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Abstract. We study the satisfiability problem associated with XPath in the presence of DTDs. This
is the problem of determining, given a query p in an XPath fragment and a DTD D, whether or not
there exists an XML document T such that T conforms to D and the answer of p on T is nonempty.
We consider a variety of XPath fragments widely used in practice, and investigate the impact of
different XPath operators on the satisfiability analysis. We first study the problem for negation-
free XPath fragments with and without upward axes, recursion and data-value joins, identifying
which factors lead to tractability and which to NP-completeness. We then turn to fragments with
negation but without data values, establishing lower and upper bounds in the absence and in the
presence of upward modalities and recursion. We show that with negation the complexity ranges from
PSPACE to EXPTIME. Moreover, when both data values and negation are in place, we find that the
complexity ranges from NEXPTIME to undecidable. Furthermore, we give a finer analysis of the
problem for particular classes of DTDs, exploring the impact of various DTD constructs, identifying
tractable cases, as well as providing the complexity in the query size alone. Finally, we investigate
the problem for XPath fragments with sibling axes, exploring the impact of horizontal modalities on
the satisfiability analysis.

Categories and Subject Descriptors: F.4.3 [Mathematical Logic and Formal Languages]: Formal
Languages—Decision problems; H.2.1 [Database Management]: Logical Design—Data models;
I.7.2 [Document and Text Processing]: Document Preparation—Markup languages
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1. Introduction

XPath [Clark and DeRose 1999] has been widely used in XML query lan-
guages (e.g., XSLT, XQuery), specifications (e.g., XML Schema), update languages
(e.g., Sur et al. [2004]), subscription systems (e.g., Chan et al. [2002]) and XML
access control (e.g., Fan et al. [2004]). There is thus a need to study fundamental
properties of the XPath language, and in particular to investigate static analyses of
XPath queries.

The most basic static analysis of a query language is satisfiability: given a query
in the language, does there exist a document (or database) on which it returns
a nonempty answer? The satisfiability analysis of XPath is important for XML
query and update optimization. Consider, for instance, an XML query construct
commonly used: “for $x in p c($x)”, where p is an XPath expression and c($x)
is a query or update. If one can decide, at compile time, that p is not satisfiable,
then the unnecessary computation of c($x) can be simply avoided. Furthermore,
XPath satisfiability is critical as a foundation for other consistency problems, such
as information leakage in security views [Fan et al. 2004], type-checking of trans-
formations [Martens and Neven 2004], and consistency of XML specifications [Fan
and Libkin 2002].

For relational languages, the satisfiability analysis is fairly trivial for positive
queries such as conjunctive queries and positive fragments of Datalog, while it is
trivially undecidable for the most prominent query languages with negation, such
as relational calculus and stratified Datalog. For this reason, static analysis for
relational languages has focused on the containment problem. In contrast, XPath
satisfiability analysis is neither trivial nor futile. A variety of factors contribute to
its complexity, such as the operators allowed in XPath queries, combinations of
these operators, and their interaction with a schema.

1.1. THE ANALYSIS OF XPATH SATISFIABILITY. We now examine factors which
XPath satisfiability analysis should take into account.

1.1.1. XPath Fragments. The XPath 1.0 standard [Clark and DeRose 1999]
offers a large array of operators. We consider several dichotomies, focusing on
operators widely used in practice.

 



—positive vs. nonpositive: XPath allows qualifiers to be built up with a general
negation operator, enabling it to express nonmonotone queries; queries without
negation, referred to as positive queries, can be expressed in existential logic,
while queries with negation may have existential and universal quantifiers;

—downward vs. upward: some XPath queries specify downward traversal (child,
descendant), while others also have upward modalities (parent, ancestor);

—recursive vs. nonrecursive: some queries express navigation along the descen-
dant (resp. ancestor) axis, while others only use the child (respectively, parent)
axis;

—qualified vs. nonqualified: queries may or may not contain qualifiers (predicates
testing properties defined in terms of other queries);

—with vs. without data values: queries may or may not contain comparisons of
data values reached via different navigation paths, expressing data-value joins.

Even positive XPath queries defined in terms of simple operators may be unsat-
isfiable. Furthermore, from a practical point of view, many applications typically
use only a limited set of operators. For example, XML Schema specifies integrity
constraints with an XPath fragment that does not support upward modalities. This
motivates the study of satisfiability for various XPath fragments (i.e., different
combinations of operators). As will be seen later, with different combinations of
these operators, the complexity of the satisfiability analysis ranges from PTIME to
undecidable.

In this article, we study a class of XPath 1.0 queries, simply referred to as XPath
in the sequel. This class supports the following operators: the wildcard (child) and
the descendant-or-self-axis, the parent-axis and ancestor-or-self-axis, union, and
qualifiers with data values and negation (not), as well as variants of sibling axes
of XPath 1.0. We focus on these operators rather than new operators proposed by
XPath 2.0 [W3C 2006] or XQuery [Chamberlin et al. 2001] since most queries
found in practice are defined in terms of these operators. We also study various
fragments of this class, supporting a subset of these operators.

1.1.2. The Impact of Schema. XML documents often come with a schema, typ-
ically a DTD. Any practical static analysis must take the schema into account. A
DTD is far more complex than a relational schema, and it imposes structural con-
straints such as co-existence of certain siblings (by means of concatenation in the
regular expressions within a DTD), exclusive relations on siblings (disjunction), as
well as a limited form of negation (excluding certain children). These constraints
interact with XPath queries in an intricate way. Indeed, as will be seen later, the
satisfiability analysis is significantly impacted by the presence or absence of re-
cursion (cycles) and disjunction in a DTD. The role of a schema gives the XPath
satisfiability problem an additional dimension.

1.1.3. XPath vs. Other Query Formalisms. For relational query languages with
negation, for example, SQL, the satisfiability problem is typically undecidable. For
XPath the picture is far from clear, even in the presence of data values. While
XPath is a rich language, it operates on documents whose underlying navigational
structure is restricted to be a tree. Furthermore, XPath is a modal language, which,
unlike relational calculus and the tree patterns of [Amer-Yahia et al. 2002], does not
allow the explicit use of free variables. As a result XPath queries can “see” only one

 



node at a time when navigating a tree. This restriction becomes more prominent in
the presence of data values or negation, since it allows only a restricted form of data
joins to be expressed. This makes the expressive power of XPath quite distinct from
other XML query languages, particularly from XML query algebras [Jagadish et al.
2002; Paparizos et al. 2004]. The limited expressiveness significantly decreases the
complexity of the satisfiability analysis in the presence of negation. We will show
that in the absence of data values the satisfiability problem for XPath fragments
with negation is in EXPTIME, and if recursive axes are further disallowed, it is in
PSPACE. This contrasts with first-order logic over trees, the most natural example
of a tree query language with explicit variables: there the satisfiability problem has
nonelementary complexity [Stockmeyer 1974], even when only the child relation
is present.

Taken together, these factors lead to a rich spectrum of languages and satisfiability
problems with features quite distinct from the containment analysis and relational
satisfiability.

1.2. MAIN RESULTS. Here we present a comprehensive picture of the satisfia-
bility problem for a variety of XPath fragments in the presence and in the absence
of DTDs.

1.2.1. Positive XPath. We begin with a minimal XPath fragment with only
the child axis in the presence of DTDs. We then investigate the impact of adding
qualifiers, union, upward traversal (the parent axis), recursion (the descendant and
ancestor axes) and data values, one at a time, establishing the complexity of the
satisfiability problem for each of these fragments. We show that the complexity
ranges from PTIME to NP-complete (Section 4).

1.2.2. XPath with Negation. We then investigate a minimal XPath fragment
with negation. Since negation makes sense only in the presence of qualifiers, we
begin with the XPath fragment with qualifiers, negation and the child axis. We
show that the satisfiability problem for this fragment is PSPACE-complete in the
presence of DTDs. We then look at the impact of adding upward modality and
recursion, one at a time. The complexity here will vary between PSPACE-complete
and EXPTIME-complete. Finally, we show that the combination of data values and
negation makes a big difference, by adding data values to these fragments. We find
that the complexity is in NEXPTIME in the absence of recursive and upward axes,
and is undecidable in the general case (Section 5).

1.2.3. Particular DTDs. To explore the impact of different DTD constructs
on XPath satisfiability analysis and to understand the interaction between XPath
queries and DTD constructs, we also investigate XPath satisfiability under var-
ious restricted DTDs. More specifically, we consider nonrecursive DTDs, fixed
DTDs, and disjunction-free DTDs (i.e., the regular expressions in a DTD do not
contain disjunction; we do not consider other kinds of restrictions like star-free,
1-unambiguous or order-independent DTDs). We show that the worst-case com-
plexity does not diminish when the DTD is fixed, but can decrease dramatically
in the absence of DTD recursion or disjunction. We also revisit the satisfiability
problem for all these fragments in the absence of DTDs. We show that for positive
XPath, the absence of DTDs simplifies the satisfiability analysis, but this is not the
case for those fragments with negation (Section 6).

 



1.2.4. Reductions between Problems. We also provide basic results for the con-
nections between XPath satisfiability and XPath containment, between XPath sat-
isfiability analysis in the presence of DTDs and that in the absence of DTDs, and
between XPath satisfiability under arbitrary DTDs and that under a simple normal
form of DTDs. These results allow us to restrict to special cases of the satisfiability
problem in proving results about both satisfiability and containment (Section 3).

1.2.5. XPath with Sibling Axes. Finally, we revisit the satisfiability problem
for XPath fragments that support sideways traversal, namely, the (immediate)
following-sibling and preceding-sibling axes. The objective is to explore the impact
of the sibling axes on the satisfiability analysis, compared to their vertical coun-
terparts. We establish complexity results for a variety of XPath fragments with the
sibling axes, in the presence of DTDs, under restricted DTDs, and in the absence
of DTDs (Section 7).

We establish matching upper and lower bounds in all the cases without data
values and sibling axes, and several complexity results for fragments with data
values or sibling axes. To our knowledge, this work is the first detailed theoretical
study of XPath satisfiability in the presence of DTDs, under restricted DTDs, and
in the absence of DTDs. A variety of techniques are used to prove these results,
including two-way alternating automata, rewriting systems, finite-model theoretic
constructions, bounded-branching results, and a wide range of reductions.

1.3. RELATED WORK. Static analysis of XML queries has for the most part
been developed along the lines laid down in the relational theory. In the rela-
tional setting, the emphasis has been on the containment problem (given Q1 and
Q2, does Q1 always return a subset of Q2?) for positive queries. There is lim-
ited practical or theoretical motivation for the satisfiability study in the relational
case: a user can never propose a (union of) conjunctive query that is “nonsensi-
cal”, so there is no pressing need to check this; and for more general relational
queries, a complete satisfiability checking is theoretically impossible. In analogy
with this, prior work on XPath static analysis has mostly concentrated on the con-
tainment problem for positive XPath [Deutsch and Tannen 2005; Miklau and Suciu
2004; Neven and Schwentick 2006; Wood 2002; Marx 2004]. These (except Neven
and Schwentick [2006] and Marx [2004]) are the analogs of positive queries for
tree-like data, asserting the existence of a certain kind of trees as a substructure
of the document. While the satisfiability problem is subsumed by the comple-
ment of the containment problem for XPath, we shall see that the upper bounds
on satisfiability derived from previous work on containment for positive XPath
fragments are far from tight. Similarly, we shall see that our bounds do not im-
ply anything about the containment analysis for those positive fragments studied
previously.

While Neven and Schwentick [2006] proves bounds on containment in the pres-
ence of negation and data values (without upward axes), it does not consider the
general XPath negation operator, and instead negation is tied to particular equality
comparisons. Data values in Neven and Schwentick [2006] are introduced in the
form of variables. Variables are not an XPath 1.0 notion, and they change the modal
nature of the language dramatically. Compared to XPath 1.0, the expressiveness and
succinctness of these variables and data values are not clear. Since this semantics of
negation and data values is different from ours, our results do not imply the results
of Neven and Schwentick [2006], and vice versa.

 



Marx [2004] is concerned principally with extensions of XPath, but contains
bounds on equivalence and satisfiability for the largest fragment we consider that
lacks data value equality. Marx [2004] proves an EXPTIME upper bound on con-
tainment for an extension of XPath, which implies an EXPTIME bound on satisfia-
bility for the fragment that supports the child, wildcard, descendant-or-self, parent,
ancestor-or-self axes as well as union, negation and qualifiers. Indeed, the results
of Marx [2004] imply an EXPTIME upper bound on the extension of this fragment
with the sibling axes in the presence of specialized DTDs (roughly speaking, XML
Schema), rather than just DTDs. A corresponding EXPTIME hardness result can
be derived from a lower bound on query equivalence of the “XCore” language of
Marx [2004] (we shall elaborate on this in Section 5).

For fragments with the XPath negation operator, upward modalities and data-
value joins, the containment problem has not been studied, with or without DTDs.
We shall show (Proposition 3.2) that in the presence of negation, our upper and
lower bounds for the satisfiability problem can be carried over to the containment
problem for the corresponding fragments, and thus establish the first results for the
containment problem for those fragments with negation, upward modalities and
data-value joins.

As we have remarked, XPath satisfiability is both theoretically interesting and
practically important, in contrast to its relational counterpart. However, to our
knowledge, the satisfiability problem has only been studied for (positive) tree-
patterns [Lakshmanan et al. 2004] in the presence of (restricted) DTDs, and for
certain XPath fragments in the absence of DTDs [Hidders 2004] and (as mentioned
above) in Marx [2004] where EXPTIME upper and lower bounds are proved on
XPath with negation and all axes, but without data values, in the presence of DTDs.
The satisfiability problem for a number of practical and interesting fragments, es-
pecially those with negation and data values, has not been studied, with or without
DTDs.

Hidders [2004] differs from our work in both the set of operators it considers
(e.g., without data values), and in that it assumes the absence of DTDs. It gives
PTIME bounds in the presence of qualifiers, sibling axes, upward axes, and a root
test. Our results suffice to show that these bounds do not hold in the presence of
DTDs. The proofs of Hidders [2004] also imply that the satisfiability problem is
NP-complete when downward axes are supplemented by an intersection operator.
The intersection operator is not available in XPath 1.0, so we do not consider it
here. Finally, Hidders [2004] shows that satisfiability is NP-hard in the presence
of a complement operator, which is again not supported by XPath. Instead, we
consider here the XPath negation operator, proving both lower and upper bounds.
Note that our results would also carry over to show that XPath fragments with all
of the features of Hidders [2004] is in EXPTIME, in the presence of DTDs.

Lakshmanan et al. [2004] considers a tree pattern formalism with expressiveness
incomparable to XPath. This expresses tree-shaped, positive queries, with data value
equality and inequality along with a node-equality test. Note that node-equality can
be used to simulate the intersection operation of Hidders [2004]. Lakshmanan et al.
[2004] shows that the satisfiability problem is NP-complete for several restrictions
of this pattern language in the absence of DTDs. It also investigates the satisfiability
of tree pattern queries with limited use of data joins (these can only occur “con-
junctively”) and node equality and inequality under non-recursive disjunction-free
DTDs. Since these results impose severe syntactic restrictions, all of which make

 



sense only within the particular pattern formalism rather than in XPath, and it is dif-
ficult to compare the results with ours on positive XPath. Lakshmanan et al. [2004]
does not deal with negation, nor can the XPath negation operator be simulated in
the formalism of Lakshmanan et al. [2004].

Minimization, rewriting and optimization are studied for tree patterns and
XPath [Amer-Yahia et al. 2002; Gottlob et al. 2005; Olteanu et al. 2002; Wood
2001]. Expressiveness of XPath is investigated in Benedikt et al. [2005], Milo
et al. [2003], Murata [2001], and Neven and Schwentick [2000]. No bounds for
satisfiability follow from these works.

There are several powerful logical formalisms on trees for which satisfiability is
decidable, principally Monadic Second Order Logic (MSO) [Thatcher and Wright
1968]. All the XPath fragments we consider that omit data-value equality can be
translated into MSO, thus giving a decision procedure. However, MSO on trees (and
even first-order logic) has a non-elementary satisfiability problem [Stockmeyer
1974]. For the fragments with data values we know of no semantics-preserving
translation into an existing formalism.

The bounds of Marx [2004] are closely-related to work on the satisfiability
problem for Propositional Dynamic Logic (PDL). Like XPath, PDL allows for the
definition of binary relations (in PDL terms, programs) as well as unary relations,
and like XPath PDL is a modal language. Satisfiability for deterministic PDL with
converse is known to be EXPTIME-complete [Vardi and Wolper 1986]. Although
PDL is defined on Kripke structures, rather than trees, proofs of the satisfiability
bounds for deterministic PDL with converse can be modified to give bounds on
satisfiability of the same language on binary trees; the satisfiability of the XPath
fragment with negation, all axes but without data value joins can be reduced to
this problem [Marx 2004]. Afanasiev et al. [2005] discusses a variant of PDL
directly applicable to ordered trees, which is strictly more expressive than the largest
fragment without data joins we consider. The complexity bounds in Afanasiev
et al. [2005] for this variant of PDL imply (as does Marx [2004]) EXPTIME-
completeness for this particular fragment. For the other main fragments of XPath
that we study here, we know of no correspondence with a fragment or extension of
PDL.

1.4. ORGANIZATION. Section 2 reviews DTDs and XPath fragments. Sections 3,
4, 5, 6 and 7 establish technical results as outlined above. Section 8 summarizes
our main results.

2. Notations: DTDs and XPath Fragments

In this section, we first review Document Type Definitions (DTDs [Bray et al.
1998]) and then define the fragments of XPath [Clark and DeRose 1999] studied
in this article.

2.1. DTDS. Without loss of generality, we represent a DTD D as (Ele, Att,
P, R, r ), where (1) Ele is a finite set of element types, ranged over by A, B, . . . ;
(2) r is a distinguished type in Ele, called the root type; (3) P is a function that
defines the element types: for each A in Ele, P(A) is a regular expression over Ele;
we refer to A → P(A) as the production of A; (4) Att is a finite set of attribute
names, ranged over by a, b, . . . ; and (5) R defines the attributes: for each A in Ele,

 



R(A) is a subset of Att. We do not consider additional DTD features such as default
values and attribute domains.

An XML document is typically modeled as a (finite) node-labeled ordered
tree [Bray et al. 1998], with nodes additionally annotated with values for attributes.
We refer to this as an XML tree. An XML tree T satisfies (or conforms to) a DTD
D = (Ele, Att, P, R, r ), denoted by T |= D, if (1) the root of T is labeled with r ;
(2) each node n in T is labeled with an Ele type A, called an A element; the label
of n is denoted by lab(n); (3) each A element has a list of children (subelements)
such that their labels are in the regular language defined by P(A); and (4) for each
a ∈ R(A), each A element n has a unique a attribute value which we denote by
n.a. We call T an XML tree of D if T |= D.

We also study the following special forms of DTDs.
A normalized DTD is a DTD in which for each A in Ele, P(A) is of the following

form:

α ::= ε | B1, . . . , Bn | B1 + · · · + Bn | B∗

where ε is the empty word, Bi is a type in Ele (referred to as a child type of A), and
‘+’, ‘,’ and ‘∗’ denote disjunction, concatenation and the Kleene star, respectively
(here we use ‘+’ instead of ‘|’ to avoid confusion). We will see later (Proposition
3.3) that there is often no loss of generality in restricting to normalized DTDs.

A DTD D is said to be disjunction-free if for any element type A ∈ Ele, P(A)
does not contain disjunction ‘+’.

A DTD D is recursive if the dependency graph of D (which contains an edge
(A, B) iff B is in P(A)) has a cycle.

A recursive DTD D may not have any XML tree T such that T |= D. This is
because some element type A in D is non-terminating, i.e., there exists no finite
subtree rooted at A that satisfies D. One can determine whether an element type
A in D is terminating or not in O(|D|) time, where |D| is the size of D. Indeed,
this problem can be reduced to the emptiness problem for context-free grammars,
which can be determined in linear time (cf. Hopcroft and Ullman [2000]). Thus to
simplify the discussion, in the sequel we assume that all element types in a DTD
are terminating. All the complexity results (lower bounds and upper bounds) in this
article remain unchanged in the presence of nonterminating element types.

Example 2.1. Consider an instance φ = C1 ∧ · · · ∧ Cn of 3SAT (cf.
Papadimitriou [1994]), where Ci = l(i,1) ∨ l(i,2) ∨ l(i,3), li, j is a literal of the
form xs or x̄s , and xs is a propositional variable. Assume that the variables in
φ are x1, . . . , xk . Given φ, we define a DTD Dφ = (Ele, Att, P, R, r ), where
Ele = {r, T, F, X1, . . . , Xk}, Att = ∅, and

P : r → X1, . . . , Xk, Xi → T + F, for i ∈ [1, k], T → ε, F → ε;
R : R(A) = ∅, for any A ∈ Ele

An XML tree of Dφ lists all the variables Xi under the root, and gives a truth
value (T or F) under each Xi . The DTD is normalized and nonrecursive; it is not
disjunction free.

2.2. XPATH FRAGMENTS. Over an XML tree, an XPath query specifies the
selection of nodes in the tree. Assume a (possibly infinite) alphabet � of labels.
We define the largest class of XPath queries considered in this article, referred to

 



as X (↓, ↓∗, ↑, ↑∗, ∪, [ ], =, ¬), syntactically as follows:

p ::= ε | l | ↓ | ↓∗ | ↑ | ↑∗ | p/p | p ∪ p | p[q],

where ε and l denote the empty path (the self-axis) and a label in � (the child-axis);
‘↓’ and ‘↓∗’ stand for the wildcard (child) and the descendant-or-self-axis, while
↑ and ↑∗ denote the parent-axis and ancestor-or-self-axis, respectively; ‘/’ and
‘∪’ denote concatenation and union, respectively; and finally, q in p[q] is called a
qualifier and is defined by:

q ::= p | lab = A | p/@a op ‘c’ | p/@a op p’/@b | q1 ∧ q2 | q1 ∨ q2 | ¬q,

where p, p′ are as defined above, A is a label in �, op is either ‘=’ or ‘
=’, a, b stand
for attributes, c is a constant (string value), and ∧, ∨, ¬ stand for and (conjunction),
or (disjunction) and not (negation), respectively.

The significant deviation from the XPath 1.0 standard is that the latter restricts
the union operator to occur only at top-level; in order to have a more compositional
language we drop this restriction, as do the prior studies of XPath (e.g., Marx and
de Rijke [2005] and Benedikt et al. [2005]). The expressiveness of the fragments we
study is not affected by this. Perhaps more surprisingly, neither are the complexity
bounds: upper bounds for our language clearly imply the corresponding bounds for
the more restricted one that forbids nested union, while all of our lower bounds can
be seen to use only top-level union.

