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In the single-source unsplittable flow problem, commodities must be routed simultaneously from
a common source vertex to certain sinks in a given graph with edge capacities. The demand of
each commodity must be routed along a single path so that the total flow through any edge is at
most its capacity. This problem was introduced by Kleinberg [1996a] and generalizes several NP-
complete problems. A cost value per unit of flow may also be defined for every edge. In this paper,
we implement the 2-approximation algorithm of Dinitz, Garg, and Goemans [1999] for congestion,
which is the best known, and the (3, 1)-approximation algorithm of Skutella [2002] for congestion
and cost, which is the best known bicriteria approximation. We study experimentally the quality
of approximation achieved by the algorithms and the effect of heuristics on their performance. We
also compare these algorithms against the previous best ones by Kolliopoulos and Stein [1999]
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1. INTRODUCTION

In the single-source unsplittable flow problem (Ufp), we are given a directed graph
G = (V, E) with edge capacities u : E → R

+, a designated source vertex s ∈ V, and
k commodities each with a terminal (sink) vertex ti ∈ V and associated demand
di ∈ R

+, 1 ≤ i ≤ k. For each i, we have to route di units of commodity i along a
single path from s to ti so that the total flow through an edge e is at most its capacity
u(e). We set dmax = max1≤i≤k di, dmin = min1≤i≤k di, and umin = mine∈E ue. As is
standard in the relevant literature we assume that no edge can be a bottleneck, i.e.,
dmax ≤ umin. We will refer to instances which satisfy this assumption as balanced,
and ones which violate it as unbalanced. Instances in which dmax = ρumin, ρ > 1,
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are ρ-unbalanced. A relaxation of Ufp is obtained by allowing the demands of
commodities to be split along more than one path; this yields a standard maximum
flow problem. We will call a solution to this relaxation, a fractional or splittable

flow.
We also use the following terminology. As a flow function on the edges, an

unsplittable flow f can be specified by a set of paths {P1, · · · , Pk}, where Pi starts
at the source s and ends at ti, such that f(e) =

∑

i:e∈Pi
di for all edges e ∈ E. An

unsplittable flow f is called feasible if in addition to satisfying all the demands, f
respects the capacity constraints, i.e., f(e) ≤ u(e) for all e ∈ E. If a cost function
c : E → R

+ on the edges is given, then the cost c(f) of flow f is given by c(f) =
∑

e∈E f(e) · c(e). The cost c(Pi) of an path Pi is defined as c(Pi) =
∑

e∈Pi
c(e)

so that the cost of an unsplittable flow f given by paths P1, · · · , Pk can also be
written as c(f) =

∑k
i=1 di · c(Pi). In the version of the Ufp with costs, apart from

the cost function c : E → R
+ we are also given a budget B ≥ 0. We seek a feasible

unsplittable flow whose total cost does not exceed the budget. For a, b ∈ R
+ we

write a | b and say that b is a-integral if and only if b ∈ a · N.
The feasibility question for Ufp (without costs) is strongly NP -complete [Klein-

berg 1996a]. Various optimization versions can be defined for the problem. In this
study we focus on minimizing congestion: Find the smallest α ≥ 1 such that there
exists a feasible unsplittable flow if all capacities are multiplied by α. Among the
different optimization versions of Ufp the congestion metric admits the currently
best approximation ratios. Moreover congestion has been studied extensively in
several settings for its connections to multicommodity flow and cuts.

Previous work. Ufp was introduced by Kleinberg [1996a] and contains several well-
known NP-complete problems as special cases: Partition, Bin Packing, scheduling
on parallel machines to minimize makespan [Kleinberg 1996a]. In addition Ufp

generalizes single-source edge-disjoint paths and models aspects of virtual circuit
routing. A ρ-approximation algorithm for congestion, ρ ≥ 1, is a polynomial-time
algorithm that outputs an unsplittable flow with congestion at most ρ times the
optimal. The first constant-factor approximations were given in [Kleinberg 1996b].
Kolliopoulos and Stein [2002; 1999] gave a 3-approximation algorithm for congestion
which also guarantees a flow cost of value at most 2 times the optimal cost of a
fractional solution. A bicriteria (ρ1, ρ2)-approximation algorithm for congestion
and cost is a polynomial-time algorithm which is guaranteed to output a solution
which simultaneously has congestion at most ρ1 times the optimal and cost at most
ρ2 times the given budget. In this notation, [Kolliopoulos and Stein 2002] gave a
(3, 2)-approximation. Dinitz, Garg, and Goemans [1999] improved the congestion
bound to 2. To be more precise, their basic result is: any splittable flow satisfying
all demands can be turned into an unsplittable flow while increasing the total flow
through any edge by less than the maximum demand [Dinitz et al. 1999]. This
result is tight if the congestion achieved by the fractional flow is used as a lower
bound. Skutella [2002] improved the (3, 2)-approximation algorithm for congestion
and cost [Kolliopoulos and Stein 2002] to a (3, 1)-approximation algorithm.

In terms of negative results, Lenstra, Shmoys, and Tardos [1990] show that the
minimum congestion problem cannot be approximated within less than 3/2, unless
P = NP . Skutella [2002] shows that, unless P = NP , congestion cannot be
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approximated within less than (1 +
√

5)/2 ≈ 1.618 for the case of
(

(1 +
√

5)/2
)

-
unbalanced instances. Erlebach and Hall [2002] prove that for arbitrary ε > 0 there
is no (2 − ε, 1)-approximation algorithm for congestion and cost unless P = NP .
Matching this bicriteria lower bound is a major open question.

This work. As a continuation of the experimental study initiated by Kolliopoulos
and Stein [1999], we present an evaluation of the current state-of-the-art algorithms
from the literature. We implement the two currently best approximation algorithms
for minimizing congestion: (i) the 2-approximation algorithm of Dinitz, Garg, and
Goemans [1999] (denoted DGGA) and (ii) the (3, 1)-approximation algorithm of
Skutella [2002] (denoted SA) which simultaneously mininimizes the cost. We study
experimentally the quality of approximation achieved by the algorithms, and the
effect of heuristics on approximation and running time. We also compare these
algorithms against two implementations of the Kolliopoulos and Stein [2002; 1999]
3-approximation algorithm (denoted KSA). Extensive experiments on the latter
algorithm and its variants were reported in [Kolliopoulos and Stein 1999].

The primary goal of our work is to investigate experimentally the quality of ap-
proximation. We also consider the time efficiency of the approximation algorithms
we implement. Since our main focus is on the performance guarantee we have not
extensively optimized our codes for speed and we use a granularity of seconds to
indicate the running time. Our input data comes from four different generators in-
troduced in [Kolliopoulos and Stein 1999]. The performance guarantee is compared
against the congestion achieved by the fractional solution, which is always taken to
be 1. This comparison between the unsplittable and the fractional solution mirrors
the analyses of the algorithms we consider. Moreover it has the benefit of providing
information on the “integrality” gap between the two solutions. In general terms,
our experimental study shows that the approximation quality of the DGGA is typ-
ically better, by a small absolute amount, than that of the KSA. Both algorithms
behave consistently better than the SA. Nevertheless the latter remains competitive
for minimum congestion even though it is constrained by having to meet the budget
requirement. All three algorithms achieve approximation ratios which are typically
well below the theoretical ones.

