actions described in Section 7.4, but instead

of nodes from the EST, the developer sets as operands of the Boolean expression the checkboxes from the query

form page.

The above described process assumes that the developer manually constructs the “Customize Presentation” table

of Figure 3. The Editor though has the ability to construct this table automatically as part of the schema-driven

construction of the RTG described in Section 7.3.1. In this case, the “Customize Presentation” table is constructed

according to the nesting of the EST just as the template report page is, and is structurally the same as the header row

of the template report page. For example, observe that the “Customize Presentation” table on Figure 3 is structurally

the same with the header row of the report page, the only difference being that it is oriented vertically.

More specifically, during Action 2 of Section 7.3.1, the Editor asks the developer if she wants to construct a

“Customize Presentation” table. If so, the Editor constructs a table based on the element nodes selected during

Action 1 of Section 7.3.1 and lets the developer specify which of them she wants the end-user to be able to include or

43

exclude on the report page. For example, on the “Customize Presentation” table on Figure 3, the end-user cannot

prevent the projection of “Part Number” and “Sensing Distance”.

tr

td

td
$PART

$N_BODY

$DIA

html

SORTBY ($NAME $#O_NAME, $DIST $#DIST, $N_BODY $#O_N_BODY)

GROUPBY ($PART)

td
$DIST

td
table
tr
td

td
tr

$WID

$HEI

table

td

td

tr

GROUPBY ($IMG)
td
img
$IMG

GROUPBY ($DIA)

GROUPBY ($HEI)

GROUPBY ($WID)

GROUPBY ($REC)
$BAR

td GROUPBY ($BAR)

body
table

Result Tree Generator

“turck.gif”
img $NAME = “Turck”

“balluff.gif”
img $NAME = “Balluff”

“baumer.gif”
img $NAME = “Baumer”

table GROUPBY ($CYL)

td

tr

GROUPBY ($PROD, $NAME, $DIST)

$PROT

td
table
tr
td

GROUPBY ($PROT)

GROUPBY ($N_BODY)

$#P_IMG = true

$#P_MAN = true

$#P_PROT = true

$#P_DIA = true

$#P_HEI = true

$#P_IMG = true

$#P_IMG = true

Figure 25 Boolean Expressions for Dynamic Projection

8 CONCLUSIONS AND FUTURE WORK

We presented QURSED, a system for the generation of powerful web-based interfaces for querying and reporting

semistructured data. We described the system architecture and the formal underpinnings of the system, including the

Tree Query Language for representing semistructured queries, and the succinct and powerful query set specification

for encoding the large sets of queries that can be generated by a query form. We described how the tree queries and

the query set specification accommodate the needs of query interfaces for semistructured information through the use

of condition fragments, OR nodes and dependencies. We also presented the QURSED Editor that allows the GUI-

based specification of the interface for querying and reporting semistructured data, and described how the intuitive

visual actions result in the production of the query set specification and its association with the visual aspects of the

query forms and reports. An on-line demonstration of the system is available at http://www.db.ucsd.edu/qursed/.

Future work in this area should consider extending the set of queries that can be expressed with TQL to a bigger

subset of XQuery and correspondingly increase the power of the query set specification, in order to capture richer

44

form (and source) capabilities. A challenge will be to enhance the querying power while keeping the Editor's

interface as intuitive as it is now. Moreover, given that the Editor employs heuristics in translating developer input

into query set specifications and (ultimately) QFRs, user studies are necessary to evaluate the quality of these

decisions as well as the usability of form generation systems and their resulting forms in general.

QURSED is one of the first attempts to describe formally the logical capabilities of query forms and reports and

to clearly separate them from the form and report presentation. The approach followed by QURSED, to model form

capabilities using query set specifications, is promising for other capability modeling tasks, such as the problem of

describing and automatically integrating rich data management-oriented web services. In particular, QSS can be the

basis for a highly expressive language for the description of data-oriented Web services [36]. A Web service

designer would generate a Web service using a graphical web services Editor similar to the one described here. The

Web services specification could then be used either as an input to a run-time mediator that would decide whether

particular service requests fall within the capabilities of the web service [44], or simply to generate and package a

low-level WSDL [47] description for the service.
9 ACKNOWLEDGMENTS

Our thanks to Spyros Magiatis, Angus Wong, Panagiotis Reveliotis and Clifton McLellan for their contribution

to the design and implementation of Application Builder, a preliminary version of QURSED, which is part of Enosys

Design Suite [14].