A query p in X (↓, ↓∗, ↑, ↑∗, ∪, [ ], =, ¬) over an XML tree T is interpreted
as a binary predicate on the nodes of T , while a qualifier is interpreted as a unary
predicate. More specifically, for any nodes n in T , T satisfies p at n if and only
if T |= ∃n′ p(n, n′), where T |= p(n, n′) and the associated version for qualifiers,
T |= q(n), are defined inductively on the structure of p, q, as follows.

—if p = ε, then n = n′;
—if p = l, then n′ is a child of n, and is labeled l;
—if p = ↓, then n′ is a child of n, regardless of its label;
—if p = ↓∗, then n′ is either n or a descendant of n;
—if p = ↑, then n′ is the parent of n;
—if p = ↑∗, then n′ is either n or an ancestor of n;
—if p = p1/p2, then there exists a node v in T such that T |= p1(n, v) and

T |= p2(v, n′);
—if p = p1 ∪ p2, then T |= p1(n, n′) or T |= p2(n, n′);
—if p = p1[q], then T |= p1(n, n′) and T |= q(n′), where q is a unary predicate

of the following cases:
—if q is p2, then there exists a node n′′ in T such that T |= p2(n′, n′′);
—if q is lab() = A, then the label of n′ is A;
—if q is p2/@a op ‘c’, then there exists a node n1 in T such that T |= p2(n′, n1),

n1 has attribute a and n1.a op ‘c’, where n1.a denotes the value of the a attribute
of n1;

—if q is p2/@a op p′
2/@b, then there exist two nodes n1 and n2 in T such that

T |= p1(n′, n1), T |= p2(n′, n2), n1 (resp. n2) has attribute a (resp. b), and
n1.a op n2.b;

—if q is q1 ∧ q2, then T |= q1(n′) and T |= q2(n′);
—if q is q1 ∨ q2, then T |= q1(n′) or T |= q2(n′);

 



—if q is ¬q ′, then T 
|= q ′(n′); for instance, if q is ¬p2, then there does not exist
a node n′′ in T such that T |= p2(n′, n′′), i.e., T |= ∀n′′ ¬p2(n′, n′′).

Here n is referred to as the context node. If T |= p(n, n′), then we say that n′ is
reachable from n via p. We use n[[p]] to denote the set of all the nodes reached
from n via p, that is, n[[p]] = {n′ | n′ ∈ T, T |= p(n, n′)}.

We say that an XML tree T satisfies a query p, denoted by T |= p, if and
only if T |= ∃n p(r, n), where r is the root of T . In other words, r [[p]] 
= ∅,
i.e., the set of nodes reachable from the root of T via p is nonempty. Similarly, we
talk about T satisfying a qualifier q if T |= q(r ). To simplify the discussion, we
focus on the satisfiability of XPath queries applied to the root of T (note that its
corresponding containment problem relates to the root equivalence [Benedikt et al.
2005]). It should be mentioned that the complexity results of this paper remain
intact for arbitrary context nodes.

We also investigate various fragments of the language X (↓, ↓∗, ↑, ↑∗, ∪, [ ], =
, ¬). We denote a fragment X by listing the operators supported by X : the presence
or absence of negation ‘¬’, data values ‘=’ (indicating op, including both ‘=’ and
‘
=’), upward traversal ‘↑’ (‘↑∗’), recursive axis ‘↓∗’ (‘↑∗’), qualifiers ‘[ ]’, wildcard
‘↓’, and union and disjunction ‘∪’ (the absence of ‘∪’ indicates that neither union
‘∪’ nor disjunction ‘∨’ is allowed). The concatenation operator ‘/’ is included in
all the fragments by default.

For example, a small fragment with negation isX (↓, [ ], ¬) (note that ‘¬’ can only
appear in qualifiers), and the largest positive fragment is X (↓, ↓∗, ↑, ↑∗, ∪, [ ], =)
(it should be mentioned that limited negation defined by ‘
=’ is allowed in this
fragment, while its subclass without data values, namely, X (↓, ↓∗, ↑, ↑∗, ∪, [ ]),
allows neither ‘=’ nor ‘
=’).

All these fragments have been found useful in practice. For example,X (↓, ↓∗, ∪)
is used by XML Schema to specify integrity constraints, and X (↓, ↓∗, [ ]) is the
class of tree-pattern queries studied in Amer-Yahia et al. [2002], Olteanu et al.
[2002], and Wood [2001].

Example 2.2. Recall the 3SAT instance φ and the DTD Dφ given in Exam-
ple 2.1. One can use a query p in X (∪, [ ]) to encode φ, where p is specified
as:

p = ε[q1 ∧ · · · ∧ qn], qi = XP(li,1) ∨ XP(li,2) ∨ XP(li,3),
where XP(l j, j ) = Xs/T if li, j is xs, and XP(l j, j ) = Xs/F if li, j is x̄s .

Indeed, φ is satisfiable iff there is an XML tree T of the DTD Dφ such that T |=
p.

Example 2.3. Consider the DTD D = (Ele, Att, P, R, r ), where Ele = {r, A},
Att = ∅, P : r → A∗, and R: R(r ) = R(A) = ∅. Consider the XPath query p = B.
Then it is clear that there exists no XML tree T of the DTD D such that T |= p.

3. The Satisfiability Problem

We are interested in the satisfiability problem for XPath queries considered together
with a DTD: that is, whether a given XPath query p and a DTD D aresatisfiable by

 



an XML tree. We say that an XML tree T satisfies p and D, denoted by T |= (p, D),
if T |= p and T |= D. If such a T exists, we say that (p, D) is satisfiable.

For a fragment X of XPath, the XPath satisfiability problem SAT(X ) is stated as
follows:

PROBLEM: SAT(X )
INPUT: A DTD D, an XPath query p in X .
QUESTION: Is there an XML document T such that T |= (p, D)?

Below we present several basic results for SAT(X ).

3.1. SATISFIABILITY BASICS. The satisfiability problem for a fragmentX in the
absence of DTDs is the problem of determining, given any query p in X , whether
there is an XML tree T such that T |= p.

This version of the satisfiability problem for X is actually a special case of
SAT(X ), since it can be reduced to SAT(X ) when the input DTD is fixed to range
over DTDs of the form Dp = (Elep, Attp, Pp, Rp, rp), where (1) Elep consists
of a distinct label X as well as all the labels A mentioned in p in the form of a
subquery A or a qualifier lab() = A; (2) Attp consists of all the attribute names
a, b mentioned in p in the form of a qualifier p/@a op ‘c’ or p/@a op p′/@b;
(3) for each A ∈ Elep, the production for A is defined to be A → (A1 +· · ·+ An)∗,
where Elep = {A1, . . . , An}; (4) Rp(A) is defined to be Attp; and (5) rp is one of
the Ai ’s in Elep. The connection between this satisfiability problem and SAT(X )
is encapsulated in the following.

PROPOSITION 3.1. For any fragment X of XPath queries defined above and
any query p in X , there exists an XML tree T such that T |= p if and only if there
exists an XML tree T ′ such that T ′ |= (p, D), where D has the form of Dp given
above.

PROOF. If there exists an XML tree T ′ such that T ′ |= (p, D), then obviously
T ′ |= p. Conversely, suppose that there exists an XML tree T such that T |= p.
Observe that all the labels in Elep appear in p except the distinct label X , and
similarly, that all the attribute names in Attp appear in p. Define an XML tree T ′
by re-labeling element nodes and removing attributes in T as follows: (1) For each
element n in T , if lab(n) is not in Elep, then rename the label of n to be X in T ′;
(2) For each attribute of n, if its name is not in Attp, then remove the attribute.
Then, one can easily verify that T ′ |= D by the definition of D and the construction
of T ′. Furthermore, T ′ |= p since the renaming and deletions preserve the truth
values of subqueries and qualifiers at each node n in T . Indeed, for any node n in
T , and for any subquery or qualifier p′ of the form l, lab() = A, p1/@a op ‘c’ or
p1/@a op p2/@b (or their negation), T satisfies p′ at n if and only if T ′ satisfies
p′ at n. Based on this, one can show that T |= p if and only if T |= p′, by a
straightforward induction on the structure of p.

For a query p, there are at most O(|p|) many such DTDs D (by allowing rp to
range over all the element types in Elep), and the size of such D is in O(|p|2). As
a result, since all the upper bounds for SAT(X ) established in this paper are with
respect to complexity classes containing PTIME, they also hold for the satisfiability
problem for X in the absence of DTDs. However, we shall see that for some

 



fragments X , the complexity for its satisfiability problem in the absence of DTDs
can be much lower than its counterpart for the same fragment X in the presence of
DTDs.

In the sequel, we also refer to the satisfiability problem for X in the absence of
DTDs as SAT(X ) when it is clear from the context.

The containment problem for a fragment X in the presence of DTDs, denoted by
CNT(X ), is the problem to determine, given any queries p1, p2 ∈ X and a DTD
D, whether or not for any XML tree T of D, r [[p1]] ⊆ r [[p2]], where r is the root
of T . That is, whether or not the answer to p1 is contained in the answer to p2 over
all the XML trees of D. If this holds, then we say that p1 ⊆ p2 under D.

For any fragmentX , SAT(X ) is reducible to the complement of CNT(X ). Indeed,
for any query p ∈ X and DTD D, (p, D) is satisfiable if and only if p1 
⊆ ∅D under
D, where ∅D is a special query that returns an empty set on any XML tree of D.
Note that ∅D is definable in any of our XPath fragments (e.g., ∅D can be defined
to be A where A is not an element type of D). For fragments X supporting certain
operators, SAT(X ) and the complement problem of CNT(X ) actually coincide.
This happens in each of the following two cases:

—The fragment X(bl, [ ],¬) of Boolean queries, that is, queries of the form ε[q], in
any fragment X (. . . , [ ], ¬) with negation and qualifiers;

—Any fragment containing negation and closed under the inverse operator de-
fined by inverse(↓) = ↑, inverse(↓∗) = ↑∗ and conversely, inverse(↑) = ↓,
inverse(↑∗) = ↓∗.

These observations are summarized in the following proposition:

PROPOSITION 3.2. (1) For any XPath fragment X , if CNT(X ) is in K for some
complexity class K, then SAT(X ) is in coK. Conversely, if SAT(X ) is K-hard, then
CNT(X ) is coK-hard. (2) For any fragment X(bl, [ ],¬) of Boolean queries, the con-
tainment problem CNT(X(bl, [ ],¬)) is reducible in constant time to the complement
of the satisfiability problem SAT(X(bl, [ ],¬)). (3) For any fragment X with negation
and closed under inverse, CNT(X ) is reducible in linear time to the complement
of SAT(X ).

PROOF. (1) is immediate from the comments above. We now show (2). In-
deed, for any DTD D and queries p1 = ε[q1], p2 = ε[q2] in X(bl, [ ],¬),
p1 
⊆ p2 under D if and only if (p, D) is satisfiable, where p = ε[q1 ∧ ¬q2],
which asserts that there exists an XML tree of D that satisfies p1 but does not
satisfy p2.

We next show (3). For any DTD D and any queries p1, p2 ∈ X , define a query
p = p1

[¬(inverse(p2)[¬↑])
]
, where inverse(p2) is an extension of the inverse

function given above. Intuitively, T |= p(r, n) holds if there exists a node n in T
such that T |= p1(r, n) but T 
|= p2(r, n), that is, p1 
⊆ p2 under D. That is, there
exists a node n reached from the root by following p1, but the root cannot be reached
by tracing back p2 from n, where the qualifier [¬↑] conducts the root test. More
specifically, inverse(p2) is defined as follows, based on the structure of p2: (1) if
p2 = l, then inverse(p2) = ε[lab() = l]/↑; (2) if p2 = ↓, then inverse(p2) = ↑;
(3) if p2 = ↓∗, then inverse(p2) = ↑∗; (4) if p2 = ↑∗, then inverse(p2) = ↓∗;
(5) if p2 = p3/p4, then inverse(p2) = inverse(p4)/inverse(p3); (6) if
p2 = p3 ∪ p4, then inverse(p2) = inverse(p3) ∨ inverse(p4); (7) if p2 = p3[q],

 



then inverse(p2) = ε[q]/inverse(p3); (8) for all other cases inverse(p2) =
p2.

To verify that p1 ⊆ p2 under D if and only if (p, D) is not satisfiable, it suffices to
show that for any node n, T |= p2(r, n) if and only if T |= inverse(p2)[¬↑](n, r ).
The latter can be verified by a straightforward induction on the structure of p2.
Observe that inverse(p2) can be computed in O(|p2|) time. From these the claim
(2) follows immediately.

It should be mentioned that the definition of the inverse function was first de-
veloped in Marx and de Rijke [2005].

In Sections 5 and 7, we shall apply Proposition 3.2 to get complexity results
for CNT(X ) improving on those in the literature based on the results for SAT(X )
established later on.

3.2. XPATH SATISFIABILITY AND NORMALIZED DTDS. A mild variant of
SAT(X ) for a fragment X is the problem to determine, given any query p ∈ X
and any normalized DTD D, whether or not there is an XML tree T such that
T |= (p, D). Let us refer to this problem as the satisfiability problem for X under
normalized DTDs. The next result tells us that for many fragments X , SAT(X ) and
the satisfiability problem for X under normalized DTDs are polynomially equiva-
lent, that is, there are PTIME reductions in both directions.

PROPOSITION 3.3. For any class X of XPath queries that allows ‘∪’ (and in
addition, label test lab() = A if X allows upward modalities), there exists a linear-
time function N from DTDs to normalized DTDs, and there exists a function f :
X → X , computable in O(|p||D|3) time, such that for any DTD D and any query
p ∈ X , (p, D) is satisfiable if and only if ( f (p), N (D)) is satisfiable. Moreover,
N (D) does not introduce DTD constructs (‘+’,‘,’,‘∗’) not already in D.

Since the satisfiability problem for X under normalized DTDs is a special case
of SAT(X ), this proposition says that it suffices to consider normalized DTDs when
proving either upper or lower bounds for fragments satisfying the restriction above;
we shall make frequent use of this in our proofs.

PROOF. We first define the function N that maps a general DTD to a normal-
ized DTD. Given a DTD D = (Ele, Att, P, R, r ), we define the normalized DTD
N (D) = (Ele′, Att′, P ′, R′, r ′), which is constructed from D as follows.

For each regular expression on the right-hand side of a production in P , we
consider its parse tree and assign new labels Ae for each non-leaf node e in this tree.
The label of each leaf node is unchanged. We define Ele′ to be the set Ele plus these
new labels Ae. The new productions P ′ can then be straightforwardly determined
from these parse trees. Indeed, the operation (‘+’, ‘,’, ‘∗’) in e determines the kind
of production, and the (new) labels of the children of e are the element types on the
right-hand side of the production. Moreover, we let r ′ = r , Att′ = Att and R′ = R.
Hence, it is clear that N (D) = (Ele′, Att′, P ′, R′, r ′) is a normalized DTD and can
be computed in linear time in the size of D. Note that N (D) does not introduce any
operators (‘+’, ‘,’, ‘∗’) that do not already exist in D.

Let T be an XML tree such that T |= D. We now transform T into T ′ such that
T ′ |= N (D), following closely the construction of N (D). Let m be a node in T and
children(m) denote the children of m in T . We replace m and its children with a tree
Tm rooted at m, in which the leaf nodes are children(m) (with the corresponding

 



subtrees of T attached to them), and where the internal nodes are labeled with
“new” element types in Ele′ \ Ele. More specifically, let L be the sequence of
labels of children(m). Observe that the production for the label of m in N (D) can
be treated as an extended context-free grammar, with the label of m as the start
symbol; this grammar is unambiguous by the definition of N (D). Thus, parsing L
against N (D) produces a unique parse tree Tm such that (1) the root of Tm is tagged
with the label of m, and (2) the leaf nodes of Tm from left to right have a one-to-one
correspondence to nodes in children(m). Finally, we let these leaf nodes carry the
same attributes as their corresponding nodes in children(m). This yields the desired
tree Tm . The tree T ′ can be obtained by applying the transformation above to each
node in T starting from the root. Similarly, given T ′ |= N (D), we can reverse the
process above and construct T |= D.

Note that T is embedded in T ′ via a mapping γ that identifies nodes in T with
the corresponding nodes in T ′. Obviously, γ is an injection.

We next define a rewriting function f such that for any p ∈ X , T ′ |= f (p) if
and only if T |= p. The intuition behind f (p) is that it expands p in such a way
that all new nodes in T ′ are skipped and hence f (p) only “sees” T embedded in
T ′. Consequently, f (p) will be satisfiable if and only if p is.

In order for f (p) to be able to skip new element types, we need to identify paths in
T ′ consisting of nodes having new element types as labels, that is, those in Ele′ \Ele.
These paths correspond exactly to the paths introduced by the insertion of the trees
Tm in the construction of T ′ as given above. Note that we cannot directly use the
trees Tm since we want f to be only dependent on D and not on the instance T ′.
Therefore, we use N (D) to enumerate all possible paths consisting of new element
types. Depending on X , f (p) might have to skip these new paths downwards (if
X contains downward modalities), or upwards (if X contains upward modalities).
Hence, we need two XPath expressions characterizing new downward and upward
paths. More specifically, let A ∈ Ele. Then, the production of A in N (D) can be
treated as an extended context-free grammar, with A as start symbol. We denote
by newpaths(A) the XPath expression, to be constructed below, characterizing all
paths in the parse tree of this grammar such that these paths start from A and consist
only of new element types. All such paths are then characterized by the XPath ex-
pression ∇ = ⋃

A∈Ele newpaths(A). Similarly, we denote by newpaths−1(A)
the XPath expression describing all inverse paths in the parse tree such that
these paths start from A and consist only of new element types. Again, all such
paths are characterized by the XPath expression � = ⋃

A∈Ele newpaths−1(A).
The XPath expressions newpaths(A) and newpaths−1(A) are defined in-
ductively depending on the productions in N (D). We first consider
newpaths(A).

—if P ′(A) = B1, B2 or P ′(A) = B1 + B2, then newpaths(A) = (B1/newpaths
(B1)) ∪ (B2/newpaths(B2)) in case that both B1 and B2 are new element types;
if only B1 is a new element type, then newpaths(A) = B1/newpaths(B1);
similar for the case when only B2 is a new element type;

—if P(A) = B∗, then newpaths(A) = B/newpaths(B) in case B is a new
element type.

We next define newpaths−1(A). First, we identify all element types C in Ele
such that there is a path starting from C and ending at A which solely consists

 



of new element types. Let C ⊆ Ele be this set. For each C ∈ C we define an
XPath expression invpaths(A, C), characterizing all inverse paths from A to C ,
inductively on the productions in N (D).

—if P ′(C) = B1, B2 or P ′(C) = B1 + B2, then invpaths(A, C) =(invpaths
(A, B1)[lab() = B1] ∪ invpaths(A, B2)[lab() = B2])/↑ when both B1, B2 are
new element types from which A can be reached using N (D) with B1 (respec-
tively, B2) as start symbol; the case when one or both Bi are old types, or types
that do not lead to A, can be dealt with similarly.

—if P(C) = B∗, then invpaths(A, C) = invpaths(A, B)[lab() = B]/↑ in case
that B is a new element type.

Finally, we define newpaths−1(A) = ∪C∈C invpaths(A, C). Observe that ‘∪’, ‘↑’
and label tests ‘lab() = A’ are needed to define newpaths−1(A). The expressions
newpaths(A) and newpaths−1(A) can be computed in quadratic time in the size
|D| of D.

As mentioned above, ∇ (respectively, �) is used by f (p) to skip new downward
(respectively, upward) paths when f (p) is evaluated on T ′. We now define f (p)
inductively as follows: (a) if p = ε, then f (p) = p; (b) if p = A, then f (p) = ∇/A;
(c) if p = ↓, then f (p) = ∪A∈Ele∇/A; (d) if p = ↓∗, then f (p) = ε∪∪A∈Ele↓∗/A;
(e) if p = ↑, then f (p) = ↑/�; (f) if p = ↑∗, then f (p) = ε ∪ ∪A∈Ele↑∗[lab() =
A]; (g) if p = p1/p2, then f (p) = f (p1)/ f (p2); (h) if p = p1 ∪ p2, then f (p) =
f (p1) ∪ f (p2); (i) if p = p1[q], then f (p) = f (p1)[ f (q)]; (ia) if q = p2, then
f (q) = f (p2); (ib) if q is lab() = A, then f (q) = q; (ic) if q is p2/@a op p′

2/@b,
then f (q) is f (p2)/@a op f (p′

2)/@b; (id) if q is p2/@a op ‘c’, then f (q) is
f (p2)/@a op ‘c’; (ie) if q is ¬q1, then f (q) is ¬ f (q1); similarly for q1 ∧ q2 and
q1 ∨ q2.

Since ∇ and � can be computed in O(|D|3) time, f (p) can be computed in
O(|p||D|3) time. We next verify that f is indeed a function from X to X in the
following two cases:

—X contains ‘∪’ but does not contain the upward modalities ‘↑’ and ‘↑∗’; or

—X contains ‘∪’, label tests ‘lab() = A’ and possibly contains upward modalities.

Recall that T is embedded in T ′ via an (injective) function γ . We now prove that
T ′ |= f (p)

(
γ (n), γ (n′)

)
if and only if T |= p(n, n′), by induction on the structure

of p.