Organization of the paper. In Section 2 we review the 2-approximation algorithm
for minimum congestion. Skutella’s (3, 1)-approximation algorithm for the single-
source unsplittable min-cost flow problem is presented in Section 3. Sections 4 and
5 provide respectively our experimental framework and the experimental results for
the implementations of the two algorithms. In Section 6 we conclude and discuss
some future work.

2. THE 2-APPROXIMATION ALGORITHM FOR MINIMUM CONGESTION

In this section we briefly present the DGGA [Dinitz et al. 1999] and give a quick
overview of the analysis as given in [Dinitz et al. 1999]. The skeleton of the algo-
rithm is given in Fig. 1.

We explain the steps of the main loop. Certain edges, labeled as singular, play
a special role. These are the edges (u, v) such that v and all the vertices reachable
from v have out-degree at most 1. To construct an alternating cycle C we begin
from an arbitrary vertex v. From v we follow outgoing edges as long as possible,
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thereby constructing a forward path. Since the graph is acyclic, this procedure
stops, and we can only stop at a terminal, ti. We then construct a backward path
by beginning from any edge entering ti distinct from the edge that was used to reach
ti and following singular incoming edges as far as possible. We thus stop at the first
vertex, say v′, which has another edge leaving it. We now continue by constructing
a forward path from v′. We proceed in this manner till we reach a vertex, say w,
that was already visited. This creates a cycle. If the two paths containing w in the
cycle are of the same type, then they both have to be forward paths and we glue
them into one forward path. Thus the cycle consists of alternating forward and
backward paths.

DGG-Algorithm:

Input: A directed graph G = (V, E) with a source vertex s ∈ V , k commodities
i = 1, · · · , k with terminals ti ∈ V \ {s} and positive demands di, and a
(splittable) flow on G satisfying all demands.

Output: An unsplittable flow given by a path Pi from s to each terminal ti, 1 ≤
i ≤ k.

remove all edges with zero flow and all flow cycles from G;
preliminary phase:
i := 1;

while i ≤ k do

while there is an incoming edge e = (v, ti) with flow ≥ di do

move ti to v;
add e to Pi;
decrease the flow on e by di;
remove e from G if the flow on e vanishes;

i := i + 1;

main loop:
while outdegree(s) > 0 do

construct an alternating cycle C;
augment flow along C;
move terminals as in the preliminary phase giving preference to singular edges
with flow = di;

return P1, · · · , Pk;

Fig. 1. Algorithm DGGA.

We augment the flow along C by decreasing the flow along the forward paths
and increasing the flow along the backward paths by the same amount equal to
min{ε1, ε2}. The quantity ε1 > 0, is the minimum flow along an edge on a forward
path of the cycle. The second quantity, ε2, is equal to min(dj − f(e)) where the
minimum is taken over all edges e = (u, v) lying on backward paths of the cycle and
over all terminals tj at v for which dj > f(e). If the minimum is achieved for an
edge on a forward path then after the augmentation the flow on this edge vanishes
and so the edge disappears from the graph. If the minimum is achieved for an edge
(u, tj) on a backward path, then after the augmentation the flow on (u, tj) is equal
to dj . So, in this case, the edge (u, tj) is removed from the graph after the terminal
tj is moved to u. Therefore, at least one edge is eliminated from the graph during
each while-loop-iteration and the algorithm stops when the source s is isolated.
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Analysis Overview. The correctness of the algorithm is based on the following two
facts: the first is that at the beginning of any iteration, the in-degree of any vertex
containing one or more terminals is at least 2; the second, which is a consequence
of the first fact, is that as long as all terminals have not reached the source, the
algorithm always finds an alternating cycle.

At each iteration, after augmentation either the flow on some forward edge van-
ishes and so the edge disappears from the graph or the flow on a backward edge
(u, tj) is equal to dj and so the edge disappears from the graph after moving the
terminal tj to u, decreasing the flow on the edge (u, tj) to zero and removing this
edge from the graph. So, as a result of each iteration, at least one edge is eliminated
and the algorithm makes progress.

Before an edge becomes a singular edge, the flow on it does not increase. After
the edge becomes a singular edge we move at most one terminal along this edge
and then this edge vanishes. Thus the total unsplittable flow through this edge is
less than the sum of its initial flow and the maximum demand and the performance
guarantee is at most 2. We refer the reader to [Dinitz et al. 1999] for more details.

Running Time. Since every augmentation removes at least one edge, the number of
augmentations is at most m, where m = |E|. An augmenting cycle can be found in
O(n) time, where n = |V |. The time for moving terminals is O(kn), where k denotes
the number of terminals. Since there are k terminals, computing ε2 requires O(k)
time in each iteration. Therefore the running time of the algorithm is O(nm+km).

Heuristic Improvement. We have a second implementation with an added heuristic.
The purpose of the heuristic is to try to reduce the congestion. The heuristic is
designed so that it does not affect the theoretical performance guarantee of the
original algorithm, but as a sacrifice, the running time is increased. In our second
implementation, we use the heuristic only when we determine an alternating cycle.
We always pick an outgoing edge with the smallest flow to go forward and choose
an incoming edge with the largest flow to go backwards. The motivation behind
the heuristic is as follows. Recall the definition of the quantity min{ε1, ε2} above
by which we decrease (increase) flow along the forward (backward) edges of the
alternating cycle. The heuristic aims to make this quantity as small as possible.
Flow increases on singular edges are due to augmentations of this type. We would
like these increases to be small, hence improving the congestion. One expects this
should happen if we take conservative steps, i.e., move flow by small increments,
during the process of gathering the flow of a commodity on a single path.

For most of the cases we tested, as we show in the experimental results in Section
5, the congestion is reduced somewhat. For some cases, it is reduced a lot. The
running time for the new implementation with the heuristic is O(dnm+km), where
d is the maximum value of incoming and outgoing degrees among all vertices, since
the time for finding an alternating cycle is now O(dn).

3. THE (3, 1)-APPROXIMATION ALGORITHM FOR CONGESTION AND COST

The KSA [Kolliopoulos and Stein 2002; 1999] iteratively improves a solution by
doubling the flow amount on each path utilized by a commodity which has not yet
been routed unsplittably. In other words the “fractionality” of the flow is halved
in every iteration. This scheme can be implemented to give a (2, 1)-approximation
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if all demands are powers of 2. Skutella’s algorithm [Skutella 2002] combines this
idea with a clever initialization which rounds down the demands to powers of 2 by
removing the most costly paths from the solution. In Fig. 2 we give the algorithm
for the case of powers of 2 [Kolliopoulos and Stein 2002; 1999] in the more efficient
implementation of Skutella [2002]. The main idea behind the analysis of the con-
gestion guarantee is that the total increase on an edge capacity across all iterations
is bounded by

∑

l<log(dmax/dmin) dmin2l ≤ dmax.