REFERENCES

[1] S. Abiteboul, P. Buneman, D. Suciu: Data on the Web, Morgan Kaufman, California, 2000.
[2] S. Abiteboul, L. Segoufin, V. Vianu: Representing and Querying XML with Incomplete Information, in

Principles Of Database Systems (PODS), 2001 pp. 150-161.
[3] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, D. Srivastava: Minimization of Tree Pattern Queries, in

proceedings of the ACM SIGMOD International Conference on Management of Data, 2001, pp. 497-508.
[4] P. Atzeni, G. Mecca, P. Merialdo: To Weave the Web, in proceedings of the 23rd International Conference on

Very Large Databases (VLDB), 1997, pp. 206-215.
[5] P. Bernstein et al.: The Asilomar report on database research, SIGMOD Record 27(4), 1998, pp. 74-80.
[6] M. Carey, L. Haas, V. Maganty, J. Williams: PESTO: An Integrated Query/Browser for Object Databases, in

proceedings of the 22nd International Conference on Very Large Databases (VLDB), 1996, pp. 203-214.
[7] S. Chawathe, T. Baby, J Yeo: VQBD: Exploring Semistructured Data (demonstration description), in

proceedings of the ACM SIGMOD International Conference on Management of Data, page 603, 2001, pp. 603.
[8] S. Cluet, C. Delobel, J. Siméon, K. Smaga: Your Mediators Need Data Conversion!, in proceedings of the

ACM SIGMOD International Conference on Management of Data, 1998, pp. 177-188.
[9] S. Cohen, Y. Kanza, Y. Kogan, W. Nutt, Y. Sagiv, A. Serebrenik: EquiX – Easy Querying in XML Databases,

in proceedings of the ACM Workshop on The Web and Databases (WebDB), 1999, pp. 43-48.
[10] S. Comai, E. Damiani, P. Fraternali: Computing graphical queries over XML data, in the ACM Transactions

on Information Systems (TOIS) 19(4), 2001, pp. 371-430.

45

[11] A. Deutsch, M. Fernandez , D. Florescu, A. Levy , D. Suciu: XML-QL: A Query Language for XML, W3C
note, 1998.
http://www.w3.org/TR/1998/NOTE-xml-ql-19980819/

[12] A. Deutsch, Y. Papakonstantinou: Optimization of Nested XQueries Using Minimization, submitted for
publication, 2003.

[13] D. Draper, A. Halevy, D. Weld: The Nimble Integration Engine, in proceedings of the ACM SIGMOD
International Conference on Management of Data, 2001, pp. 567-568.

[14] Enosys Software
http://www.enosyssoftware.com

[15] A. Eyal, T. Milo: Integrating and customizing heterogeneous e-commerce applications, VLDB Journal 10(1),
2001, pp. 16-38.

[16] M. Fernández, A. Morishima, D. Suciu: Efficient Evaluation of XML Middle-ware Queries, in proceedings of
the ACM SIGMOD International Conference on Management of Data, 2001, pp. 103-114.

[17] M. Fernández, D. Suciu and I. Tatarinov: Declarative Specification of Data-intensive Web sites, in proceedings
of the Workshop on Domain Specific Languages (DSL), 1999, pp. 135-148.

[18] P. Fraternali: Tools and Approaches for Data Intensive Web Application Development: a Survey, in the ACM
Computing Surveys 31(3), 1999, pp. 227-263.

[19] P. Fraternali, P. Paolini: Model-Driven Development of Web Applications: the Autoweb System, in the ACM
Transactions on Office Information Systems 18 (4), 2000, pp. 323-382.

[20] M.R. Genesereth and N.J. Nillson: Logical Foundations of Artificial Intelligence, Morgan Kaufmann, 1987.
[21] R. Goldman, J. Widom: Interactive Query and Search in Semistructured Databases, in proceedings of the

ACM Workshop on The Web and Databases (WebDB), 1998, pp. 52-62.
[22] Java Server Pages, White Paper

http://java.sun.com/products/jsp/whitepaper.html
[23] A. Y. Levy, A. Rajaraman, J. J. Ordille: Querying Heterogeneous Information Sources Using Source

Descriptions, in proceedings of the 22nd International Conference on Very Large Databases (VLDB), 1996,
pp. 251-262.

