
Semantic Type Qualifiers

Brian Chin Shane Markstrum Todd Millstein
University of California, Los Angeles
{naerbnic,smarkstr,todd}@cs.ucla.edu

Abstract
We present a new approach for supporting user-defined type re-
finements, which augment existing types to specify and check ad-
ditional invariants of interest to programmers. We provide an ex-
pressive language in which users define new refinements and as-
sociated type rules. These rules are automatically incorporated by
an extensible typechecker during static typechecking of programs.
Separately, a soundness checker automatically proves that each re-
finement’s type rules ensure the intended invariant, for all possible
programs. We have formalized our approach and have instantiated
it as a framework for adding new type qualifiers to C programs. We
have used this framework to define and automatically prove sound
a host of type qualifiers of different sorts, including pos and neg
for integers, tainted and untainted for strings, and nonnull and
unique for pointers, and we have applied our qualifiers to ensure
important invariants on open-source C programs.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: reliability, validation; D.3.m [Miscellaneous];
F.3.1 [Specifying and Verifying and Reasoning about Programs]:
invariants, mechanical verification, specification techniques

General Terms Languages, Reliability, Verification

Keywords type qualifiers, extensible typechecking, type sound-
ness

1. Introduction
Type systems are a natural discipline for ensuring that programs
maintain certain run-time invariants. As a simple example, if an
expression can be given the type int, the programmer is assured
(modulo type-unsafe features like casts) that the expression will
only ever evaluate dynamically to an integer value. Recent work
in our community has shown how to refine the types in traditional
type systems to ensure other important kinds of run-time invariants,
including memory safety (e.g., [38, 33, 23]), invariants about point-
ers and their aliasing relationships (e.g., [8, 5, 1, 15]), and invari-
ants about the interactions of threads in concurrent programs (e.g.,
[16, 4, 18]). The refinements are achieved by augmenting standard
types with annotations that represent the additional properties of
interest and augmenting standard type rules to check these annota-
tions statically.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’05, June 12–15, 2005, Chicago, Illinois, USA.
Copyright c© 2005 ACM 1-59593-080-9/05/0006. . . $5.00.

Of course, language designers cannot anticipate all the run-
time invariants that programmers will want to specify and check.
Language designers also cannot anticipate all of the practical ways
in which types may be refined in order to enforce a particular
invariant. Therefore, it is desirable to provide a framework for
user-defined type refinements, whereby programmers can easily
augment a language’s type system with new type annotations to
ensure invariants of interest. For example, Foster et al. describe
CQUAL [19, 20], a system that allows programmers to define new
type qualifiers, such as nonnull and untainted, for C programs,
and Mandelbaum et al. [27] provide a theory of type refinements to
specify and check properties, like temporal protocols, that depend
on “effectful” computations.

Despite their benefits, existing frameworks for user-defined
type refinements have important limitations that hinder their util-
ity. First, they use a fixed set of type rules across all type refine-
ments. Type-refinement-specific information is provided by anno-
tating each program to indicate when the typechecker should as-
sume or check that a refinement holds on some program fragment.
While such annotations can simulate a limited form of refinement-
specific type rules, they are not expressive enough to handle many
common situations. For example, it would be difficult to simulate a
type rule for some expression that depends recursively on the types
of subexpressions.

Second, while existing frameworks ensure that programs re-
spect user-defined typing disciplines, the type-refinement designer
must take responsibility for ensuring that his new typing discipline
in fact guarantees the desired run-time program invariants. Any
errors in the user-defined typing discipline are undetected by the
framework. For example, a program that is improperly annotated
with nonnull assumptions can typecheck in CQUAL but nonethe-
less cause a variable declared nonnull to have the value NULL at
run time.

In this paper, we address these limitations of prior frameworks
via a novel approach to user-defined type refinements:

• A language for type-refinement rules. We provide an explicit
language in which users write type rules for their new refine-
ments. This language enables the natural expression of user-
defined typing disciplines, and it is much more expressive than
the program annotations used by prior frameworks. An exten-
sible typechecker automatically incorporates user-defined type
rules during static typechecking of programs, in order to en-
force users’ typing disciplines.

• Semantic guarantees. We allow users to explicitly specify the
run-time invariant that a type refinement is meant to represent.
We observe that for many interesting cases such invariants are
quite natural and simple. A soundness checker automatically
proves that each refinement’s type rules ensure the intended
invariant, for all possible programs.

We have instantiated our approach as a framework for adding
user-defined type qualifiers to C programs. The extensible type-

1. value qualifier pos(int Expr E)
2. case E of
3. decl int Const C:
4. C, where C > 0
5. | decl int Expr E1, E2:
6. E1 * E2, where pos(E1) && pos(E2)
7. | decl int Expr E1:
8. -E1, where neg(E1)
9. invariant value(E) > 0

Figure 1. A user-defined type qualifier and associated type rules
for positive integers.

int pos gcd(int pos n, int pos m);
int pos lcm(int pos a, int pos b) {
int pos d = gcd(a, b);
int pos prod = a * b;
return (int pos) (prod / d);

}

Figure 2. Example code using the pos type qualifier.

checker is implemented in the CIL [32] front end for C. The sound-
ness checker implements a proof strategy that requires a handful of
proof obligations to be discharged. Our implementation employs
Simplify [14], the automatic theorem prover from the Extended
Static Checker for Java (ESC/Java) [17], to automatically discharge
these proof obligations. We have used our framework to define and
automatically prove sound a host of type qualifiers: qualifiers that
restrict the value of an expression, including nonnull, nonzero,
pos, and neg; qualifiers that restrict the flow of values through a
program, including tainted and untainted [36]; and qualifiers
that restrict a program’s aliasing relationships, including unique
and unaliased. We have used our qualifiers to ensure important
program invariants on open-source C programs.

In the next section, we overview our framework for user-defined
type qualifiers informally via a number of examples. Sections 3 and
4 describe the implementations of our extensible typechecker and
soundness checker, respectively. Section 5 summarizes the formal
details of our approach. Section 6 describes experience using our
framework to check C programs. Section 7 compares with related
work, and section 8 concludes and discusses future directions.

2. Semantic Type Qualifiers
Our framework supports two common classes of qualifiers, which
are discussed in turn below. Value qualifiers, such as pos and
nonnull, pertain only to the value of an expression. Reference
qualifiers, such as unique and unaliased, (additionally) pertain to
the address of an l-valuable expression (or l-value). Distinguishing
between these classes of qualifiers allows us to provide specialized
support for each one, making it easier for users to define qualifiers
and for our framework to reason about them automatically.

2.1 Value Qualifiers

Figure 1 illustrates a definition of the value qualifier pos in our
framework, which can be used to statically track positive integers.
Line 1 of the figure declares pos to be a new value qualifier
applicable to expressions of type int. It also declares a variable E,
which is used in the rest of the qualifier’s definition. Each variable
declaration includes a type and a classifier. The declared classifier
Expr for E indicates that during typechecking of a C program,
E will be instantiated with side-effect-free program expressions.

The declared type for E constrains such expressions to have type
int. In addition to the classifier Expr, our framework supports the
classifiers Const, LValue, and Var, which represent C constants,
l-values, and variables, respectively. Our implementation performs
qualifier checking over programs in CIL’s intermediate language,
which cleanly distinguishes expressions, which are side-effect-free,
from instructions [32].

