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ABSTRACT
Language mechanisms deserve language implementation ef-
fort. While this maxim has led to sophisticated support
for language features specific to object-oriented, functional
and logic programming languages, aspect-oriented program-
ming languages are still mostly implemented using postpro-
cessors. The Steamloom virtual machine, based on IBM’s
Jikes RVM, provides support for aspect-oriented program-
ming at virtual machine level. A bytecode framework called
BAT was integrated with the Jikes RVM to replace its byte-
code management logic. While preserving the functionality
needed by the VM, BAT also allows for querying applica-
tion code for join point shadows, avoiding redundancy in
bytecode representation. Performance measurements show
that an AOP-enabled virtual machine like Steamloom does
not inflict unnecessary performance penalties on a running
application; when it comes to executing AOP-related opera-
tions, there even are significant performance gains compared
to other approaches.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—run-time
environments

General Terms
Languages, Performance

Keywords
Aspect-oriented programming, virtual machine support

1. INTRODUCTION
This paper is about providing support for aspect-oriented

programming (AOP), more specifically for the pointcut-and-
advice (PA) flavour of AOP [25], in a Java virtual machine.
The fundamental concepts of the PA flavour of AOP are
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join points, pointcuts and advice. A join point is a point
in the execution of a program. A pointcut is a query that
quantifies over join points, thereby defining related sets of
join points. Advice are pieces of functionality that can be
attached to pointcuts, taking semantic effect when the re-
spective pointcuts “match”, i. e., when join points referred
to by the pointcut are reached.

For illustration, consider the AspectJ [24, 3] code in Fig. 1.
The class Display serves as a canvas for shape objects, such
as Points and Lines. The aspect DisplayUpdating imple-
ments a protocol between these classes which says that “any
time a method is called on a shape object which changes
the state of the shape, the display must be updated”. The
ability to quantify over execution points via the pointcut
change(), and to express common behavioural effects for all
these points in the after advice associated with change(),
makes it possible to express the protocol in a modular unit.
Without the aspect, the implementation of the display up-
dating protocol would be scattered over call sites, or the
bodies, of such state-changing methods.

The implementation of a PA language consists of two
main building blocks: a join point shadow retrieval module
(JPRM) and a weaving module (WM). The JPRM maps
dynamic join points to their corresponding static shadows
[26]: code structures (expressions, statements or blocks)
that might yield dynamic join points during execution. A
method execution join point’s shadow is a method body, the
shadow of a method call is a call instruction, etc. Given a
pointcut, the JPRM calculates the shadows of join points
matched by the pointcut. The shadows are passed to the
WM; the latter weaves code for dispatching to aspect func-
tionality at these shadows.

For pointcuts that quantify only over static properties
of join points, and can thus be directly mapped to code,
the dispatching logic is a direct call to advice functionality.
However, pointcuts that quantify over dynamic properties
of join points such as those that use cflow, target, this, or
args pointcut designators1 in AspectJ cannot definitely be
mapped to places in code; for such pointcuts the dispatching
logic also includes pieces of conditional logic (called resid-
uals) to check for the dynamic properties. Depending on
the kind of dynamic pointcuts, the implementation of the
residuals can be more or less complex.

1The cflow designator quantifies over control flows, and
target, this and args can be used to filter objects from
a join point’s context by type, where the latter applies to,
e. g., method parameters.



public class Display {
private Shape[] shapes;
private Display instance;
private Display() {...}
public static Display instance() {...}
public void addShape(Shape s) {...}
public void update() {...}

}

public interface Shape {
public void moveBy(int dx, int dy);

}

public class Point implements Shape {
private int x,y;

public void setX(int x) {...}
public void setY(int y) {...}
public void moveBy(int dx, int dy) {...}

}

public class Line implements Shape {...}

aspect DisplayUpdating {
pointcut change():

call(void Point.set*(int))
|| call(void Shape.moveBy(int, int));

after(): change() {
Display.instance().update();

}
}

Figure 1: Display update code.

For target, this, and args, residuals can simply be im-
plemented as dynamic type checks. Residual logic gets more
complicated for cflow; in this case, the application’s execu-
tion and its entering and leaving control flows need to be
monitored. Recent advances in the development of pointcut
languages [27], however, go much further with regard to dy-
namic properties of join points that pointcuts can refer to,
taking into account the history of application execution, or
the dynamic object store. While such models increase the
power of pointcuts as referencing mechanism, improving in-
formation hiding, dynamic residual logic gets also more com-
plicated [27]. Finally, there are AOP implementations that
support “dynamic weaving” [4, 21, 30]: in these systems, it
is possible to weave/unweave aspects into/from a running
application. Under such circumstances, the set of join point
shadows cannot in all cases be determined statically. Due to
this, the aforementioned systems insert additional residuals
at any potential join point shadow.

Currently, dispatching logic, including residuals, is in-
serted into application code at compile- or load-time. Hence,
this logic is executed by the VM as part of the application.
Language mechanisms are thus implemented at application
level, not at language implementation level. This seman-
tic gap has important effects on performance and debugging
which will be discussed in detail in Sec. 2 and which have
been the motivation for the work presented in this paper.

It is our conviction that aspect-oriented language mecha-
nisms, just like previous paradigms’ language mechanisms,
such as late binding, lazy evaluation or unification, deserve
to be integrated in the underlying execution environments.

Our previous work on Steamloom [8, 16] has indicated that
AOP support at VM level can be realised without significant
performance overhead on a running application. Moreover,
advice dispatching logic can benefit from the VM’s replace-
ment of conditional logic with the implicit invocation of ad-
vice in only those places where they have to be applied,
avoiding most of the residuals used otherwise.