—T |= ε(n, n′) iff n = n′ iff γ (n) = γ (n′) iff T ′ |= ε(γ (n), γ (n′)) (γ is an
injection);

—T |= A(n, n′) iff n′ is a child of n and n′ is labeled with A iff γ (n′) is a leaf of
Tγ (n) (as described in the construction of T ′) and γ (n′) is labeled with A iff there
exists a path in newpaths(γ (n)) ending in γ (n′) and γ (n′) is labeled with A iff
T ′ |= ∇/A(γ (n), γ (n′));

—T |= ↓(n, n′) iff n′ is a child of n iff γ (n′) is a leaf of Tγ (n) iff there exists a path
in newpaths(γ (n)) ending in γ (n′) iff T ′ |= ∪A∈Ele∇/A(γ (n), γ (n′));

—T |= ↓∗(n, n′) iff n′ is a descendant of n or n = n′ iff γ (n′) is a descendant of γ (n)
or γ (n) = γ (n′) iff T ′ |= ∪A∈Ele↓∗/A(γ (n), γ (n′)) or T ′ |= ε(γ (n), γ (n′));

 



—T |= ↑(n, n′) iff n′ is the parent of n iff γ (n) is a leaf in the tree Tγ (n′) iff there
exists a path in newpaths−1(γ (n)) ending in n′ iff T |= ∪A∈Ele�/↑[lab() =
A](γ (n), γ (n′));

—T |= ↑∗(n, n′) iff n′ is an ancestor of n or n = n′ iff γ (n′) is an ancestor of γ (n)
or γ (n) = γ (n′) iff T ′ |= ∪A∈Ele↑∗[lab = A](γ (n), γ (n′)) or T ′ |= ε(γ (n),
γ (n′));

—T |= p1/p2(n, n′) iff there exists n′′ such that T |= p1(n, n′′) and T |=
p2(n′′, n) iff (by induction hypothesis) T ′ |= f (p1)(γ (n), γ (n′′)) and T ′ |=
f (p2)(γ (n′′), γ (n′)) iff T ′ |= f (p1/p2)(γ (n), γ (n′));

—T |= (p1 ∪ p2)(n, n′) iff T |= p1(n, n′) or T |= p2(n, n′) iff (by induc-
tion) T ′ |= f (p1)(γ (n), γ (n′)) or T ′ |= f (p2)(γ (n), γ (n′)) iff T ′ |= f (p1 ∪
p2)(γ (n), γ (n′));

—T |= p1[q](n, n′) iff T |= p1(n, n′) and T |= q(n′) iff (by induction) T |=
f (p1)(γ (n), γ (n′)) and T ′ |= f (q)(γ (n′)) iff T ′ |= f (p1[q])(γ (n), γ (n′)).
Similarly one can easily verify for any qualifier q in p, T |= q(n′) iff T ′ |=
f (q)(γ (n′)), by observing the fact that γ changes neither the labels nor attributes
of nodes in T .

This completes the proof of Proposition 3.3.

Observe that in the absence of sibling axes, Proposition 3.3 also holds for un-
ordered trees. An unordered tree T satisfies a DTD if for each A element a in T , the
list of labels of the children of a is a permutation of some word in P(A), regardless
of the ordering of the labels in the list. In this paper we focus on ordered (XML)
trees.

4. Positive XPath Queries

In this section, we study satisfiability of XPath queries without negation, namely,
queries in X (↓, ↓∗, ↑, ↑∗, ∪, [ ], =), referred to as positive XPath queries. We
investigate SAT(X ) for various subclasses X of this fragment.

As observed in Benedikt et al. [2005], positive XPath queries in X (↓, ↓∗, ↑,
↑∗, ∪, [ ]) can be expressed in a fragment of positive existential first-order logic
(∃+FO) over trees, built up from unary label predicates, binary predicates child
and descendant, and closed under ∧, ∨ and ∃. A mild (two-sorted) extension of
the fragment ∃+FO can express queries in X (↓, ↓∗, ↑, ↑∗, ∪, [ ], =), by support-
ing unary attribute function, and equality and inequality on attribute values. This
fragment does not use universal quantifiers (∀).

Given this existential characterization, it is not surprising that the satisfiability
problem is in NP. However, we will find that for even limited positive languages
it is NP-hard. We start with a small fragment X (↓, ↓∗, ∪), that is, the downward
fragment without qualifiers and data values. We then investigate the impacts of
different operators on the complexity of the satisfiability analysis of positive XPath
queries, extending X (↓, ↓∗, ∪) by adding qualifiers, upward traversal, recursive
axes and data values.

4.1. DOWNWARD XPATH QUERIES WITHOUT QUALIFIERS. We first consider
X (↓, ↓∗, ∪) queries. There exists an algorithm that, given any DTD D and any

 



query p in X (↓, ↓∗, ∪), decides whether or not (p, D) is satisfiable in O(|p||D|2)
time, where |p| and |D| denote the sizes of p and D, respectively. Thus, we have:

THEOREM 4.1. SAT(X (↓, ↓∗, ∪)) is in PTIME.

In contrast, recall that the containment problem CNT(X (↓, ↓∗, ∪)) is EXPTIME-
complete [Neven and Schwentick 2006]. This shows that the satisfiability analysis
is quite different from its containment counterpart.

PROOF. We provide a decision algorithm that, given a query p in X (↓, ↓∗, ∪)
and a DTD D, decides whether or not (p, D) is satisfiable in O(|p||D|5) time. By
Proposition 3.3, we may assume that D is a normalized DTD.

Before we get to the decision algorithm, we explain the notion of DTD
graphs. Consider a normalized DTD D = (Ele, Att, P, R, r ). The DTD graph
G D = (V, E, λ) of D is a directed labeled graph rooted at r , where V = Ele ∪ Att,
and (v, w) ∈ E if w appears in P(v) or w ∈ R(v). In case there is an edge (v, w)
because w appears in P(v), we define λ(v, w) ∈ {∨, ∧, ∗} depending on what kind
of production P(v) is (disjunction, concatenation, Kleene star).

The decision algorithm employs the parse-tree representation of p. We start by
compiling the list L of all subqueries of p, topologically ordered such that p1
precedes p2 in L if p1 is a subquery of p2. For each p′ ∈ L and element type A
in D we use a variable reach(p′, A) to hold the set of all element types reachable
from A via p′ in the DTD graph G D. These variables are initially set to the empty
set ∅ and are computed based on dynamic programming. More specifically, the
algorithm works as follows:

(1) For each p′ ∈ L (in the order of L) and element type A in D, we compute
reach(p′, A) depending on the structure of p′.
(a) p′ = ε: then reach(p′, A) = {A};
(b) p′ = l: reach(p′, A) = {l} if P(A) contains l, and reach(p′, A) = ∅

otherwise;
(c) p′ = ↓: then reach(p′, A) is the set of subelement types in P(A);
(d) p′ = ↓∗: then reach(p′, A) is the set of element types in G D reachable

from A;
(e) p′ = p1 ∪ p2: then reach(p′, A) = reach(p1, A) ∪ reach(p2, A);
(f) p′ = p1/p2: then reach(p′, A) = ∪B∈reach(p1,A)reach(p2, B).

(2) Return reach(p, r ) 
= ∅, where r is the root type of D.

The algorithm iterates over all subqueries inL and all element types in Ele. Hence,
the main loop in the algorithm is executed at most O(|p||D|) times. Each step in
the loop takes at most O(|D|) time, for example, the case p′ = p1/p2. Hence, the
worst-case time complexity is O(|p||D|2). By Proposition 3.3, the normalization
step also takes O(|p||D|3) time. Moreover, the normalization step rewrites p into
an equivalent query of size O(|p||D3|) on the normalized DTD. This brings the
overall worst-case time complexity to O(|p||D|5).

We now prove the correctness of the algorithm, that is, the algorithm returns true
iff (p, D) is satisfiable. Suppose that there is a tree T |= (p, D). Then it is easy to
verify by induction on the structure of p and the semantics of XPath queries that
reach(p, r ) 
= ∅. More specifically, we show by induction that for any subquery
p′ of p and any A element n of T , if there exists a B element n′ of T such that T |=
p′(n, n′), then B ∈ reach(p′, A). As an example, consider T |= p1/p2(n, n′). Then

 



there exists a node n′′ of T such that T |= p1(n, n′′) and T |= p(n′′, n′). Let C be the
tag of n′′. By the induction hypothesis, C ∈ reach(p1, A) and B ∈ reach(p2, C).
By the processing of p1/p2 in the algorithm, we have that B ∈ reach(p′, A). All
other cases can be verified similarly.

Conversely, if the algorithm returns true, we construct an XML tree Tree(p, D)
that satisfies both p and D. More specifically, for each subquery p′ of p in L
and pairs of element types A, B in Ele, we first define a path path(p′, A, B)
in G D starting in A and ending in B such that B ∈ reach(p′, A). We then
construct Tree(p, D) using these paths. The construction of path(p′, A, B) is
computed as follows: (a) p′ = ε, then path(p′, A, B) = ε if A = B and is the
empty set ∅ otherwise; (b) p′ = l, then path(p′, A, B) = l if B ∈ reach(p′, A)
and is ∅ otherwise; (c) p′ = ↓, then path(p′, A, B) = B if B ∈ reach(p′, A)
and is ∅ otherwise; (d) p′ = ↓∗, then path(p′, A, B) is a shortest path in
G D from A to B (excluding A) if B ∈ reach(p′, A) and is ∅ otherwise;
(e) p′ = p1 ∪ p2, then path(p′, A, B) = path(p1, A, B) if path(p1, A, B) is
nonempty and path(p′, A, B) = path(p2, A, B) otherwise; and (f) p′ = p1/p2,
then path(p′, A, B) is the concatenation of path(p1, A, C) and path(p2, C, B)
if B ∈ reach(p′, A) and C ∈ reach(p1, A) such that B ∈ reach(p2, C);
path(p′, A, B) is ∅ otherwise.

Since the algorithm returns true, there must exist some B ∈ reach(p, r ) such
that path(p, r, B) is nonempty. We construct Tree(p, D) as follows. Initially,
Tree(p, D) consists of a root node labeled with r from which a chain of nodes
emanates such that the labels of the nodes in this chain are precisely path(p, r, B),
that is, the chain corresponds to path(p, r, B) from r to B in G D. Next, by using
productions of the DTD D, we expand the tree into a finite XML tree conforming
to D (we assume that all element types in D are terminating.) By the semantics of
XPath, it is easy to verify that Tree(p, D) |= p.

In contrast to Theorem 4.1, in Theorem 6.11, we shall prove that queries in
X (↓, ↓∗, ∪, [ ]) are always satisfiable in the absence of label tests and DTDs.

Obviously, this is an extreme case where the presence of DTDs complicates the
satisfiability analysis. Further complexity results for the satisfiability problem in
the absence of DTDs will be presented in Section 6.

4.2. DOWNWARD XPATH QUERIES WITH QUALIFIERS. We now study
X (↓, ↓∗, ∪, [ ]), that is, the extension of X (↓, ↓∗, ∪) by adding qualifiers. The
result below shows that adding qualifiers does make our lives harder: the satisfi-
ability problem becomes intractable, even in the absence of recursion (↓∗), and
without either disjunction (union ∪) or wildcard (↓).

PROPOSITION 4.2. The following problems are NP-hard: (1) SAT(X (↓, [ ]));
(2) SAT(X (∪, [ ])).

PROOF.
(1) We show that SAT(X (↓, [ ])) is NP-hard by reduction from the 3SAT problem.

An instance of this problem consists of a well-formed Boolean formula φ = C1 ∧
· · · ∧ Cn of which we want to decide satisfiability. The 3SAT problem is known
to be NP-complete (cf. Papadimitriou [1994]). Assume that the variables in φ are
x1, . . . , xm .

Given φ, we define a DTD D and a query XP(φ) in X (↓, [ ]) such that φ is
satisfiable iff (XP(φ), D) is satisfiable. We define the DTD D = (Ele, Att, P, R, r )

 



FIG. 1. Example encoding of a 3SAT instance φ in the proofs of Propositions 4.2 and 4.3. Left: an
XML tree conforming to the DTD defined in the reduction for X (↓, [ ]) and X (↓, ↑). Right: reduction
for X (∪, [ ]).

as follows:

Ele = {X j , Tj , Fj | j ∈ [1, m]} ∪ {Ci | i ∈ [1, n]} ∪ {r}.
P: r → X1, . . . , Xm , X j → Tj + Fj ,

Tj → C j1, . . . , C jk /* all C ji in which x j appears */
Fj → C j1, . . . , C jk . /* all C ji in which x̄ j appears */

Att = ∅, R(A) = ∅ for all A ∈ Ele.

Furthermore, we define the X (↓, [ ]) query XP(φ) = ε[↓/↓/C1 ∧ · · · ∧ ↓/↓/Cn].
An illustration of this reduction is given in Figure 1 (left). Then, there exists a
finite XML tree T such that T |= (XP(φ), D) iff φ is satisfiable. Indeed, there is a
one-to-one correspondence between XML trees T of D on the one hand, and valid
truth assignments for the xi variables in φ on the other hand. Moreover, T |= XP(φ)
iff all clauses appear as the leaf nodes of the tree T . This in turn is the case iff the
truth assignment corresponding to T makes all clauses true and hence is a solution
of the 3SAT problem.

(2) We show that SAT(X (∪, [ ])) is NP-hard by reduction from the 3SAT
problem. Given an instance φ = C1 ∧ · · · ∧ Cn of 3SAT, we define the DTD
D = (Ele, Att, P, R, r ):

Ele = {r, X, T, F}.
P: r → X , X → (X + ε), (T + F). Att = ∅, R(A) = ∅ for all A ∈ Ele.

As illustrated in Figure 1 (right), an XML tree of D consists of a chain of X
elements. Each X element has either a T or an F child, which ensures that each
variable xi has a unique truth value. Here, xi is encoded by Xi , the chain X/ · · · /X
of length i .

Furthermore, we encode φ in terms of a query XP(φ) = ε[XP(C1)∧· · ·∧XP(Cn)]
in X (∪, [ ]), where XP(Ci ) is defined as follows.

—Encoding variables: for each variable xi in φ let XP(xi ) = Xi/T and XP(x̄i ) =
Xi/F .

—Encoding clauses: For each clause C j we let XP(C j ) be C j in which each xi is
replaced by XP(xi ) and each x̄i is replaced by XP(x̄i ); e.g., if C = xi ∨ x̄ j ∨ xk ,
then XP(C) = Xi/T ∪ X j/F ∪ Xk/T . It is clear that a tree of D satisfies XP(C)
iff C is satisfiable.

 



It is easy to verify that φ is satisfiable iff there exists an XML tree T |=
(XP(φ), D).

4.3. UPWARD XPATH QUERIES WITHOUT QUALIFIERS. Alternatively we extend
X (↓, ↓∗, ∪) by allowing upward modalities. The presence of upward modalities
also complicates the satisfiability analysis: the satisfiability problem also becomes
intractable, even in the absence of recursion (↓∗, ↑∗), union (∪) and qualifiers ([ ]).

PROPOSITION 4.3. SAT(X (↓, ↑)) is NP-hard.

PROOF. We show that SAT(X (↓, ↑)) is NP-hard by reduction from the 3SAT
problem. An illustration of this reduction is depicted in Figure 1 (left). Given an
instance φ = C1 ∧ · · · ∧ Cn of 3SAT, we define the DTD D = (Ele, Att, P, R, r )
to be the same as the one used in the proof of Proposition 4.2 (1) given above.
We define the X (↓, ↑) query XP(φ) = ↓2/C1/↑3/↓2/C2/↑3/ · · · ↓2/Cn , where
↓2 = ↓/↓ and ↑3 = ↑/↑/↑. Then, it can be easily verified that there exists an
XML tree T such that T |= (XP(φ), D) iff all clauses appear as the leaf nodes of
the tree, or in other words, φ is satisfiable.

4.4. ADDING RECURSION AND DATA VALUES. For positive XPath queries with
qualifiers, the presence of recursion and data values does not increase the complexity
of the satisfiability analysis. Indeed, below we show that adding recursion and data
values does not move the problem beyond NP. In contrast, it has been shown [Neven
and Schwentick 2006; Wood 2002] that in the presence of DTDs, the containment
problem CNT(X ) is EXPTIME-hard when X is either X (↓∗, ∪) or X (↓, ↓∗, [ ]);
and it is in EXPTIME for X (↓, ↓∗, ∪, [ ]). Neither XPath’s data value equality
nor upward modalities are considered in Neven and Schwentick [2006], and Wood
[2002].

THEOREM 4.4. SAT(X (↓, ↓∗, ↑, ↑∗, ∪, [ ], =)) is in NP. Furthermore,
SAT(X ) is NP-complete for any fragment X of X (↓, ↓∗, ↑, ↑∗, ∪, [ ], =) that sup-
ports either (↓, [ ]), or (∪, [ ]), or (↓, ↑).

PROOF. We prove the NP upper bound for SAT(X (↓, ↓∗, ↑, ↑∗, ∪, [ ], =)).
Combined with the NP lower bound given in Propositions 4.2 and 4.3, this proves
NP-completeness for the fragments in the statement of the theorem.

First, observe that for any p ∈ X (↓, ↓∗, ↑, ↑∗, ∪, [ ], =) we may assume that
p does not contain ∪ or ∨. Indeed, for each occurrence of ∪ or ∨ in p, we can
guess nondeterministically one of the alternatives. So we consider p ∈ X (↓, ↓∗, ↑
, ↑∗, [ ], =). Let D be a DTD. The proof consists of the following steps. First, we
define a graph representation of p, called the skeleton Tp of p. Next, we show that
there exists a tree T such that T |= p if and only if there exists an embedding γ
of the skeleton Tp of p in T . We call γ (Tp) a witness skeleton for p in T . We then
prove the main lemma, which states that, for a tree T |= D, if there exists a witness
skeleton for p in T , then there exists a tree T ′ |= D and a witness skeleton for p in
T ′ whose depth is polynomial in the size of p and D. The proof of this lemma is
based on a short-cutting technique. Once we established the bound on the depth of
the witness skeletons for p, we can guess a candidate witness skeleton for p based
on D alone and check whether it is a real witness skeleton in PTIME.

4.4.1. Skeletons and Witnesses. For a given p, we define the skeleton Tp in-
ductively on the structure of p. A skeleton is a graph obtained by the construction

 



below, in which nodes can be either unlabeled or can have an element or attribute
label, and in which edges can be either unlabeled, or can have a label from the set
{↓, ↑, ↓∗, ↑∗, =, 
=}. Moreover, a skeleton has a unique root node, which is labeled
with r . For the purpose of defining a skeleton, we also identify a unique “exit node”
labeled with e (the exit node will be the node to which earlier computed skeletons
can be attached). The exit node can be any node in the skeleton. We define the
skeleton Tp for p as follows:

—If p = ε, then Tp = ({n}, ∅) is the skeleton consisting of a single node n labeled
with r . The exit node of Tp is n.

—If p = A, then Tp = ({n1, n2}, {(n1, n2)}) consists of two nodes and a single
edge, where n1 is labeled with r and n2 is labeled with A. The edge is labeled
with ↓, and the exit node of Tp is n2.

—If p =↓, then Tp = ({n1, n2}, {(n1, n2)}), where n1 is labeled with r and n2 is
unlabeled. The edge is labeled with ↓, and the exit node is n2.

—If p =↓∗, then Tp = ({n1, n2}, {(n1, n2)}), where n1 is labeled with r , n2 is
unlabeled and the edge is labeled with ↓∗. The exit node of Tp is n2.

—If p =↑ or p =↑∗, then the construction of Tp is similar to the ↓, ↓∗ cases but
using ↑ and ↑∗ as labels instead.

—If p = p1/p2, then Tp is obtained by identifying the root node n2 of Tp2 with
the exit node e1 of Tp1 , keeping the label of e1 while removing the label r of n2.
The root node of Tp is the root node of Tp1 and the exit node of Tp is the exit
node of Tp2 .

—If p = p1[q], then Tp is obtained by identifying the exit node e1 of Tp1 with
the root node nq of Tq , keeping the label of e1 while removing the label r of nq .
Moreover, the root node of Tp is the root node of Tp1 and the exit node of Tp is
the exit node of Tp1 .

—The skeleton for qualifiers q is defined as follows:
—If q = p′, then Tq is the skeleton Tp′ .
—If q = ‘lab() = A’, then Tq = ({n}, ∅) in which n is labeled with A. Moreover,

this node is both the root and exit node of Tq .
—If q = p1/@a op ‘c’, with op ∈ {=, 
=}, then Tq is obtained by adding an

edge (e1, n) from the exit node e1 of Tp1 , where n is labeled with @a op ’c’.
The root and exit node of Tq are both the root node of Tp1 .

—If q = p1/@a op p2/@b, with op ∈ {=, 
=}, then Tq is obtained by identify-
ing the root nodes of Tp1 and Tp2 and adding edges (e1, n1), (e2, n2), (n1, n2),
where ei is the exit node of Tpi , n1 is labeled with @a and n2 is labeled with
@b. The edge (n1, n2) is labeled with op. The root node and exit node of Tq
are the root of Tp1 .

—If q = q1 ∧ q2, then Tq is obtained by identifying the root nodes of Tq1 and
Tq2 . The root and exit node of Tq are the root node of Tq1 .

Having defined the skeleton of an XPath expression, we explain what it means to
have a witness skeleton for p in an XML tree. Let T be an XML tree and Tp be the
skeleton of p. We say that there exists a witness skeleton for p in T if there exists
a mapping γ : Tp → T satisfying the following conditions: (a) γ (r ) is the root of
T ; (b) for any node n ∈ Tp, γ (n) has the same label (if specified) as n; (c) γ (n2)
is a child of γ (n1) in T if (n1, n2) is a ↓-labeled edge in Tp; (d) γ (n2) is the parent

 



of γ (n1) in T if (n1, n2) is a ↑-labeled edge in Tp; (e) γ (n2) is a descendant in of
γ (n1) in T if (n1, n2) is an ↓∗-labeled edge in Tp; (f) γ (n2) is an ancestor of γ (n1)
in T if (n1, n2) is an ↑∗-labeled edge in Tp; (g) γ (n1) op γ (n2), with op ∈ {=, 
=},
if there is an edge between n1 and n2 labeled with op.

If such an embedding γ exists, we denote this by Tp ⊆γ T . It follows directly
from the semantics of XPath that T |= p if and only if there exists a γ such that
Tp ⊆γ T .

4.4.2. Shortcutting. Let T be a tree such that T |= D and there exists a witness
skeleton for p in T . Let γ be the embedding. Define the depth of a node in a witness
skeleton for p in T as the depth of this node in T . The depth of a witness skeleton for
p in T is the depth of the deepest node of γ (Tp) in T . We now prove the following:

LEMMA 4.5. If T |= D and there exists a witness skeleton for p in T , then
there exists a tree T ′ |= D with a witness skeleton for p in T ′ of depth bounded by
(3|p| − 1)|D|.

Assuming this lemma, we can conclude the proof of the NP upper bound. Let T
be a tree containing a witness skeleton for p. A witness skeleton for p in T induces
a subtree of T that includes all the paths from the root of T to the deepest nodes
in the witness skeleton. We call this tree a witness tree for p in T . We guess a
witness tree for p without actually generating the bigger tree T in which it resides.
The number of branches in any witness tree is bounded by the number of branches
in the skeleton (here we ignore the op-labeled edges in Tp), which is bounded by
the number of subqualifiers in p. Moreover, by Lemma 4.5, we know that it is
sufficient to look at witness skeletons (and hence witness trees) of bounded depth.
It is therefore sufficient for our nondeterministic algorithm to guess a candidate tree
witness(p, D) consisting of at most |p| branches of length at most (3|p| − 1)|D|
whose nodes are labeled with element types in D. We then need to validate that
witness(p, D) can be expanded to a tree conforming to the DTD. For this, we
check for each node n in witness(p, D) the following: Let children(n) be the list
of nodes of children of n and A be the tag of n. Then, the labels of children(n) must
be a substring satisfying the production rule of A in the DTD (recall that we assume
that D consists of terminating nodes only.) For each node in witness(p, D), this
can clearly be checked in time O(|children(n)| |D|). If all nodes in witness(p, D)
pass this test, then witness(p, D) expands to a tree conforming to D. Hence, this
test can be conducted in time O(|witness(p, D)||D|) ≤ O((3|p|2 − |p|)|D|2).