Given the declaration in line 1 of figure 1, programmers may
now annotate their programs with the pos qualifier, as shown in the
C code in figure 2. The lcm procedure in the figure computes the
least-common multiple of two integers. The pos qualifier is used
to specify that the two arguments should be positive integers and
to ensure that the return value is also positive. To handle nested
qualifiers unambiguously, we use a postfix notation, whereby a
qualifier qualifies the entire type to its left. A type may be annotated
with multiple user-defined qualifiers; their order is irrelevant.

2.1.1 Type Rules

Line 1 of figure 1 declares the new pos qualifier, but it does not
indicate how this qualifier should be used during typechecking.
This is the role of the case block beginning on line 2, which uses
a form of pattern matching to indicate a subset of expressions that
can be given the type int pos. For example, the clause in lines 3-
4 indicates that a positive integer constant may be given the type
int pos. The clause first declares the variable C, which ranges
over integer constants from the underlying program, for use in
the rest of the clause. It then specifies the pattern C, to indicate
the syntactic form of the expression. Finally, the predicate C > 0
further constrains an expression that matches the pattern.

Type rules like the first case clause of figure 1 can be simulated
in systems like CQUAL [19] by annotating all positive integers in
a program with a pos assumption. However, the case clauses in
our framework are more general. For example, the clause on lines
5-6 specifies that an expression that is a product of two expressions
of type int pos can also be given the type int pos. This kind
of recursive type rule would be quite difficult to manually encode
using pos assumptions. The final case clause illustrates that the
definition of a qualifier can depend on other qualifiers. That clause
specifies that a negation expression can be given type int pos if
the negated expression can be given type int neg, where neg is
another user-defined qualifier. In fact, qualifier definitions can be
mutually recursive. For example, the definition of neg (not shown)
has rules that refer to pos.

The syntax for expression patterns in case clauses is defined by
the following grammar:

P ::= X | ∗X | &X | new | uop X | X bop X

Here X ranges over variable patterns, which have a declared type
and classifier (e.g., int Expr) restricting the kinds of program
fragments that may match. The pattern new matches against calls to
memory allocation routines like malloc1. Various unary and binary
operations may also be matched against; for simplicity we restrict
their argument patterns to be variable patterns. The predicate after
(the optional) where in a case clause may include operations on
constants and on variable patterns with classifier Const, qualifier
checks on expressions and patterns, and conjunctions and disjunc-
tions of these kinds of predicates.

Each clause of a case block can be viewed as an introduction
type rule for a qualified type, since the clause specifies conditions
under which an expression may be assigned that qualified type. As

1 Procedure calls, including malloc, are not in general side-effect-free
and so are not considered expressions by CIL. However, it is critical for
some qualifiers that pertain to pointers, for example unique, that we allow
malloc to be matched against in qualifier definitions.

value qualifier nonzero(int Expr E)
case E of

decl int Const C:
C, where C != 0

| decl int Expr E1:
E1, where pos(E1)

| decl int Expr E1, E2:
E1 * E2, where nonzero(E1) && nonzero(E2)

restrict
decl int Expr E1, E2:
E1 / E2, where nonzero(E2)

invariant value(E) != 0

Figure 3. A type qualifier and associated type rules for nonzero
integers.

discussed in section 5, we have formalized this semantics of the
case clauses.

Our framework includes an extensible typechecker, which uses
the type rules defined by case blocks, along with a set of standard
rules for typechecking constructs like variable references, proce-
dure calls, and assignments, to perform qualifier checking. Such
checking validates the qualifier annotations supplied by the pro-
grammer, which represent the programmer’s assumptions about
when particular invariants hold.

Consider again the lcm procedure in figure 2. As usual, type-
checking an assignment statement involves obtaining the types of
each side and checking that they match. The assignment to d type-
checks successfully because both sides of the assignment have type
int pos: the right-hand side is shown to have this type by the stan-
dard type rule for procedure calls, given the declared type signature
of gcd. The assignment to prod also typechecks successfully, be-
cause the case clause on lines 5-6 allows a * b to be given the type
int pos. Because of their declared types, we statically know that
both prod and d are positive, but this information is not sufficient to
show that the expression (prod / d) is also positive. Indeed, the
type rules for pos are not able to derive the type int pos for that
expression. Therefore, the programmer must insert a cast to satisfy
the typechecker, because of the declared return type of lcm.

A case block specifies when an expression may be given a qual-
ified type. Users may then want to employ expressions having qual-
ified types to enhance the precision of existing typechecks from the
base type system. Our framework provides a restrict block for
this purpose, an example of which is shown in the definition for a
nonzero qualifier in figure 3. The syntax of a restrict clause is
identical to that of a case clause. A restrict clause specifies that
any expression in a given program that matches the clause’s pattern
must also satisfy the clause’s predicate. The restrict clause for
nonzero augments the base rule for typechecking division expres-
sions to require that the denominator have the type int nonzero
(rather than simply int). In this way, division-by-zero errors can
be detected statically instead of dynamically.

For example, consider again the lcm procedure in figure 2. If
the extensible typechecker is given the definition of nonzero in
addition to that of pos, it will use nonzero’s restrict clause
to check the division in the last statement of lcm’s body. The
restrict clause requires that d have the type int nonzero. By
the second case clause for nonzero in figure 3, any expression of
type int pos also has the type int nonzero. Since d is declared
to have the type int pos, that case clause allows the restrict
check to succeed.

The restrict clause plays a role analogous to qualifier asser-
tions in CQUAL [19]. For example, the restrict type rule in fig-
ure 3 could be simulated by annotating the denominator in each

division in a program with a nonzero assertion. However, the
restrict clause is more general. For example, the predicate in
a restrict clause may contain conjunctions and disjunctions of
qualifier checks.

2.1.2 Subtyping

It is natural to consider int pos to be a subtype of int. Subtyping
provides more flexibility, for example allowing the following code
to typecheck:

int pos x = 3;
int y = x;

Our extensible typechecker considers all value-qualified types to
be subtypes of their associated unqualified types. More precisely, if
q is a value qualifier and τ is a (possibly qualified) type, then τ q is
considered to be a subtype of τ.

The rest of the subtyping rules are standard. As usual, care must
be taken in the presence of pointers [19]. For example, it would be
unsound to consider int pos* to be a subtype of int*, because
that would allow the following code, which stores a negative num-
ber in a variable of type int pos, to typecheck:

int pos x = 3;
int* p = &x;
*p = -1;

Section 5 contains the formal definition of our subtype relation.
Our language for defining qualifiers does not support explicit

subtype declarations between two user-defined qualifiers. However,
such subtype relationships can be encoded using the case block.
For example, the second clause in the case block of nonzero’s
definition in figure 3 effectively declares pos to be a subtype of
nonzero: any expression of type int pos may also be considered
to have type int nonzero.

2.1.3 Soundness

A user-defined qualifier and its associated type rules constitute a
typing discipline, which is enforced by our extensible typechecker.
Often such typing disciplines are intended to ensure a particular
run-time invariant. For example, the typing discipline defined by
the pos qualifier and associated type rules in figure 1 is intended to
guarantee that certain expressions only evaluate to positive integers
at run time.

However, the extensible typechecker enforces user-defined typ-
ing disciplines in a purely syntactic manner, without knowledge
of the intended invariants. For example, suppose the pattern in the
second case clause in the definition of pos in figure 1 were erro-
neously specified as E1 - E2 instead of E1 * E2. In that case, our
typechecker would happily use this revised type rule to check pro-
grams, even though this can cause pos’s intended invariant to be
violated at run time.