However, the version of the VM presented in [8, 16] sup-
ports a fairly primitive set of AOP features. The only sup-
ported join point type was method execution, for which both
join point shadow retrieval and weaving are trivial to imple-
ment: the join point shadows are simply the first instruction
of a method, all returning instructions, and those throw-
ing instructions whose exceptions are not caught within the
same method. While this first experiment actually served
well the goal of motivating work on VM-level support for
AO features, the actual work remained yet to be done.

This is the focus of this paper. The main contribution
of the work presented here is the integration of both the
JPRM and WM into the VM for supporting AspectJ’s dy-
namic join point model. Technically speaking, the integra-
tion is realised by replacing the VM’s original management
logic for method bytecodes with a new solution provided
by the Bytecode Augmentation Toolkit (BAT [6]). BAT
provides powerful facilities for querying bytecodes and for
inserting and removing instructions into and from existing
code. Both the VM core and the AOP logic operate on the
very same data structures. This has the effect that, while
the AOP functionality can rely on BAT’s features to ad-
dress join point shadow retrieval and weaving, the VM can
transparently use the same interface as before to deal with
method bytecodes. In essence, Steamloom allows for point-
cut evaluation and aspect weaving while the application is
executed by the VM. The approach of providing services for
join point shadow retrieval at VM level is novel, and Steam-
loom is the first AOP environment to offer such support.

The paper is structured as follows. In the next section,
we will discuss several AOP implementations with respect to
AOP infrastructure presence at application level. In Sec. 3,
we will briefly describe the Jikes RVM with special regard to
the features we have used when implementing Steamloom.
Sec. 4 gives a brief overview of Steamloom. In Sec. 5, we
discuss the integration of BAT into the Jikes RVM to extend
Steamloom’s join point and weaving model. Results from
performance measurements are presented and discussed in
Sec. 6, along with optimisation challenges. Sec. 7 concludes
the paper and discusses future work directions.

2. RELATED WORK
There are three kinds of code that we subsume under the

term infrastructural code. In the previous section, we have
described residuals and advice dispatching logic. The third
kind of code comprises of all code that forms the actual in-
frastructure of a particular AOP implementation. This in-
cludes, for example, classes for the representation and eval-
uation of pointcuts, for weaving aspect code into the ap-
plication, for associating aspect instances with application
objects, for (de)activating aspects at run-time, and so forth.

For illustration, we have analysed the control flow that is
executed when a method C.m() is decorated with a simple
before execution advice using AspectWerkz 1.0. A simpli-
fied version of the control flow is displayed in the sequence
diagram in Fig. 2. The original method C.m()’s body was



replaced with a call into the AspectWerkz infrastructure.
In the BeforeAdviceExecutor (marked with (*) in the fig-
ure), a loop iterates over all before advice attached to the
method’s execution. In the loop, the actual advice (the
method Before.before()) is eventually invoked via reflec-
tion. The original implementation of C.m() has been moved
to a new method whose name is displayed in abbreviated
form in the figure, which is also reflectively invoked.

All in all, a significant amount of infrastructural code is
executed for a simple call to C.m(), including two reflec-
tive method invocations. Their cost leads to this solution
not scaling too well if, for example, multiple advice are in-
volved in the decoration of a running application. Even if
the advice attached to C.m() are revoked by undeploying the
aspect defining them, the original method is still invoked re-
flectively after some AOP infrastructure has been executed.

We will now analyse several prominent approaches to AOP
with respect to the amount of infrastructural code present
at application level. Apart from Steamloom, which will be
introduced in Sec. 4, we identify two categories of AOP sys-
tems. The classification allows for investigating the various
approaches with regard to the way infrastructure is realised
in them: the question is whether the AOP infrastructure
provided by an implementation is part of the application
being executed, or indeed part of the execution layer that
runs the application.

In the first category, there are systems that offer AOP sup-
port at application level : they express their AOP-enabling
infrastructure in Java bytecode which is loaded and exe-
cuted by the respective VM, just like the application itself.
AspectJ [24, 3], JBoss AOP [21], and EAOP [12, 13] fall
into this category. Among them, EAOP is implemented as
a preprocessor, JBoss AOP relies on a modified class loader
that performs weaving operations at load-time, while the
AspectJ implementation comes in two flavours, based on
compiler and, respectively, class loader support. Despite
the differences in their implementations, they have in com-
mon that their AOP support is implemented at application
level and thus subject to execution by the VM.

The second category consists of systems that, while having
most of their infrastructure still implemented at application
level, use VM services to realise dynamic aspect weaving.
In some cases, small core portions of AOP support are even
implemented as VM extensions. JAsCo [33, 34, 19] and
AspectWerkz [4] rely on the Sun VM’s HotSwap capabili-
ties [11]. AspectWerkz uses HotSwap to modify methods at
load-time, while JAsCo selectively recompiles methods as
the application is running.

PROSE [30] also belongs to the second category. Its ar-
chitecture provides a unified high-level AOP layer called the
dynamic AOP engine [29] that relies on varying low-level
implementations of the execution monitor [29]. The exe-
cution monitor exists in two versions. The first one relies
on the standard JVM’s debugger to register join points as
breakpoints and intercept execution there [28]. A small core
written in C as a VM plug-in provides the necessary adap-
tation of debugger breakpoints to join points. The second
execution monitor implementation [30] is an extension to the
Jikes RVM [23]. It basically provides mechanisms for join
point notification via callbacks and dynamic method recom-
pilation. The second approach aims at providing the same
features as used in the debugger-based implementation while
avoiding the severe performance drawbacks (cf. Sec. 6).

To summarise, all of the systems mentioned above expose
significant parts of their AOP infrastructure to the VM for
execution and thus handle it as part of the application. The
question to be raised is to what degree AOP infrastructure
should be present at application level. Is it part of the appli-
cation, or is it part of the underlying execution architecture
running the application?

An AOP implementation is meant to work transparently
in the sense that an advice invocation should simply happen
implicitly, instead of leading to the invocation of numerous
infrastructural methods that eventually invoke the actual
advice. In this regard, we identify several shortcomings of
AOP implementation approaches at application level.