We next prove Lemma 4.5. We first introduce some notations. Let T |= D
contain a witness skeleton for p. A path 	(v1, v2) in T (starting from a node v1
and ending at a node vk) is a sequence of nodes v1, v2, . . . , vk−1, vk such that
(vi , vi+1) is an edge in T for i ∈ [1, k − 1]. For each node v in T , we define
cover(v) = {(n1, n2) | (n1, n2) is a ↓∗-labeled edge in Tp, v ∈ 	(γ (n1), γ (n2))}.

Let vk be a node in the witness skeleton for p in T with a maximal depth. Let
ρ = r, v1, . . . , vk be the path in T from the root r to vk . We can partition ρ as follows:
vi is in the same part as vi+1 iff cover(vi ) 
= ∅ and cover(vi ) = cover(vi+1). If
cover(vi ) = ∅, then vi belongs to the part {vi }. We denote by ρ0 the set of nodes v
in ρ for which cover(v) = ∅. Note that all parts of this partition consists of a path
segment in ρ.

We now show how to size down ρ and in this process change T into T ′ such that
Tp ⊆γ T ′ and T ′ still conforms to D. Repeating the sizing down process we end
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FIG. 2. Shortcut operation.

up with a tree T ′ that has a witness skeleton for p in T ′ of depth no larger than
(3|p|−1)|D|. Of course, if |ρ| ≤ (3|p|−1)|D|, we do not have to do anything. So,
suppose that |ρ| > (3|p|− 1)|D|. Let us concentrate on a part τ = vs, vs+1, . . . , vt
in the partition of ρ as defined above. There are two kinds of nodes in τ : the set of
nodes that are in the witness skeleton, denoted by by Wτ ; and nodes that are not, for
which the cover is always nonempty. We chop parts of the tree T involving nodes
not in Wτ by means of the cut operation:

shortcut(v, w, T ): Let w be a descendant of v in T , Tw be the subtree of T rooted at
w and let Tv be the subtree of T rooted at v . Then the result of shortcut(v, w, T )
is the tree obtained by replacing Tv by Tw in T , as illustrated in Figure 2.

Let vi , vi+1, . . . , vi+� be a path segment of maximal length in τ such that all
nodes are not in Wτ . Now, as long as there are more than |D| nodes between
vi and vi+�, there must be two nodes vi1 and vi2 with the same element type in
τ . We apply shortcut(vi1, vi2, T ) until no such two nodes exist anymore. After
we have done all the shortcuts between vi and vi+�, we denote the resulting tree
by T ′.

We claim that such shortcut operation does not affect the embedding γ . Clearly,
shortcutting leaves γ unchanged for witness skeleton nodes in T \ Tvi and Tvi+�

.
Also up-and-downward relations are preserved between any such nodes. We now
show that Tvi \ Tvi+�

does not contain any witness skeleton nodes and hence does
not affect γ . Indeed, suppose that there exists a node w in the witness skeleton for
p in T that is located in a subtree Tv j rooted at one of the nodes vi , vi+1, . . . , vi+�,
say v j for some i ≤ j < i + �. Then there is a chain of witness skeleton nodes
starting from the root to the witness skeleton node w such that consecutive witness
skeleton nodes in this chain are images under the embedding γ of nodes connected
by an edge in the skeleton Tp (this holds for any witness skeleton node). Then,
there must be another witness skeleton node w1 that is not in the subtree Tv j . In
other words, the path in T from w1 to w intersects τ . Assume that this intersection
is vi , vi+1, . . . , v j , v ′

j+1, . . . , w . Then, by the definition of γ , there must exist a
node w2 in the segment v ′

j+1, . . . , w such that (w1, w2) is the image under γ of a
↓∗-labeled edge e in Tp, because v j is not a witness skeleton node. From this, it
follows that cover(v j ) is different from cover(v j+1), since e is in cover(v j ) but
not in cover(v j+1). However, this contradicts the assumption that v j and v j+1 are
in the same equivalent class τ in the partition of ρ. From the argument above, it

 



follows that Tp ⊆γ T ′. Moreover, since shortcutting replaces nodes with the same
element type and attributes, one can verify that T ′ |= D.

We process each path segment of maximal length of nodes not in Wτ as described
above. Since there are at most |Wτ | + 1 such path segments, after the shortcut, τ
has length at most (|Wτ | + 1)|D|. Moreover, we can do this for each part τ in the
partition of ρ with nonempty cover and in this way obtain that, after the shortcut, ρ
itself has length at most |ρ0|+

∑
τ⊆(ρ\ρ0)(|Wτ |+1)|D| ≤ (|Wρ |+#parts(ρ\ρ0))|D|,

where ρ0 is the set of nodes in ρ that have a empty cover, Wρ is the set of witness
skeleton nodes along ρ and #parts(ρ \ ρ0) denotes the number of parts τ in the
partition of ρ with a nonempty cover.

We now prove an upper bound on #parts(ρ \ ρ0) in terms of the size of p:

LEMMA 4.6. Let Tp ⊆γ T . If p has k occurrences of ↓∗, then the partition
defined above on paths ρ in T from the root of T to a node of maximal depth in
γ (Tp) consists of at most 2k − 1 parts corresponding to nonempty covers.

PROOF. Before we prove the upper bound, we define an ordering ≤ on the set
V of ↓∗-labeled edges in Tp, or equivalently the occurrences of ↓∗ in p. Let ρ be
a path in T as specified in the lemma. Without loss of generality, we assume that
	(γ (n1), γ (n2)) ⊆ ρ for all (n1, n2) ∈ V . We then define (n1, n2) ≤ (n′

1, n′
2) if

γ (n1) appears before or at the same position as γ (n′
1) in ρ. Based on ≤, we can

define (ni
1, ni

2) as the i th edge in V .
Define coveri (v) = {(n j

1, n j
2) | v ∈ 	(γ (n j

1), γ (n j
2)), j ≤ i}. For i > 0, let ρi

be the nodes in ρ for which coveri (v) 
= ∅. For i > 0, we partition ρi similarly as
before using coveri . We denote by #parts(ρi ) the number of parts in this partition
of ρi with nonempty covers. We now show that #parts(ρi ) ≤ 2i − 1 for i ∈ [1, k]
by induction on i .

Base Case: When i = 1, clearly ρ1 = 	(γ (n1
1), γ (n1

2)) and hence #parts(ρ1) ≤ 1.

Induction Step: Suppose that #parts(ρi−1) ≤ 2(i − 1) − 1 and consider
	(γ (ni

1), γ (ni
2)). By the definition of ≤, either (1) 	(γ (ni

1), γ (ni
2)) does not intersect

ρi−1; or (2) there exists an �, 1 ≤ � < i such that 	(γ (ni
1), γ (ni

2)) intersects the path
fragment 	′ = ∪i−1

j=�	(γ (n j
1), γ (n j

2)), and this path fragment is disjoint with any

	(γ (n j
1), γ (n j

2)) for j < �. Moreover, 	(γ (ni
1), γ (ni

2)) ∩ 	(γ (n j
1), γ (n j

2)) = ∅ for
j < �. In the case (1),ρi consists ofρi−1 plus the new (disjoint) part	(γ (ni

1), γ (ni
2)).

Hence, #parts(ρi ) = #parts(ρi−1) + 1 < 2i − 1. In the case (2), we distinguish be-
tween the following cases depending on the intersection of 	(γ (ni

1), γ (ni
2)) with 	′:

—	′ ⊆ 	(γ (ni
1), γ (ni

2)): then at most one new part in ρi is created after 	′;

—	′ ⊃ 	(γ (ni
1), γ (ni

2)): then at most two parts in ρi−1 are split into two parts;

—	′ and 	(γ (ni
1), γ (ni

2)) overlap but neither one is contained in the other: then
at most one part in ρi−1 is split into two parts and at most one new part after 	′
is created.

Since all these cases introduce at most two extra parts in ρi , we have that
#parts(ρi ) ≤ #parts(ρi−1) + 2 = 2i − 1. Since ρk = ρ \ ρ0, we obtain the desired
upper bound. This concludes the proof of Lemma 4.6



To conclude the proof of Lemma 4.5, observe that Lemma 4.6 tells us that for
each path ρ, |ρ| < (|Wρ | + #parts(ρ \ ρ0))|D| < (3|p| − 1)|D|. Thus, shortcuting
these paths leads to tree T ′ that contains a witness skeleton for p of depth at most
(3|p| − 1)|D|.

5. XPath Fragments with Negation

In this section, we show that allowing negation in qualifiers makes the satisfiability
analysis different in nature. With negation, one must deal with both universal and
existential quantifiers. In contrast to positive XPath, adding data values and/or
recursion to XPath fragments with negation has an enormous effect: with recursive
axes, adding data values makes the satisfiability problem undecidable, while without
recursion there is a jump to NEXPTIME. That is, the interaction between recursion,
data values and negation is rather intricate.

Most previous work on XPath containment/satisfiability bounds [Deutsch and
Tannen 2005; Hidders 2004; Lakshmanan et al. 2004; Miklau and Suciu 2004;
Neven and Schwentick 2006; Wood 2002] has considered either no negation or re-
stricted negation. From the EXPTIME lower bounds on containment in Neven and
Schwentick [2006] and Wood [2002] plus Proposition 3.2, we get an EXPTIME
lower bound for SAT(X (↓, ↓∗, ↑, ↑∗, ∪, [ ], ¬)). Marx [2004] considers an exten-
sion of XPath that subsumes X (↓, ↓∗, ↑, ↑∗, ∪, [ ], ¬), and proves an EXPTIME
upper bound via reduction to propositional dynamic logic. We include this result
here for completeness.

We first study the impact of negation by investigating SAT(X (↓, [ ], ¬)). We
then gradually extend X (↓, [ ], ¬) by adding upward modalities, recursion, and
data values, investigating the impact of these operators on the satisfiability analysis
in the presence of negation.

5.1. NONRECURSIVE XPATH QUERIES WITH NEGATIVE QUALIFIERS. We first
consider fragments of XPath with negation but without recursion. The result below
tells us three things. First, the presence of negation makes the satisfiability analysis
PSPACE-hard (Proposition 5.1). Second, the bound is tight (Theorem 5.2). Third,
in contrast to Propositions 4.2 and 4.3 for positive XPath queries, further extending
X (↓, [ ], ¬) by allowing union (∪) and upward modality (↑) does not make the
analysis harder (Theorem 5.2). The upper-bound proof involves a radically different
techniques from those used in either the NP membership in the previous section,
or the EXPTIME bounds of Neven and Schwentick [2006] and Marx [2004].

PROPOSITION 5.1. SAT(X (↓, [ ], ¬)) is PSPACE-hard.

PROOF. We show that SAT(X (↓, [ ], ¬)) is PSPACE-hard by a reduction from
the Q3SAT problem, which is known to be PSPACE-complete (cf. Papadimitriou
[1994]).

An instance of the Q3SAT problem is a well-formed quantified Boolean sentence
φ = Q1x1 Q2x2 · · · Qm xm E , where E = C1 ∧ · · · ∧ Cn is an instance of 3SAT in
which all the propositional variables are x1, . . . , xm , and Qi ∈ {∀, ∃} for each
i ∈ [1, m]. The Q3SAT problem is to decide, given such a quantified Boolean
formula φ, whether or not φ is valid.

We next give a reduction from the Q3SAT problem to SAT(X (↓, [ ], ¬)). Given
a quantified Boolean formula φ as described above, we encode φ in terms of a
DTD D and a query XP(φ) in X (↓, [ ], ¬). More specifically, we define the DTD

 



FIG. 3. Encoding of a Q3SAT instance in the proof of Proposition 5.1. The tree T does not satisfy
XP(φ) because of the truth assignment encoded in it indicated by the gray discs. On the other hand,
T ′ satisfies XP(φ). The truth assignments making φ true can be easily read from T ′.

D = (Ele, Att, P, R, r ) as:

Ele = {X j , Tj , Fj | j ∈ [1, m]} ∪ {r}.
P: r → X1,

Xi → Ti opi Fi , /* for i ∈ [1, m], where opi = ‘,’ if Qi = ∀,
and opi = ‘+’ if Qi = ∃ */

Ti → Xi+1 /* for i ∈ [1, m − 1] */ Fi → Xi+1 /* for i ∈ [1, m − 1] */
Att = ∅, R(A) = ∅ for all A ∈ Ele.

As depicted as in Figure 3, an XML tree of D consist of multiple chains of
X1, . . . , Xm , which encode propositional variables x1, . . . , xm in E , along with
their possible truth assignments Ti , Fi for each Xi . More specifically, if the quanti-
fier Qi for xi is ∀, then the production for Xi is defined in terms of a concatenation
(Ti , Fi ); intuitively, one needs to check whether φ holds under both Ti and Fi as-
signments for xi ; if Qi is ∃, then the production for Xi is defined in terms of a
disjunction (Ti + Fi ); in this case, one needs to check whether φ holds under either
a Ti or Fi assignment for xi . Observe that the size of an XML tree of D is possibly
exponential in |D|, while |D| is linear in the size of φ.

Furthermore, we encode φ in terms of a query XP(φ) ∈ X (↓, [ ], ¬), defined
with the following qualifiers at the root.

—Encoding clauses: For each clause Ci in φ we let XP(Ci ) represent the negation
of the clause Ci . More specifically, let Ci = l1

i ∨ l2
i ∨ l3

i , where l j
i is a literal,

that is, it is either a variable xi or the negation x̄i of a variable. Then, XP(Ci )
is to code ¬l1

i ∧ ¬l2
i ∧ ¬l3

i . Without loss of generality, we may assume that the
variables of these literals are xs, xt and xu , respectively, with s < t < u. Then,
XP(Ci ) is defined as

XP(Ci ) = ↓(2s−2)/Xs/Zs/↓(2(t−s)−2)/Xt/Zt/↓(2(u−t)−2)/Xu/Zu,

where Z j = Fj if x j appears in Ci , and Z j = Tj if x̄ j appears in Ci , for j
ranging over s, t, u. Here ↓0 = ε and ↓ j = ↓ j−1/↓.

—Encoding φ: We let XP(φ) express that none of the negated clauses is satisfied
for all truth assignments encoded in an instance conforming to D. In other words,

XP(φ) = ε[¬XP(C1) ∧ · · · ∧ ¬XP(Cn)].

Figure 3 illustrates this encoding for φ = ∀x1∃x2∀x3 (x1 ∨ x̄2 ∨ x3).

 



We show that (XP(φ), D) is satisfiable by an XML tree T if and only if the
quantified Boolean formula φ is valid. Indeed, φ is satisfiable iff for any possible
truth assignment for the universally quantified variables there exists a truth assign-
ment for the remaining existentially quantified variables such that E evaluates to
true. Each such truth assignment is encoded by a sequence of Ti ’s and Fi ’s along
some branch in the tree T . Now, φ is satisfiable iff for each clause Ci in E , the
truth assignment encoded by XP(Ci ) does not appear on any branch in T (note that
XP(Ci ) encodes the negation of Ci ), which in turn is true iff ε[¬XP(Ci )] holds for
each Ci . This verifies the correctness of the reduction.

THEOREM 5.2. SAT(X ) is PSPACE-complete for any fragmentX that contains
X (↓, [ ], ¬), and is contained in X (↓, ↑, ∪, [ ], ¬).

PROOF. By Proposition 5.1, it suffices to show that SAT(X (↓, ↑, ∪, [ ], ¬))
is in PSPACE to obtain the PSPACE-completeness for the fragments specified in
the theorem. The upper bound follows directly from the more general result that
SAT(X (↓, ↑, ←, →, ←∗, →∗, ∪, [ ], ¬)) is in PSPACE (Theorem 7.4). We refer
for the proof of Theorem 7.4 to Section 7 where we consider XPath fragments with
sibling axis .

5.2. RECURSIVE XPATH QUERIES WITH NEGATIVE QUALIFIERS. We now study
the impact of recursion (↓∗, ↑∗) on the satisfiability analysis. Recall from Theo-
rem 4.4 that the presence of recursion does not make the analysis harder for positive
XPath queries. In contrast, Theorem 7(ii) of Marx [2004] implies that the addition
of recursion to X (↓, [ ], ¬) makes the problem EXPTIME-hard. The upper bound
in the same theorem implies that the bound above is tight, even when upward traver-
sal (↑, ↑∗) and union (∪) are allowed (indeed, Marx [2004] shows that this upper
bound holds even in the presence of specialized DTDs and sibling axes in queries).

THEOREM 5.3. [Marx 2004] SAT(X ) is EXPTIME-complete for any
fragment X that (1) contains X (↓, ↓∗, [ ], ¬), and (2) is contained in
X (↓, ↓∗, ↑, ↑∗, ∪, [ ], ¬).

5.3. ADDING DATA VALUES. In contrast to Theorem 4.4, which shows that the
presence of data values does not complicate the satisfiability analysis of positive
XPath queries, we next show that adding data values to fragments with negation
has an enormous impact on the analysis.

THEOREM 5.4. SAT(X (↓, ↑, ↓∗, ↑∗, ∪, [ ], =, ¬)) is undecidable.

PROOF. We prove the undecidability by reduction from the halting problem for
two-register machines, which is known to be undecidable (see, e.g., Börger et al.
[1997]).

5.3.1. Two Register Machine. A two-register machine (2RM) M has two regis-
ters register1, register2, and is programmed by a numbered sequence I0, I1, . . . , Il
of instructions. Each register contains a natural number. An instantaneous descrip-
tion (ID) of M is (i, m, n), where i ∈ [0, l], m and n are natural numbers. It
indicates that M is to execute instruction Ii (or at “state i”) with register1 and
register2 containing m and n, respectively.

An instruction Ii of M can be either an addition or a subtraction, which defines
a relation →M between IDs, described as follows:

 



FIG. 4. An XML tree of the DTD encoding a 2RM in the proof of Theorem 5.4

—addition: (i, rg, j), where rg is either register1 or register2, and 0 ≤ i, j ≤ l.
Its semantics is: at state i , M adds 1 to the content of rg, and then goes to state
j . Accordingly:

(i, m, n) →M

{
( j, m + 1, n) if rg = register1

( j, m, n + 1) otherwise
—subtraction: (i, rg, j, k), where rg is either register1 or register2, and 0 ≤

i, j, k ≤ l. Its semantics is: at state i , M tests whether the content of rg is
0, and if it is, then goes to state j ; otherwise M subtracts 1 from rg and goes to
the state k. Accordingly:

(i, m, n) →M

⎧⎪⎪⎨⎪⎪⎩
( j, 0, n) if rg = register1and m = 0
(k, m − 1, n) if rg = register1 and m 
= 0
( j, m, 0) if rg = register2 and n = 0
(k, m, n − 1) if rg = register2 and n 
= 0.

Assume, without loss of generality, that the initial ID is I = (0, 0, 0) and that
the final ID is F = ( f, 0, 0), that is, a halting state f ∈ [0, l] with zeros in both
registers. The halting problem for 2RM is to determine, given a 2RM M as described
above, whether or not I ⇒M F , where ⇒M denotes the reflexive and transitive
closure of →M .

5.3.2. Reduction. We now provide a reduction from the halting problem for
2RM to SAT(X (↓, ↑, ↓∗, ↑∗, ∪, [ ], =, ¬)). Given an instance M of 2RM as
described above, we encode M in terms of a DTD D and an XPath query
p ∈ X (↓, ↑, ↓∗, ↑∗, ∪, [ ], =, ¬).

More specifically, we define the DTD D = (Ele, Att, P, R, r ) as follows:

Ele = {r, C, R1, R2, X, Y }.
P: r → C , C → (C, R1, R2) + ε, R1 → X + ε R2 → Y + ε,

X → X + ε, Y → Y + ε.
Att = {@s, @id}, R(C) = {@s}, R(X ) = R(Y ) = {@id}.

As depicted in Figure 4, an XML tree of the DTD D consists of an unbounded chain
of C elements, coding the execution of the 2RM M starting from the first C element
on the chain. Each C element encodes an ID of M : it has an s attribute indicating
the state of the ID, and two children R1, R2 coding the contents of register1 and
register2 of the ID, respectively. More specifically, R1 has a chain of X elements,
and the length of the X -chain encodes the content of register1; to count the number
of X elements in the chain, an X.id attribute is defined for X elements, which is to
serve as a local key for the X elements on the chain; similarly for R2 and the chain
of Y elements under R2.

 



We also use the following qualifiers at the root to encode the 2RM M , expressed
in X (↓, ↑, ↓∗, ↑∗, ∪, [ ], =, ¬).

(1) Initial ID. We code the initial ID (0, 0, 0) of M by using the first C element
on the C-chain under the root r .

Qstart = C[(ε/@s = 0 ∧ R1[¬X ] ∧ R2[¬Y ])].

(2) Halting state. The final ID ( f, 0, 0) of M is expressed as

Qhalting = ↓∗/C[ε/@s = f ∧ R1[¬X ] ∧ R2[¬Y ]].

This asserts that the ID ( f, 0, 0) (i.e., a C element on the C chain under r ) can be
reached.

(3) Local key. To count the number of X (respectively, Y ) elements in an X -chain
(resp. Y -chain) under a C element, we enforce X.id to be a key for each X -chain
(respectively, Y -chain):

Qx K ey = ¬↓∗/X [ε/@id = ↓/↓∗/@id], QyK ey = ¬↓∗/Y [ε/@id = ↓/↓∗/@id].

This suffices as it asserts that the X.id of any X element is different from the X.id
of any of its X descendant (on the same chain); in other words, all the X elements
on a chain under R1 have distinct X.id values; similarly for Y elements.

(4) Transition. For each i ∈ [0, l], we code the i th instruction Ii with a qualifier
Qi , based on the type of Ii .