[24] A. Levy, A. Rajaraman, J. D. Ullman: Answering Queries Using Limited External Processors, in Principles Of
Database Systems (PODS), 1996, pp. 227-237.

[25] B. Ludäscher, Y. Papakonstantinou, P. Velikhov: Navigation-Driven Evaluation of Virtual Mediated Views, in
Extending Database Technology (EDBT), 2000, pp. 150-165.

[26] D. E. Knuth: The Art of Computer Programming, vol. 3: Sorting and Searching, Addison Wesley, 1973.
[27] Macromedia Dreamweaver UltraDev

http://www.macromedia.com/software/ultradev/
[28] Macromedia ColdFusion

http://www.macromedia.com/software/ultradev/special/coldfusion/
[29] Macromedia HomeSite

http://www.macromedia.com/software/homesite/
[30] Microsoft ASP.NET

http://www.asp.net/
[31] Microsoft BizTalk Server

http://www.microsoft.com/biztalk/
[32] Microsoft Visual InterDev

http://msdn.microsoft.com/vinterdev/
[33] K. Munroe, Y. Papakonstantinou: BBQ: A Visual Interface for Browsing and Querying XML, in VDB5, 2000,

pp. 277-296.
[34] Oracle XSQL Pages and the XSQL Servlet

http://technet.oracle.com/tech/xml/xsql_servlet/htdocs/relnotes.htm
[35] Y. Papakonstantinou, M. Petropoulos, V. Vassalos: QURSED: Querying and Reporting Semistructured Data,

in proceedings of the ACM SIGMOD International Conference on Management of Data, 2002, pp. 192-203.
[36] M. Petropoulos, A. Deutsch, Y. Papakonstantinou: Query Set Specification Language (QSSL), in Sixth

International Workshop on the Web and Databases (WebDB), 2003, pp. 99-104.
[37] M. Petropoulos, V. Vassalos, Y. Papakonstantinou: XML Query Forms (XQForms): Declarative Specification

of XML Query Interfaces, in proceedings of WWW10, 2001, pp. 642-651.
[38] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, R. Fagin: Translating Web Data, in proceedings of the

28th International Conference on Very Large Databases (VLDB), 2002, pp. 598-609.

46

[39] D. Quass et al.: Querying Semistructured Heterogeneous Information, in proceedings of the Fourth
International Conference on Deductive and Object-Oriented Databases (DOOD), 1995, pp. 319-344.

[40] H. Schöning, J. Wäsch: Tamino - An Internet Database System, in Extending Database Technology (EDBT),
2000, pp. 383-387.

[41] J. Shanmugasundaram et al.: Efficiently Publishing Relational Data as XML Documents, in proceedings of the
26th International Conference on Very Large Databases (VLDB), 2000, pp. 65-76.

[42] A. Silberschatz, M. Stonebraker, J. D. Ullman: Database Systems: Achievements and Opportunities - The
"Lagunita" Report of the NSF Invitational Workshop on the Future of Database System Research held in Palo
Alto, California, February 22-23, 1990, SIGMOD Record 19(4), 1990, pp. 6-22.

[43] TIBCO XML Transform
http://tibco.com/solutions/products/extensibility/xml_transform.jsp

[44] V. Vassalos, Y. Papakonstantinou: Expressive Capabilities Description Languages and Query Rewriting
Algorithms, Journal of Logic Programming, 43(1), 2000, pp. 75-122.