The first issue is isolation of infrastructural code from
application code. It comes into scope when an application
built using AOP features is debugged. All systems offering
AOP support at application level (in Java bytecode) suffer
from the debugger not being able to tell application code,
including aspects, and infrastructural code apart. This also
affects profiling in that infrastructural code is profiled as
well as the actual application.

The fact that, at least in the dynamic AOP approaches
like JBoss AOP, AspectWerkz and PROSE, advice methods
are not called directly but from infrastructural code by re-
flection, even leads to a considerable performance drawback
of such approaches. Advice invocations are, in such cases,
naturally not as fast as they could be, were they directly
woven into affected code. Moreover, reflective invocation of
advice prohibits inlining, the most important optimisation
to be applied by a JIT compiler.

As we will also show in Sec. 6, the impact of integrat-
ing infrastructural code into the application is less prob-
lematic in AspectJ as compared to other approaches. The
reason is that AspectJ does not support dynamic weaving
of aspects—hence, residuals are kept minimal.

To conclude, it is always technically possible to provide
AOP support at application level. However, there will al-
ways be both conceptual and performance drawbacks, as
discussed above. A fully integrated approach like Steam-
loom, on the other hand, offers great opportunities for im-
plementing dedicated support in the run-time architecture
itself, leading to both conceptual and performance advan-
tages. For example, advice instance tables [16] are not fea-
sible at application level.

3. THE JIKES RVM
IBM’s Jikes RVM [1, 2, 23] is almost entirely written in

Java. The fact that Java disallows some operations such
as direct memory or CPU register access is met by the
bootstrapping and just-in-time (JIT) compilation technique
which compiles Java bytecode to native machine code and
applies to each method being executed. When building the
RVM, a boot image is created containing the machine code
for all classes as well as all objects that constitute the vir-
tual machine. The boot loader is the only part of Jikes that
is not written in Java.

The RVM has two different just-in-time compilers (JITC),
the first of which, called baseline compiler, does not abstract
from the stack machine as which a JVM is specified. The
second JITC has three levels of optimisation. An exam-
ple for possible optimisations is inlining, which is the most
aggressive and effective among the optimisations. Addition-
ally, Jikes implements an adaptive optimising compiler sys-
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Figure 2: Sequence diagram of a before advice invocation in AspectWerkz 1.0.

tem [10] employing a low overhead sampling mechanism to
allow for profile-driven optimising recompilation. Methods
can also be recompiled while they are on the call stack [15].

Class loading as implemented by Jikes is almost entirely
dynamic. The bootstrapping, however, requires some classes
necessary for executing the RVM itself to be in the boot
image and thus to be loaded before run-time. These classes
are for the most part Jikes’ components but also some of the
classes from the standard library, such as String and File,
are included in the boot image. Application classes are, in
contrast, always loaded dynamically.

When loading a class, its bytecode is parsed and repre-
sented by a tree of objects whose root is formed by an in-
stance of VM Class. The leaves are objects for the class’
methods (class VM Method) and fields (class VM Field). Via
reflection these objects can be accessed, but unlike the stan-
dard Java reflection they also provide insight into the inter-
nals of loaded classes, their methods and fields.

For each loaded type, including classes and array types,
a type information block (TIB) is constructed which con-
tains, among other type-specific properties, the type’s vir-
tual method table. An instance of a type consists of several
memory slots holding pointers to the dynamic type’s TIB,
field values or array elements, and other instance-specific
properties. So, all instances of a type share the TIB. Static
fields as well as static methods are stored in a global table,
called Jikes Table of Constants (JTOC).

4. STEAMLOOM IN A NUTSHELL
Steamloom is an extension to the Jikes RVM that provides

AOP support for Java applications. The AOP functional-
ity is implemented at virtual machine level and accessible
through a Java API. Steamloom’s dynamic join point model
is as powerful as that of AspectJ.

In Steamloom, an aspect is a mere container that maps
pointcuts to advice. Aspects are first-class entities that
can be defined, activated and deactivated (deployed and
undeployed in Steamloom terminology) while an applica-
tion is running. Aspect deployment takes place by sending
deploy() to an aspect instance; aspects are undeployed by
calling undeploy().

Steamloom currently supports before and after advice;
around advice are being implemented. In Steamloom, ad-
vice are arbitrary – static or virtual – methods of arbitrary
classes. An instance of the Advice class represents a con-

public class DisplayUpdating {
public static Aspect setupAspect() {

Method updMethod =
Display.class.getDeclaredMethod("update", null);

Advice updAdvice =
new AfterAdvice(updMethod, Display.instance());

PointcutDesignator change =
SimpleParser.getPointcut(

"call(void Point.set*(int)) || " +
"call(void Shape.moveBy(int,int))"

);
Aspect a = new Aspect();
a.associate(updAdvice, change);
return a;

}
}

Figure 3: Display updating in Steamloom.

crete advice, encapsulating a reflective representation of the
advice method in question.

To provide an impression of the way aspects are dealt with
in Steamloom, we will now briefly describe how the display
updating example shown in AspectJ syntax in Fig. 1 can be
implemented in Steamloom. Fig. 3 contains the code for the
entire aspect functionality.

The actual display updating aspect is assembled in and
returned from the setupAspect() method. The aspect’s
semantics are the same as for the one presented in Fig. 1.
We will now describe the way it is assembled through the
Steamloom API in more detail.

The first two lines of the method simply retrieve a Java re-
flection object representing the method Display.update()

which is henceforth to be used as advice body. The next
two lines create an Advice instance. Any such instance com-
prises a method constituting advice functionality – in this
case, Display.update() – and an instance to which the ad-
vice method invocation is to be sent. In our example, this
so-called advice instance is the singleton Display instance.
The advice is an after advice.