Rather than forcing users to take responsibility for the correct-
ness of their qualifiers, our framework supports automated sound-
ness checking. A qualifier definition may optionally specify the
qualifier’s associated invariant. The framework then automatically
proves, independent of any particular program to be typechecked,
that the qualifier’s type rules establish this invariant.

For example, consider the definition of pos in figure 1. Line
9 uses the invariant clause to provide the qualifier’s associated
run-time invariant. The invariant is a predicate that is implicitly
defined in the context of an arbitrary run-time execution state. Let
us denote this execution state by ρ. The value predicate is provided
by our framework and represents the value of a given expression in
ρ. Therefore, the invariant for pos indicates that the value of an
expression of type int pos should be greater than zero, in any
run-time execution state.

value qualifier untainted(T Expr E)

value qualifier tainted(T Expr E)
case E of E

Figure 4. Specifying a taintedness analysis in our framework.

Given this invariant, our soundness checker generates one proof
obligation for each case clause and automatically discharges these
obligations via an off-the-shelf automatic theorem prover. Each
clause’s obligation simply requires that if an expression matches
the clause’s syntactic pattern and satisfies the clause’s predicate,
interpreted in the context of an arbitrary run-time execution state ρ,
then the qualifier’s invariant also holds in ρ. For example, consider
the first case clause for pos in figure 1. The soundness checker
generates the following proof obligation: if an expression E is an
integer constant that is greater than zero, then the value of E in an
arbitrary execution state ρ is greater than zero. This obligation is
easily proven, given the evaluation semantics of integer constants.

Now consider the second case clause for pos. The soundness
checker generates the following proof obligation: if an expression
E has the form E1 * E2 and both E1 and E2 satisfy pos’s invariant
in an arbitrary execution state ρ, then E also satisfies pos’s invariant
in ρ. This obligation is easily proven by the semantics of multipli-
cation. On the other hand, if the pattern in that clause were erro-
neously specified as E1 - E2, the soundness checker would catch
the error and warn the programmer, since the associated proof obli-
gation would fail: it is not possible to prove that the difference
of two arbitrary positive integers is also positive. The restrict
clauses do not affect whether or not an expression of qualified type
satisfies its qualifier’s invariant, so restrict clauses are ignored
by the soundness checker.

The limitations of our language for writing type rules, and of
static typechecking in general, will sometimes require program-
mers to insert casts in order for qualifier checking to succeed. To re-
tain soundness in this case, our extensible typechecker instruments
programs with a run-time check for each cast to a value-qualified
type. Each run-time check tests whether the expression being cast
satisfies the cast-to qualifier’s invariant. In our current implementa-
tion, a fatal error is signaled if the test fails. For example, consider
the cast in the last statement of lcm in figure 2. At run time, a check
ensures that the value of (prod / d) is in fact greater than zero.

2.1.4 Flow Qualifiers

Some common kinds of qualifiers are used solely to restrict the
flow of values in a program. For example, a taintedness analysis
uses qualifiers untainted and tainted to respectively tag data
coming from trustworthy and potentially untrustworthy sources.
For soundness, the only requirement is that tainted data never
flows where untainted data is expected. Taintedness qualifiers
can help to statically detect format-string vulnerabilities in calls
to printf and related procedures [36]. As another example, flow
qualifiers user and kernel can be used to statically ensure that
user pointers are never dereferenced in kernel space [24].

Figure 4 specifies the taintedness analysis in our framework.
The untainted qualifier can qualify any type T. Flow qualifiers
like untainted are a degenerate form of value qualifier in our
framework. Since the untainted qualifier has no case block, the
only way to introduce an expression of type T untainted is with
a cast, to explicitly mark the expression as being trustworthy. The
qualifier also lacks an explicit run-time invariant. Proper value flow
is guaranteed “for free” because T untainted is a subtype of T but
not vice versa. Therefore, untainted data can flow where arbitrary
data is expected, but not vice versa.

ref qualifier unique(T* LValue L)
assign L

NULL
| new

disallow L
invariant value(L) == NULL ||
(isHeapLoc(value(L)) &&
forall T** P: *P = value(L) => P = location(L))

Figure 5. A type qualifier for unique pointers.

As mentioned earlier, the untainted qualifier can help find
errors in calls to printf and related procedures. The first argument
to printf is a format string that specifies the number and types
of the remaining arguments. C does not verify, either at compile
time or run time, that printf is always called with the appropriate
number and types of arguments, as directed by the format-string
argument. To ensure some measure of reliability for format strings,
the programmer can use a type signature for printf requiring the
first formal parameter to have type char* untainted. Therefore,
only strings that are known to be trustworthy can be used as format-
string arguments [36].

For example, suppose buf is some arbitrary (and untrusted)
buffer of type char*. Then the following code typechecks:

char* untainted fmt = (char* untainted) "%s";
printf(fmt, buf);

However, the invocation printf(buf) fails to typecheck, since
buf is not known to be untainted. Indeed, if buf contains format
specifiers, this call to printf will attempt to read nonexistent
arguments off the stack.

It may be useful to explicitly annotate some expressions as
being possibly tainted. The definition of tainted in figure 4 has
the desired behavior. The lone case clause allows any expression to
be considered tainted, effectively making T tainted a supertype
of T (and hence also of T untainted). Because of the implicit
subtyping relation for value qualifiers, it is also the case that T
tainted is a subtype of T, so those types are essentially equivalent.

Although the versions of tainted and untainted in figure 4
are degenerate, they could easily be augmented. For example, a
user could decide that all constants should be trusted, adding a case
clause to the definition of untainted as follows:

case E of decl T Const C: C

This rule would, for example, obviate the need for the cast in the
assignment to fmt in the code snippet shown above.

2.2 Reference Qualifiers

Figure 5 defines a reference qualifier unique, which intuitively
specifies that an l-value either has the value NULL or is the only
reference to some memory location. Reference qualifiers pertain
in part to an expression’s address, so we require each reference
qualifier to be applicable only to l-values or variables, rather than
to arbitrary expressions.

2.2.1 Type Rules

The assign type rules for reference qualifiers are analogous to the
case type rules for value qualifiers. The assign block allows users
to specify the allowable right-hand-side expressions in assignments
to a qualified l-value. These type rules are also used to typecheck
implicit assignments to qualified l-values, through procedure calls
and returns.

The assign clauses for unique in figure 5 specify that a unique
l-value may be assigned either the value NULL or the result of mem-

int* unique array;
void make array(int n) {
array = (int*)malloc(sizeof(int) * n);
for(int i = 0; i < n; i++)
array[i] = i;

}

Figure 6. Code that uses the unique qualifier.

ref qualifier unaliased(T Var X)
ondecl
disallow &X
invariant forall T** P: *P != location(X)

Figure 7. A type qualifier for unaliased variables.

ory allocation. Consider the code in figure 6. The assignment to
array in make array typechecks by the second assign clause,
since C’s malloc function matches the pattern new (the cast to int*
in the assignment to array is ignored for the purposes of pattern
matching). The assign block for unique pertains only to assign-
ments to the unique l-value itself. Assignments to dereferences of
a unique l-value, such as the assignment to array[i] in figure 6,
are unrestricted.

Because reference qualifiers pertain in part to an l-value’s ad-
dress, they do not make sense in the context solely of an l-value’s
contents. Therefore, top-level reference qualifiers in an l-value’s
type are not considered to be part of the l-value’s r-type, which is
the type used by the typechecker when the l-value appears on the
right-hand side of an assignment (and in other expressions like con-
ditionals). However, it may still be necessary to restrict the ways
in which an l-value’s contents may be used, to ensure soundness.
For example, without any restrictions, the following code snippet
would typecheck:

int* unique p = . . .;
int* q = p;

The second statement is allowed because the r-type of p is simply
int*, but it causes p and q to point to the same memory location,
violating p’s uniqueness.