[45] W3C: Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation 6 October 2000.
http://www.w3.org/TR/REC-xml

[46] W3C: HTML 4.01 Specification, W3C Recommendation 24 December 1999.
http://www.w3.org/TR/html4/

[47] W3C: Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language, W3C Working Draft
10 November 2003.
http://www.w3.org/TR/wsdl20/

[48] W3C: XForms Requirements, W3C Working Draft 04 April 2001.
http://www.w3.org/TR/xhtml-forms-req

[49] W3C: XML Schema Part 0: Primer, W3C Recommendation 02 May 2001.
http://www.w3.org/TR/xmlschema-0/

[50] W3C: XML Schema Part 2: Datatypes, W3C Recommendation 02 May 2001.
http://www.w3.org/TR/xmlschema-2/

[51] W3C: XSL Transformations (XSLT) Version 2.0, W3C Working Draft 12 November 2003.
http://www.w3.org/TR/xslt20/

[52] W3C: XQuery 1.0: An XML Query Language, W3C Working Draft 12 November 2003.
http://www.w3.org/TR/xquery/

[53] W3C: XQuery 1.0 and XPath 2.0 Data Model, W3C Working Draft 12 November 2003.
http://www.w3.org/TR/query-datamodel/

[54] W3C: XQuery 1.0 and XPath 2.0 Functions and Operators, W3C Working Draft 12 November 2003.
http://www.w3.org/TR/xquery-operators/

[55] W3C: XQuery 1.0 Formal Semantics, W3C Working Draft 12 November 2003.
http://www.w3.org/TR/query-semantics/

[56] M. Zloof: Query By Example, in proceedings of the National Compute Conference, AFIPS, Vol. 44, 1975, pp.
431-438.

Appendix A. TQL2XQuery Algorithm

The algorithm TQL2XQuery works on TQL queries, presented in Section 4. TQL2XQuery generates an XQuery

expression equivalent to the input TQL query. The XQuery expressions generated by TQL2XQuery include

GROUPBY expressions to efficiently perform the groupings. GROUPBY expressions are not part of the latest XQuery

working draft [52], but the draft includes an issue regarding an explicit GROUPBY construct. Such a construct is

presented in Appendix C. The choice of augmenting XQuery with GROUPBY expressions has been made because of

the importance of grouping operations for producing nested XML and XHTML output. Explicit GROUPBY

expressions enable easier optimization of such grouping operations, as is shown in [12]. As Appendix C shows,

47

XQuery+GROUPBY expressions can always be translated to XQuery expressions, often of significantly increased

complexity: the use of GROUPBY expressions results in cleaner query expressions and more opportunities for

optimization, but does not affect the generality of the algorithm.

TQL2XQuery inputs the condition tree CT and the result tree RT of a TQL query. Condition tree and result tree

nodes are denoted as nCT and nRT, respectively. We denote by CT[$V] the node nCT such that var(n)=$V. The

function parent(nCT) returns the parent node of nCT.

The main routine recursively traverses the result tree top-down and builds an XQuery expression that consists of

nested FWOR (FOR-WHERE-ORDER BY-RETURN) expressions (lines 1-4). Every node nRT that is labeled with a

group-by list g or a Boolean expression b generates a FWOR expression that is nested within the RETURN clause of

the FWOR expression created by the lowest ancestor of nRT labeled with a group-by list or a Boolean expression.

For each variable $V in a group-by list or a Boolean expression of an nRT, the algorithm proceeds in two steps

(lines 7-10). The first step (ReachNode subroutine) declares $V in the FOR clause of the FWOR expression E1. The

second step (ApplyConditionSubTree subroutine) conditions the variable $V by translating the subtree rooted at

CT[$V] into conditions in the WHERE clause of E. The visibleVars variable is the set of all variables declared in E

and in all FWOR expressions that E is nested in.

The ReachNode subroutine declares a variable $V by taking as input the nCT=CT[$V], the lowest ancestor nLA of

nCT, such that var(nLA) in visibleVars, and the current FWOR expression E. The algorithm “reaches” nCT by walking

the path from nLA to nCT recursively. For an AND node in the path, ReachNode adds the labeling Boolean expression

b conjunctively to the WHERE clause of E and declares any variables in b that are not in visibleVars. For an element

node in the path, the algorithm declares its labeling variable in the FOR clause of E, if not already in visibleVars. OR

nodes are ignored.