In the next few lines, a pointcut is assembled. Steam-
loom’s pointcuts are represented as object hierarchies of
PointcutDesignator instances. While complex pointcuts
can be assembled by hand, we have used a parser for point-
cuts in AspectJ syntax in this example for convenience. This
parser is part of the Steamloom implementation.



In the last three lines of the method, an actual aspect
instance is created, and a mapping from the change pointcut
to the defined advice is defined in the aspect. Finally, the
aspect is returned from the method.

It has to be noted that the sole existence of this class
does not entail any assumption as to when the aspect de-
fined by DisplayUpdating is woven and when it starts to
take effect. Since aspects are first-class entities in Steam-
loom, the Aspect instance returned by the setupAspect()

method in Fig. 3 can exist for some time without affecting
the running application in any way. However, as soon as
it is sent the deploy() message, the aspect will be inserted
in the running application and the additional functionality
it defines will immediately be attached to all calls to the
methods mentioned in the change pointcut.

All Steamloom data structures, such as aspects, pointcuts
and advice, are inherent parts of the VM. Therefore, a call
to an aspect’s deploy() method is not a simple application
method invocation, but a direct call into the VM itself. The
API is also not necessarily intended for direct use by a pro-
grammer, as seen in Fig. 3. It is rather the surface of the
VM’s built-in support for – theoretically arbitrary – AOP
languages and may as well be targeted by a compiler.

5. JOIN POINT SHADOW RETRIEVAL
AND WEAVING

In order to integrate AOP support into the VM, we have
modified the implementation of the Java language meta-
model and the static representation for bytecode instruc-
tions of the RVM. Aspect weaving in Steamloom is done by
first modifying affected methods’ bytecodes and then recom-
piling them, during which process all optimisations applied
upon further compilations are retained. Jikes’ on-stack re-
placement mechanism is also supported. In a nutshell, the
entire set of optimisation strategies Jikes provides is avail-
able in Steamloom.

More details about the way the AOP infrastructure was
integrated into the VM will be presented in the following
sub-sections. We illustrate that employing an additional
layer of abstraction for bytecode in a VM is practical and
requires adaptations in few well localised places throughout
the VM. Additionally, we show that the applied modifica-
tions do not critically interfere with other subsystems of the
VM. Thus, these subsystems are preserved as reusable.

5.1 BAT
In this section, we briefly introduce the bytecode toolkit

BAT [6], used by Steamloom for join point shadow retrieval
and weaving. BAT offers functionality to change existing
bytecode and to create completely new sequences of byte-
code instructions. In BAT, all information stored in a class
file is made available by a fine-grained object hierarchy, the
meta-model entities, down to the level of an instruction,
i. e., every bytecode instruction is represented as an object.
A method’s instruction sequence is stored as a doubly-linked
list making updates of bytecode sequences efficient.

An important feature which makes BAT particularly well
suited as part of an AOP-enabling infrastructure is its frame-
work for efficient and fine-grained localisation of join point
shadows, the so-called bytecode pointcut framework. Filter
objects can be composed to describe the join point shadows
to be selected by their properties. Such properties can be,

for example, various elements of the signature of a method
call/execution, or a field access join point shadow’s field
name, etc. The bytecode instructions that pass the filter
are returned when the filter is applied to a class file repre-
sentation. In addition, there are filters that represent the
logical “&&”, “||” and “!” operators, which can be used
to build more complex filters. For illustration, regard the
following filter that selects all instructions that access the
field out declared in the class java.lang.System:

Filter f = new AndFilter(

new FieldAccessNameFilter("out"),

new FieldAccessDeclaringClassFilter(

"java.lang.System"

)

);

BAT analyses composite filter objects and optimises them
to reduce the number of steps required when applying the
filter to a class file.

Unlike other bytecode toolkits [7, 22], BAT declares in-
terfaces for all of the Java language’s meta-model entities.
In Steamloom, the meta-model classes for provided by the
Jikes RVM have been modified to implement these inter-
faces: that way, BAT can access them when evaluating fil-
ters. The possibility of using the adapter pattern to inte-
grate the bytecode framework with the VM is, in addition to
the bytecode pointcut framework, a second important rea-
son for the preference of BAT over other toolkits.

Within Steamloom, BAT takes over the complete byte-
code instruction management for application classes thereby
facilitating retrieval of join point shadows, and enabling to
manipulate the bytecode instructions which is not possible
in Jikes. Below, we will discuss how BAT is integrated into
the Jikes RVM and how Steamloom makes use of it.

5.2 Translating Pointcuts to BAT Filters
Aspects in Steamloom are defined in terms of pointcuts

rather than BAT filters. Steamloom supports AspectJ point-
cut expressions, which it translates to filters, so that BAT
can be used to retrieve the respective join point shadows.
To support AspectJ-like pointcuts, a class hierarchy is pro-
vided where each pointcut designator is represented by a
specific class. As in AspectJ [3], they can be parameterised
by patterns, e. g., specifying the set of methods a method
call pointcut designator selects. There are also classes in the
pointcut designator hierarchy, which represent logical oper-
ators, permitting to combine several sub-pointcuts to create
complex pointcut trees. For illustration, consider the point-
cut change() from the example in Fig. 1. Using the afore-
mentioned pointcut designator class hierarchy, this pointcut
is represented as shown in Fig. 4. The root of the pointcut
tree is an instance of the class OrDesignator and the leaves
are instances of the class CallDesignator which are further
parameterised by method patterns.

To use BAT for join point shadow retrieval, Steamloom
creates a tree of BAT filter objects out of this pointcut ex-
pression. For example, the pointcut represented by the ob-
ject structure in Fig. 4 is translated into the filter tree shown
in Fig. 5. The use of OrFilter and AndFilter in Fig. 5 is
self-explanatory. The other filters restrict the instructions
that can be a join point shadow to those invoke instruc-
tions whose signature, visibility, name, and declaring class
matches the given patterns.