Power-Algorithm:

Input: A directed graph G = (V, E) with non-negative costs on the edges, a source
vertex s ∈ V , k commodities i = 1, · · · , k with terminals ti ∈ V \ {s} and

positive demands di = dmin · 2qi , qi ∈ N, q1 ≤ q2 ≤ · · · ≤ qk, and a
(splittable) flow f0 on G satisfying all demands.

Output: An unsplittable flow given by a path Pi from s to each terminal ti, 1 ≤
i ≤ k.

i := 1; j := 0;
while dmin · 2j ≤ dmax do

j := j + 1; δj := dmin · 2j−1;

for every edge e ∈ E, set its capacity u
j
e to fj−1(e) rounded up to the nearest

multiple of δj ;
compute a feasible δj -integral flow fj satisfying all demands with c(fj) ≤
c(fj−1);
remove all edges e with fj(e) = 0 from G;
while i ≤ k and di = δj do

determine an arbitrary path Pi from s to ti in G;
decrease fj along Pi by di;
remove all edges e with fj(e) = 0 from G;
i := i + 1;

return P1, · · · , Pk;

Fig. 2. The SA after all demands have been rounded down to powers of 2

Running time. The running time of the Power-Algorithm is dominated by the
time to compute a δj-integral flow fj in each while-loop-iteration j. Given the
flow fj−1, this can be done in the following way [Skutella 2002]. We consider the
subgraph of the current graph G which is induced by all edges e whose flow value
fj−1(e) is not δj-integral. Starting at an arbitrary vertex of this subgraph and
ignoring directions of edges, we greedily determine a cycle C; this is possible since,
due to flow conservation, the degree of every vertex is at least two. Then, we
choose the orientation of the augmentation on C so that the cost of the flow is not
increased. We augment flow on the edges of C whose direction is identical to the
augmentation orientation and decrease flow by the same amount on the other edges
of C until the flow value on one of the edges becomes δj-integral. We delete all
δj-integral edges and continue iteratively. This process terminates after at most m
iterations and has thus running time O(nm). The number of while-loop-iterations
is 1+ log(dmax/dmin). The running time of the first iteration is O(nm) as discussed
above. Still, since fj−1 is (dmin · 2j−2)-integral in each further iteration j ≥ 2, the
amount of augmented flow along a cycle C is dmin ·2j−2 and after the augmentation
the flow on each edge of C is (dmin · 2j−1)-integral and thus all edges of C will
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not be involved in the remaining cycle augmentation steps of this iteration. So the
computation of fj from fj−1 takes only O(m) time. Moreover the path Pi can be
determined in O(n) time for each commodity i and the total running time of the
Power-Algorithm is O(kn + m log(dmax/dmin) + nm).

We now present the General-Algorithm [Skutella 2002] which works for ar-
bitrary demand values. In the remainder of the paper when we refer to the SA we
mean the General-Algorithm. It constructs an unsplittable flow by rounding
down the demand values such that the rounded demands satisfy the condition for
using the Power-Algorithm. Then, the latter algorithm is called to compute
paths P1, · · · , Pk. Finally, the original demand of commodity i, 1 ≤ i ≤ k, is routed
across path Pi. In contrast the KSA rounds demands up to the closest power of 2
before invoking the analogue of the Power-Algorithm.

We may assume that the graph is acyclic, which can be achieved by removing
all edges with flow value 0 and iteratively reducing flow along directed cycles. This
can be implemented in O(nm) time using standard methods.

In the first step of the General-Algorithm, we round down all demands di to

d̄i := dmin · 2blog(di/dmin)c.

Then, in a second step, we modify the flow f such that it only satisfies the rounded
demands d̄i, 1 ≤ i ≤ k. The algorithm deals with the commodities i one after
another and iteratively reduces the flow f along the most expensive s-ti-paths
within f (ignoring or removing edges with flow value zero) until the inflow in node
ti has been decreased by di − d̄i. So, when we reroute this amount of reduced flow
along any s-ti-paths within the updated f , the cost of this part of the flow will
not increase. Since the underlying graph has no directed cycles, a most expensive
s-ti-path can be computed in polynomial time. Notice that the resulting flow f̄
satisfies all rounded demands. Thus, the Power-Algorithm can be used to turn
f̄ into an unsplittable flow f̃ for the rounded instance with c(f̃) ≤ c(f̄). The

General-Algorithm constructs an unsplittable flow f̂ for the original instance
by routing, for each commodity i, the total demand di (instead of only d̄i) along

the path Pi returned by the Power-Algorithm and the cost of f̂ is bounded by
c(f̂) = c(f̃) +

∑k
i=1(di − d̄i)c(Pi) ≤ c(f̄) +

∑k
i=1(di − d̄i)c(Pi) ≤ c(f).

Skutella [2002] shows that the General-Algorithm finds an unsplittable flow
whose cost is bounded by the cost of the initial flow f and the flow value on any
edge e is less than 2f(e) + dmax. Therefore, if the instance is balanced, i.e., the
assumption that dmax ≤ umin is satisfied, an unsplittable flow whose cost is bounded
by the cost of the initial flow and whose congestion is less than 3 can be obtained.
Furthermore, if we use a minimum-cost flow algorithm to find a feasible splittable
flow of minimum cost for the initial flow, the cost of an unsplittable flow obtained
by the General-Algorithm is bounded by this minimum cost.

Running time. The procedure for obtaining f̄ from f can be implemented to run
in O(m2) time; in each iteration of the procedure, computing the most expensive
paths from s to all vertices in the current acyclic network takes O(m) time, and
the number of iterations can be bounded by O(m). Thus, the running time of the
General-Algorithm is O(m2) plus the running time of the Power-Algorithm,

i.e., O(m2+kn+m log(dmax/dmin)). The first term can be usually improved using a
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suitable min-cost flow algorithm [Skutella 2002]. We examine this further in Section
5.

In our implementation, the variable δj adopts only the distinct rounded demand
values. We have two reasons for doing that. The first is that it is not necessary for
δj to adopt a value of the form dmin ·2i when it is not a rounded demand value and
as a result of this we could have fewer iterations. The second reason is because of
the following heuristic we intend to use.

Heuristic improvement. We have a second implementation of the SA in which we try
to select augmenting cycles in a more sophisticated manner. When we look for an
augmenting cycle in iteration j, at the current vertex we always pick an outgoing or
incoming edge on which the flow value is not δj-integral and the difference between
δj and the remainder of the flow value with respect to δj is minimal. The motivation
is of a similar nature as with the heuristic described earlier for DGGA. The flow
increments on an edge with respect to the original fractional solution contribute
to the additive dmax term in the performance guarantee. Keeping these increases
as small as possible by choosing to push flow along edges that are close to being
δj-integral might improve the final congestion.