The ApplyConditionSubTree subroutine “applies” to a variable $V declared by ReachNode the subtree of the

condition tree rooted at CT[$V]. ApplyConditionSubTree takes as input the CT[$V] and the current FWOR

expression E, and traverses the subtree rooted at CT[$V] top-down. For an element node in the subtree, the algorithm

declares its labeling variable in the FOR clause of E (lines 32-35). For an AND node in the subtree, the labeling

Boolean expression b is added to the WHERE clause of E (lines 36-39). For an OR node in the subtree, the algorithm

48

generates a SOME…SATIFIES expression for each one of its AND child nodes (lines 40-43). Subsequent variable

declarations are added to the SOME clause and Boolean expressions are added conjunctively to the SATIFIES

clause (lines 44-47). The disjunction of the generated SOME…SATIFIES expressions are added conjunctively to the

WHERE clause of E. Note that for a nested OR node the algorithm generates nested SOME…SATIFIES expressions,

in which case the disjunction of the generated SOME…SATIFIES expressions are added conjunctively to the

SATIFIES clause of the nesting expression.

Finally, lines 11-21 of the main routine add to the RETURN clause of E a GROUPBY expression, a conditional

expression and either a direct element constructor or an enclosed expression, if nRT has a corresponding group-by

list, Boolean expression and either a constant or a variable as name. Lines 22-23 add an ordering specification to the

ORDER BY clause of E, if nRT has a sort-by list.

Initially, the algorithm is called with TQL2XQuery(CT, RT, nil). There isn’t an initial FWOR expression.

Algorithm TQL2XQuery
Input: CT, RT, nil
Output: An XQuery expression equivalent to the input TQL query
Method:
Traverse RT top-down and left-to-right. For an element node nRT of RT:
1 Set V←variables in group-by list g of nRT ∪ variables in Boolean expression b of nRT
2 If there exists a variable $Vi in V and not in visibleVars
3 Create a new FWOR expression E
4 If E is top-level FWOR expression // Implies top-level group-by list in RT
5 Add to FOR clause of E the variable declaration “$doc IN accessSource(‘XMLDB’)2”
6 For each variable $Vi in V and not in visibleVars
7 Find the lowest element node ancestor nLA of CT[$Vi] such that var(nLA) in visibleVars
8 ReachNode(nLA, CT[$Vi], E)
9 ApplyConditionSubTree(CT[$Vi], E)
10 If group-by list g of nRT is not empty
11 Add to RETURN clause of E the expression “GROUPBY g AS”
12 If nRT has a Boolean expression b
13 Add to RETURN clause of E the expression “IF b THEN”
14 If name(nRT) is a constant
15 Add to RETURN clause of E the expression <name(nRT)>
16 For each child nC of nRT, TQL2XQuery(CT, nC, E)
17 Add to RETURN clause of E the expression </name(nRT)>
18 If name(nRT) is a variable // then the node is guaranteed to be a leaf node, see Definition 3 in Section 4
19 Add to RETURN clause of E the expression “{name(nRT)}”
20 If the sort-by list s of nRT is not empty
21 Add to ORDER BY clause of E the s list

1 If all the variables in a group-by list and a Boolean expression are declared in a nesting FWOR expression, then a new
expression is not created.
2 accessSource is a custom XPath function [54] that, given a name, retrieves the document element of the corresponding
XML data set stored in the XML Data Server.

49

ReachNode(nLA, nCT, E)
22 If there is a child node nC of nLA that leads to nCT
23 If nC is an AND node
24 Add conjunctively to WHERE clause of E the Boolean expression b labeling nAND
25 For every variable $Vi in b and not in visibleVars, ReachNode(nC, CT[$Vi], E)
26 If nC is an element node and var(nC) not is visibleVars
27 GenerateVarDeclaration(nC, E)
28 ReachNode(nC, nCT, E)

ApplyConditionSubTree(nCT, E)
29 If nCT is an element node and var(nCT) not is visibleVars
30 GenerateVarDeclaration(nCT, E)
31 For each child nC of nCT, ApplyConditionSubTree(nC, E)
32 If nCT is an AND node
33 For each child nC of nAND, ApplyConditionSubTree(nC, E)
34 Add conjunctively to WHERE/SATISFIES clause of E the Boolean expression labeling nAND
35 If nCT is an OR node, not denoting an optional element
36 For each child AND node nAND
37 Create a new SOME…SATISFIES expression E
38 For each child nC of nAND, ApplyConditionSubTree(nC, E)
39 Add conjunctively to SATISFIES clause of e’ the Boolean expression labeling nAND
40 Add conjunctively to WHERE/SATISFIES clause of E the disjunction of SOME…SATISFIES expressions