:OrFilter

:AndFilter :AndFilter
:MethodCallNameFilter

matcher= moveBy

:MethodCallParameterFilter

matcher= {int,int}

:MethodCallDeclaringClassFilter

matcher= Shape

:MethodCallReturnTypeFilter

matcher= void

:MethodCallModifierFilter

matcher= public

:MethodCallNameFilter

matcher= set*

:MethodCallParameterFilter

matcher= {int}

:MethodCallDeclaringClassFilter

matcher= Point

:MethodCallReturnTypeFilter

matcher= void

:MethodCallModifierFilter

matcher= public

Figure 5: BAT instruction filter objects, resulting from the pointcut designator structure in Fig. 4.

:OrDesignator

:CallDesignator :CallDesignator

:MethodPattern:MethodPattern

call(public void Point.set*(int))
call(public void Shape.moveBy(int,int)) ||

call(public void
Shape.moveBy(int,int))

call(public void
Point.set*(int))

public void public void
Shape.moveBy(int,int) Point.set*(int)

Figure 4: Pointcut designator objects.

When the BAT filter tree in Fig. 5 is evaluated, the result
set contains all invokevirtual instructions in all application
classes where the called method is either one of

Shape.moveBy(int, int),

Point.setX(int),

Point.setY(int),

or any other method in any subclass of Point whose name
begins with set, or any implementation of moveBy() in a
subclass of Shape.

5.3 Bytecode Instruction Management and
Weaving

Let us now discuss how BAT replaces Jikes bytecode in-
struction management for application classes and how as-
pect weaving with BAT is realised in Steamloom.

In Jikes, a method’s bytecode instructions are represented
as byte arrays. This is not ideal for AOP support, since
weaving frequently encompasses adding instructions to ex-
isting code: arrays cannot easily be expanded. BAT uses
doubly-linked lists of instruction objects, which is more flex-
ible and allows for manipulating the instructions easily.

We call the process that transforms bytecode instructions
from the fixed array representation into the flexible repre-
sentation BATification. The BATification process is carried
out at class loading time, but only for application classes; we
do not want to allow the VM’s functionality or classes from
the run-time library to be decorated with aspects. Our opin-
ion is that aspects are only to be used for interfering with
the application, while the aforementioned classes are part of
the execution environment.

To allow its subsystems, e. g., the JIT compiler, access to
bytecode instructions, Jikes provides an abstraction layer,
the so-called bytecode stream. For methods of system classes
whose bytecode instructions are still represented as byte ar-
rays, Jikes’ original implementation is used, which is basi-
cally an iterator on an array of bytes. For BATified meth-
ods, Steamloom provides an alternative implementation of
the bytecode stream which implements the same interface
as the original Jikes bytecode stream but iterates over BAT
instruction lists. The differences of the two bytecode stream
implementations are hidden by their common interface, thus
dependent subsystems of the VM can access method instruc-
tions regardless of them being BATified or not.

Once join point shadows for a pointcut are localised, re-
sulting in a set of selected instruction objects, the advice
associated with the pointcut at hand is woven before or af-
ter the shadow, depending on the advice type. Steamloom
does so by using BAT to weave in a call to the method
specified as advice.

Code that is woven in is surrounded by two instructions,
which are specifically introduced by Steamloom, namely the
beginadvice and endadvice instructions. They contain an
identifier of the aspect they belong to and mark the code
block containing the advice method call and, if necessary
run-time checks, which are explained below. They serve to
facilitate undeployment of specific aspects without reweav-
ing all other aspects that affect a method. When an aspect
is undeployed, the instructions framed by beginadvice and
endadvice instructions with the respective aspect identifier
are simply removed from the instruction list. Both instruc-
tions are treated like NOP instructions by the compiler (which
effectively means they are ignored) and thus introduce no
execution overhead. They just serve as tags.

Advice are, as mentioned above, normal Java methods. In
case an advice method is virtual, advice invocations are sent
to objects, so-called advice instances. They are directly as-
sociated with the classes they advise through advice instance
tables [16], an efficient concept for storing advice instances.
For their lookup, another specific bytecode instruction was
added to the VM that retrieves an advice instance from the
table in minimal time.

These special-purpose bytecodes do not have to be gen-
erated by any compiler; they are for sole use by the Steam-
loom infrastructure when it generates dynamically woven
code. They are therefore not expected to be present in any



class file that is loaded into the VM. The bytecode verifier
may safely treat them as illegal when it comes across them
during class loading.

5.4 Non-Statically Determinable Pointcuts
Join point shadow retrieval as described above only ap-

plies to static pointcut designators, such as call or get.
Dynamic pointcut designators, such as this or cflow, only
yield potential static join point shadows. We will now dis-
cuss how these designators are handled in Steamloom.

The cflow designator is handled in a special way making
use of Steamloom’s runtime weaving feature. For illustra-
tion, consider a pointcut pc defined as cflow(pc1) && pc2.
For this pointcut, a special advice is woven in before shad-
ows that match the pointcut pc1. This special advice weaves
in (deploys) the advice originally associated with pc at the
join point shadows of pc2—i. e., the pc2 shadows are advised
only after we have reached pc1 and, hence, are sure to be in
its control flow. After pc1 shadows, another special advice
is inserted that unweaves the original advice. If the control
flow described by pc1 can be entered recursively, Steamloom
ensures that the original advice is woven the first time the
control flow is entered and unwoven the last time it is left.

The other dynamic pointcut designators are implemented,
in a way similar to AspectJ [18]. At all statically determined
join point shadows, where the actual advice call depends
on the run-time conditions, tests are woven in as well as a
conditional branch skipping the advice call if the conditions
are not satisfied. For the pointcut

(pc1 && this(<type>)) || pc2

the join point shadows determined for pc2 need no run-time
tests. At the join point shadows for pc1 Steamloom weaves
in a test that ensures the dynamic type of the active object
is <type> when the advice is called.