The disallow clause in a reference qualifier’s definition ad-
dresses this problem by restricting how a qualified l-value may be
used on the right-hand side of an assignment (or an implicit as-
signment via procedure calls and returns). A disallow clause may
prevent a qualified l-value from being referred to and/or from hav-
ing its address taken. The disallow clause for unique in figure 5
prevents a qualified l-value from being referred to. Therefore, the
assignment to q in our code snippet above fails to typecheck, as
desired, since the right-hand side violates this disallow clause. A
unique l-value may still be dereferenced on the right-hand side of
an assignment, so the following code typechecks and is perfectly
safe:

int* unique p = . . .;
int i = *p;

Another example of a reference qualifier is shown in figure 7,
representing unaliased variables. The ondecl keyword specifies
that any variable can be given the qualifier unaliased at the point
of its declaration. The keyword indicates that unaliased is a prop-
erty only of a variable’s address; the variable’s contents are irrele-
vant. Therefore, an assign block is unnecessary for unaliased:
implicitly, an unaliased variable is allowed to hold any type-

correct value. The disallow clause for unaliased ensures that
an unaliased variable cannot have its address taken.

Our current framework for reference qualifiers is just a first
step, and we are actively exploring extensions to make it more
expressive. For example, intuitively we can assign a unique l-
value any expression that is fresh, meaning that the expression
evaluates to a previously unreferenced memory location. In turn, a
unique local variable returned from a procedure may be considered
fresh. We cannot currently express this rule in our framework
because patterns cannot mention procedure calls or returns. As
another example, we are considering allowing qualifier definitions
to directly refer to liveness information. This would allow, for
example, a variable to safely be considered unique as long as all
aliases are dead [5].

2.2.2 Subtyping

Unlike for value qualifiers, there is in general no sound sub- or su-
pertype relationship between an arbitrary reference-qualified type
and its associated unqualified type. Therefore, we assume no rela-
tionship between these two types. However, the implicit stripping
of reference qualifiers from the r-type of an l-value, as described
earlier, allows expressions of these types to interact in useful (and
still sound) ways.

2.2.3 Soundness

As with value qualifiers, our framework automatically proves the
soundness of reference qualifiers. Consider the invariant clause
for unique in figure 5. The built-in location function returns the
address of an l-value in a given execution state ρ, and the built-
in predicate isHeapLoc indicates that a memory location is on the
heap (i.e., it was dynamically allocated) rather than the stack. We
allow the invariants for reference qualifiers to universally quantify
over all memory locations P of the appropriate type in the execution
state ρ, and *P denotes the contents of location P in ρ.

The assign type rules are proven sound in a manner analogous
with how the case rules are proven sound for value qualifiers. The
proof obligation for an assign clause ensures that assigning some
l-value l an expression matching the assign clause establishes q’s
associated invariant for l. For example, consider the first assign
clause for unique in figure 5. The soundness checker requires an
automatic theorem prover to show that if some l-value l is assigned
NULL, then unique’s invariant will hold for l. This follows easily
by the first disjunct in the invariant. The obligation for the second
assign clause is proven by the semantics of the new construct.
The proof obligation for ondecl is similar to that for an assign
clause, requiring the qualifier’s invariant to hold for a variable upon
declaration.

The proof obligations for assign and ondecl ensure that a ref-
erence qualifier’s invariant is properly established. Our soundness
checker must also show that the invariant is properly preserved
across assignments. Accordingly, we generate the following proof
obligation: if l is an l-value satisfying the invariant of some refer-
ence qualifier q and we execute an arbitrary assignment to some
other l-value l′, then l will still satisfy the qualifier’s invariant in
the resulting execution state. We require the arbitrary assignment
considered in the obligation to obey the disallow block for q, if
any is specified.

The automatic theorem prover proves this obligation via a case
analysis on the different forms of right-hand sides consistent with
a qualifier’s disallow clause. If the disallow clause for unique
were erroneously omitted, one case in proving unique’s preserva-
tion obligation would require showing that if l is unique and we
store the value of l in l′, then l is still unique. Because this case
is not provable, the soundness checker would correctly inform the
user of the potential unsoundness.

Unlike for value qualifiers, our extensible typechecker does not
instrument programs with run-time checks for casts involving ref-
erence qualifiers. Such casts remain unchecked, as with traditional
casts in C. As our examples illustrate, the invariants for reference
qualifiers typically require universal quantification over all mem-
ory locations, making the associated run-time checks difficult to
implement correctly and efficiently.

3. Extensible Typechecking
Our extensible typechecker takes a C program and a set of qual-
ifier definitions in the language described in the previous section.
The extensible typechecker then performs qualifier checking on the
program as directed by the qualifier definitions’ type rules. The ex-
tensible typechecker also uses value qualifiers’ declared invariants
to instrument the program with run-time checks for casts involving
value qualifiers, as mentioned in section 2.1.3.

Our extensible typechecker is implemented as a module in
CIL [32], a front end for C written in OCaml [35]. CIL parses
C code into an abstract syntax tree (AST) format and provides
a framework for performing passes over this AST. After qualifier
checking, the AST is output as C code and the gcc compiler per-
forms ordinary C typechecking and code generation.

In this section, we discuss the implementation of our extensible
typechecker. First we describe how C programs are annotated with
user-defined qualifiers. Then we illustrate how user-defined type
rules are represented and used in our CIL implementation. Finally,
we discuss some details of handling C programs.

3.1 Annotating Programs

To annotate a C program with qualifiers, we take advantage of gcc
attributes, which are tags that can be associated with types (and
other program entities). CIL supports gcc attributes and maintains
them in the generated AST for a program. A type attribute follows
the type name and has the following syntax:

attribute ((attribute name))

We typically use macros instead of writing the unwieldy attribute
syntax directly. Such macros are used in our examples of section 2.
For example, the qualifier pos used in figure 2 is defined as follows:

#define pos attribute ((pos))

3.2 Qualifier Checking with CIL

Our qualifier checker traverses the given CIL AST, applying user-
defined type rules to applicable program fragments. Any type errors
found during qualifier checking are provided to the programmer as
warnings, but compilation is allowed to continue.

To implement qualifier checking, we have created OCaml
datatypes to represent the expression patterns and predicates that
are allowed in user-defined type rules. For example, consider the
case clause on lines 5-6 in figure 1. The expression pattern is rep-
resented internally as follows:

Binop(Mult, Expr("E1"), Expr("E2"))

The clause’s predicate is similarly represented as follows:

And(Qual("pos", Expr("E1")),
Qual("pos", Expr("E2")))

Consider the application of this type rule to the right-hand side
of the assignment to prod in figure 2. First we match our expression
pattern against the CIL AST for a * b. The match succeeds and
produces bindings for variables in the pattern: E1 is bound to the
expression a and E2 is bound to the expression b. Finally, the rule’s
predicate is evaluated, after replacing each pattern variable with
the C program fragment to which it is bound. In our example, the

predicate is satisfied if a and b can recursively be given the qualifier
pos. The other kinds of type rules are represented and checked
similarly.

3.3 Interacting with C

We allow types to be annotated with qualifiers wherever they ap-
pear. For example, the types of struct fields may be qualified,
and our qualifier checker will check that they obey the user-defined
type rules. Fields of unions may also be given qualified types, but
the usual unsoundness for C unions makes our qualifier checking
in this case unsound as well.