(Case 1: Addition). If Ii is an addition (i, rg, j), where rg = register1, then
Qi is defined to ensure that for any C element c1 with state c1.s = i , (i) the next
C element c2 on the C-chain has state c2.s = j (state change); (ii) the X -chain
of c2 has one more element than that of c1 (register1 is incremented by 1); and
moreover, (iii) the length of the Y -chain of c2 is the same as that of c1 (register2
remains unchanged). These are expressed as:

Qi = ¬↓∗/C[ε/@s = i ∧ (C/@s 
= j ∨ Q X
a ∨ QY )]

Q X
a = R1/↓/↓∗[¬(ε/@id = ↑∗[lab() = R1]/↑/C/R1/↓/↓∗[X ]/@id)]

∨ C/R1/↓/↓∗[X ∧ ¬(ε/@id = ↑∗[lab() = R1]/↑/↑/R1/↓/↓∗/@id)]
QY = R2/↓/↓∗[¬(ε/@id = ↑∗[lab() = R2]/↑/C/R2/↓/↓∗/@id)]

∨ C/R2/↓/↓∗[¬(ε/@id = ↑∗[lab() = R2]/↑/↑/R2/↓/↓∗/@id)].

Here, Qi , Q X
a and QY assert the conditions (i – iii) above, capitalizing on the local

key @id for each X (respectively, Y ) chain. Similarly, Qi , Q X
a and QY can be

defined for rg = register2.
(Case 2: Subtraction). If Ii is a subtraction (i, rg, j, k), where rg = register1,

then Qi is defined to ensure that for any C element c1 with state c1.s = i , (i) the
next C element c2 on the C-chain has state c2.s = j if c1 has no X subelement
(i.e., register1 is 0), and furthermore, c2 has no X subelement and it has the same
number of Y subelements as c1; in other words, the contents of both registers remain
unchanged; and (ii) if c1 has an X subelement (i.e., register1 
= 0), then c2 has
state c2.s = k, and moreover, the X -chain of c2 has one less element than that of c1
(register1 is decremented by 1), while the length of the Y -chain of c2 is the same

 



as that of c1 (register2 remains unchanged). These are expressed as follows:

Qi = ¬↓∗/C[ε/@s = i ∧ (Q0
s ∨ Q X

s )]

Q0
s = (R1[¬X ] ∧ (C/@s 
= j ∨ C/R1[X ] ∨ QY ))

Q X
s = (R1[X ] ∧ (C/@s 
= k

∨ R1/↓/↓∗[X ∧ ¬(ε/@id = ↑∗[lab() = R1]/↑/C/R1/↓/↓∗/@id)]
∨ C/R1/↓/↓∗[¬(ε/@id = ↑∗[lab() = R1]/↑/↑/R1/↓/↓∗[X ]/@id)]))

Here QY is the same as defined in Case 1, and Qi , Q0
s and Q X

s assert the conditions
(i–ii) above. Similarly, Qi , Q0

s and Q X
s can be defined for rg = register2. Putting

these together, we define the query p to be
ε[Qstart ∧ Qhalting ∧ QxKey ∧ QyKey ∧

∧
i∈[0,l]

Qi ].

One can verify that p is in X (↓, ↑, ↓∗, ↑∗, ∪, [ ], =, ¬) and furthermore, that
(p, D) is satisfiable iff the 2RM M halts, that is, (0, 0, 0) ⇒M ( f, 0, 0).

The good news is that not every fragment with negation and data values is
beyond reach: below we show that the satisfiability problem in the presence of data
values and negation is still decidable for nonrecursive downward queries. Unlike
the previous results, the proof uses a finite-model-theoretic construction. This and
Theorem 5.4 indicate that XPath with negation and data values is very close to the
border of decidability, and which side a particular fragment falls on depends on
syntactic restrictions on axes and qualifier constructs.

THEOREM 5.5. SAT(X (↓, ∪, [ ], =, ¬)) is in NEXPTIME.
PROOF. We show that there is a NEXPTIME algorithm that, given a query p in

X (↓, ∪, [ ], =, ¬) and a DTD D, determines whether or not (p, D) is satisfiable. It
suffices to show that if (p, D) has a model (i.e., there exists an XML tree satisfying
(p, D)), then it has a model of exponential size in |p| and |D|. For if this holds,
then a nondeterministic decision algorithm works as follows: first guess a model T
of size exponential in |p| and |D|, and then check whether T satisfies (p, D). The
latter can be done in polynomial time in |T | and |p| (cf. Gottlob et al. [2005]), and
thus the algorithm is in NEXPTIME. Note that it is not necessary to guess and check
all possible data values for attributes. The decision algorithm only needs to guess
a binary relation ‘=’ between the attribute values and between attribute values and
constants mentioned in p. Such a relation has a size bounded by O(N (T )|p|2),
where N (T ) is the number of nodes in a satisfying tree. Hence, it suffices to show
that the number of nodes in a satisfying model can be taken to be exponential in p.

Our next goal is to show this “small model property”. More specifically, we show
that if (p, D) has a model, then it has a model where the underlying tree structure
has depth bounded by |p| and the out-degree of each node is bounded by |D|+ |p|.
Observe that |p| is a bound on the “depth” of any XML tree T satisfying p – that is,
to determine whether or not T satisfies p, one only needs to look at the subtree of T
down to the level |p| from the root, because p does not have the recursive axes. As
a result, the decision algorithm only needs to guess a tree up to depth |p|. We only
need to show that the width of the tree (i.e., the maximum number of children under
each node) is bounded by l = |D|+ |p|, referred to as the bounded width property.
For if this holds, then the size of the tree is at most (2l)|p| = 2(l×|p|), exponential in
the size of the input query p and DTD D.

 



Suppose that there is an XML tree T satisfying both p and the DTD D. We find
from T a small submodel T1 with the bounded-width property. That is, we show
that T has a “small” (linear depth and linear width, hence exponential size) model
T1 of p embedded in it. To derive T1, we start with a substructure T0 of T such that
(1) the nodes in T0 are closed under ancestor; (2) T0 has the structure and attributes
inherited from T ; (3) T0 satisfies D; (4) every node in T0 has at most |D| children
in T0. This is possible since T |= D.

We now give an algorithm witness(n, T0) which will return for each node n a
set of nodes in T . We will use this algorithm to extend T0 by adding nodes. The
algorithm witness(n, T0) does the following. For every positive subquery p′ of p
that is satisfied at n in T , witness(n, T0) includes witnesses that will guarantee p′ is
satisfied by n in T0: in particular, for a qualifier of the form p1/@a op p2/@b in p
that is satisfied by n in T , we choose witnesses n1 ∈ n[[p1]], n2 ∈ n[[p2]] such that
n1.a op n2.b, and put n1, n2 and all of their ancestors that are also descendants of n
(including n itself) into witness(n, T0). For each qualifier of the form p1 satisfied
at n, we throw in n1 ∈ n[[p1]] and the ancestors of n1 that are descendants of n into
witness(n, T0). Finally, we recursively call witness(n′, T0) on all children n′ of n
in T that are either in witness(n, T0) or in T0. From witness(n, T0), we construct an
XML tree that consist of all the top-level witnesses and the union of the witnesses
returned by the recursive calls. Note that the top-level call to witness(n, T0) adds at
most |p| children of n into the output set, since every witness of a positive qualifier
generates at most one child of n in the output. Since the top-level call returns only
n and descendants of n into the output, the recursive calls on children of n will not
themselves add any new children of n to the output. Hence, witness(n, T0) returns
a set of nodes of T that includes at most |p| children of n.

Let T1 be the result of adding to T0 all nodes in witness(root(T ), T0). Note
that T1 has the tree and attribute structure inherited from T . Since T0 satisfies D,
T satisfies D, and T1 was obtained by expanding T0 within T , T1 still satisfies
D (recall that D is assumed to be normalized). Since witness(n, T0) is closed
under ancestor, the result is a valid XML tree, and by the observation above about
witness(n, T0) the width of T1 is at most |D| + |p|. Note that T1 has the property
that if n ∈ T1, witness(n, T0) is a subset of T1.

We now show that for every n ∈ T1, for every qualifier q that is a subexpression
of p, n satisfies q in T1 iff n satisfies q in T . The proof is by induction on q. Since
this is an “iff”, the negation step is immediate, as are the other Boolean connectives.
Suppose q is of the form p1/@a op p2/@b. If n ∈ T1 satisfies q in T , then there
are n1, n2 ∈ T1 such that T |= n1 ∈ n[[p1]], T |= n2 ∈ n[[p2]], and n1.a op n2.b.
But by induction, T1 |= n1 ∈ n[[p1]], T1 |= n2 ∈ n[[p2]], and hence n satisfies q in
T1. If n satisfies q in T1, then there are n1, n2 ∈ T1 such that T1 |= n1 ∈ n[[p1]],
T1 |= n2 ∈ n[[p2]], and n1.a op n2.b. But since T1 is a substructure of T we have
n1, n2 ∈ T , and we have T |= n1 ∈ n[[p1]] and T |= n2 ∈ n[[p2]] by induction.
Hence n satisfies q in T . The case of qualifiers of the form p1 is similar. Applying
this equivalence to a top-level filter and n the root of T , we see that (T, root(T )) |= p
iff (T1, root(T )) |= p.

While the decidability of the satisfiability problem remains open if the upward
axis ↑ is further added, we next show that the “hardness” increases compared to
the fragment without data equality. Contrast the result below with Proposition 5.1.

THEOREM 5.6. SAT(X (↑, [ ], =, ¬)) is EXPTIME-hard,

 



PROOF. We prove this by reduction from the two-player game of corridor tiling
(TPG-CT), which is EXPTIME-complete [Chlebus 1986]. Our reduction below
was inspired by Neven and Schwentick [2006], which establishes the lower bound
for the containment problem for X (↓, ↓∗, [ ]). The TPG-CT problem can be stated
as follows.

5.3.3. TPG-CT. An instance of TPG-CT consists of a tiling system (X, H, V,

�t, �b) and a natural number n, where X is a finite set of dominoes (tiles), H, V ⊆
X × X are two binary relations, �t and �b are two n-vectors of given tiles in X , and n
is the number of columns (the width of the corridor). It is to determine whether or
not player I has a winning strategy for tiling the corridor. By tiling the corridor we
mean that there exists a tiling τ : IN × IN → X and a natural number m such that
for all x ∈ [1, n] and y ∈ [1, m], the tiling adjacency conditions are observed, that
is,

—if τ (x, y) = d and τ (x + 1, y) = d ′, then (d, d ′) ∈ H ;
—if τ (x, y) = d and τ (x, y + 1) = d ′, then (d, d ′) ∈ V ;

—τ (x, 1) = �t[x] and τ (x, m) = �b[x], where �t[x] (respectively, �b[x]) denotes the
x th element of the vector �t (respectively, �b); that is, the given tiles of �t and �b are
placed in the top and bottom rows, respectively.

Player I and Player II in turn place a tile from X in the first free location (row
by row from left to right), observing the tiling adjacency conditions. The one who
is unable to make the next move loses the game. Player II may also decide to end
the game and check the tiling adjacency conditions at the bottom row. The given
tiles �t and �b are placed in the top and bottom rows by the referee of the game. The
problem is EXPTIME-complete even when n is even [Chlebus 1986], and thus below
we assume that n is even.

5.3.4. Reduction. Given an instance, (X, H, V,�t, �b) and n, of TPG-CT, we
define a DTD D0 and a query Q in X (↑, [ ], =, ¬) such that there exists an XML
tree T satisfying (Q, D0) if and only if Player I has a winning strategy for the game.
Let X = {x1, . . . , xk}. To simplify the presentation, we use disjunction in the coding
query Q; this does not lose generality since disjunction can be easily eliminated by
using negation and conjunction. We assume without loss of generality that Player
I moves first.

We define a nonrecursive and disjunction-free DTD D0 = (Ele, Att, P, R, r ),
where

Ele = {r, C}.
P: r → C∗, C → ε.
Att = {@h, @k, @next} ∪ {@ti | i ∈ [1, n]}, R: R(C) = Att, R(r ) = ∅.

An XML tree of D0 consists merely of a root node and its C children. Each C
element v codes a snapshot of the game showing the last n plays, where n is the
length of a row in the corridor. The attributes are used as follows: (1) v .h codes
the horizontal position of the last tile v .tn in a row, (2) v .ti represents a tile in X
placed by a player, (3) v .k and v .next encode a list of such snapshots: v .k is the
“identifier” of the current snapshot, while v .next is a pointer to the next one. (See
Figure 5.)

 



FIG. 5. Encoding of a TPG-CT instance in the proof of Theorem 5.6, with n = 3 (the number of
tiles in a row).

We use qualifiers in X (↑, ∪, [ ], =, ¬) to encode the following:
The Ranges of Attribute Values. The range of attribute h is [1, n], and the range of
attribute ti is X . This is expressed as a qualifier Q(h,t) as follows:

Q(h,t) = ¬
(

C

[ ∧
i∈[1,n]

(ε/@h 
= i) ∨
∨

i∈[1,n]

∧
j∈[1,k]

(ε/@ti 
= x j )

])
.

Key. For any nodes v and v ′, if they have the same value for attribute k, then they
must have the same values for attributes ti and h. We state this as a qualifier Qu as
follows.

Qu = ¬
(

C

[ ∨
i∈[1,n]

(ε/@h = i ∧ ε/@k = ↑/C[ε/@h 
= i]/@k)

∨
∨

i∈[1,n]

∨
j∈[1,k]

(ε/@ti = x j ∧ ε/@k = ↑/C[ε/@ti 
= x j ]/@k)

])
.

Consistency of Successor. For any nodes v and v ′, if v .next = v ′.k, then they must
satisfy the following: (1) if v .h = n, then v ′.h = 1; (2) if v .h = l < n, then
v ′.h = l + 1; and (3) v .ti = v ′.ti−1 for 2 ≤ i ≤ n. We state this as a qualifier Qs as
follows.

Qs = ¬
(

C
[

(ε/@h = n ∧ ε/@next = ↑/C[ε/@h 
= 1]/@k)

∨
∨

i∈[1,n−1]

(ε/@h = i ∧ ε/@next = ↑/C[ε/@h 
= i + 1]/@k)

∨
∨

i∈[2,n]

∨
j∈[1,k]

(ε/@ti = x j ∧ ε/@next = ↑/C[ε/@ti−1 
= x j ]/@k)

])
.

Initial Values. There is a C node v with v .h = n such that its attributes v .t1, . . . , v .tn
match the initial top tiles �t . This is stated as follows:

Q0 = C

[ ∧
i∈[1,n]

(ε/@ti = �t[i])
]

.

Adjacency Constraints. For any nodes v and v ′, if v .next = v ′.k, then they must
satisfy the vertical tiling constraint: (v .t1, v ′.tn) ∈ V . Moreover, any node v must
satisfy the horizontal constraint: (v .ti , v .ti+1) ∈ H for all i ∈ [1, n −1]. We express
this as Qc:

 



Qc = ¬C

[ ∧
(x,x ′)∈V

(ε/@t1 = x ∧ ε/@next = ↑/C[ε/@tn 
= x ′]/@k) ∨( ∨
i∈[1,n−1]

∧
(x,x ′)∈H

(ε/@ti = x ∧ ε/@ti1 
= x ′)

)]
.

Play Continues unless Player I Has Won. For any node v , if v .h < n, then there is
some v ′ with v ′.k = v .next. If v .h = n and if the bottom vector �b is not matched,
that is, for some i ∈ [1, n], v .ti 
= �b[i], then there is some v ′ with v ′.k = v .next.
We express this as Q p:

Q p = ¬C

[ ∨
i∈[1,n−1]

(ε/@h = i ∧ ¬(ε/@next = ↑/C/@k))

∨
(

ε/@h = n ∧
∨

i∈[1,n−1]

(ε/@ti 
= �b[i]) ∧ ¬(ε/@next = ↑/C/@k)

)]
.

Player I Has to Respond to All Possible Moves of Player II. For any node v , if v .h
is odd, that is, the last move v .tn was made by Player I, then for any tile x ∈ X such
that it satisfies the horizontal constraint (v .tn, x) ∈ H and the vertical constraint
(v .t1, x) ∈ V , there is some node v ′ with v .next = v ′.k and v ′.t1 = x . That is, all
possible moves of Player II have to be considered. We encode this in terms of a
qualifier Q∀. Let Nodd be the set of odd natural numbers in [1, n].

Q∀ = ¬C

⎡⎣ ∨
i∈Nodd

(ε/@h = i ∧
∨

j∈[1,k]

⎛⎝ ∨
(x,x j )∈H

ε/@tn = x

⎞⎠
∧

⎛⎝ ∨
(x,x j )∈V

ε/@t1 = x

⎞⎠ ∧ ¬(ε/@next = ↑/C[ε/@t1 = x j ]/@k))

⎤⎦ .

Putting these together, the coding of the TPG-CT instance consists of the DTD D0
and theX (↑, ∪, [ ], =, ¬)-query Q = ε[Q(h,t) ∧ Qu ∧ Qs ∧ Q0 ∧ Qc ∧ Q p ∧ Q∀].

We now verify that Player I has a winning strategy if and only there is an XML
tree T such that T |= (Q, D0). First, suppose that T is an XML tree satisfying the
above. We give a wining strategy for Player I. Player I begins with the node given
by the initial value qualifier Q0. At any point i in the game, Player I has a node
vi in T that is inductively assumed to represent the last n moves of the play thus
far. If Player II plays a tile x j as the next move, the qualifier Q∀ gets a node v ′
with v ′.k = vi .next and v ′.t1 = x j . By the qualifiers Qu, Qs and Qc, v ′ satisfies
the horizontal and vertical constraints, and it also correctly updates the last n tiles
played. Then, the qualifier Q p gets a node v ′′, which corresponds to a move by
Player I. Again by the qualifiers Qu, Qc, Qs , v ′′ is a valid response. Conversely, if
Player I has a winning strategy, we can form an XML tree whose nodes consist of
all valid plays in any game, where each node codes the horizontal position of the
last move in a row and the last n tiles played in the game. It is easy to confirm that
this satisfies the query Q above and the XML tree conforms to the DTD D0.



5.4. CONTAINMENT ANALYSIS IN THE PRESENCE OF NEGATION. The results
above, along with Proposition 3.2, give us complexity bounds for the containment
problem for XPath fragments with negation in the presence of DTDs.

COROLLARY 5.7. For the containment problem CNT(X ) in the presence of
DTDs,

(1) CNT(X (↓, [ ], ¬)) is PSPACE-hard;
(2) CNT(X (↓, ↑, ∪, [ ], ¬)) is PSPACE-complete;
(3) CNT(X (↓, ↓∗, [ ], ¬)) is EXPTIME-hard;
(4) CNT(X (↓, ↓∗, ↑, ↑∗, ∪, [ ], ¬)) is EXPTIME-complete;
(5) CNT(X (↓, ↑, ∪, [ ], =, ¬)) is EXPTIME-hard;
(6) CNT(X (↓, ∪, [ ], =, ¬)) is in coNEXPTIME;
(7) CNT(X (↓, ↑, ↓∗, ↑∗, ∪, [ ], =, ¬)) is undecidable.

6. Satisfiability Analysis under Restricted DTDs

The hardness results in the previous section leave open the possibility that feasi-
ble algorithms exist for restricted DTDs that may occur often in practice. We thus
investigate whether or not restricted DTDs simplify the analysis of XPath satisfi-
ability. More specifically, we study SAT(X ) for a variety of XPath fragments X
in the following four settings: (1) when DTDs are non-recursive; (2) when DTDs
are fixed; (3) when DTDs are disjunction-free; and (4) in the absence of DTDs,
which, as shown by Proposition 3.1, is reducible to a special case of SAT(X ). We
show that for some restricted DTDs and some fragments X , SAT(X ) has lower
complexity. Note that the upper bounds for SAT(X ) also hold for the restricted
analysis: if SAT(X ) is in a complexity class K, then the satisfiability analysis is
also in K under restricted DTDs.

6.1. NONRECURSIVE DTDS. A nonrecursive DTD D has the property that for
any XML tree T conforming to D, the depth of T , that is, the length of the
longest path from the root to a leaf of T , is bounded by |D|. This simplifies
the analysis of XPath queries with recursive axes (↓∗, ↑∗). Specifically, for any
X (↓, ↓∗, ∪, . . . ), that is, a fragment with ↓, recursion ↓∗, union ∪ and possibly other
operators, SAT(X (↓, ↓∗, ∪, . . . )) and SAT(X (↓, ∪, . . . )) are cubic-time equiva-
lent under nonrecursive DTDs, where X (↓, ∪, . . . ) denotes the same fragment
without ↓∗. Indeed, there is a cubic-time reduction from SAT(X (↓, ↓∗, ∪, . . . )) to
SAT(X (↓, ∪, . . . )). Intuitively, given a nonrecursive DTD D, one can eliminate
recursion in a query by replacing ↓∗ with (ε ∪↓∪· · ·∪↓|D|), where ↓n abbreviates
the n-fold concatenation of ↓; similarly for X (↑, ↑∗, ∪, . . . ), that is, a fragment
with ↑, ↑∗, ∪ and other operators. This is stated below.

PROPOSITION 6.1. Under nonrecursive DTDs, the following problems are
cubic-time equivalent:

(1) SAT(X (↓, ↓∗, ∪, . . . )), SAT(X (↓, ∪, . . . ));
(2) SAT(X (↑, ↑∗, ∪, . . . )), SAT(X (↑, ∪, . . . ));
(3) SAT(X (↓, ↓∗, ↑, ↑∗, ∪, . . . )), SAT(X (↓, ↑, ∪, . . . ));

whereX (↓, ↑, ∪, . . . ) supports the same set of operators asX (↓, ↓∗, ↑, ↑∗, ∪, . . . )
except ↓∗, ↑∗; similarly for X (↓, ∪, . . . ) and X (↑, ∪, . . . ).

 



PROOF. We prove that under non-recursive DTDs, SAT(X (↓, ↓∗, ↑, ↑∗,
∪, . . . )) and SAT(X (↓, ↑, ∪, . . . )) are cubic-time equivalent; the other statements
of the proposition can be verified similarly.

Given any nonrecursive DTD D and any query p ∈ X (↓, ↓∗, ↑, ↑∗, ∪, . . . ), we
rewrite p to p′ ∈ X (↓, ↑, ∪, . . . ) by replacing each occurrence of ↓∗ in p with
(ε∪↓∪· · ·∪↓|D|), and each occurrence of ↑∗ with (ε∪↑∪. . .∪↑|D|). One can easily
verify that over any XML tree T of D, p and p′ are equivalent, i.e., r [[p]] = r [[p′]],
where r is the root of T . Indeed, since the depth of T is bounded by |D|, the
equivalence can be verified by a straightforward induction on the structure of p.
Moreover, the rewriting takes at most O(|p||D|2) time.

From the proposition it follows that the EXPTIME problem of Theorem 5.3
collapses to PSPACE (Theorem 5.2), and that SAT(X (↓, ↓∗, ∪, [ ], =, ¬)) is now
known to be decidable (Theorem 5.5) under nonrecursive DTDs.