Unfortunately, the benefit of this heuristic seems to be very limited. We give
details in Section 5. As mentioned above, in our implementation the variable δj

adopts only the different rounded demand values. Since the time for finding an
augmenting cycle in the implementation with the heuristic is O(dn), where d is the
maximum value of in- and outdegrees among all vertices, the worst-case running
time for the implementation with the heuristic is O(m2 + dknm).

4. EXPERIMENTAL FRAMEWORK

Software and hardware resources. We conducted our experiments on a sun4u sparc
SUNW Ultra-5 10 workstation with 640 MB of RAM and 979 MB swap space. The
operating system was SunOS, release 5.8 Generic 108528-14. Our programs were
written in C and compiled using gcc, version 2.95, with the -03 optimization option.
A second round of experiments was performed at a later point in time on a different
sparc platform that was available to us. The details for these experiments are in
the Appendix.

Codes tested. The fastest maximum flow algorithm to date is due to Goldberg and
Rao [1998] with a running time of O(min{n2/3, m1/2}m log

(

n2/m
)

log U), where
U is an upper bound on the edge capacities which are assumed to be integral.
In practice, however, preflow-push [Goldberg and Tarjan 1988] algorithms are the
fastest. We use the preflow-push Cherkassky-Goldberg code kit [Cherkassky and
Goldberg 1997b] to find a maximum flow as an initial fractional flow. We assume
integral capacities and demands in the unsplittable flow input. We implement and
test the following codes:

2alg. This is the DGGA without any heuristic.

2alg h. Version of 2alg with the heuristic described in Section 2.

3skut. This is the SA without any heuristic.

3skut h. Version of 3skut with the heuristic described at the end of Section 3.
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In addition we compare against the programs 3al and 3al2 used in [Kolliopoulos
and Stein 1999], where 3al is an implementation of the KSA. The program 3al2 is
an implementation of the same algorithm, where to improve the running time the
edges carrying zero flow in the initial fractional solution are discarded. Note that
both the DGGA and the SA discard these edges as well.

Input classes. We generated data from the same four input classes designed by
Kolliopoulos and Stein [1999]. For each class we generated a variety of instances
varying different parameters. The generators use randomness to produce different
instances for the same parameter values. To make our experiments repeatable the
seed of the pseudorandom generator is an input parameter for all generators. If no
seed is given, a fixed default value is chosen. We used the default seed in generating
all inputs. The four classes used are defined next. Whenever the term “randomly”
is used in the following, we mean uniformly at random. For the inputs to 3skut

and 3skut h, we also generate randomly a cost value on each edge using the default
seed.

genrmf. This is adapted from the GENRMF generator of Goldfarb and Grigoriadis
[1988] [Badics 1991]. The input parameters are a b c1 c2 k d. The generated
network has b frames (grids) of size a × a, for a total of a ∗ a ∗ b vertices. In each
frame each vertex is connected with its neighbors in all four directions. In addition,
the vertices of a frame are connected one-to-one with the vertices of the next frame
via a random permutation of those vertices. The source is the lower left vertex of
the first frame. Vertices become sinks with probability 1/k and their demand is
chosen uniformly at random from the interval [1, d]. The capacities are randomly
chosen integers from (c1, c2) in the case of interframe edges, and (1, c2 ∗ a ∗ a) for
the in-frame edges.

noigen. This is adapted from the noigen generator used in [Chekuri et al. 1997;
Nagamochi et al. 1994] for minimum cut experimentation. The input parameters
are n d t p k. The network has n nodes and bn(n − 1)d/200c edges. Vertices are
randomly distributed among t components. Capacities are chosen uniformly from
a prespecified range [l, 2l] in the case of intercomponent edges and from [pl, 2pl]
for intracomponent edges, p being a positive integer. Only vertices belonging to
one of the t − 1 components not containing the source can become sinks, each
with probability 1/k. The desired effect of the construction is for commodities
to contend for the light intercomponent cuts. Demand for commodities is chosen
uniformly form the range [1, 2l].

rangen. This generates a random graph G(n, p) with input parameters n p c1 c2

k d, where n is the number of nodes, p is the edge probability, capacities are in
the range (c1, c2), k is the number of commodities and demands are in the range
(0, d).

satgen. It first generates a random graph G(n, p) as in rangen and then uses the
following procedure to designate commodities. Two vertices s and t are picked from
G and the maximum flow is computed from s to t. Let v be the value of the flow.
New nodes corresponding to sinks are incrementally added each connected only to
t and with a randomly chosen demand value. The process of adding new sinks
stops when the total demand reaches v (i.e., the value of the minimum s-t cut), or
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when the total number of commodities reaches the input parameter k. Therefore k
defines a crude upper bound on the number of commodities.

1 2 6 12 25 50
program cong. time cong. time cong. time cong. time cong. time cong. time

2alg 1.40 0 1.50 0 1.63 0 1.63 0 1.75 0 1.75 1
2alg h 1.33 0 1.50 0 1.42 0 1.60 0 1.75 0 1.64 0

3al 1.55 1 1.56 1 1.67 4 1.64 9 1.64 23 1.70 54
3al2 1.45 0 1.67 1 1.78 2 1.57 5 1.67 13 1.75 32

3skut 1.70 0 1.64 1 2.22 1 2.11 1 2.11 2 2.33 6
3skut h 1.70 1 1.64 0 2.22 1 2.11 1 2.11 2 2.33 6

Table I. family sat density: satgen -a 1000 -b i -c1 8 -c2 16 -k 10000 -d 8; 9967, 20076, 59977,
120081, 250379, 500828 edges; 22, 61, 138, 281, 682, 1350 commodities; balanced family; i is the
expected percentage of pairs of vertices joined by an edge.

2 6 12 25 50 100
program cong. time cong. time cong. time cong. time cong. time cong. time

2alg 1.30 0 2.37 0 2.14 0 1.43 0 1.26 0 1.09 0
2alg h 1.30 0 1.73 0 2.14 0 1.49 0 1.17 0 1.09 0

3al 2.21 0 1.73 0 2.41 1 1.70 1 1.26 1 1.14 1
3al2 2.21 0 1.88 0 2.29 0 1.52 1 1.27 1 1.18 1

3skut 1.40 0 1.65 0 2.15 0 1.85 0 1.45 0 1.49 1
3skut h 1.40 0 1.65 0 2.15 0 1.85 0 1.45 0 1.49 0

Table II. family noi commodities: noigen 1000 1 2 10 i; 7975 edges; 2-unbalanced family; i is the
expected percentage of sinks in the non-source component.