As is often the case for C program analyses, we assume a logical
model of memory. In particular, we assume that the type of p+i,
where p is a pointer and i is an integer, is the same as the type of
p. This assumption is unsound, but in practice it removes a large
source of spurious type errors, for example arising from pointer
arithmetic for array indexing.

Another source of spurious type errors arises from invoking pro-
cedures in the C standard library, since their argument and result
types are not annotated with user-defined qualifiers. We currently
solve this problem by writing header files that contain alternate sig-
natures for library procedures, which replace the procedures’ ordi-
nary signatures via gcc command-line macros. We plan to develop
a standardized mechanism for incorporating qualifier annotations
in library code as directed by user-provided specification files.

Macros from the standard library are also problematic. When
these macros are expanded by the C preprocessor, our qualifier
checker produces type errors because the macros’ bodies are not
properly annotated. Short of creating our own versions of these
macros, we have little recourse.

Our qualifier checker can also be unsound because it, like C,
allows variables to be used before being initialized. Finally, our
checker is unsound in the presence of arithmetic overflow.

Because of these unsoundnesses, our extensible typechecker
for C can be used to statically detect potential errors but cannot
guarantee the absence of errors of a particular kind. However, the
ideas underlying our framework are not specific to C and could be
applied to other languages. For example, a version of our extensible
typechecker for a typesafe language like Java [2, 22] would remove
most of these sources of unsoundness.

4. Automated Soundness Checking
Our soundness checker takes a qualifier definition, generates the
necessary proof obligations for each user-defined type rule, and
automatically discharges these obligations using Simplify [14], a
Nelson-Oppen-style automatic theorem prover [34]. Simplify con-
tains decision procedures for several decidable theories, including
linear arithmetic and equality for uninterpreted function symbols.
Simplify’s input language accepts first-order formulas over these
theories.

This section details the implementation of our soundness
checker. First we describe the axioms we provide Simplify so it can
reason about C programs, and then we describe the obligations that
are proven in the context of these axioms. We have used our sound-
ness checker to automatically prove the soundness of a variety of
type qualifiers. The value qualifiers nonnull, nonzero, pos, and
neg are each proven sound by our checker in under one second.
The reference qualifiers unique and unaliased are each proven
sound in under 30 seconds.

4.1 Axioms

We use axioms to formalize the dynamic semantics of programs in
CIL’s intermediate language. The state of a program is represented
by an execution state ρ = (π, ι,ε,σ), where π is a program, ι is

an index pointing to the statement about to be executed, ε is the
environment, which maps variable names to memory locations, and
σ is the store, which maps locations to values.

We define several function symbols for constructing and ma-
nipulating execution states. The state function symbol takes a pro-
gram, index, environment, and store, and it constructs an execution
state. The function symbols getStmt, getEnv, and getStore take a
state and respectively return the statement about to be executed,
the environment, and the store. Environments and stores are rep-
resented as maps. Simplify has built-in function symbols that rep-
resent operations on maps. For example, the built-in select func-
tion symbol takes a map and a key and returns the key’s associ-
ated value. Finally, we represent C program expressions and state-
ments using additional function symbols. For instance, the state-
ment ∗x := &y is encoded as assign(deref(var(x)),addr(var(y))).

Given this representation, we define axioms for a function sym-
bol evalExpr, which evaluates an expression in a given state. For
instance, the following axiom formalizes evaluation of variable ref-
erences2:

∀ρ,e,x.(e = var(x) ⇒
evalExpr(ρ,e) = select(getStore(ρ),select(getEnv(ρ),x)))

We similarly define axioms for a function location, which takes
an l-value and returns its address, and a function stepState, which
takes a program state and returns the state resulting from executing
the current statement.

Our axioms only formalize the subset of the CIL intermediate
language necessary for reasoning about expression patterns. For ex-
ample, we do not currently axiomatize the semantics of procedure
calls, since they cannot be pattern-matched against. We do, how-
ever, explicitly model memory allocation, via a new function sym-
bol.

4.2 Proof Obligations

To produce a qualifier’s proof obligations, first we define a predi-
cate to represent the qualifier’s invariant. Built-in function symbols
like value in qualifier definitions are translated to their counterpart
function symbols in the axioms. For example, the invariant for pos
from figure 1 is defined as follows:

pos(ρ,e) = (evalExpr(ρ,e) > 0)

Proving the soundness of a qualifier q also requires access to the
invariants of all qualifiers q′ that are referred to in q’s type rules.

Given these invariants it is straightforward to represent our
proof obligations in Simplify. For example, the obligation for the
second case clause of pos in figure 1 is defined as follows:

∀ρ,e1,e2.(pos(ρ,e1)∧pos(ρ,e2)) ⇒ pos(ρ,multExpr(e1,e2))

As another example, the obligation for the second assign clause
of unique in figure 5 is defined as follows:

∀ρ, l.(getStmt(ρ) = assign(l,new)) ⇒ unique(stepState(ρ), l)

5. Formalization
We have formalized our extensible type system for value qualifiers
and have proven that the obligations generated by our soundness
checker are sufficient to ensure type soundness for such qualifiers.
This section overviews these formal details; the complete formal-
ization for value qualifiers is available in a companion technical
report [7].

Stmts s ::= e | s1 s2 | let x = s1 in s2 | ref s | s1 := s2
Exprs e ::= c | () | x | λx.s |!e
Consts c ::= integer constants
Vars x ::= variable names
Types τ ::= unit | int | τ1 → τ2 | ref τ | τ q
Qualifiers q ::= user-defined value qualifiers

Figure 8. The syntax of the formalized language.

τ q ≤ τ
SUBVALQUAL

τ q1 q2 ≤ τ q2 q1
SUBQUALREORDER

τ ≤ τ
SUBREF

τ ≤ τ′′ τ′′ ≤ τ′

τ ≤ τ′
SUBTRANS

τ′1 ≤ τ1 τ2 ≤ τ′2
τ1 → τ2 ≤ τ′1 → τ′2

SUBFUN

Figure 9. Formal rules for subtyping.

Γ ` e : τ
Γ ` e1 : τ1 q1 . . . Γ ` en : τn qn

each ei is a subexpression of e

Γ ` e : τ q
T-QUALCASE

Figure 10. A formal template for user-defined case clauses.

5.1 Syntax and Semantics

We formalize our framework in the context of a simply-typed
lambda calculus augmented with ML-style references [29] and
user-defined type qualifiers. The syntax for this language is shown
in figure 8. It is useful to distinguish statements, which are poten-
tially side-effecting, from expressions, which are side-effect-free,
but this separation causes no loss of expressiveness.

The static semantics is defined, as usual, by a judgment of the
form Γ ` s : τ, where Γ is a type environment mapping variable
names to types. The inference rules defining this judgment include
all the standard rules for the simply-typed lambda calculus with
references. We augment these rules with the standard subsumption
rule and with an associated subtyping relation, which is shown in
figure 9. Rule SUBVALQUAL allows a value-qualified type to be
a subtype of the associated unqualified type. Rule SUBQUALRE-
ORDER formalizes the fact that the order of qualifiers on a type is
irrelevant. The other rules are standard. There is no rule for sub-
typing underneath ref types, so the type ref τ is only a subtype of
itself.