COROLLARY 6.2. Under nonrecursive DTDs,

(1) SAT(X (↓, ↓∗, ↑, ↑∗, ∪, [ ], ¬)) is in PSPACE, and
(2) SAT(X (↓, ↓∗, ∪, [ ], =, ¬)) is in NEXPTIME.

They are equivalent to SAT(X (↓, ↑, ∪, [ ], ¬)) and SAT(X (↓, ∪, [ ], =, ¬)), re-
spectively.

One might be tempted to think that nonrecursive DTDs might also lower the
NP, PSPACE and EXPTIME lower bounds given earlier. However, the proofs of
Propositions 4.2, 4.3, Theorem 5.2 and Theorem 5.6 all utilize nonrecursive DTDs.
Hence:

COROLLARY 6.3. Under nonrecursive DTDs,

(1) SAT(X (↓, [ ])), SAT(X (∪, [ ])) and SAT(X (↓, ↑)) are NP-hard;
(2) SAT(X (↓, [ ], ¬)) is PSPACE-hard.
(3) SAT(X (↑, ∪, [ ], =, ¬)) is EXPTIME-hard.

6.2. FIXED DTDS. Under fixed DTDs, the satisfiability problem SAT(X ) is
to determine, given any query p ∈ X , whether or not there exists an XML tree
T that satisfies both p and a fixed DTD D0. Here, D0 is not an input, but is
predefined. Together with other restrictions, fixed DTDs may simplify the analysis
of SAT(X ). For example, the observation below contrasts with the EXPTIME
hardness in Theorem 5.3.

PROPOSITION 6.4. SAT(X (↓, ↓∗, ↑, ↑∗, ∪, [ ], ¬)) is in PTIME under fixed,
nonrecursive DTDs. Furthermore, SAT(X (↓, ↓∗, ↑, ↑∗, ∪, [ ], =, ¬)) is in PTIME
if the nonrecursive DTDs do not contain Kleene star.

PROOF. First, note that if the fixed nonrecursive DTD D does not have Kleene
star in it, there are at most |D|(|D||D|)

many tree instances of D, each bounded by
|D||D| in size. But |D|(|D||D|)

and |D||D| are constants when D is fixed. Thus, a simple
algorithm to check the satisfiability of a query p inX (↓, ↓∗, ↑, ↑∗, ∪, [ ], =, ¬) is to
evaluate p over each instance of D. Over each instance, a query p can be evaluated
in PTIME in |p| [Gottlob et al. 2005], since |D||D| is a constant. Thus, the algorithm
decides in PTIME whether or not p is satisfiable by any instance of D, and hence

 



whether or not (p, D) is satisfiable. In particular, for X (↓, ↓∗, ↑, ↑∗, ∪, [ ], ¬), it
is in linear time [Gottlob et al. 2005].

We now show that SAT(X (↓, ↓∗, ↑, ↑∗, ∪, [ ], ¬)) is in PTIME over fixed
nonrecursive DTDs. To do this, we show that given a (without loss of general-
ity normalized) fixed nonrecursive DTD D, there is a nonrecursive DTD D′ such
that D′ does not use Kleene star, it has the same root tag as D and moreover, for
any query p ∈ X (↓, ↓∗, ↑, ↑∗, ∪, [ ], ¬), (p, D) is satisfiable if and only if (p, D′)
is satisfiable. The result now follows from the special case above.

We say that two trees T1 and T2 are D-equivalent if they agree on all queries in
X (↓, ↓∗, ↑, ↑∗, ∪, [ ], ¬) that mention only element types and attributes of D. We
claim:

CLAIM 6.5. There is an integer function g(n) such that for any tree T1 con-
forming to a nonrecursive DTD D of size n, there is a tree T2 such that T2 conforms
to D, it is D-equivalent to T1, and moreover, every node in T2 has at most g(n)
children.

This claim suffices. For if it holds, we can proceed to transform D to to a DTD D′
which does not contain Kleene star, by replacing productions of the form A → B∗
with A → (ε + B + · · · + Bg(n)), where Bi abbreviates the i-fold concatenation of
B. Since n is a constant, so is g(n). Then, for any p in X (↓, ↓∗, ↑, ↑∗, ∪, [ ], ¬),
(p, D) is satisfiable if and only if there exists a tree T2 as described in the claim
that satisfies p if and only if (p, D′) is satisfiable.

We prove Claim 6.5 by induction on n. Let k be the depth of D (i.e, the size
of the longest path in the DTD graph of D starting from the root element type).
If D has only a root, then this is clear. The induction case is also straightforward
when the root production is not of the form r → B∗. So we consider the case
when D has a root production of the above form. Let D(r ) be the DTD obtained
by removing r and setting B as the root. Note that |D(r )| ≤ n − 1, that is, the size
of D(r ) ≤ n − 1. Let m be the number of isomorphism types of trees with depth
k − 1, with only attributes mentioned in D and branching at most g(n − 1). We set
g(n) = max{m, g(n −1)}. Now given T1 conforming to D, we classify the subtrees
of the root according to D(r )-equivalence. We transform T1 to T2 by keeping at
most one subtree in each D(r )-equivalence class, and for any such representative
subtree we replace it by a D(r )-equivalent one with branching at most g(n − 1).
Clearly, T2 has the required branching. One can now easily show that T2 is indeed
D-equivalent to T1.

Unfortunately, fixed DTDs do not make our lives much easier: all the fragments
studied in Propositions 4.2 and 4.3 remain intractable under fixed DTDs. These
results require more involved encoding arguments than the ones given in Section 4,
since the former relied heavily on varying DTDs.

THEOREM 6.6. Under fixed DTDs, the following satisfiability problems are
NP-hard: (1) SAT(X (∪, [ ])), (2) SAT(X (↓, [ ])), and (3) SAT(X (↓, ↑)).

PROOF. We prove these by reduction from 3SAT. Consider an instance φ =
C1∧· · ·∧Cn of 3SAT, and assume that x1, . . . , xm are all the propositional variables
used in φ.

 



FIG. 6. A tree of the DTD encoding a 3SAT instance in the proof of case (2) in Theorem 6.7. The
gray discs indicate which clauses are satisfied; in the rightmost branch both clauses are satisfied.

1. SAT(X (∪, [ ])) is NP-hard. We first define the fixed DTD D0 = (Ele, Att,
P, R, r ):

Ele = {X, T, F} ∪ {r}.
P: r → X , X → (X + ε), (T + F).
Att = ∅, R(A) = ∅ for all A ∈ Ele.

An XML tree of D0 consists of a chain of X elements. The i-fold concatenation
X/ · · · /X of X starting from the root, denoted by Xi , encodes variable xi . Each
X element has either a T or F child, which encodes a unique truth value of the
corresponding variable xi . Note that D0 is independent of φ.

We then encode the 3SAT instance φ in terms of a query XP(φ) ∈ X (∪, [ ]),
defined with the following qualifiers at the root.

—Encoding variables: For each variable xi in φ, let XP(xi ) = Xi/T and XP(x̄i ) =
Xi/F .

—Encoding clauses: For each clause C j we let XP(C j ) be C j in which each xi
is replaced by XP(xi ) and each x̄i is replaced by XP(x̄i ). For example, if C =
xi ∨ x̄ j ∨ xk , then XP(C) = Xi/T ∪ X j/F ∪ Xk/T .

Finally, we use XP(φ) = [XP(C1) ∧ · · · ∧ XP(Cn)] to encode φ, which simply
checks whether all qualifiers XP(C j ), j ∈ [1, n], are satisfiable.

It is easy to verify that a tree T of D0 satisfies XP(C) iff the clause C is satisfiable,
and furthermore, that φ is satisfiable if and only if there exists an XML tree T |=
(XP(φ), D0).

2. SAT(X (↓, [ ])) is NP-hard. Consider a fixed DTD D1 = (Ele, Att, P, R, r ) de-
fined as:

Ele = {r, X, L , C, T, F, TC , FC , Ex , Ec}.
P: r → X + Ex , X → L , (X + Ex ), L → L + (T, F), C → (TC + FC ), (C + Ec),

T → C , F → C , Ex → ε, Ec → ε,
TC → ε, FC → ε.

Att = ∅, R = ∅.

As shown in Figure 6, an XML tree of D1 consists of a chain of X elements. Below
each X element is a chain of L elements, which may end with T and F children;
and below each T and each F is a chain of C elements, while each C element may
have either a TC or a FC child. The elements Ex , Ec indicate the end of the X and
C chains, respectively. Note that D1 is independent of φ.

 



We encode the 3SAT instance φ in terms of a query XP(φ) in X (↓, [ ]), defined
with the following qualifiers at the root.

—Encoding variables: qv = Xm[Ex ]. This asserts that the X chain consists of
precisely m elements of type X . We use X j to encode the variable x j in φ.

—Coding the connection between clauses and literals:

qc =
∧

i∈[1,n], j∈[1,m]

(
qT

i, j ∧ q F
i, j

)
,

where qT
i, j , q F

i, j are defined as follows:

qT
i, j =

{
X j/Lm− j+1/T/Ci/TC if x j appears in Ci

X j/Lm− j+1/T/Ci/FC otherwise

q F
i, j =

{
X j/Lm− j+1/F/Ci/TC if x̄ j appears in Ci

X j/Lm− j+1/F/Ci/FC otherwise

That is, we encode the clause Ci in terms of Ci under T and F of each X , where
Ci is a shorthand for C/ . . . /C of length i . For each variable x j (i.e., X j ), if x j

appears (positively) in Ci , then qT
i, j ensures that Ci under T has a TC child, that

is, Ci is satisfied if x j is true; if x j does not appear in Ci , then Ci under T has
a FC child; similarly, q F

i, j encodes the connection between x̄ j (i.e., x j appears
negatively) and Ci .

Observe that the qualifiers assert that below X j , the L chain is of length
m − j + 1. That is, each L chain must end up having T and F children after
going downward m − j + 1 times following L . Intuitively, the distance from the
root to the truth assignment of the X element coding x j (i.e., X j ) is precisely
m + 2. As a result, the distance between the root and each Ci clause (i.e., Ci ) is
precisely m + i + 2, no matter under which x j (i.e., X j ) the Ci element appears.

—Coding a consistent truth assignment:

qa =
∧

j∈[1,m]

(X j [Lm− j+1/↓/Cn/Ec ∧ Lm− j+1/↓/Cn+1/Ec]).

We encode x j (i.e., X j ) such that it is assigned true if the C chain under the T
child of X j has precisely n elements of C type; similarly, x j is false if the C
chain under the F child of X j has n elements of C type. The qualifier qa asserts
that for each x j there is a single truth value, that is, only one of the C chains
under X j has n elements of type C .

—Encoding clauses:

qφ =
∧

i∈[1,n]

↓m/L/↓/Ci [TC ∧ Cn−i/Ec].

This asserts that any clause Ci (e.g., C j ) must be satisfied by a truth assignment
of some x j , no matter what x j is.

Taken together, the query XP(φ) is defined to be ε[qv ∧ qc ∧ qa ∧ qφ]. One
can easily verify that XP(φ) is in SAT(X (↓, [ ])) and furthermore, that XP(φ) is
satisfiable by an XML tree of the fixed DTD D1 iff φ is satisfiable.

3. SAT(X (↓, ↑)) is NP-hard. It has been shown in Benedikt et al. [2005] that for
each query p in X (↓, [ ]), if p does not contain label test (lab() = A), then it can

 



be rewritten into a query rewrite(p) in X (↓, ↑) such that for any XML tree T ,
T |= p iff T |= rewrite(p). Observe that the query XP(φ) used in the NP-hardness
proof of Case (2) above does not contain any label test. Thus, it can be rewritten
into an equivalent query in X (↓, ↑). As an immediate result, the same fixed DTD
used in Case (2) and the rewritten query in X (↓, ↑) yield a reduction from 3SAT
to SAT(X (↓, ↑)).

More specifically, there is a linear-time function rewrite(p) transforming queries
(without label test) in X (↓, [ ]) into an equivalent query in X (↓, ↑). The rewriting
is conducted inductively on the structure of p, using the following rules.

(1) rewrite(η) = η, when η is A, ↓ or ε.
(2) rewrite(p1/p2) = rewrite(p1)/rewrite(p2).
(3) rewrite(p1[q]) = rewrite(p1)/rewrite([q]).
(4) rewrite([ε]) = ε.
(5) rewrite([η]) = η/↑, when η is A or ↓.
(6) rewrite([p1/p2]) = rewrite([p1])/rewrite([p2]).
(7) rewrite([q1 ∧ q2) = rewrite([q1])/rewrite([q2]).

This rewriting takes O(|p|) time. By means of rewrite one can transform the query
XP(φ) used in the proof of Case (2) into an equivalent query rewrite(XP(φ)) in
X (↓, ↑).

The next result shows that the PSPACE (Theorem 5.2) and the EXPTIME (The-
orems 5.3, 5.6) lower bounds remain intact under fixed DTDs; and worse still, so
does the undecidability (Theorem 5.4).

THEOREM 6.7. Under fixed DTDs,

(1) SAT(X (↓, [ ], ¬)) is PSPACE-hard;
(2) SAT(X (↓, ↓∗, [ ], ¬)) is EXPTIME-hard;
(3) SAT(X (↑, [ ], =, ¬)) is EXPTIME-hard;
(4) SAT(X (↓, ↑, ↓∗, ↑∗, ∪, [ ], =, ¬)) is undecidable.

PROOF. We prove these results by reduction from 3QSAT, the two player cor-
ridor tiling game and the halting problem for two-register machines, respectively.

1. SAT(X (↓, [ ], ¬)) is PSPACE-hard. We prove this by reduction from Q3SAT.
We define the fixed DTD D0 = (Ele, Att, P, R, r ) as follows:

Ele = {X, T, F}.
P: r → X , X → T ∗, F∗, T → X , F → X .
Att = ∅, R(A) = ∅ for all A ∈ Ele.

Compared to the DTD defined in the proof of Proposition 5.1, in the DTD D0 (a) we
encode the variable xi by means of ↓2(i−1)/X ; and (b) we encode the universal and
existential quantifications uniformly in terms of T ∗, F∗, instead of T, F (universal)
and T + F (existential) as in the proof of Proposition 5.1; as will be seen shortly,
we use XPath qualifiers to distinguish between the two cases.

Consider an instance of the Q3SAT problem, that is, a quantified Boolean sen-
tence φ = Q1x1 Q2x2 · · · Qm xmφ, where φ = C1 ∧ · · ·∧Cn is an instance of 3SAT
and each Qi ∈ {∀, ∃}. We use the following qualifiers to encode φ.

 



FIG. 7. An XML tree of the DTD encoding of TPG-CT in the proof of Theorem 6.7(2). Dashed
lines represent that the vertical conditions are satisfied.

—Encoding the quantifiers: For each quantifier Qi xi , we define a qualifier qi en-
suring that all X elements reached by ↓2(i−1)/X have both T and F children if
Qi = ∀. That is,

qi = ¬↓2(i−1)/X [¬(T ∧ F)].
Similarly, in case Qi = ∃, we use qi to ensure that ↓2(i−1)/X has either T or F
child:

qi = ¬↓2(i−1)/X [T ∧ F].
—Encoding the clauses: For each clause C j = l1

j ∨ l2
j ∨ l3

j , where li
j is a literal, that

is, it is either a variable xs or the negation x̄s of a variable, we define XP(C j ) to
encode the negation of C j , that is, ¬l1

j ∧ ¬l2
j ∧ ¬l3

j . Without loss of generality,
we may assume that the variables of the literals are xs , xt and xu with s < t < u.
Then

XP(C j ) = ↓2s−2/X/Zs/↓2(t−s)−2/X/Zt/↓2(u−t)−2/X/Zu,

where Zi = F if xi appears in C j and Zi = T if x̄i appears in C j , when
i ∈ {s, t, u}.

Finally, we express that none of the negated clauses is satisfied

XP(φ) = ε

[ ∧
j∈[1,n]

¬XP(C j ) ∧
∧

i∈[1,m]

qi

]
.

It is easy to verify that φ is satisfiable if and only if XP(φ) is satisfiable over the
fixed D0.

2. SAT(X (↓, ↓∗, [ ], ¬)) is EXPTIME-hard. We show this by a reduction to TPG-
CT (Two-Player Game of Corridor Tiling), where TPG-CT is stated in the proof of
Theorem 5.6. We first define a fixed DTD D1 = (Ele, Att, P, R, r ) as follows:

Ele = {Y1, Y2, C, W, L , Ec, Er , Eg}.
P: r → Y1, Y1 → C, (Y ∗

2 + L), Y2 → (C, (Y1 + Er + Eg + W ))
W → W + Er + Eg , L → L + Er + Eg , Er → Y1 + W + L ,
Eg → ε, C → C + Ec, Ec → ε.

Att = ∅, R(A) = ∅ for all A ∈ Ele.

An XML tree of the DTD D1 is depicted in Figure 7. We use Y1 and Y2 to represent
the moves made by Player I and Player II, respectively. Under each Y1 (respec-
tively, Y2) element there exists a chain of C elements whose length is to encode the
tile placed in the move by Player I (respectively, Player II). We use W, L to indicate
that Player I wins or loses the game, and Er , Eg to indicate the end of a row and
the game, respectively.

 



Given an instance (X, H, V,�t, �b) and n of TPG-CT, we encode the instance in
terms of the DTD D1 and an XPath query Q1 inX (↓, ↓∗, [ ], ¬) such that there exists
an XML tree T satisfying (Q1, D1) if and only if Player I has a winning strategy
for the game. To simplify the presentation, we first give Q1 in terms of qualifiers
in X (↓, ↓∗, ∪, [ ], ¬), and then show that union (disjunction) can be eliminated by
using negation and conjunction. We assume, without loss of generality, that n is
even and Player I moves first; the coding for an odd n is similar.

(1) Game tree. To encode a winning strategy for Player I, we want the game
tree to represent the alternating plays of Player I (who chooses a single tile) and
Player II (who tries all tiles). We use a C chain Ci = C/ · · · /C (i times) under
Y1 (respectively, Y2) to represent a tile xi in X = {x1, . . . , xk} placed by Player I
(respectively, Player II). To ensure that the tile is in X , we use a qualifier Qone:

Qone = ¬(↓∗/Y1[Ck+1]) ∧ ¬(↓∗/Y2[Ck+1]).

For the moves by Player II, we use Qone to assure that all possible k tiles are tried:

Qall = ¬
(

↓∗/Y1

[
¬

∧
i∈[1,k]

Y2/Ci/Ec

])
.

(2) Every row consists of exactly n tiles: no row consists of fewer or more than
n tiles.

Qn = ¬
(

↓∗/(r ∪ Er )

[ ∨
i∈[1,n−1]

�i [Er ∪ Eg] ∨ �n+1

])
,

where � = Y1 ∪ Y2 ∪ W ∪ L and �i denotes �/ · · · /� (i times).
Furthermore, L can only be followed by L , Er , Eg; similarly for W :

Q(w,l) = ¬(↓∗/L[↓∗[¬(L ∨ Er ∨ Eg)]]) ∧ ¬(↓∗/W [↓∗[¬(W ∨ Er ∨ Eg)]]).

(3) Player I places an invalid tile if and only if the move is followed by a chain of
L (and Er , Eg). That is, a move Y1 has an L child if and only it violates the adjacency
conditions. More specifically, if a tile is not in the top row, then it violates one of the
vertical, horizontal or bottom conditions; otherwise, it violates either the horizontal
condition or the top row. This is encoded with QI , which is the conjunction of the
qualifiers given below.

(i) If a move Y1 has an L child then it violates the adjacency conditions.

QL = ¬(↓∗ [(
(� ∪ Er )n+1[L] ∧

( ∨
(i, j)∈V

Y1[Ci/Ec]/(� ∪ Er )n+1[Y1[C j/Ec]]

)
∧( ∨

(i, j)∈H

(� ∪ Er )n[Y2[Ci/Ec]/Y1[C j/Ec]]

)
∧

∨
l∈{1,3,... ,n−1}

⎛⎝(� ∪ Er )n+1[[(� ∪ Er )n−l+1[Eg]]
∨

(i,�b[l])∈V

Y1[Ci/Ec]])
)]⎞⎠ ∧

¬
( ∨

l∈{1,3,... ,n−1}
�l [L] ∧ (�l−2[

∨
(i, j)∈H

Y2[Ci/Ec]/Y1[C j/Ec]]

)
∧(

�l−1

[ ∨
(�t[l],i)∈V

Y1[Ci/Ec]]))

])
.

 



(ii) If Player I makes a move violating the horizontal constraints of H , then the
node representing the move has a child L:

Q(1,h) = ¬
(

↓∗
[ ∨

(i, j)∈(X×X )\H

(Y2[Ci/Ec]/Y1[C j/Ec] ∨ Y2[Ci/Ec]/Er/Y1[C j/Ec])[¬L]

])
.

(iii) Furthermore, if Player I makes a move violating the vertical constraints of
V , then the node representing the move has a child L:

Q(1,v) = ¬
(

↓∗
[ ∨

(i, j)∈(X×X )\V

Y1[Ci/Ec]/(� ∪ Er )n+1[Y1[C j/Ec][¬L]]

])
.

(iv) Moreover, if Player I makes a move violating the top row �t , then the node
representing the move has a child L:

Q(1,t) = ¬
⎛⎝ ∨

l∈{1,3,... ,n−1}

∨
(�t[l],i)∈(X×X )\V

�l−1[Y1[Ci/Ec][¬L]]

⎞⎠ .

(v) Similarly, if Player I makes a move violating the bottom row �b, then the node
representing the move has a child L:

Q(1,b) = ¬
⎛⎝↓∗

⎡⎣ ∨
l∈{1,3,... ,n−1}

∨
(i,�b[l])∈(X×X )\V

Y1[Ci/Ec][¬L] [�n−l[Eg]]

⎤⎦⎞⎠ .

Here, QI = QL ∧ Q(1,h) ∧ Q(1,v) ∧ Q(1,t) ∧ Q(1,b).
Similarly, one can code QI I for Player II in terms of W .
Putting these together, the coding of the TPG-CT system consists of the DTD

D1 and the query Q1 in X (↓, ↓∗, ∪, [ ], ¬):

Q1 = ε[¬↓∗/L ∧ Qone ∧ Qall ∧ Qn ∧ Qw,l ∧ QI ∧ QI I ].

It is easy to verify that Player I has a winning strategy if and only there is a finite
XML tree T , which represents a game tree, such that T |= (Q1, D1).

We remark that, in the presence of label tests and negation, we can eliminate
union and disjunction in Q1. Indeed, disjunction can be easily represented in terms
of conjunction and negation, and � in the coding can be replaced by:

�̃ = ↓[¬(¬lab() = Y1 ∧ ¬lab() = Y2 ∧ ¬lab() = W ∧ ¬lab() = L)].