Steamloom splits pointcuts into sub-pointcuts, so-called
pointcut parts, whose elements have common dynamic point-
cut designators. These parts can be treated separately,
where at the join point shadows retrieved for one part, the
same run-time tests have to be woven in.

After evaluating all pointcut parts, only the union set of
all join point shadows has to be considered for weaving. So,
even if multiple pointcut parts specify the same shadows,
the advice is only called once. Consider, e. g., the point-
cut call(* *.setX()) || call(* *.set*()): a call to a
method called setX() is specified by both pointcut parts.

When building the union set of join point shadows, the
runtime tests necessary for a shadow are merged, so that
the right tests can be woven in. Consider the pointcut

(pc && this(<type1>)) || (pc && this(<type2>))

which is split into two parts both leading to the same po-
tential join point shadows. For the set of shadows computed
for the first part, the run-time condition must be satisfied
that the active object is of dynamic type <type1>. For the
shadows in the second set, the condition must be satisfied
that the active object is of type <type2>. In this example
merging the run-time conditions results in a test if the active
object is either of type <type1> or of type <type2>.

6. EVALUATION
In this section, we will present and discuss the results

of various performance measurements we have applied to

Steamloom and a selection of the AOP implementations pre-
sented in Sec. 2. The measurements are split up into three
groups. We first directly compare the performance of the
unmodified Jikes RVM to that of Steamloom when running
standard benchmarks. The second group contains overhead
measurements: we have run standard benchmarks on the
various systems to measure the impact of running an ap-
plication in an AOP-enabling environment instead of using
a plain standard JVM with no AOP extensions. Measure-
ments in the third group are micro-measurements that ex-
plicitly deal with the cost of AOP-related operations in the
various systems. Moreover, there are measurements that
collect performance data of more complex applications that
have been extended with aspects.

The systems taken into account are as follows: AspectJ
1.2, AspectWerkz 1.0, JBoss AOP 1.0, PROSE 1.2.1 in its
debugger-based version, Jikes 2.3.1, and Steamloom.2 All
experiments were run on a Dual Xeon workstation (3 GHz
per CPU) running Linux 2.4.23 with 2 GB memory. Where
we did not run Jikes or Steamloom as VM, we used version
1.4.2 05 of Sun’s standard Java VM in client mode. For all
virtual machines in both benchmarks, the initial heap size
was set to 512MB, and the maximal heap size to 1,024MB.

It is technically possible to run, e. g., AspectJ on the Jikes
RVM. Nevertheless, we have refrained from performing mea-
surements with AOP implementations on Jikes because the
comparison we have intended is one of AOP implementa-
tions in their “natural” environment, not one of different
approaches on different platforms. It has to be noted as
well that Steamloom is the only one among the presented
systems which cannot be run on another platform since it is
one. The systems we have compared Steamloom to all run
on implementations of the full JVM standard.

6.1 Performance Impact
We will now briefly discuss the cost of the modifications we

have applied to Jikes in order to implement Steamloom. The
results obtained by running the SPECjvm98 benchmarks
[32] on both an unmodified production build of the Jikes
RVM 2.3.1 and on a production build of Steamloom are
displayed in Fig. 6.

The first and second bars of each group in the figure rep-
resent average results from running each of the benchmarks
20 times. These results show that the overhead incurred
by the modifications that were applied to Jikes in imple-
menting Steamloom is, on average, practically not present.
This is due to the fact that the boot images of Jikes as well
as Steamloom production builds contain a highly optimised
version of the respective VM: all modifications are optimised
as well. In the long run, this reduces the overhead for the
SPECjvm98 benchmarks to zero.

However, an overhead is to be expected since class load-
ing and compiling of methods is more expensive in Steam-
loom because of maintaining instruction object lists instead
of byte arrays. The third and fourth bars in each group in
Fig. 6 show the execution times of the first runs of each of
the SPECjvm98 benchmark applications. In all of the first

2AspectWerkz 1.0 and JBoss AOP 1.0 were the stable release
versions of the respective systems at the time this paper was
written. The published VM-integrated version of PROSE
[29] is no longer available, and a more recent version of it
was not working in our environment. The same holds for
JAsCo, which crashed during micro-measurement runs.
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Figure 6: SPECjvm98 measurement results for Jikes
and Steamloom.

runs, Steamloom performs slower than Jikes, and the aver-
age overhead is 7.8%. This overhead vanishes over larger
numbers of benchmark executions because class loading oc-
curs only early during run-time, namely during the first run,
and methods are much more often called than compiled.

From these observations, we can conclude that Steamloom
brings about the same performance as Jikes; there is no
general overhead in execution speed.

6.2 Overhead Measurements
To measure the performance of the various approaches

when standard applications are run, the SPECjvm98 bench-
mark [32] was used. The results were obtained by running
each of the benchmarks 20 times at maximum problem size
(100) and are shown in Fig. 7. They are averages over all
benchmarks. The performance relations between Jikes and
Steamloom have already been discussed in Sec. 6.1, where
we concluded that using Steamloom does not inflict a per-
formance penalty. On average, the various other systems
taken into account that run on the Sun standard VM also
bear no significant overhead compared to the bare VM. The
worse performance of the two debugger-based systems, As-
pectWerkz and PROSE, is due to a peak in the jack bench-
mark. For the other benchmarks, these two systems do not
exhibit performance penalties.

Fig. 7 also reflects on the performance relationship be-
tween the standard VM and Jikes/Steamloom. In most of
the benchmarks, Jikes performs better than the Sun VM.
This is probably due to Jikes’ JIT compilation approach, in
contrast to the Sun VM initially interpreting bytecodes.