2 5 10 20 50 70
program cong. time cong. time cong. time cong. time cong. time cong. time

2alg 2.71 8 1.77 14 1.41 15 1.21 21 1.09 33 1.06 42
2alg h 2.47 8 1.75 14 1.36 15 1.19 19 1.08 31 1.06 42

3al 2.76 6 1.89 13 1.57 23 1.37 49 1.19 138 1.14 196
3al2 2.79 4 1.89 7 1.54 14 1.30 33 1.16 91 1.15 132

3skut 3.35 1 2.39 1 2.07 2 1.76 1 1.63 2 1.62 3
3skut h 3.35 1 2.39 1 2.07 1 1.76 2 1.63 2 1.62 3

Table III. family rmf commDem: genrmf -a 10 -b 64 -c1 64 -c2 128 -k i -d 128; 29340 edges;
2-unbalanced family; i is the expected percentage of sinks among the vertices.
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32 64 128 256 512 1024
program cong. time cong. time cong. time cong. time cong. time cong. time

2alg 4.67 0 3.75 0 7.50 0 7.00 0 7.50 0 8.00 0
2alg h 2.50 0 3.25 0 6.50 0 7.00 0 7.50 1 7.50 0

3al 4.67 0 8.00 0 8.00 1 8.00 6 7.50 30 7.50 136
3al2 4.67 0 6.50 0 7.50 0 8.50 3 7.50 17 8.00 82

3skut 5.00 0 7.00 0 7.50 0 7.00 1 7.50 4 7.50 19
3skut h 5.00 0 7.00 0 7.50 0 7.00 1 7.50 4 7.50 18

Table IV. family ran dense: rangen -a i*2 -b 30 -c1 1 -c2 16 -k i -d 16; 1182, 4807, 19416, 78156,
313660, 1258786 edges; 16-unbalanced family; i*2 is the number of vertices.

5. EXPERIMENTAL RESULTS

In this section we give an overview of the experimental results. In all algorithms
we study, starting with a different fractional flow may give different unsplittable
solutions. Hence in order make a meaningful comparison of the experimental results
of the SA against the results of the DGGA and KSA, we use the same initial fractional
flow for all three. If the SA was used in isolation, one could use, as mentioned in
Section 3, a min-cost flow algorithm to find the initial fractional flow and therefore
obtain a best possible budget.

The implementations follow the algorithm descriptions as given earlier. In the
case of the SA, after finding the initial fractional flow f , one has to iteratively
reduce flow, for each commodity i, along the most expensive s-ti-paths used by f
until the inflow in terminal ti has been decreased by di− d̄i, where d̄i stands for the
rounded demand. Instead of doing this explicitly, as Skutella [2002] suggests, we
set the capacity of each edge e to f(e) and use an arbitrary min-cost flow algorithm
to find a min-cost flow that satisfies the rounded demands. Because of this, the
term O(m2) in the running time of Algorithm 3 in Section 3 can be replaced by
the running time of an arbitrary min-cost flow algorithm. The running times of
the currently best known min-cost flow algorithms are O(nm log(n2/m) log(nC))
[Goldberg and Tarjan 1990], O(nm(log log U) log(nC)) [Ahuja et al. 1992], and
O((m log n)(m+n logn)) [Orlin 1993]. The code we use is again due to Cherkassky
and Goldberg [1997a]. The experimental results for all the implementations are
given in Tables I–VII. The wall-clock running time is given in seconds, with a
running time of 0 denoting a time less than a second. We gave earlier the theoretical
running times for the algorithms we implement but one should bear in mind that
the real running time depends also on other factors such as the data structures used.
Apart from standard linked and adjacency lists no other data structures were used
in our codes. As mentioned in the introduction, speeding up the codes was not our
primary focus. This aspect could be pursued further in future work.

The DGGA vs. the KSA. We first compare the results of the 2- and the 3-
approximation algorithms since they are both algorithms for congestion without
costs. On a balanced input (see Tables I, IX, X and XI), the congestion achieved
by the DGGA, with or without heuristics, was typically less than or equal to 1.75.
The congestion achieved by the KSA was almost in the same range. For each bal-
anced input, the difference in the congestion achieved by these two algorithms was
small, but the DGGA’s congestion was typically somewhat better. The obvious dif-
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ference occurred in running time. Before starting measuring running time, we use
the Cherkassky-Goldberg code kit to find a feasible splittable flow (if necessary we
use other subroutines to scale up the capacities by the minimum amount needed
to achieve a fractional congestion of 1), and then we create an array of nodes to
represent this input graph (discarding all zero flow edges) and delete all flow cy-
cles. After that, we start measuring the running time and applying the DGGA. The
starting point for measuring the running time in the implementation of the KSA is
also set after the termination of the Cherkassky-Goldberg code.

To test the robustness of the approximation guarantee we relaxed on several
instances the balance assumption by allowing the maximum demand to be twice
the minimum capacity or more, see Tables II–VI. Taking into account the analysis
of the algorithms from Sections 2 and 3 one can quantify robustness as follows:
making the family ρ-unbalanced should yield a performance guarantee less than
1 + ρ for DGGA and less than 2 + ρ for KSA and SA. Even in the extreme case
when the balance assumption was violated by a factor of 16, as in Table IV, the
code 2alg achieved 8 and the code 2alg h achieved 7.5. Relatively speaking though
the absolute difference in the congestion achieved between 2alg, 2alg h and 3al,

3al2 is more pronounced in Table IV compared to the inputs with small imbalance
in Tables II, III. See the big differences in the second column of Table IV (in
Column 2, 2alg: 3.75 and 3al2: 6.5). The differences in Columns 3 and 4 of
Table IV are also sizable. Recall that an absolute difference of 1 (or even 0.5) on
the congestion of an edge e translates to an excess flow equal to 100% (50%) of the
original edge capacity ue. See Table X in the Appendix for a balanced version of the
ran dense family. Hence the DGGA seems more robust against highly unbalanced
inputs. This is consistent with the behavior of the KSA which keeps increasing the
edge capacities by a fixed amount in each iteration before routing any new flow. In
contrast, the DGGA increases congestion only when some flow is actually rerouted
through an edge. As shown in Table IV, the SA which behaves similarly to the KSA

behaves also less robustly for highly unbalanced inputs.

This effect was reproduced at a much smaller scale in Table VIII where the com-
parison should be made with the balanced instances of Table I. See the Appendix
for a detailed comparison. All the algorithms behave in a reasonably robust man-
ner: making the family 2-unbalanced keeps the congestion of DGGA well below 3
and that of KSA and SA well below 4. Nevertheless the differences between DGGA

and KSA are much smaller compared to Table IV as the graph becomes denser.
This should come as no surprise given the specific design of the sat density family.
The total demand saturates a cut that separates the source from the sink. There-
fore all algorithms are expected to behave less robustly on this family when the
input becomes unbalanced.