Similarly, we rewrite �i into the union-free expression �̃i .

3. SAT(X (↑, [ ], =, ¬)) is EXPTIME-hard. The proof is a mild variation of that of
Theorem 5.6, by reduction from TPG-CT. We first define a fixed DTD that does
not depend on any instance of TPG-CT. Let D2 = (Ele, Att, P, R, r ), where

Ele = {r, C, X}.
P: r → C∗, C → X , X → X + ε.
Att = {@t, @h, @k, @next},
R: R(C) = {@h, @k, @next}, R(X ) = {@t}, R(r ) = ∅.

An XML tree of D2 consists of a root node and its C children. Each C node has a
chain of X elements below it. In a nutshell, as in the proof of Theorem 5.6, each

 



C element v encodes a snapshot of the game showing the last n plays, where n is
the length of a row in the corridor; the attribute v .h encodes the horizontal position
of the last tile v .tn in a row, and v .k and v .next encode a list of such snapshots.
However, in contrast to v .ti in the proof of Theorem 5.6, here, we use Xi/@t
below v to encode the i th tile in the snapshot, where Xi abbreviates the i th fold
concatenation of X .

Given an instance (X, H, V,�t, �b) and n of TPG-CT, we encode the instance in
terms of the DTD D2 and a query Q2 in X (↑, [ ], =, ¬) such that there exists an
XML tree T satisfying (Q2, D2) if and only if Player I has a winning strategy for
the game. The query Q2 is a mild variation of Q0 given in the proof of Theorem 5.6,
by (1) substituting Xi/@t for each occurrence of attribute @ti in Q0, for i ∈ [1, n],
and (2) adding an additional conjunct to the set of qualifiers of Q0 at the root:
Qt = ¬C[¬Xn]. Intuitively, Qt asserts that every C element v has a chain of X
elements below it, and the chain has a length no less than n. Thus, one can use
Xi/@t below v to encode the i th tile in the snapshot represented by v . The rest of
the proof is the same as its counterpart for Theorem 5.6.

4. SAT(X (↓, ↑, ↓∗, ↑∗, ∪, [ ], =, ¬)) is undecidable. Observe that the DTD used
in the proof of Theorem 5.4 is already fixed: it is independent of 2RM instances.
Thus we have already shown that SAT(X (↓, ↑, ↓∗, ↑∗, ∪, [ ], =, ¬)) is undecidable
for fixed DTDs.

6.3. DISJUNCTION-FREE DTDS. Recall that a DTD is disjunction-free if no
productions in it contain disjunction ‘+’ (Section 2). The fact that disjunction-free
DTDs are easier to analyze was already noted in other contexts [Lakshmanan et al.
2004; Martens and Neven 2004]. The absence of disjunction makes the satisfiability
analysis simpler for certain fragments. Below, we show that in contrast to Propo-
sition 4.2, for a fragment that contains X (↓, [ ]) and X (∪, [ ]), the satisfiability
analysis becomes tractable.

THEOREM 6.8. Under disjunction-free DTDs, the following problems are in
PTIME: (1) SAT(X (↓, ↓∗, ∪, [ ])); (2) SAT(X (↓, ↑)).

PROOF. We show that these problems are in PTIME under disjunction-free
DTDs.

1. SAT(X (↓, ↓∗, ∪, [ ])) is in PTIME. We show this by providing an O(|p||D|2)-
time decision algorithm based on dynamic programming, along the same lines as the
proof of Theorem 4.1. Let p be a query in X (↓, ↓∗, ∪, [ ]) and D be a disjunction-
free DTD. We refer to the proof of Theorem 4.1 for the definition of the DTD graph
G D and the construction of the list L of all subqueries of p in “ascending” order.

To present the algorithm, we first define variables used in the algorithm. For each
p′ ∈ L and each element type A ∈ D, we define two variables:

—reach(p′, A): the set of element types reachable from A via p′ in G D.
—sat(p′, A): the truth value indicating whether or not p′ is satisfiable at A.

Note that since we do not have data values, the satisfiability of p′ at an A element
can be determined from reach(p′, A) alone.

The key observation is that for disjunction-free DTDs, the conjunction of quali-
fiers [q1∧· · ·∧qn] is satisfiable at an A element, that is, sat([q1∧· · ·∧qn], A), if and

 



only if for all i , sat([qi ], A), that is, the truth value of q1∧· · ·∧qn can be determined
by checking the truth values of each qi independently. This follows directly from
the fact that we only have two kinds of nontrivial productions: A → B1, . . . , Bk
and A → B∗. Note that this fact about [q1 ∧ · · · ∧ qn] is no longer true either in
the presence of productions of the form A → B1 + · · · + Bk , or in the presence of
negation (or data values) in the XPath fragment.

The decision algorithm is outlined as follows:

(1) For each p′ ∈ L (in the order of L) and A ∈ Ele, we compute reach(p′, A)
and sat(p′, A), based on the structure of p′:
(a) p′ = ε: then reach(p′, A) = {A};
(b) p′ = l: then reach(p′, A) = {l} if P(A) contains l;
(c) p′ = ↓: then reach(p′, A) is the set of element types in P(A);
(d) p′ = ↓∗: then reach(p′, A) is the set of element reachable from A in G D;
(e) p′ = p1 ∪ p2: then reach(p′, A) = reach(p1, A) ∪ reach(p2, A);
(f) p′ = p1/p2: then reach(p′, A) =

⋃
B∈reach(p1,A)

reach(p2, B).

In all the cases above, sat(p′, A) = true if and only if reach(p′, A) 
= ∅.
(g) p′ = ε[q]: sat(p′, A) = sat(q, A), and reach(p′, A) = {A} if sat(q, A) =

true;
(h) p′ = [p1]: then sat(p′, A) = sat(q, A);
(i) p′ = ‘lab() = A’: then sat(p′, A) = true and sat(p′, B) = false for all

other B;
(j) p′ = [q1 ∧ · · · ∧ qn]: then sat(p′, A) = sat([q1], A) ∧ · · · ∧ sat([qn], A);
(k) p′ = [q1 ∨ · · · ∨ qn]: then sat(p′, A) = sat([q1], A) ∨ · · · ∨ sat([qn], A).

(2) Return sat(p, r ), where r is the root type of D.

Note that since p[q] = p/ε[q], we can reduce the inductive case for p[q] to p1/p2
and ε[q].

This gives us an O(|p||D|2)-time algorithm. The correctness of the algorithm
can be verified in a way similar to the proof of Theorem 4.1. The only difference is
the treatment of qualifiers, for which the soundness follows from the observation
described above.

2. SAT(X (↓, ↑)) is in PTIME. We show that SAT(X (↓, ↑)) is in O(|p||D|2)-time,
by reducing SAT(X (↓, ↑)) to SAT(X (↓, [ ])). Let D be a disjunction-free DTD
and p a query be in SAT(X (↓, ↑)). We rewrite p into an equivalent (at the root)
query rewrite(p) in X (↓, [ ]) such that for any XML tree T , T |= (p, D) iff
T |= (rewrite(p), D). We compute rewrite(p) in linear-time, inductively on the
structure of p, by extending the rewriting rules introduced in Benedikt et al. [2005],
as follows.

(1) rewrite(η) = η, where η is one of ε, A, ↓ or ↑.
(2) rewrite(p′/η/↑) = rewrite(p′)[η], where η is one of ε, A or ↓.
(3) rewrite(p′/↑/↑) = rewrite(rewrite(p′/↑)/↑).
(4) rewrite(p′/η′/η) = rewrite(p′/η′)/η, where η is one of ε, A or ↓, and η′ is

one of ε, A, ↓ or ↑.

 



If rewrite(p) contains ↑, then it is not satisfiable. Otherwise, the O(|p||D|2)-
time decision algorithm SAT(X (↓, ↓∗, ∪, [ ])) given above can be applied to
rewrite(p).

However, once we extend X (∪, [ ]) and X (↓, [ ]) by adding data values (=)
or upward axes, the disjunction-free distinction no longer affects the worst-case
behavior.

THEOREM 6.9. Under disjunction-free DTDs, the following problems are
NP-hard: (1) SAT(X (∪, [ ], =)); (2) SAT(X (↓, [ ], =)); (3) SAT(X (↓, ↑, ∪, [ ])).
The last result holds under fixed, disjunction-free DTDs.

PROOF. We show these by reduction from 3SAT. Consider an instance φ =
C1 ∧ · · · ∧ Cn of 3SAT, where C j = l j

1 ∨ l j
2 ∨ l j

3 and l j
s = xi or l j

s = x̄i for some
i ∈ [1, m].

1. SAT(X (∪, [ ], =)) is NP-hard. Given φ, we first define a disjunction-free DTD
D0 = (Ele, Att, P, R, r ) as follows:

Ele = {X} ∪ {r}.
P: r → X . Att= {@x1, . . . , @xm}, R(X ) = {@x1, . . . , @xm}.

We then define a query XP(φ) in X (∪, [ ], =), as follows.

—Literals: We encode the variables xi using attributes @xi and define XP(l j
s ) =

(ε/@xi = 1) if l j
s = xi and XP(l j

s ) = (ε/@xi = 0) if l j
s = x̄i .

—Clauses: We encode a clause C j = l j
1 ∨ l j

2 ∨ l j
3 as XP(C j ) = XP(l j

1 ) ∨ XP(l j
2 ) ∨

XP(l j
3 ).

—Truth assignments: To ensure that the attribute values encode a consistent truth
assignment, we use the qualifier Qt = ∧

i∈[1,m](ε/@xi = 1 ∨ ε/@xi = 0).

Putting these together, we define XP(φ) = X
[
Qt∧

∧
j∈[1,n] XP(C j )

]
inX (∪, [ ], =),

which checks the consistency of truth assignments and whether all clauses are
satisfied. It is easy to verify that φ is satisfiable iff (XP(φ), D0) is satisfiable.

2. SATX (↓, [ ], =)) is NP-hard. Given an instance φ of 3SAT, we define a
disjunction-free DTD D1 = (Ele, Att, P, R, r ) as follows:

Ele = {X, X̄ , L ′
1, L ′

2, L ′
3} ∪ {Li | ∈ [1, m]} ∪ {Ci | i ∈ [1, n]} ∪ {r}.

P: r → C1, . . . , Cn, L1, . . . , Lm , C j → L ′
1, L ′

2, L ′
3, Li → X, X̄ .

Att= {@v}, R(X ) = R(X̄ ) = R(L ′
i ) = {@v} for i ∈ [1, m].

As shown in Figure 8, an XML tree of D1 is a constant-depth tree with a C j node
for each clauses C j and an Li node for each variable xi appearing in φ. Each C j
node has three children L ′

1, L ′
2 and L ′

3, encoding literals in C j ; the truth values
of L ′

1, L ′
2 and L ′

3 are determined by attributes X.v and its negation X̄ .v under the
corresponding L1, L2 and L3.

We define the following X (↓, [ ], =) qualifiers, at the root.

—Truth Assignment: To assert that the attribute values form a meaningful truth
assignment, for each i ∈ [1, m], we define ti = [Li [↓/@v = 1 ∧ ↓/@v = 0]].
That is, either xi is assigned 1 and x̄i is 0, or the other way around.

 



FIG. 8. An example of a tree T conforming to the DTD D1, which is used in the proof of case (2) of
Theorem 6.9.

—Consistency: The truth values should be assigned consistently across different
clauses. For each j ∈ [1, n] and s ∈ [1, 3], where l j

s is a literal of C j , we
define q j = [C j/L ′

s/@v = Li/X/@v] if l j
s = xi , and q j = [C j/L ′

s/@v =
Li/X̄/@v] if l j

s = x̄i .
—Encoding Clauses: To encode clauses in φ, for each j ∈ [1, n], we define Q j =

[C j/↓/@v = 1], that is, one of its literals must be true.

Taken together, we encode the 3SAT instance by asserting that each clause must
be true and that truth assignment is consistent: XP(φ) = ε[

∧
j∈[1,n](Q j ∧ q j ) ∧∧

i∈[1,m] ti ]. Then, it is easy to verify that (XP(φ), D1) is satisfiable iff φ is satisfiable.

3. SAT(X (↓, ↑, ∪, [ ])) is NP-hard. We show that SAT(X (↓, ↑, ∪, [ ])) is NP-hard
under fixed, disjunction-free DTDs. We first define a fixed DTD D2 =
(Ele, Att, P, R, r ), where

Ele = {T, F} ∪ {r}.
P: r → T ∗, F∗, T → T ∗, F∗, F → T ∗, F∗.
Att= ∅, R(T ) = R(F) = ∅.

An XML tree of D2 has only T and F nodes. The chains of T and F are used to
encode the variables. Although we have multiple chains due to presence of Kleene
star, the upward modality (↑) allow us to check the truth values of clauses along
each chain.

Given an instance φ of 3SAT, we use X (↓, ↑, ∪, [ ]) qualifiers to encode φ as
follows. Suppose that x1, . . . , xm are the variables in φ.

—Variables: We shall use an XPath query to ensure the existence of a chain con-
sisting of T and F elements, such that the element at the (i + 1)-th position in
the chain (reachable by ↓i ) encodes the truth value of xi .

—Clauses: For each clause C j = l1 ∨ l2 ∨ l3, we define q j = XP(l1) ∨
XP(l2) ∨ XP(l3), where XP(li ) = ↑(m− j)[lab() = T ] if li = x j and XP(li ) =
↑(m− j)[lab() = F] if li = x̄ j ,

Finally, we define X P(φ) = ε[↓m+1[q1∧· · ·∧qn]] inX (↓, ↑, ∪, [ ]), which assures
the existence of a chain of truth values satisfying φ. Observe that XP(φ) first goes
down m + 1 steps via ↓ to scan all variables and then goes upward from there via
↑ to check the satisfiability of φ. One can verify that (XP(φ), D2) is satisfiable iff
φ is satisfiable. Note that D2 is fixed and disjunction-free.

The absence of disjunction in DTDs also has little impact on fragments
with negation: the PSPACE and EXPTIME lower bounds are robust under

 



disjunction-free DTDs. This is because one can encode much of the semantics
of disjunction in terms of a combination of the Kleene star in a DTD and XPath
qualifiers with negation, as shown in the proof of the next result.

COROLLARY 6.10. Under disjunction-free DTDs,

(1) SAT(X (↓, [ ], ¬)) is PSPACE-hard;
(2) SAT(X (↓, ↓∗, [ ], ¬)) is EXPTIME-hard;
(3) SAT(X (↑, [ ], =, ¬)) is EXPTIME-hard.

The first two statements hold under fixed, disjunction-free DTDs.

PROOF. We show these by extending the proofs of Theorems 6.7 (for the first
two) and 5.6 (for the third one), and 5.4 (for the last one).

1. SAT(X (↓, [ ], ¬)) is PSPACE-hard. We have shown already in the proof of The-
orem 6.7 that SAT(X (↓, [ ], ¬)) is PSPACE-hard under fixed and disjunction-free
DTDs. Indeed, observe that the fixed DTD D0 in that proof does not use disjunction.

2. SAT(X (↓, ↓∗, [ ], ¬)) is EXPTIME-hard. We modify the DTD D1 and XPath
query Q1 used in the EXPTIME-hardness proof of SAT(X (↓, ↓∗, [ ], ¬)) under
fixed DTDs (Theorem 6.7) such that the DTD will be disjunction-free.

With negation in XPath, one can eliminate disjunctions in a DTD D as follows.
Suppose that A → B1 + · · · + Bk is a production of D. We can replace this by
A → B∗

1 , . . . , B∗
k . To enforce that A has only children of a single type Bi we use

the following qualifier:

Q A = ¬↓∗/A

[
¬(B1 ∨ · · · ∨ Bk) ∨

∧
i∈[1,k]

(
Bi ∧

( ∨
j∈[1,k],i 
= j

B j

))]

Note that we can easily rewrite Q A into an equivalent expression without dis-
junction by rewriting p1 ∨ p2 into ε[¬(¬p1 ∧ ¬p2)]. Therefore, we may assume
w.l.o.g that all qualifiers introduced by eliminating disjunctions from the DTD are
in X (↓, ↓∗, [ ], ¬).

We now eliminate disjunctions from the DTD D1 in the proof of Theorem 6.7
and verify that the lower bound remains valid. The new DTD DN has the following
productions:

r → Y1, Y1 → C, Y ∗
2 , L∗, Y2 → C, Y ∗

1 , E∗
r , E∗

g, W ∗,
W → W ∗, E∗

r , E∗
g , L → L∗, E∗

r , E∗
g , Er → Y ∗

1 , W ∗, L∗,
Eg → ε, C → C∗, E∗

c , Ec → ε.

Along the same lines as Q A given above, we define qualifiers QY1 , QY2 , QW ,
QL , QEr and QC , specifying that the productions related to Y1, Y2, W, L , Er and
C are actually disjunctions. Note that in DN we allow multiple children of the
same element type and thus we have to verify whether some of the properties
expressed by Q1 in the proof of Theorem 6.7 rely on the fact that there is only
a single child of a specific element type. Fortunately, all qualifiers in Q1 check
properties for all occurring nodes of a specific element type, in terms of universal
quantifications expressed by means of negation. Hence, we can simple use the

 



qualifiers of Q1 and combine them into a single X (↓, ↓∗, [ ], ¬) query

Q = Q1[QY1 ∧ QY2 ∧ QW ∧ QL ∧ QEr ∧ QC ].

It is easy to verify that (Q, DN ) is satisfiable iff Player I has a winning strategy.

3. SAT(X (↑, [ ], =, ¬)) is EXPTIME-hard. The proof of Theorem 5.6 uses a
disjunction-free DTD, and thus the same proof applies here.

6.4. IN THE ABSENCE OF DTDS. As hinted already in Section 4, the absence of
DTDs notably simplifies the analysis of SAT(X ) for certain XPath classes X .

THEOREM 6.11. In the absence of DTDs,

(1) all queries in X (↓, ↓∗, ∪, [ ]) are satisfiable if label test (i.e., lab() = A) is
disallowed in qualifiers; if label test is allowed, SAT(X (↓, ↓∗, ∪, [ ])) is in
PTIME;

(2) SAT(X (↓, ↑, [ ], =)) is in PTIME.

PROOF. We show that in the absence of DTDs, (1) SAT(X (↓, ↓∗, ∪, [ ])) is in
O(|p|3) time, where p is input query; furthermore, in the absence of lab() = A,
all queries in X (↓, ↓∗, ∪, [ ]) become satisfiable; (2) SAT(X (↓, ↑, [ ], =)) is in
O(|p|7) time.

1. SAT(X (↓, ↓∗, ∪, [ ])) is in cubic time. The proof is similar to the proof of
Theorem 6.8 (1). First, observe that in the presence of label tests, not every
X (↓, ↓∗, ∪, [ ]) query is satisfiable. For instance, ε[lab() = A ∧ lab() = B] is
not satisfiable. Thus, we need to check whether there are conflicting label tests
preventing a query to be satisfiable.

To this end, we provide a decision algorithm that, given a query p in
X (↓, ↓∗, ∪, [ ]), decides whether or not p is satisfiable in the absence of DTDs.
Let Ele be the set of all the labels mentioned in p, plus a special symbol X not
mentioned in p. As in the proof of Theorem 4.1, letL be the list of all the subqueries
of p in “ascending” order. The algorithm uses two vectors of variables: for each
subquery p′ of p and each element type A ∈ Ele, (1) reach(p′, A) collects all the
element types reachable from an A element via p, and (2) sat(p′, A) indicates the
satisfiability of p′ at an A element. These variables are initially set to empty set
∅ and false, respectively, and are computed based on dynamic programming. The
algorithm works as follows.

(1) For each p′ ∈ L (in the order ofL) and each A ∈ Ele, we compute reach(p′, A)
and sat(p′, A), depending on the structure of p′, as follows.
(a) p′ = ε: then reach(p′, A) = {A} and sat(p′, A) = true;
(b) p′ = l: then reach(p′, A) = {l} and sat(p′, A) = true;
(c) p′ = ↓: then reach(p′, A) = Ele and sat(p′, A) = true;
(d) p′ = ↓∗: then reach(p′, A) = Ele and sat(p′, A) = true;
(e) p′ = p1/p2: then reach(p′, A) =

⋃
︷ ︸︸ ︷
B ∈ reach(p1, A)

reach(p2, B) and

sat(p′, A) = true if and only if reach(p′, A) 
= ∅;
(f) p′ = p1 ∪ p2: then sat(p′, A) = sat(p1, A) ∨ sat(p2, A), and

reach(p′, A) = reach(p1, A) ∪ reach(p2, A);

 



(g) p′ = ε[q]: sat(p′, A) = sat(q, A), and reach(p′, A) = {A} if sat(q, A) =
true;

(h) p′ = [p1]: then sat(p′, A) = sat(p1, A);
(i) p′ = ‘lab() = A’: then sat(p′, A) = true and sat(p′, B) = false for all

other B;
(j) p′ = [q1 ∧ · · · ∧ qn]: then sat(p′, A) = sat([q1], A) ∧ · · · ∧ sat([qn], A);
(k) p′ = [q1 ∨ · · · ∨ qn]: then sat(p′, A) = sat([q1], A) ∨ · · · ∨ sat([qn], A).

(2) Return sat(p, A1) ∨ · · · ∨ sat(p, An), where Ai ranges over all the labels in
Ele.

Since p[q] = p/ε[q], we can reduce the inductive case for p[q] to p1/p2 and
ε[q].

The algorithm iterates over all the subqueries in L and all element types in Ele.
Both of which are of size at most O(|p|). Hence, the main loop in the algorithm
takes at most O(|p|2) times. Each step in the loop takes at most O(|p|) time, for
example, the case p′ = p1/p2. This brings the worst-case time complexity to
O(|p|3).

We now prove the correctness of the algorithm, that is, the algorithm returns true
iff p is satisfiable. Suppose that there is a tree T |= p. Then it is easy to verify by
induction on the structure of p and the semantics of XPath queries that sat(p, r ) =
true, where r is the type of the root of T . More specifically, we show by induction
that for any subquery p′ of p and any A element n of T , if there is a B element
n′ such that T |= p′(n, n′) then (a) B ∈ reach(p′, A), and (b) sat(p′, A) = true;
similarly for qualifier [q] in p. For example, suppose that T |= p[q](r, n). Then,
T |= p(r, n) and there exists n′ in T such that T |= q(n, n′). Let A be the tag of n.
Then, by the induction hypothesis, A ∈ reach(p, r ) and sat(q, A) = true. Hence,
sat(ε[q], A) =true and by the processing of p1/p2 in the algorithm, we also have
that sat(p, r ) =true. Other cases can be verified similarly.