To complete the static semantics, figure 10 formalizes the user-
defined case clauses in a value qualifier’s definition. The rule T-
QUALCASE is actually a rule template: each qualifier is assumed
to have zero or more rules of this form. The template allows an
expression to be given a qualified type if the expression has the as-
sociated unqualified type and some of the expression’s subexpres-
sions have particular qualified types. For example, the second case
clause in the definition of pos in figure 1 would be formalized by
the following rule, which matches the template:

2 Throughout this section, we elide portions of axioms and proof obligations
that involve “typing predicates,” which are used to restrict the domains of
function symbols.

Γ;int `< σ,c >
Q-INT

Γ;unit `< σ,() >
Q-UNIT

Γ ` λx.s : τ1 → τ2

Γ;τ1 → τ2 `< σ,λx.s >
Q-FUN

Γ ` l : ref τ Γ;τ `< σ,σ(l) > l ∈ dom(σ)

Γ;ref τ `< σ, l >
Q-REF

[[q]](v) Γ;τ `< σ,v >

Γ;τ q `< σ,v >
Q-QUAL

Figure 11. Semantic conformance of a value to a type.

Γ ` e1 ∗ e2 : int q
Γ ` e1 : int pos Γ ` e2 : int pos

Γ ` e1 ∗ e2 : int q pos

The restrict rules of a value qualifier do not affect soundness,
so we have not included these rules in our formalization.

The dynamic semantics of our language is completely standard
and is formalized via a big-step operational semantics. Programs
are evaluated to values defined by the following grammar:

Values v ::= c | () | λx.s | l
Locations l ::= memory locations

A store σ maps memory locations to values. The evaluation rela-
tion has the form < σ,s >→< σ′,v >, indicating that evaluating
statement s in store σ produces value v and a new store σ′. Since
expressions are side-effect-free, their evaluation is formalized by a
relation of the form < σ,e >→ v.

5.2 Invariants and Proof Obligations

We model a value qualifier q’s associated invariant as a unary
predicate on values, denoted [[q]]. For example, the invariant
clause for pos in figure 1 would be formalized as the predicate
[[pos]](v) ≡ v > 0. We overload the [[q]] notation to lift these
predicates from values to arbitrary expressions:

[[q]](σ,e,v) ≡ (< σ,e >→ v ⇒ [[q]](v))

Finally, we formalize the proof obligation generated by our
soundness checker for each user-defined type rule:

DEFINITION 5.1. A type rule matching the template T-
QUALCASE from figure 10 is locally sound if the following
proof obligation is true:

∀σ,v1, . . . ,vn,v.
([[q1]](σ,e1,v1)∧ . . .∧ [[qn]](σ,en,vn)) ⇒ [[q]](σ,e,v)

5.3 Type Soundness

We have proven the soundness of our extensible type system for
value qualifiers. Intuitively, soundness means that if the proof obli-
gations generated by our soundness checker are all true, then any
well-typed program fragment will satisfy its qualifiers’ invariants
at run time.

We formalize this notion of type soundness via a few auxil-
iary definitions. The relation Γ;τ `< σ,v >, defined in figure 11,
represents semantic conformance of a value to a type. Intuitively,
Γ;τ `< σ,v > holds if Γ ` v : τ and v additionally satisfies all of
the associated invariants for qualifiers in τ. The first three rules in
figure 11 are the standard typechecking rules for integers, unit, and
functions, respectively. Rule Q-QUAL checks that a value of quali-
fied type satisfies the qualifier’s invariant. Rule Q-REF checks that

value qualifier nonnull(T* Expr E)
case E of

decl T LValue L:
&L

restrict
decl T* Expr E:

*E, where nonnull(E)
invariant value(E) != NULL

Figure 12. The nonnull value qualifier.

a location l is well-typed and recursively checks semantic confor-
mance of the value that l points to in the given store. As others have
done [19], for purposes of the static semantics we treat locations as
variables.

Next we lift this notion of semantic conformance to a relation
between a store and a type environment:

DEFINITION 5.2. We say that Γ ∼ σ if both of the following con-
ditions hold:

1. dom(Γ) = dom(σ)

2. ∀l ∈ dom(Γ).(Γ;Γ(l) `< σ, l >)

In other words, Γ ∼ σ if every memory location is well typed and
satisfies its qualifiers’ invariants.

Finally we can state our type soundness theorem, which is a
variant of the standard type preservation theorem [39]:

THEOREM 5.1. If Γ ∼ σ and Γ ` s : τ and < σ,s >→< σ′,v > and
all user-defined type rules are locally sound, then there exists some
Γ′ ⊇ Γ such that Γ′ ∼ σ′ and Γ′;τ `< σ′,v >.

The proof of this theorem can be found in our technical report [7].

6. Experience
This section reports on experience using our framework for user-
defined type qualifiers. We describe its usage on existing C pro-
grams to statically detect NULL dereferences, violations of unique-
ness invariants, and improper format strings. In all of the experi-
ments described below, the extra compile time for performing qual-
ifier checking in CIL is under one second.

6.1 Null Dereferences

Figure 12 shows the definition of a nonnull value qualifier, which
is automatically proven sound by our soundness checker. The sole
case clause indicates that the address of an l-value can be consid-
ered nonnull. The restrict clause requires all dereferences in a
program to be to nonnull expressions.

We used this nonnull qualifier to statically ensure the absence
of NULL dereferences in the grep search utility program (version
2.5). We annotated the files dfa.c and dfa.h, which comprise the
core string-matching algorithm and related data structures. The files
consist of 2287 non-blank, non-comment lines of code.

We applied nonnull annotations to variables in an iterative
fashion. Running our extensible typechecker on the unannotated
files produced an error message for each dereference, due to the
nonnull qualifier’s restrict clause. These errors were removed
by annotating some variables with nonnull, which could in turn
cause error messages on assignments to the newly-annotated vari-
ables, leading to more annotations. In addition to formal parameters
and local variables, we documented several fields of structures as
being nonnull through this process.

There were situations where the type rules for nonnull were
insufficient and we were forced to insert casts. The major source of

Table 1. Results from the nonnull experiment.
program: grep

files: dfa.c, dfa.h
lines: 2287

dereferences: 1072
annotations: 114

casts: 59
errors: 0

static struct dfa * nonnull unique dfa;

static int charclass index (charclass s) {
int i;
for (i = 0; i < dfa->cindex; ++i)
if (equal(s, dfa->charclasses[i]))
return i;

REALLOC IF NECESSARY(dfa->charclasses, charclass,
dfa->calloc, dfa->cindex);

++dfa->cindex;
copyset(s, dfa->charclasses[i]);
return i;

}

Figure 13. A use of unique in grep.

such imprecision is due to the flow-insensitivity of our type system.
An example from grep follows:

if ((t = d->trans[works]) != NULL) {
works = t[*p];
· · ·

}

The index into array t is safe because it is guarded by the check
for NULL, but our type system cannot deduce this fact. We plan to
extend our typechecking algorithm to incorporate flow-sensitivity,
borrowing ideas from CQUAL [20].

A related source of imprecision occurs when access to a NULL-
terminated array is guarded by a test that the index is less than the
value of a variable holding the array’s length. Statically deducing
the invariant between the array and that variable may be difficult.
One possibility would be to piggyback our qualifier checker on
top of CCured [33], which (among other things) can sometimes
statically deduce array bounds.

Table 1 summarizes the results of our experiment. In order for
the restrict clause in nonnull to succeed on all 1072 derefer-
ences, we had to provide 114 nonnull annotations and 59 nonnull
casts.