From the results presented so far, it can be seen that the
presence of an AOP infrastructure alone does not inflict per-
formance penalties on running applications that do not em-
ploy any AOP functionality. This holds for all categories of
AOP implementations. Next, we will consider the cost to
be paid for using AOP features in the different systems.

6.3 Cost of AOP Operations
We have measured the cost of AOP operations in the vari-

ous systems using several approaches, ranging from low-level
micro-measurements over a simple application to a single
benchmark application from the SPECjvm98 suite.

To measure solely the cost of basic AOP operations, we
have used a suite of micro-measurement applications that
was developed specifically for this purpose [17]. It is based
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Figure 7: SPECjvm98 results for all systems.
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Figure 8: Results of micro-measurements.

on the JavaGrande framework [9, 20], and results are ex-
pressed in operations per second. The specific measurements
we have used here determine the cost of virtual method invo-
cations with no aspect functionality (plain invocation), and
with a before advice attached to the method execution. Tar-
get methods and advice bodies just increment a counter, so
that basically only the cost of looking up the advice instance
and invoking the advice thereon are measured.

The results are presented in Fig. 8 (the y axis is logarith-
mic). The first bar in each group denotes the number of
calls to a method each of the systems performs when the
call is not advised by any aspect. The second bar states the
number of method calls advised by a before advice (around
advice in the case of JBoss AOP, since this system only has
support for around advice).

The impact of running a simple application with aspects
decorating it was measured using a program that computes
Fibonacci numbers. An aspect was used to count the num-
ber of invocations of the recursive fib() method. To that
end, the aspect attached a before advice to the execution
of fib(). Measurement results were obtained by letting the
application compute fib(20) ten times and determining the
average time spent for completing that task. In Fig. 9, re-
sults gathered from four different configurations of this ap-
plication are shown. It was first run as a “plain” application,
with no aspect activated, but using one of the AOP environ-
ments in focus. In the “count all” configuration, the aspect
was used to count every execution of the fib() method.

When cflow is employed, the set of join point shadows
cannot clearly be determined statically, so residuals have to
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Figure 9: Results of the Fibonacci application mea-
surements.

be used in approaches that use compile- or load-time weav-
ing. While measurements presented so far have only taken
into account aspects that do not, when woven into an ap-
plication, generate residuals, the last two configurations of
the Fibonacci measurement deal with the cflow construct.
Executions of fib() were to be counted only if the starting
call of fib(20) originated in the control flow of the execu-
tion of a specified method. In the third configuration, this
was not the case, while it was in the fourth.

Lastly, a rather complex application, namely the db bench-
mark from the SPECjvm98 suite, was used as the basis of
measurements with an aspect with a mostly unanticipated
set of join point shadows. The method execution counting
aspect from the previous example was used once again, but
the set of methods whose executions it had to count was
not defined until the benchmark had been started. Thus,
compile- and load-time weaving approaches had to introduce
a large set of residuals at virtually every method execution
(for practical reasons, the set of methods whose executions
could be counted was restricted to those methods in the
benchmark package).

AspectJ and AspectWerkz do not support late applica-
tion of advice to join point shadows, so residuals were im-
plemented in aspect code in these cases. JBoss AOP allows
for just “preparing” join point shadows at load-time and at-
taching advice to them later on. PROSE allows for filtering
based on regular expressions. Steamloom is the only system
in focus that allows for dedicated dynamic decoration of join
point shadows with advice invocations.

Once more, the application was executed in “plain” mode
to give a reference value. Next, it was run in two config-
urations with respect to the number of method executions
to be decorated. We chose the two possible extremes for
this: either no method execution was to be counted, or all
of them. Fig. 10 contains the results from running the SPEC
db benchmark ten times on each system and computing the
average execution time. PROSE, in the latter case, took
over 1,100 seconds for a single run, so we have cut the re-
spective bar in the figure to make the others better visible.

In accordance with our observation that employing a run-
time environment with AOP support alone does not inflict
a performance penalty on a running application, all systems
perform comparably well in the various “plain” cases. For
calls to advised methods, effects of the different implemen-
tation approaches become visible.
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Figure 10: Results of the SPEC db benchmark with
counted method executions.

Inserting wrappers at load-time that call advice function-
ality through a complex infrastructure at application level,
as AspectWerkz and JBoss AOP do, clearly has some im-
pact. Profiling the micro-measurements application for As-
pectWerkz has shown that roughly 26% of the time were
spent in methods responsible for reifying an execution join
point or proceeding at one. Profiling JBoss AOP yielded
similar results.

The amount of infrastructural code takes even more sig-
nificant effect when residuals are involved, e. g., when cflow

is used. While the two systems with optimised support
for cflow, AspectJ and Steamloom, exhibit no overhead as
compared to the non-cflow case, the three other systems
suffer from their approach: all employ expensive checking
mechanisms for testing whether a join point is in a specific
control flow. JBoss AOP, for example, does so by creating
Throwable instances and retrieving stack traces from them.

The residuals that were used in the SPEC db experiment
to decorate a given set of method executions with advice
also have a performance impact. It is largest in AspectJ
and AspectWerkz, where the check for applicability actu-
ally had to be implemented as a HashSet lookup in the ad-
vice code. PROSE is a special case; it suffers from its use
of regular expressions, matching whom is time-consuming.
JBoss AOP and Steamloom benefit from their minimalistic
approaches. JBoss AOP checks for advice applicability at
join point shadows with a simple request that is sent to a
container object and does not execute anything more when
the test fails. Steamloom explicitly only decorates the af-
fected methods.

PROSE, while it also implements significant parts of its in-
frastructure at application level, suffers additionally from its
use of the debugger. As seen in the previous section, running
an application in a VM with its debugger activated does, on
average, not impose a large overhead on it. Expensive con-
text switches at debugger breakpoints however preponder-
ate when breakpoints are used to reify join points. PROSE
can be considered a performant system for AOP applica-
tions that do not execute advice too often. In fact, PROSE
is intended for use in distributed environments where the
performance bottleneck usually is network latency.