GenerateVarDeclaration(nCT, E)
41 If nCT is an element node, where name(nCT) is a constant
42 Add to FOR/SOME clause of E: “var(nCT) IN var(parent(nCT))/name(nCT)”
43 If nCT is an element node, where name(nCT) is a name variable
44 Add to FOR/SOME clause of E: “var(nCT) IN var(parent(nCT))/name()” // XPath’s name() function [54]

The complexity of the TQL2XQuery algorithm is polynomial in the size of the input CT and RT.

The following XQuery expression is generated from the TQL2XQuery algorithm for the TQL query in Figure 4.

Notice that the algorithm can be enhanced easily to add a name attribute to all constructed nodes (on line 14), with

the value of the attribute being the complete path of the node. That would allow us, for example, to name the

different <tr>, <td> and <table> elements.

<html>
 <body>
 <table>{
 FOR $doc IN accessSource(‘XMLDB’),
 $S IN $doc/sensors,
 $MAN IN $S/manufacturer,
 $PROD IN $MAN/product,
 $SPEC IN $PROD/specs,
 $PROTS IN $SPEC/protection_ratings,
 $PROT1 IN $PROTS/protection_rating,
 $PART IN $PROD/part_number,
 $DIST IN $SPEC/sensing_distance,
 $BODY IN $SPEC/body_type,
 $N_BODY IN $BODY/name()
 $PROT IN $PROTS/protection_rating,
 $NAME IN $MAN/name,
 WHERE
 $PROT1 = “NEMA3”
 AND ((SOME $CYL IN $BODY/cylindrical,
 $DIA IN $CYL/diameter,
 $BAR IN $CYL/barrel_style
 SATISFIES
 $DIA <= 20 AND $DIA <= 40)

50

 OR
 (SOME $REC IN $BODY/rectangular,
 $HEI IN $REC/height,
 $WID IN $REC/width
 SATISFIES
 $HEI <= 20 AND $WID <= 40))
 ORDER BY $NAME DESCENDING, $DIST
 RETURN
 GROUPBY $PROD, $NAME, $DIST AS
 <tr>{
 <td>{
 FOR $IMG IN $PROD/image
 RETURN
 GROUPBY $IMG AS
 {$IMG}
 }</td>,
 <td>{
 IF ($NAME = “Turck”) THEN “turck.gif”
 IF ($NAME = “Balluff”) THEN “balluff.gif”
 IF ($NAME = “Baumer”) THEN “baumer.gif”
 }</td>,
 {
 GROUPBY $PART AS
 <td>{$PART}</td>
 },
 <td>{
 <table>{
 GROUPBY $PROT AS
 <tr>{
 <td>{$PROT}</td>
 }</tr>
 }</table>
 }</td>,
 <td>{$DIST}</td>,
 <td>{
 <table>{
 <tr>{
 GROUPBY $N_BODY AS
 <td>{$N_BODY}</td>
 }</tr>,
 <tr>{
 <td>{
 FOR $CYL IN $BODY/cylindrical,
 $DIA IN $CYL/diameter,
 $BAR IN $CYL/barrel_style
 WHERE
 $DIA <= 20 AND $DIA <= 40
 RETURN
 GROUPBY $CYL AS
 <table>{
 <tr>{
 GROUPBY $DIA AS
 <td>{$DIA}</td>,
 GROUPBY $BAR AS
 <td>{$BAR}</td>
 }</tr>
 }</table>
 }</td>,
 <td>{
 FOR $REC IN $BODY/rectangular,
 $HEI IN $REC/height,
 $WID IN $REC/width
 WHERE
 $HEI <= 20 AND $WID <= 40
 RETURN
 GROUPBY $REC AS
 <table>{
 <tr>{
 GROUPBY $HEI AS
 <td>{$HEI}</td>,
 GROUPBY $WID AS
 <td>{$WID}</td>
 }</tr>
 }</table>
 }</td>

51

 }</tr>
 }</table>
 }</td>
 }</tr>
 }</table>
 </body>
</html>

Appendix B. Example QSS Describing a Join

The syntax and semantics of the Tree Query Language (TQL), presented in Section 4, allow joins and,

correspondingly, QSS allows the description of queries that involve joins. Such a case is illustrated by the QSS of

Figure 26 that corresponds to a query form that allows the end-user to find sensors that have “Sensing Distance” that

is not the minimum sensing distance offered by a particular manufacturer, i.e., there is at least one sensor of the same

manufacturer that has a lower sensing distance.