6.2 Uniqueness

The implementation of grep makes use of several global data
structures, which are manipulated by a variety of procedures. It
would be nice to statically ensure that each global variable is
the sole reference to the data structure to which it points. In this
way, we can guarantee that each data structure cannot be updated
unexpectedly through other pointers.

We annotated several global variables in dfa.c with the unique
qualifier, using the definition of unique from figure 5. We had the
most success with the global variable dfa, which contains the cur-
rent deterministic finite-state automaton (DFA) being constructed.
Our assign rules were not sufficient to statically validate the ini-
tialization of dfa, since it is initialized to a pointer passed in from
the parser module. However, the extensible typechecker validated

Table 2. Results from the untainted experiment.
program: bftpd mingetty identd

lines: 750 293 228
printf calls: 134 23 21

annotations: 2 1 0
casts: 0 0 0

errors: 1 0 0

all 49 subsequent references to dfa as preserving the variable’s
uniqueness. Our annotated declaration of dfa and a representative
procedure manipulating dfa are shown in figure 13.

Other global variables were not able to be proven unique using
our qualifier, because the variables are passed as arguments to
procedures. This idiom violates the disallow clause for unique
in figure 5. Indeed, this idiom is a violation of uniqueness: inside a
procedure where a global is passed, the global is no longer unique.
It is possible that we could statically check this idiom by relaxing
our unique qualifier to support “lent” references [1], which allow
a unique reference to be temporarily aliased.

6.3 Untainted Format Strings

Our final experiment used the untainted qualifier to ensure proper
format-string arguments to printf. We used the simple version of
untainted defined in figure 4, augmented with a case clause that
defines all constants to be untainted:

case E of decl T Const C: C

We used this qualifier to annotate and check three of the pro-
grams tested by Shankar et al. [36], who performed a taintedness
analysis using CQUAL. The programs are bftpd (version 1.0.11),
an FTP server; mingetty (version 0.9.4), a remote terminal utility;
and identd (version 1.0), a network identification service. For all
three programs, we were able to reproduce the results of Shankar
et al.

Our results are shown in table 2. Running our qualifier checker
on bftpd indicated two procedure parameters that are necessary
to annotate as untainted, since they are used as format strings
for printf. Re-running the qualifier checker then revealed an ex-
ploitable error that had been previously identified [3, 36]. The of-
fending code is shown below:

int sendstrf(int s, char * untainted format, . . .);
· · ·
sendstrf(s, entry->d name);

The d name field of entry is a file name and should not be con-
sidered a proper format string. The extensible typechecker ap-
propriately signals an error since the field has not been declared
untainted.

The other two test programs were verified to have no format-
string vulnerabilities. In addition, no casts were required for any of
the three test programs; the simple case clause defined above was
sufficient to infer the untaintedness of all format-string arguments.

7. Related Work
Our framework is inspired by the CQUAL system of Foster et
al. [19]. As mentioned in the introduction, our language for user-
defined type rules is novel; a limited form of type rules is simulated
in CQUAL via qualifier assertions and assumptions. CQUAL also
does not support automated soundness checking to ensure that a
qualifier establishes its intended invariant. Like our system, CQUAL
distinguishes between value and reference qualifiers. CQUAL sup-
ports explicit subtyping relationships among qualifiers, which our
framework lacks. However, subtyping in CQUAL is declared by

the programmer and trusted to be correct, while we prove the se-
mantic soundness of subtyping in our framework. CQUAL supports
qualifier inference and qualifier polymorphism, neither of which
our framework supports. Follow-on work extended CQUAL’s type
system to be flow-sensitive [20], while our type system is flow-
insensitive.

The type-refinement framework of Mandelbaum et al. [27] sup-
ports a sophisticated type system that is flow sensitive and precise
in the face of computational effects, allowing temporal protocols
similar to those expressible in the Vault language [12] to be stati-
cally checked. Both the framework of Mandelbaum et al. and Vault
also support a form of polymorphism for refinements. However,
those systems lack a language for user-defined type rules and lack
automated soundness checking with respect to run-time invariants.

Fugue [13] is an adaptation and extension of Vault’s type sys-
tem to perform static checking of temporal protocols for C# [6].
Among other innovations, Fugue allows a class’s typestates, which
are the analogues of our qualifiers, to be given an interpretation as
a predicate over the class’s fields. Such predicates are used during
static typechecking to ensure that each method in the class prop-
erly implements its declared specification. In this way, the Fugue
typechecker directly ensures that typestates respect their intended
invariants. These invariants appear to be similar in expressiveness
to ours, except that Fugue’s predicate language does not support
quantification. Further, Fugue’s type system relies heavily on built-
in annotations and associated type rules for nonnull references as
well as for several kinds of aliasing relationships among objects,
while these kinds of qualifiers are user-defined in our framework.

Some type systems, including the calculus of constructions [10],
Nuprl [9], and type systems [37, 11] for Proof-Carrying Code
(PCC) [31] and Typed Assembly Language [30], use a form of de-
pendent types [28] to allow predicates to be directly encoded as
types. However, the proof that a predicate holds on some program
fragment cannot in general be produced automatically and must
instead be supplied by the programmer. Our framework is less ex-
pressive than these systems, since predicates can only be proven
indirectly via type qualifiers and their associated type rules. How-
ever, the separation of typechecking, which is simple and purely
syntactic, from soundness checking, which formally connects the
type system to the desired predicates, allows these proofs to be per-
formed automatically.

Dependent ML (DML) [40, 41] allows ML types to depend
upon integers with linear inequality constraints. This limited form
of dependent types can be used to automatically prove arithmetic
program invariants, including those provable by our integer qual-
ifiers like pos and nonzero. DML’s types can also express arith-
metic invariants that relate multiple program expressions, which
are not supported in our framework.

The technical details of our approach build on our previous
work on the Cobalt and Rhodium languages [25, 26]. These lan-
guages allow users to implement dataflow analyses that can be au-
tomatically proven sound by discharging proof obligations with an
automatic theorem prover. Our case and assign rules are sim-
ilar to Rhodium’s syntax for flow functions; our restrict and
disallow rules have no analogue in Cobalt or Rhodium. Because
our work is based on type systems rather than dataflow analy-
sis, our framework’s implementation and formalization are quite
distinct from those of Cobalt and Rhodium. Our framework also
must handle new issues, including subtyping and the distinction
between value and reference qualifiers. On the other hand, Cobalt
and Rhodium, being based on dataflow analysis, are naturally flow
sensitive.

8. Conclusions and Future Work
We have presented a new approach for supporting user-defined type
refinements. We allow programmers to supply explicit type rules
for new refinements, enabling the expression of common typing
disciplines that would be difficult or unnatural to express in prior
frameworks. An extensible typechecker executes these rules on
programs, and a soundness checker validates the correctness of
these rules once, for all possible programs. We have demonstrated
the approach through a framework for adding type qualifiers to C
programs. Our framework supports the expression of a variety of
qualifiers, and we have used these qualifiers to statically ensure
interesting run-time invariants in open-source C programs.

We plan to explore several directions to increase the expressive-
ness and practicality of the approach. First, we will incorporate
techniques to make existing qualifiers more flexible. We are cur-
rently extending the pattern language to support special-purpose
behavior for procedure calls and returns, to make use of the se-
mantics of variable scoping. Other extensions include support for
qualifier inference to decrease the annotation burden and support
for a form of flow sensitivity.