We also observed that the benefit of the heuristic used in our 2alg h implementa-
tion showed up in our experimental results. For most of the inputs, the congestion
was improved, although rarely by more than 5%. Considerable improvements were
obtained for unbalanced dense inputs, see Tables IV and VIII. The average improve-
ment over the six columns of Table VIII was 11.79%. Theoretically, the running
time for the program with the heuristic should increase by a certain amount. But
in our experiments, the running time stayed virtually the same. This phenomenon
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was beyond what we expected.
In summary, the DGGA performs typically better than the KSA for congestion.

With the occasional exception where the KSA outperformed the DGGA, the average
improvement for Tables I–IV is 7.19%, 12.98%, 8.63%, and 30.47%. We calculated
these numbers as follows. For a single column of a table we took c1 to be the best
congestion achieved between 2alg, 2alg h and c2 the best congestion achieved
between 3al, 3al2 and computed (c2 − c1)/c2. Then we took the average over all
the columns of the table where c2 > c1. For example there are five such columns in
Table II and four such columns in Table IV. The outlined behavior is consistent with
the fact that the DGGA is a theoretically better algorithm, although the theoretical
advantage translates to a much smaller advantage in practice. The improvement
effect weakens considerably on large, dense networks. Consider the last two columns
from each of the Tables VIII–XI. Only on half of them DGGA beats KSA. Over those
cases the average improvement is 6.35%. KSA routes unsplittably by computing
max flows for subproblems containing commodities whose demands are close in
value. This global perspective as opposed to the localized processing of DGGA

might be beneficial in graphs with a rich path structure.
The difference in the running time for these two approximation algorithms was

fairly significant in our experiments especially for dense graphs with a large number
of commodities. The DGGA runs much faster than the implementation of the KSA

we used. We proceed to give two possible reasons for this phenomenon.
The first reason is the difference in complexity for these two implementations.

Recall that the running time of the DGGA is O(mn + km) and the running time of
the implementation of the KSA that we used is O(k(dmax/dmin)m) [Kolliopoulos and
Stein 2002; 1999]. We emphasize that a polynomial-time implementation is possible
(see [Kolliopoulos and Stein 2002; 1999]). In fact Skutella’s Power-Algorithm

can be regarded as a much more efficient implementation of essentially the same
algorithm. The second reason is that the DGGA processes the graph in a localized
manner, i.e., finding an alternating cycle locally and increasing a certain amount
of flow on it, while the 3al and 3al2 codes repeatedly compute maximum flows on
the full graph.

3 6 12 24 48

program cong. time cong. time cong. time cong. time cong. time

2alg 1.10 0 1.07 0 1.04 0 1.01 0 1.01 0
2alg h 1.12 0 1.05 0 1.02 0 1.01 0 1.01 0

3al 1.22 2 1.13 1 1.12 1 1.07 1 1.08 1
3al2 1.22 1 1.13 0 1.11 1 1.04 1 1.09 1

3skut 1.46 0 1.43 0 1.37 0 1.37 0 1.38 0
3skut h 1.46 0 1.43 0 1.37 0 1.37 0 1.38 0

Table V. family noi components: noigen 1000 1 i 10 50; 7975 edges; 2-unbalanced family; i is the
number of components.

The Skutella algorithm. We now examine the congestion achieved by the SA. On
a balanced input (see Tables I, IX, X and XI), the congestion achieved by the
SA was typically greater than or equal to 1.64 and less than or equal to 2.33. The
corresponding ranges are [1.08, 1.75] for the DGGA and [1.15, 1.78] for the KSA. More
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2 4 16 64
program cong. time cong. time cong. time cong. time

2alg 2.30 0 2.47 0 1.36 1 1.11 28
2alg h 1.89 0 2.64 0 1.37 1 1.09 27

3al 2.26 0 2.18 0 1.48 5 1.21 103
3al2 1.82 0 2.72 0 1.46 3 1.20 77

3skut 2.72 0 2.71 0 1.87 1 1.72 1
3skut h 2.72 0 2.71 0 1.87 0 1.72 2

Table VI. family rmf depthDem: genrmf -a 10 -b i -c1 64 -c2 128 -k 40 -d 128; 820, 1740, 7260,
29340 edges; 2-unbalanced family; i is the number of frames.

1 2 3 4 5 6
program cong. time cong. time cong. time cong. time cong. time cong. time

3skut 2.22 6 1.26 0 1.50 3 5.33 18 1.19 0 1.61 2
3skut h 2.22 6 1.28 0 1.48 3 5.33 18 1.20 0 1.58 3

Table VII. Effect of our heuristic on the SA. Here the input instances in Columns 1 to 6 are the
modified input instances in the last columns of Tables 1 to 6 whose original demands, denoted by
d, are modified as follows to the value d′: d′ = 1 if d = 2; d′ = 22 if d = 3; d′ = 24 if 8 ≤ d < 16;
d′ = 26 if 32 ≤ d < 64; for all other cases, d are not changed. Note that the maximum demand
value in our input instances is equal to 128 = 27.

precisely, the absolute difference in congestion between the SA and the DGGA or
KSA is on average around 0.4. We think that this nontrivial difference in congestion
is partially caused by the involvement of costs on the edges and the simultaneous
performance guarantee of 1 for cost of the SA. The constraint that the flow found at
each step should not increase the cost limits the routing options. Another reason for
the higher congestion was suggested by an anonymous referee: during the essential
part of the algorithm where routing decisions are being made, SA underestimates
the actual demand of commodities since demands have been rounded down. In
that sense, the algorithm is overly optimistic and ignores the problem caused by
rounding. In contrast, DGGA only works with the original demands and KSA is
overly pessimistic during its routing decisions since demands have been rounded
up.

In the implementation of the (3, 1)-approximation algorithm we start measuring
the running time just before applying a min-cost flow algorithm [Cherkassky and
Goldberg 1997a] to find a min-cost flow for the rounded demands. Before that
starting point of running time, we use the Cherkassky-Goldberg code kit to find
a feasible splittable flow (if necessary, as we did before, we use other subroutines
to scale up the capacities by the minimum amount to get the optimal fractional
congestion), and then we create the input data for the min-cost flow subroutine,
i.e., setting the capacity of each edge to its flow value and the demand of each
commodity i to d̄i. For balanced input instances in Table I, the running time of the
SA is much better than that of the KSA but slightly more than that of the DGGA.
Actually, as we observed in testing, most of the running time for the SA is spent in
finding the initial min-cost flow.

To test the robustness of the approximation guarantee achieved by the SA we
used the instances with the relaxed balanced assumption. Even in the extreme case
when the balance assumption was violated by a factor of 16, as in Table IV, the code
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3skut achieved 7.50. Similarly to DGGA and KSA a smaller degree of robustness
was also exhibited on the 2-unbalanced sat density family in Table VIII.