On the contrary, both AspectJ and Steamloom perform
very well due to their lack of infrastructural code at applica-
tion level: both systems simply insert direct calls to advice
functionality at join point shadows.



6.4 Reflections on Performance Evaluation
and Future Optimisations

Observations we have made in developing Steamloom and
during performance measurements suggest some optimisa-
tions we will perform in the future.

First, recompilation of methods imposes a certain over-
head on the running VM: when aspect weaving requires a
method to be immediately recompiled, the application has
to wait for the compilation to finish. The cost introduced
by this could be reduced by introducing a caching policy for
compiled code, so that, whenever a method’s code returns
to a state it has previously been in, this state is simply re-
stored from the cache, instead of being costly established by
recompilation.

Next, the way Steamloom deals with cflow at the mo-
ment is not optimal in some situations. Recall the idiom
cflow(pc1) && pc2 discussed in Sec. 6.3. In case the con-
trol flow of pc1 is often entered and left, frequent recom-
pilation events occur, leading to considerable performance
overheads. Thus, in case pc1 is very often entered and left,
the “classic” approach using a counter to monitor control
flow entries and exits as used by AspectJ [26] and the abc

compiler [5] is more efficient. This approach however suffers
when pc2 is very often matched (cf. Sec. 6.3).

We envision an adaptive hybrid weaving approach to meet
the requirements of both cases. In that approach, weaving
for cflow pointcuts follows either the “classic” or Steam-
loom’s continuous weaving strategy based on decisions drawn
by profiling data, which the VM gathers anyway to drive
adaptive optimised compilation. Apart from that, weaving
can anyway be sped up by exploiting native code caching
as suggested above. Altogether, we expect this approach
to yield better performance in all cases due to its adaptive
optimisation characteristics.

Native code caching as suggested above could improve the
performance of this approach. However, one might argue
that in this case the “classic” approach of monitoring ex-
ecution as it is used in AspectJ could be applied, but this
approach is inefficient in case pc2 is very frequently matched:
every match leads to a checking operation. So, in a nutshell,
there are cases when it seems appropriate to deal with cflow

“traditionally”, and there are cases when it is better to fol-
low the continuous weaving approach, as Steamloom does at
the moment. A heuristic approach could be used to analyse
this based on profiling data, which the VM gathers anyway,
and a hybrid weaving approach could be used to apply the
appropriate weaving strategy for cflow.

Lastly, BAT’s representation of bytecode instructions as
linked lists of instruction objects, while being ideal for in-
serting and removing code, is not optimal with respect to
memory consumption. It is a strain on the VM’s object
heap, which becomes apparent when evaluating runs of the
SPECjbb2000 benchmark [31] on Jikes and on Steamloom.
SPECjbb2000 simulates a multi-threaded client-server appli-
cation creating large amounts of objects during execution.
Results from running the benchmark are shown in Fig. 11
Steamloom, for the standard heap settings used in the mea-
surements, performs clearly worse than Jikes. Due to the
large number of small instruction objects, garbage collec-
tion reduces the overall throughput of the benchmark. We
have also run both Jikes and Steamloom with a larger heap
(2,048MB maximum), and for those runs both VMs exhibit
about the same throughput.
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Figure 11: SPECjbb2000 measurement results for
Jikes and Steamloom.

The use of BAT was a matter of convenience in this first
prototype due to its extended capabilities. A more opti-
mised representation of bytecode that is less explicit in terms
of granularity is planned for the future while reusing the ap-
proach followed for the integration.

7. CONCLUSION
We have presented Steamloom, an extension to the Jikes

RVM that provides VM-integrated support for AOP. To that
end, the bytecode management for application classes was
entirely replaced by the BAT bytecode toolkit. BAT not
only allows for representing Java bytecodes in a way that
makes them easily modifiable, but also offers an efficient
filter hierarchy to retrieve join point shadows in application
code. Steamloom thus is the first AOP environment to offer
join point shadow retrieval at VM level.

The fact that BAT is integrated with Jikes to replace its
original bytecode management logic avoids redundancy in
method representation inside the VM. Other approaches
that perform dynamic weaving at bytecode level have to
work on a duplication of the VM’s original representation of
a method when applying modifications to it.

Employing an alternative representation of method in-
structions in a Java virtual machine has proved practical
and feasible, and it has required adaptations only in few
well localised places throughout the VM. Additionally, the
applied modifications of the original VM do not critically
interfere with other subsystems thereof.

Performance measurements applied to the Steamloom VM
and other AOP systems have shown that using an AOP-
enabled run-time environment does not in itself mean that
execution is slowed down. However, AOP-related function-
ality is more efficiently realisable at VM level.

Some of the future work directions are obvious, such as the
implementation of missing features like around advice. Also,
the optimisations outlined in Sec. 6.4 will be applied. In
addition, there are some other more exciting and challenging
potential extensions that we plan to work on in the future.

The integration of querying capabilities at the VM level
is a good starting point for implementing more expressive
pointcut languages based on richer dynamic semantic infor-
mation. While being the model in use today, the applica-
tion’s static code structure alone – currently represented by
BAT objects – is not the most appropriate model for dy-
namic properties of programs and does not have to remain



the only program model over which queries can be executed.
Other models, such as the application’s control or data flow
history, are conceivable and highly valuable in increasing
modularity by enabling pointcuts that directly refer to se-
mantics of join points to be selected [27]. VM-integrated
solutions like Steamloom could be crucial in efficiently im-
plementing such dynamic pointcuts by making direct use of
VM facilities that collect data on an application’s run-time
behaviour, such as profiling data which is otherwise only
exploited by an optimising just-in-time compiler.
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