Second, we will extend our framework to handle new kinds of
qualifiers. Flow sensitivity will allow us to explore the specification
and checking of temporal protocols. We will also target qualifiers,
like const, whose associated invariants are naturally expressed as
predicates over execution traces. Reasoning automatically about
execution traces is a challenge for our soundness checker. We
plan to convert trace-based invariants into predicates on a single
execution state by allowing users to conservatively instrument a
program’s dynamic semantics to record extra information [26].
Also, more work is needed to find the right primitives that allow
a wide variety of practical reference qualifiers to be specified and
proven sound automatically.

Finally, it is possible that our approach can be used beyond type
qualifiers, for example to support program checking with semantic
guarantees for higher-level programming idioms such as design
patterns [21].

9. Acknowledgments
This research was supported in part by NSF ITR award #0427202
and by a generous gift from Microsoft Research. Thanks to Craig
Chambers, Jeff Foster, Sorin Lerner, Jens Palsberg, and Ben Titzer
for helpful comments on the paper.

References
[1] J. Aldrich, V. Kostadinov, and C. Chambers. Alias annotations for

program understanding. In Proceedings of the 17th ACM SIGPLAN
conference on Object-oriented programming, systems, languages,
and applications, pages 311–330. ACM Press, 2002.

[2] K. Arnold, J. Gosling, and D. Holmes. The Java Programming
Language Third Edition. Addison-Wesley, Reading, MA, third
edition, 2000.

[3] C. Bailleux. More security problems in bftpd-1.0.12. bugtraq mail-
ing list post of December 8, 2000. http://www.securityfocus.
com/archive/1/149977.

[4] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe pro-
gramming: Preventing data races and deadlocks. In Proceedings of
the 17th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, pages 211–230. ACM
Press, 2002.

[5] J. Boyland. Alias burying: Unique variables without destructive
reads. Softw. Pract. Exper., 31(6):533–553, 2001.

[6] C# Language Specification, Second Edition. ECMA International,
Standard ECMA-334, Dec. 2002.

[7] B. Chin, S. Markstrum, and T. Millstein. Semantic type qualifiers.
Technical Report CSD-TR-40045, UCLA Computer Science Depart-
ment, November 2004.

[8] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for
flexible alias protection. In Proceedings of the 13th ACM SIGPLAN
conference on Object-oriented programming, systems, languages,
and applications, pages 48–64. ACM Press, 1998.

[9] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland,
J. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P.
Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith. Implementing
Mathematics with the Nuprl Proof Development System. Prentice-
Hall, Englewood Cliffs, NJ, 1986.

[10] T. Coquand and G. Huet. The calculus of constructions. Inf. Comput.,
76(2-3):95–120, 1988.

[11] K. Crary and J. C. Vanderwaart. An expressive, scalable type theory
for certified code. In Proceedings of the seventh ACM SIGPLAN
international conference on Functional programming, pages 191–
205. ACM Press, 2002.

[12] R. DeLine and M. Fahndrich. Enforcing high-level protocols in low-
level software. In Proceedings of the ACM SIGPLAN 2001 conference
on Programming language design and implementation, pages 59–69.
ACM Press, 2001.

[13] R. DeLine and M. Fahndrich. Typestates for objects. In Proceedings
of the 2004 European Conference on Object-Oriented Programming,
LNCS 3086, Oslo, Norway, June 2004. Springer-Verlag.

[14] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for
program checking. Technical Report HPL-2003-148, HP Labs, 2003.

[15] M. Fahndrich and K. R. M. Leino. Declaring and checking non-null
types in an object-oriented language. In Proceedings of the 18th
ACM SIGPLAN conference on Object-oriented programing, systems,
languages, and applications, pages 302–312. ACM Press, 2003.

[16] C. Flanagan and S. N. Freund. Type-based race detection for Java. In
Proceedings of the ACM SIGPLAN 2000 conference on Programming
language design and implementation, pages 219–232. ACM Press,
2000.

[17] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for Java. In Proceedings of the
ACM SIGPLAN ’02 Conference on Programming Language Design
and Implementation, June 2002.

[18] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In
Proceedings of the ACM SIGPLAN 2003 conference on Programming
language design and implementation, pages 338–349. ACM Press,
2003.

[19] J. S. Foster, M. Fähndrich, and A. Aiken. A Theory of Type
Qualifiers. In Proceedings of the 1999 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 192–203,
Atlanta, Georgia, May 1999.

[20] J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type
qualifiers. In Proceedings of the ACM SIGPLAN 2002 Conference
on Programming language design and implementation, pages 1–12.
ACM Press, 2002.

[21] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
Massachusetts, 1995.

[22] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language
Specification Second Edition. The Java Series. Addison-Wesley,
Boston, Mass., 2000.

[23] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.
Region-based memory management in Cyclone. In Proceedings of
the ACM SIGPLAN 2002 Conference on Programming language
design and implementation, pages 282–293. ACM Press, 2002.

[24] R. Johnson and D. Wagner. Finding user/kernel pointer bugs with type
inference. In Proceedings of the 13th USENIX Security Symposium,
pages 119–134, 2004.

[25] S. Lerner, T. Millstein, and C. Chambers. Automatically proving the
correctness of compiler optimizations. In Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and
Implementation, pages 220–231. ACM Press, 2003.

[26] S. Lerner, T. Millstein, E. Rice, and C. Chambers. Automated
soundness proofs for dataflow analyses and transformations via
local rules. In Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. ACM Press,
2005.

[27] Y. Mandelbaum, D. Walker, and R. Harper. An effective theory
of type refinements. In Proceedings of the eighth ACM SIGPLAN
international conference on Functional programming, pages 213–
225. ACM Press, 2003.

[28] P. Martin-Löf. Constructive mathematics and computer programming.
In Sixth International Congress for Logic, Methodology, and
Philosophy of Science, pages 153–175, Amsterdam, 1982. North-
Holland.

[29] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML (Revised). The MIT Press, 1997.

[30] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F
to typed assembly language. ACM Trans. Program. Lang. Syst.,
21(3):527–568, 1999.

[31] G. C. Necula. Proof-carrying code. In Proceedings of the 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 106–119. ACM Press, 1997.

[32] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL:
Intermediate Language and Tools for Analysis and Transformation
of C Programs. In Proceedings of CC 2002: 11’th International
Conference on Compiler Construction. Springer-Verlag, Apr. 2002.

[33] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-safe
retrofitting of legacy code. In Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 128–139. ACM Press, 2002.

[34] G. Nelson and D. C. Oppen. Simplification by cooperating decision
procedures. ACM Trans. Program. Lang. Syst., 1(2):245–257, 1979.

[35] D. Rémy and J. Vouillon. Objective ML: An effective object-oriented
extension of ML. Theory and Practice of Object Systems, 4(1):27–52,
1998.

[36] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting Format
String Vulnerabilities with Type Qualifiers. In Proceedings of the
10th Usenix Security Symposium, Washington, D.C., Aug. 2001.

[37] Z. Shao, B. Saha, V. Trifonov, and N. Papaspyrou. A type system for
certified binaries. In Proceedings of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 217–
232. ACM Press, 2002.

[38] M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value
λ-calculus using a stack of regions. In Proceedings of the 21st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 188–201. ACM Press, 1994.

[39] A. K. Wright and M. Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38–94, 15 Nov.
1994.

[40] H. Xi and F. Pfenning. Eliminating array bound checking through
dependent types. In Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 249–257,
Montreal, June 1998.

[41] H. Xi and F. Pfenning. Dependent types in practical programming.
In Proceedings of the 26th ACM SIGPLAN Symposium on Principles
of Programming Languages, pages 214–227, San Antonio, January
1999.