The absolute difference in congestion achieved by the codes 2alg, 3al and 3skut

is typically small. The only big difference occurred in the second output column
in Table IV (2alg: 3.75, 3al: 8.00 and 3skut: 7.00). Still, similar to the output
in Table I, the congestion achieved by the codes 2alg and 3al for an unbalanced
input was typically better, see Tables II–VI. Given the similarities between the KSA

and SA the reason is, as mentioned above, the involvement of costs on the edges
and a simultaneous performance guarantee of 1 for cost in the (3, 1)-approximation
algorithm. For the running time, things are different. We can see from Tables
III and VI that the code 3skut runs much faster than 2alg and 3al when the
size of the input is large. This is probably because after the rounding stage the
number of the distinct rounded demand values, which is the number of iterations
in our implementation, is small (equal to 7 in Tables III and VI) and the number
of augmenting cycles (to be chosen iteratively) in most of the iterations is not very
large. If this is the case, the execution of these iterations could be finished in a very
short period of time and the total running time is thus short too.

Effect of the heuristic on the SA. No benefit of the heuristic used in our 3skut h

implementation showed in Tables I–VI and VIII–XI. This is because in each iter-
ation (except the stage of finding a min-cost flow) the non-zero remainder of flow
value on each edge with respect to the rounded demand value of the current it-
eration is exactly the same in our input instances. More precisely, in our input
instances, the variable δj adopts all values dmin · 2i between dmin and dmax, and
in this case, in iteration j the remainder of flow value on any edge with respect
to δj = dmin · 2j−1 is either dmin · 2j−2 or 0. So the amount of augmented flow
along an augmenting cycle C is dmin · 2j−2 and after the augmentation the flow
on each edge of C is δj-integral and thus all edges of C will not be involved in
the remaining augmentation procedure of this iteration. This is also probably the
reason why sometimes the SA runs faster than the DGGA. When the variable δj

would not adopt all values dmin · 2i between dmin and dmax, the heuristic proved to
be of some marginal usefulness. This can be seen in Table VII. The congestion was
improved in Columns 3 and 6 by 0.02 and 0.03, respectively, but in Columns 2 and
5 the congestion increased by 0.02 and 0.01, respectively.

Effect of the number of commodities on the three algorithms. A noteworthy phe-
nomenon that applies to all the three algorithms is that on several instances the
performance seemed in general to improve as the number of commodities increases
(cf. Tables II and III). One might think that this is due to the fact that for a
small number of commodities, a large part of the topology of the graph remains
completely unexploited by the fractional solution. At least for DGGA and SA once
some edge is not used in the fractional solution it becomes irrelevant. A closer look
reveals that on dense graphs, the performance actually becomes somewhat worse
as the number of commodities increases. Compare Tables IX and Table I and Ta-
bles XI and X and see also the detailed discussion in the Appendix. We believe
that both these opposing effects are explained by the fractional solution which forms
each time the basis of the approximation algorithm. A fractional solution which
is constrained in its choice of routes (as for example in the case of a sparse graph
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with many sinks that compete for the same paths) is a better basis for computing
an unsplittable flow compared to a fractional solution which uses a wide array of
paths (as for example in the case of a dense graph with many sinks). One would
think that in terms of the unsplittable problem itself, the latter scenario should be
more tractable. Existing methods, however, offer no way to attack the unsplittable
problem directly without going through the fractional flow first.

In summary, in most of our experiments the DGGA and KSA achieved lower
congestion than the SA. Relative gains of the order of 35% or more are common
especially for Tables I, III and IV. Given the similarity of the KSA and SA this is
because (i) the SA has a simultaneous performance guarantee for the cost which
constrains the choice of paths and (ii) the SA underestimates the actual demand of
commodities since it makes routing decisions with the rounded down values. The
SA remains competitive and typically achieved approximation ratios well below the
theoretical guarantee. The 3skut code runs much faster than 3al and occasionally
faster than the 2alg code.

6. DISCUSSION

The relative performance of the three main codes with respect to congestion could
be expressed by the following crude ranking: DGGA, KSA, SA. This behavior is by
and large consistent with the theoretical analysis and specific properties of SA as ex-
plained in Section 5. One should, however, bear in mind all the nuances and caveats
presented. For example, the advantage of DGGA over KSA weakens considerably
on dense graphs with a large number of commodities. On the instances tested all
three algorithms perform quite well with respect to congestion, noticeably better
than the theoretical bounds. With respect to running time, a secondary aspect of
this work, the comparison between KSA and SA was useful. The superiority of the
implementation proposed by Skutella [Skutella 2002] which we actually used in the
SA code, against the inefficient implementation used in the KSA code [Kolliopoulos
and Stein 1999] was overwhelming.

A noteworthy phenomenon seems to be the effect of the fractional solution on the
quality of the unsplittable solution obtained. This raises two interesting questions.
(i) How can one search the graph for candidate paths without using exclusively
the fractional solution as a guide? This issue could be of theoretical interest as
well. Results in this vein exist for the multiple-source problem [Kolliopoulos 2005].
(ii) For instances with a small number of commodities, would it make sense to
generate at random dummy commodities before computing the unsplittable flow?
The answers to these two questions could give rise to sophisticated heuristics with
an impact on the practical performance.
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Appendix

The additional experiments in this section were conducted in order to gain more
insight into the effect of the balance condition and the graph density on the per-
formance of the algorithms. We ran this second set of experiements on a different
sparc platform that was available to us: a sun4u sparc SUNW Ultra-Enterprise
workstation with 2 GB of RAM and 5.8 GB swap space. The operating system was
SunOS, release 5.8 Generic 117350-20. Our programs were written in C and com-
piled using gcc, version 2.95, with the -03 optimization option. We report running
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1 2 6 12 25 50
program cong. time cong. time cong. time cong. time cong. time cong. time

2alg 1.89 0 2.11 0 2.63 0 2.75 0 2.75 0 2.63 0
2alg h 1.78 0 1.91 0 1.92 0 2.50 0 2.50 1 2.33 0

3al 2.08 1 2.42 1 2.45 4 2.73 8 2.64 21 2.73 56
3al2 2.00 0 2.42 0 2.27 2 2.50 5 2.55 11 2.73 30

3skut 2.11 0 2.44 1 2.67 0 2.78 0 3.00 2 3.33 7
3skut h 2.11 0 2.44 0 2.67 1 2.78 1 3.00 2 3.33 7

Table VIII. family sat density: satgen -a 1000 -b i -c1 8 -c2 16 -k 10000 -d 16; 9957, 20045, 59904,
119937, 250033, 500155 edges; 12, 30, 65, 137, 336, 677 commodities; 2-unbalanced family; i is the
expected percentage of pairs of vertices joined by an edge.