Condition fragment f2 joins the two manufacturer element nodes on their name element node and applies the

condition on their corresponding sensing_distance element nodes.

$PART

$PROD

$NAME

$NAME = $#NAME

f1

tr

td
$PART

html

SORTBY ($NAME $#O_NAME, $DIST $#DIST)

GROUPBY ($PART)

td
$DIST

td
$NAME

$NAME = $NAME1

sensors

manufacturer

product

AND

specs

name

part_number

$DIST > $DIST1

f2 fR

body
table

(a) Condition Tree Generator (b) Result Tree Generator

GROUPBY ($PROD, $NAME, $DIST)

product

specs

$DIST1sensing_distance

$DISTsensing_distance

$NAME1

manufacturer

name

Figure 26 Example QSS Describing a Join

Appendix C. GROUPBY Proposal

The proposal extends the XQuery syntax with the following GroupBy expressions (productions below extend
those in http://www.w3.org/TR/xquery/#section-XQuery-Grammar):

Expr ::= Expr 'SORTBY' '(' SortSpecList ')'
 | UnaryOp Expr
 | Expr BinaryOp Expr
 | Variable
 | Literal
 | '.'
 | FunctionName '(' ExprList? ')'
 | ElementConstructor
 | '(' Expr ')'
 | '[' ExprList? ']'
 | PathExpr
 | Expr Predicate
 | FlwrExpr
 | 'IF' Expr 'THEN' Expr 'ELSE' Expr
 | ('SOME' | 'EVERY') Variable 'IN' Expr 'SATISFIES' Expr
 | ('CAST' | 'TREAT') 'AS' Datatype '(' Expr ')'
 | Expr 'INSTANCEOF' Datatype
 | GroupBy

52

 /********** new ********/
GroupBy ::= 'GROUPBY' VarList? HavingClause? 'AS' Expr
/********** new ********/
VarList ::= Variable (',' VarList)?
/********** new ********/
HavingClause ::= 'HAVING' Expr
/********** new ********/

The rest of the grammar remains unchanged. A GroupBy expression returns an unordered collection. The
example below refers to the "Use Case XMP" DTD and data (in http://www.w3.org/TR/xmlquery-use-cases).

EXAMPLE Grouping elements in the returned document. "For each author, return the number of book titles she
published, as well as the list of those titles and their year of publication".

FOR $b IN document("http://www.bn.com")/bib/book,
 $a IN $b/author,
 $t IN $b/title,
 $y IN $b/@year
RETURN
 GROUPBY $a AS
 <result> $a,
 <number> count(distinct($t)) </number>,
 GROUPBY $t, $y AS
 <titleYear>
 $t,
 <year> $y </year>
 </titleYear>
 </result>

Notice how the same variable $t can be used both outside a GROUPBY and inside a GROUPBY. Outside the
GROUPBY its value is a collection, inside the GROUPBY its value is a node. The same query can be expressed
without GROUPBY as follows. Here we have to construct an intermediate collection only to apply 'distinct' to it and
then to iterate over it:

FOR $a IN distinct(document("http://www.bn.com")/bib/book/author)
LET $t = document("http://www.bn.com")/bib/book[author=$a]/title
RETURN
 <result> $a
 <number> count(distinct($t)) </number>
 FOR $Tup IN distinct(
 FOR $b IN document("http://www.bn.com")/bib/book[author=$a],
 $t IN $b/title,
 $y IN $b/@year
 RETURN <Tup> <t> $t </t> <y> $y </y> </Tup>),
 $t IN $Tup/t/node(),
 $y IN $Tup/y/node()
 RETURN <titleYear>
 $t,
 <year> $y </year>
 </titleYear>
 </result>