1 2 6 12 25 50
program cong. time cong. time cong. time cong. time cong. time cong. time

2alg 1.38 0 1.33 0 1.50 0 1.75 0 1.56 0 1.56 0
2alg h 1.38 0 1.33 0 1.33 0 1.56 0 1.44 0 1.50 0

3al 1.30 0 1.55 1 1.44 3 1.73 7 1.56 19 1.73 47
3al2 1.40 0 1.50 1 1.56 2 1.73 4 1.62 11 1.56 28

3skut 1.36 0 1.64 0 2.00 0 2.00 0 2.22 2 2.11 5
3skut h 1.36 0 1.64 0 2.00 0 2.00 1 2.22 2 2.11 5

Table IX. family sat density: satgen -a 1000 -b i -c1 8 -c2 16 -k 10*i -d 8; 9955, 20035, 59899,
119920, 249947, 499978 edges; 10, 20, 60, 120, 250, 500 commodities; balanced family; i is the
expected percentage of pairs of vertices joined by an edge.

32 64 128 256 512 1024
program cong. time cong. time cong. time cong. time cong. time cong. time

2alg 1.40 0 1.46 0 1.50 0 1.75 0 1.63 0 1.75 1

2alg h 1.40 0 1.45 0 1.40 0 1.75 0 1.63 0 1.67 0

3al 1.63 0 1.67 0 1.56 1 1.44 3 1.63 13 1.67 64
3al2 1.50 0 1.56 0 1.44 1 1.63 0 1.56 3 1.67 12

3skut 1.75 0 1.75 0 1.79 0 1.88 0 2.00 3 2.22 18
3skut h 1.75 0 1.75 0 1.79 0 1.88 0 2.00 4 2.22 17

Table X. family ran dense: rangen -a i*2 -b 30 -c1 8 -c2 16 -k i -d 8; 1182, 4807, 19416, 78156,
313660, 1258786 edges; balanced family; i*2 is the number of vertices; the number of commodities
is i.

times for the sake of completeness. Because of the platform difference they are not
directly comparable to the running times reported in the main body of the paper.

Tables VIII and IX are closely related to Table I. The input instances in Ta-
ble VIII, were generated by changing the value of the parameter d from 8 to 16,
so they form a 2-unbalanced family. We obtained the input instances in Table IX
by changing the upper bound on the number of commodities, i.e., the value of the
parameter k, from 10000 to 10 ∗ i, where i = 1, 2, 6, 12, 25, and 50. So the total
demand in each instance in this table is below the value of the min-cut separating
the source from the sinks. We give now some detailed comparisons.

Table I vs. Table VIII: On a 2-unbalanced input, the congestion achieved by
the DGGA, with or without heuristics, was less than or equal to 2.75, the KSA

congestion was at most 2.73, and the SA congestion at most 3.33, compared with
the maximum congestions 1.75 by DGGA, 1.78 by KSA, and 2.33 by SA in Table I.
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32 64 128 256 512 1024
program cong. time cong. time cong. time cong. time cong. time cong. time

2alg 1.08 0 1.56 0 1.50 0 1.42 0 1.56 0 1.63 0
2alg h 1.13 0 1.30 0 1.22 0 1.30 0 1.38 0 1.50 0

3al 1.15 0 1.30 0 1.45 1 1.44 3 1.67 13 1.56 61
3al2 1.56 0 1.44 0 1.44 1 1.38 0 1.36 3 1.56 11

3skut 1.50 0 1.79 0 1.38 0 2.00 0 2.22 3 2.00 14
3skut h 1.50 0 1.79 0 1.38 0 2.00 0 2.22 2 2.00 14

Table XI. family ran dense: rangen -a i*2 -b 30 -c1 8 -c2 16 -k i/2 -d 8; 1182, 4807, 19416, 78156,
313660, 1258786 edges; balanced family; i*2 is the number of vertices; the number of commodities
is i/2.

So the upper bound of the congestion increased by about an additive 1 as a result
of a 2-unbalanced input. The average congestion changed from 1.61 and 1.54 for
DGGA with and without heuristics, 1.63 and 1.65 for KSA, and 2.02 for SA in Table I
to 2.46 and 2.16 for DGGA, 2.51 and 2.41 for KSA, and 2.72 for SA in Table VIII.
These values increased about 0.8.

Table I vs. Table IX: The largest congestions for DGGA, KSA and SA in Table IX
are 1.75, 1.73, and 2.22, respectively, which are almost the same as the largest
congestions 1,75, 1.78 and 2.33 achieved in Table I. The average congestions in
Table IX are 1.51 and 1.42 for DGGA, 1.55 and 1.56 for KSA, and 1.89 for SA,
which are a little bit lower than 1.61 and 1.54 for DGGA, 1.63 and 1.65 for KSA and
2.02 for SA achieved in Table I. So the congestion did not improve much although
we made the total demand quite below the min-cut by cutting down the number of
commodities by more than 50%.

Tables X and XI represent balanced versions of the ran dense family. Recall that
Table IV represents a 16-unbalanced version of the ran dense family. Since all the
input instances in Tables X and XI are balanced, the congestion falls in the normal
range of the corresponding algorithm’s guarantee. Still, the congestion in Table XI
is somewhat better than that in Table X. Obviously this is because the number of
commodities in Table XI is half of that in Table X.

We focus now on the impact of the density of the underlying graph on the perfor-
mance. We compare Tables IX–XI, which all represent balanced instances on dense
graphs against Tables II, III and V which all represent 2-unbalanced instances on
sparse graphs. A special mention is due to the differences between Tables II and V.
Both belong to the noi commodities family but in Table V we increase the number
of components. This creates a separation effect for the commodities; paths have to
go through the bottleneck of the intercomponent edges. This decreases the number
of path options available to the fractional solution. Therefore we believe it is natu-
ral that the Table V instances give us better performance than the comparable last
two columns of Table II.

Let us return to the sparse vs. dense comparison. The algorithms behave in a
consistent manner on dense instances, with smaller variation in performance as the
size of the graph and the number of commodities increases. Across all columns in
Tables IX–XI, the congestion of 2alg ranges in the interval [1.08, 1.75] which be-
comes [1.33, 1.75] if we exclude the first column of the Table XI. The corresponding
intervals have length at least 1 for Tables II and III. Decreasing the number of com-
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modities in a dense graph (compare columnwise Table IX vs. Table I and Table XI
vs. Table X) improves the congestion by a small amount. The opposite effect takes
place in the sparse instances of Table II and III (compare in each table the columns
against each other) where the congestion improves considerably as the number of
commodities increases. It does seem then that in graphs with rich path structure
the performance worsens as the number of commodities increases. A possible ex-
planation is that the fractional solution has a tendency to “spread out” exploiting
the many path options that are available. If this happens, transforming it to an
unsplittable one will inevitably hit some of the edges with much more flow than
the amount they carry in the fractional solution.

Finally, we remark that for the purposes of the dense vs. sparse comparison, we
deliberately “penalized” the sparse instances by letting them be 2-unbalanced. The
performance of an algorithm can only get worse on unbalanced instances. Therefore
our conclusion that the congestion on sparse instances improves as the number of
commodities increases is amplified by the input imbalance.
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