Conversely, if the algorithm returns true, we define an XML tree Tree(p) that sat-
isfies p. We construct Tree(p) top-down, by induction on the structure of p. Initially
Tree(p) consists of a single root v , which has the label r where sat(p, r ) =true
(if there are multiple labels r ’s such that sat(p, r ) = true, we randomly pick one).
For each node u, we maintain its label, referred to as lab(u), and a subquery of
p, referred to as query(u), which the subtree of u should satisfy. For example,
for the root v , lab(v) = r and query(v) = p. Upon the completion of the sub-
tree of u we find a node u′ in the subtree, referred to as E(u, query(u)), such
that lab(u′) ∈ reach(query(u), lab(u)). We generate Tree(p) by repeatedly se-
lecting a node u and construct the subtree of u based on query(u), as follows: (a)
If query(u) = ε, then nothing needs to be done. (b) If query(u) = A, then we
generate an A element u′ as the child of u, and set lab(u′) = A, query(u′) = ε
and E(u, query(u)) = u′. (c) If query(u) is ↓ or ↓∗, we generate an X ele-
ment u′ as the child of u, where X is label variable whose value is to be fixed
later. We set lab(u′) = X , query(u′) = ε and E(u, query(u)) = u′. (d) If
query(u) = p1/p2, then we first construct Tree(p1) rooted at u and then generate
Tree(p2) rooted at u′ = E(u, p1). This is possible since sat(p1, lab(u)) =true
and there exists B ∈ reach(p1, lab(u)) such that sat(p2, B) = true. We set
E(u, p1/p2) = E(u′, p2). (e) If query(u) = p1 ∪ p2, then Tree(p) is Tree(p1)
and we set E(u, p1 ∪ p2) = E(u, p1) if sat(p1, lab(u)) = true; otherwise, we
must have that sat(p2, lab(u)) = true and thus we set Tree(p) to be Tree(p2)

 



and E(u, p1 ∪ p2) = E(u, p2). (f) If query(u) = ε[q], then Tree(p) is Tree(q).
(g) If query(u) = [p1], then Tree(p) is Tree(p1). (i) If query(u)=‘lab() = A’, we
consider two cases. If lab(u) is a variable X , then we set X to be A. Otherwise,
lab(u) is a label in Ele; by the construction, we have that sat(query(u), lab(u)) =
true; thus, we must have that lab(u) = A; in this case, nothing needs to be done.
(j) If query(u) = [q1 ∧ · · · ∧ qn] then sat(qi , lab(u)) = true for all i ∈ [1, n].
We construct Tree(p) by adding each Tree(qi ) as a subtree of u. Note that we can
freely generate a separate branch for each qualifier qi because of the existential
semantics of X (↓, ↓∗, ∪, [ ]) and the absence of DTDs. This is no longer the case
in the presence of DTDs. (k) If query(u) = [q1 ∨ · · · ∨ qn], then there must be
some qi such that sat(qi , lab(u)) = true. We construct Tree(p) by adding the cor-
responding Tree(qi ) as a subtree of u. The process proceeds until E(r, p) is found.
At this point, for any label variable X that has not yet been instantiated, we set X to
be an arbitrary label in Ele; indeed, one can verify that in this case the value of X has
no impact on sat(p, r ). Given that sat(p, r ) = true, there are no conflicting label
tests at any node in the construction of Tree(p), and by the semantics of XPath, it
is easy to verify that Tree(p) |= p.

Observe that in the absence of label tests, queries in X (↓, ↓∗, ∪, [ ]) are always
satisfiable since sat(p, A) is always true for any A ∈ Ele, as shown by the algorithm
and proof above.

2. SAT(X (↓, ↑, [ ], =)) is in time O(|p|7). We reduce SAT(X (↓, ↑, [ ], =)) to the
satisfiability problem for conjunctive queries on XML trees. Given a query p in
X (↓, ↑, [ ], =), let �doc be the signature containing predicates specifying the query
p: (1) unary predicates Pa(x) for each tag a; (2) unary predicate Root(x); (3) binary
predicate Rchild(x, y); (4) relations Ra,b,op(x, y) for each pair of attributes a, b and
each operator op; and (5) relations Ra,c,op(x) for each attribute a, constant value c
and operator op in p.

For each XML tree T there is a corresponding structure for �doc, where the
elements of the structure are the nodes of T , the predicate Root holds only at the
root; Pa holds for exactly those nodes labeled with a; the predicate Rchild(n1, n2)
holds iff n2 is a child of n1; and Ra,b,op(n1, n2) holds iff n1.a op n2.b, and similarly
Ra,c,op(n1) holds iff n1.a op c.

Let CQD be the set of conjunctive queries over �doc atomic formulas. Such
queries are evaluated using the standard semantics of first-order logic.

The fact below follows directly from the XPath semantics given in Section 2,
which can be easily formalized as a linear-time translation into first-order logic.
One can verify that disjunction is required only when union and disjunction are
present in the XPath expression, and similarly negation is generated only via nega-
tion in the expression; hence, the queries resulting from X (↓, ↑, [ ], =) will be in
CQD.

LEMMA 6.12. There is a linear time function converting each X (↓, ↑, [ ], =)
expression into an equivalent CQD query.

We now claim that satisfiability of CQD queries over XML trees is in time
O(|Q|7). Our algorithm will use a variant of the well-known technique of canonical
databases. Given an input CQD query Q, let E be the smallest equivalence relation
on variables such that:

 



—E(x, y) holds when x = y is a conjunct of Q;
—E(x, x ′) holds if E(y, y′) holds and Rchild(x ′, y′), Rchild(x, y) are conjuncts of

Q;
—E(x, x ′) holds if Root(x) and Root(x ′) are both conjuncts of Q.

Note that E can be calculated in quadratic time from Q.
Let F be the set consisting of all pairs (x, b), where x is a variable and b is a

constant, unioned with the set c of constant symbols mentioned in Q. Let E2 be the
smallest equivalence relation on F containing:

—E2((x, a), (y, b)), where Ra,b,=(x, y) is a conjunct of Q;
—E2((x, a), (x ′, a)), where E(x, x ′) holds;
—E2((x, a), c), where c is a constant and Rb,c,=(y) is a conjunct of Q.

Note that E2 is the transitive closure of a relation on F of size at most |Q|3; the first
and third items above contribute at most one edge for each conjunct of Q while the
second contributes at most one edge for each attribute in Q and each edge in E .
Hence, E2 can be calculated in at worst |Q|6 time.

We say Q is cogent if:

—If E2((x, a), (y, b)) holds, then Ra,b,
=(x, y) is not a conjunct of Q, and similarly
for E2((x, a), c).

—If E(x, x ′) and a(x) are conjuncts of Q, then no b(x) is a conjunct of Q for
b 
= a.

—If E(x, x ′) holds and Root(x) is a conjunct of Q, then there is no Rchild(y, x ′)
in Q.

Suppose that Q is cogent. Let RepE be the set of equivalence classes of E and
Rep2 be the set of equivalence classes of E2. We define the structure CM(Q) as
follows:

—The domain of CM(Q) consists of one node for each element of RepE .
—For each e ∈ RepE , the label of e is set to a if a(y) is a conjunct of Q for some

y ∈ e, and is set arbitrarily otherwise.
—For e, e′ ∈ RepE , e is a child of e′ iff for some x ∈ e, y ∈ e′, Rchild(y, x) is in

Q.
—x .a = f for f ∈ Rep2 if (x, a) ∈ f .

We will verify below that the above requirements give a well-defined XML tree
if Q is cogent. We now claim:

LEMMA 6.13. Q is satisfiable by an XML tree iff Q is cogent and the child
relation of CM(Q) is acyclic.

If the lemma holds, then satisfiability of Q can be checked in O(|Q|7) time.
Indeed, the first requirement in the definition of cogent can be checked in time
O(|Q|7), since we can calculate a representation of E2 in time |Q|6 and then
check each conjunct of Q by iterating through this representation. The second
requirement requires iterating through pairs of conjuncts in Q and checking them
against elements in E ; since E has size quadratic in |Q|, this can be done in cubic
time. The last requirement requires iterating over pairs in E , which can be done in
quadratic time. Furthermore, cyclicity is checkable in quadratic time. Note that in

 



the case of XPath, the cyclicity condition is redundant (since conjunctive queries
generated from XPath can be taken to be acyclic).

We next prove Lemma 6.13. We first argue that if Q is satisfiable then Q is cogent
and CM(Q) is acyclic. If Q is satisfiable then there is a homomorphism h from the
variables of Q to nodes in some XML tree T ; homomorphism here means that for
a conjunct ρ(x, y) of Q, ρ(x, y) holds iff ρ(h(x), h(y)) holds. If we fix such an h,
then we can see from the definition of homomorphism that:

—E(x, y) implies h(x) = h(y);
—E2((x, a), (y, b)) implies h(x).a = h(y).b; and
—E2((x, a), c) implies h(x).a = c.

The first part of the definition of cogent follows from the first item above, since if
x 
= y were a conjunct of Q we would have h(x) 
= h(y). The rest of the definition
of cogent follows similarly from the second and third item above.

If CM(Q) were cyclic, we would have a sequence of variables xi with
Rchild(xi , xi+1) as conjuncts of Q. Then, if h is the homomorphism above, we
would have Rchild(h(xi ), h(xi )), violating that the satisfying model is a tree.

We now turn to the other direction, showing that if Q is cogent and CM(Q) is
acyclic then Q is satisfiable by an XML tree. We verify that CM(Q) is well defined
if Q is cogent. Since Q is cogent, every node in CM(Q) has exactly one label;
hence, the labeling function is well defined. If e is a node of CM(Q), we need also
to show that the value of attribute a on e is well defined. By the definition above, this
is the case as long as for every x, x ′ in the equivalence class e, E2(x .a, x ′.a). From
the definition of E2, it follows that E(x, x ′) implies E2(x ′.a, x .a). We now verify
that CM(Q) is a forest. Suppose a node e ∈ CM(Q) has more than one immediate
predecessor. Then, we have Rchild(y, x) and Rchild(y′, x ′) where E(x, x ′) but not
E(y, y′). But this violates the last component in the definition of E . The fact that
there are no cycles in the child relation of CM(Q) is true by assumption. Note that
CM(Q) may not be a tree, since there may be several nodes with no predecessor.
If there is no conjunct of the form Root(x) in Q, then we extend CM(Q) to a tree
by adding a root node with an arbitrary label. If there is a conjunct of the form
Root(x), then modify CM(Q) as follows. Let ce be the connected component of e
in CM(Q). Since Q is cogent, e must be the root of this component (since otherwise
the third condition in cogent is violated). For every other node e′ in CM(Q) that
has no predecessor, attach this node as a child of one of the leaves of ce. In either
case, we call the resulting structure CM′(Q).

We now show that CM′(Q) satisfies Q. Let h be the mapping taking a variable x
to its E equivalence class. We claim that this mapping witnesses the satisfiability of
CM(Q) as required. By the definition of CM(Q) any label equalities or parent/child
relations asserted of variables in Q hold on the images of the variables under h. If
x .a = y.b is asserted in Q, then the first part of the definition of E2 implies that
E2((x, a), (y, b)) holds, so h(x).a = h(y).b in CM(Q), hence in CM′(Q). Similarly
the last part of the definition of E2 implies that relations x .a = c are preserved.

Suppose x .a 
= y.b is in Q. Since Q is cogent, we know that ((x, a), (y, b)) is
not in E2. Hence h(x).a 
= h(y).b. Similarly, the fact that Q is cogent implies that
conjuncts of Q of the form x .a 
= c are satisfied in CM(Q), hence in CM′(Q) as
well. Finally, if Root(x) is in Q, then the construction of CM′(Q) guarantees that
the E-equivalence class of x is the root of CM′(Q).



However, as with the disjunction-free DTDs, in the presence of data value equality
(=) or upward modalities (↑), the lack of a DTD does not help matters.

COROLLARY 6.14. In the absence of DTDs, the following problems are NP-
hard: (1) SAT(X (∪, [ ], =)), and (2) SAT(X (↓, ↑, ∪, [ ])).

PROOF. The proofs follow from that of Theorem 6.9. Its last part also follows
from the results of Hidders [2004].

1. SAT(X (∪, [ ], =)) is NP-hard. The proof is the same as the proof of case (1) of
Theorem 6.9. Indeed, the fixed DTD D0 used in that proof can be omitted since the
qualifiers in that proof encode the 3SAT instance completely.

2. SATX (↑, ∪, [ ]) is NP-hard. Again the proof is the same as the proof of Theo-
rem 6.9 (3). Indeed, we can omit the fixed DTD D2 in that proof, since the existence
of the desired chain of T and F nodes is already encoded entirely by the qualifier
in that proof.

As in the settings of disjunction-free and fixed DTDs, the absence of DTDs does
not simplify the satisfiability analysis of fragments with negation, as shown below.

COROLLARY 6.15. In the absence of DTDs,

(1) SAT(X (↓, [ ], ¬)) is PSPACE-hard;
(2) SAT(X (↓, ↓∗, [ ], ¬)) is EXPTIME-hard;
(3) SAT(X (↑, [ ], =, ¬)) is EXPTIME-hard.

PROOF. The proofs are mild extensions of the proofs of Theorem 6.7(1), Corol-
lary 6.10(2), and Theorem 5.6, respectively.

1. SAT(X (↓, [ ], ¬)) is PSPACE-hard. We encode a minor modification of the DTD
D0 used in the proof of Theorem 6.7(1), in terms of the following qualifiers. Let
φ = Q1x1 Q2x2 · · · Qm xmφ be an instance of Q3SAT.

(1) r → X . To ensure that the root has an X child, we use qr = [X ]. Note that this
actually encodes r → X∗.

(2) X → T ∗, F∗. If Qi = ∀, the qualifier qi defined in the proof of Theorem 6.7(1)
already ensures that X has both T and F children. However, if Qi = ∃, qi does
not assure that there exist either T or F children. Therefore, in this case, we
change qi to qi = ¬↓2(i−1)/X [¬T ∧ ¬F ∧ ¬(T ∧ F)].

(3) T → X and F → X . To ensure that up to the depth that we are interested in,
each ↓(2i−1)/T and ↓(2i−1)/F has an X child, we define the qualifiers

qti = ¬↓2i−1T [¬X ], and q f i = ¬↓2i−1 F[¬X ].

Note again that this actually encodes T → X∗ and F → X∗.

We remark that it is harmless to encode a modification of the DTD D by introduc-
ing Kleene stars, since the reduction proof does not rely on cardinality constraints.

Finally, we define the following query in X (↓, [ ], ¬):

XP(φ) = ε

[ ∧
j∈[1,n]

¬XP(C j ) ∧ qr ∧
∧

i∈[1,m]

(qi ∧ qti ∧ q f i )

]
,

 



where the XP(C j )’s are given in the proof of Theorem6.7(1). One can verify that
XP(φ) is satisfiable iff φ is satisfiable.

2. SAT(X (↓, ↓∗, [ ], ¬)) is EXPTIME-hard. We know that SAT(X (↓, ↓∗, [ ], ¬)) is
EXPTIME-hard under fixed, disjunction-free DTDs (Corollary 6.10(2)). We now
show that the DTD DN used in the proof of Corollary 6.10 (2) can be encoded
using qualifiers. Observe that qualifiers QY1 , QY2 , QW , QL , QEr and QC already
encode the corresponding productions in DN . Thus we only need to encode the
productions r → Y1, Eg → ε and Ec → ε. These can be expressed by Qr = r [Y1],
QEg = ¬↓∗/Eg[↓], and QEc = ¬↓∗/Ec[↓], respectively. Recall the query Q from
the proof of Corollary 6.10(2). Let Q′ = Q[Qr ∧ QEg ∧ QEc ]. Then, it can be
easily verified that Q′ is satisfiable if and only iff Player I has a winning strategy.

3. SAT(X (↑, [ ], =, ¬)) is EXPTIME-hard. We prove the EXPTIME-hardness by
extending the proof of Theorem 5.6. Recall the query Q and the DTD D0 used in
that proof. Note that D0 defines XML trees consisting of a root with a list of C
children. We define a query Q1, which extends Q by adding a conjunct to the set
of qualifiers of Q at the root:

Qatt = ¬C

[
¬

(
ε/@h ∧ ε/@k ∧ ε/@next ∧

∧
i∈[1,n]

ε/@ti

)]
.

Here, Qatt asserts that every C element has all the qualifiers specified in D0. With
this addition, the instance of TPG-CT is entirely encoded by the query Q1, and the
DTD D0 is no longer needed. The rest of the proof is the same as its counterpart
for Theorem 5.6.

7. XPath Queries with Sibling Axes

Since XML data is ordered, it is often desirable to access this order using XPath
sibling axes. In this section we revisit the satisfiability problem for XPath fragments
with the sibling axes. Our aim is to explore the differences and similarities between
horizontal modalities and their vertical counterparts, and to investigate the impact
of the sibling axes on the satisfiability analysis. As will be seen shortly, in many
cases the presence of sibling axes complicates the satisfiability analysis.

7.1. ADDING SIBLING AXES TO XPATH. We extend the definition of XPath
queries given in Section 2 by including sibling axes:

p ::= . . . | → | →∗ | ← | ←∗.

The semantics of these operators is given below, as an extension of the interpretation
of T |= p(n, n′) presented in Section 2:

—if p = →, then n′ is the immediate right sibling of n;
—if p = →∗, then n′ is either n or a right sibling of n;
—if p = ←, then n′ is the immediate left sibling of n;
—if p = ←∗, then n′ is either n or a left sibling of n.

Observe that ‘→+’ (i.e., →∗ ∪ →; respectively, ‘←+’) is the following-sibling
(respectively, preceding-sibling) axis of XPath 1.0, and ‘→’ (respectively, ‘←’)

 



denotes the immediate right sibling (respectively, the immediate left sibling). Al-
though XPath 1.0 does not explicitly define ‘←, →’, these operators are definable in
terms of the preceding-sibling and following-sibling axes, together with position():

← = ←+[position() = 1], → = →+[position() = 1].

7.2. SATISFIABILITY ANALYSIS. First, consider XPath fragments without qual-
ifiers. Recall that SAT(X (↓, ↑)) is NP-hard (Proposition 4.3). In contrast, we show
that sibling axes simplify the satisfiability analysis. Indeed, if we substitute →
and ← for ↓ and ↑ in X (↓, ↑), the satisfiability analysis becomes tractable. The
difference between X (↓, ↑) and X (→, ←) is that while a query in X (↓, ↑) can
constrain the subtree of a node by moving downward and upward repeatedly in the
subtree, queries in X (→, ←) are not able to do it: as soon as the navigation moves
down in a tree, it cannot move back to the same node.

THEOREM 7.1. SAT(X (→, ←)) is in PTIME in the presence of DTDs.

PROOF. Similar to the proof of Theorem 4.1, we provide a decision algorithm
based on dynamic programming. Given a query p in X (→, ←) and a DTD D =
(Ele, Att, P, R, r ), the algorithm decides whether or not (p, D) is satisfiable in
PTIME.

Observe that any query p ∈ X (→, ←) is of the form A1/η1/ · · · /An/ηn , where
for each i ∈ [1, n], Ai is an element type representing a one-step downward move,
and ηi is a sequence of → and ← indicating multi-step horizontal moves. In other
words, on an XML tree T , the navigation of p at the i-th step first moves side-
ways, and then downward; moreover, as soon as it moves downward, the nav-
igation proceeds to lower levels of T without looking back upward. Note that
a query in X (→, ←) is not satisfiable if it starts with → or ←. Let pi denote
Ai/ηi/ · · · /An/ηn; note that p1 is p.

We now define the variables to be used in the algorithm. (a) For each pi and each
A ∈ Ele, we define a Boolean variable sat(pi , A) that indicates whether or not pi
is satisfiable at an A element. (b) For each A ∈ Ele, let MA be an NFA representing
the regular expression P(A), such that each state of MA is reachable from the start
state, and there exists no ε-transition. Such an MA can be computed in PTIME, and
the size |MA| of the NFA is linear in the size |P(A)|. For each ηi and each B ∈ Ele,
let reach(MA, B, ηi ) be the set consisting of element types C such that there exist
two states q1, q2 in MA and (i) there exists an outgoing transition from q1 labeled
B; and (ii) q2 can be reached from q1 via B/η1 (→ for forward move and ← for
backward); and (iii) the last transition is via an edge labeled C . It is easy to verify
that reach(MA, B, ηi ) can be computed in PTIME by, for example, representing
MA as a graph with inverse edges (for ←), and computing reach(MA, B, ηi ) based
on dynamic programming.

Using these variables, the decision algorithm works as follows: It first computes
reach(MA, B, ηi ) for each i ∈ [1, n] and all A, B ∈ Ele. Then, for each pi in the
decreasing order (i.e., for i = n, n − 1, . . . , 1), and for each A ∈ Ele, it computes
sat(pi , A), which is true iff (a) reach(MA, Ai , ηi ) is not empty; (b) there exists
B ∈ reach(MA, Ai , ηi ) such that sat(pi+1, B) is true. Both steps can be done in
PTIME in |D| and |p|. Hence, the algorithm is in PTIME.



FIG. 9. A tree of the DTD encoding a 3SAT instance in the proof of Theorem 7.2. The grey discs
indicate which clauses are satisfied. For simplicity we omitted the children of each 3rd C node.

Once qualifiers are added to positive XPath fragments with sibling axes, we get
again into the realm of intractability:

PROPOSITION 7.2. SAT(X (→, [ ])) is NP-hard under fixed, disjunction-free
and nonrecursive DTDs.

PROOF. We show the intractability by reduction from 3SAT. Consider an
instance φ = C1 ∧ · · · ∧ Cn of 3SAT, and assume that the variables in φ are
x1, . . . , xm . We first define a fixed, disjunction-free and nonrecursive DTD D =
(Ele, Att, P, R, r ):

Ele = {r, S, S0, X, L , C, T }.
P: r → S0, (S, X )∗, S0, X → S, L , L , S, L → S, C∗, S,

C → S, T ∗, S, S0 → ε, S → ε, T → ε.
Att = ∅, R(A) = ∅ for all A ∈ Ele.

An XML tree T conforming to D2 is depicted in Figure 9. The root of T consists of
a list of X elements. As will been seen shortly, these X elements encode variables
x1, . . . , xm . Below each X element there are two L elements, where the first L
element encodes the case when the corresponding variable is true, and the second
L element encodes false. Below each L is a list of C elements, while each C
element may have a T child. The elements S, S0 serve as delimiters to indicate the
start and end of children lists, respectively.

We encode φ in terms of the DTD D and a query XP(φ) in X (→, [ ]), defined
with the following qualifiers at the root.

(1) Variables: qv = S0/→2m/→[lab() = S0], where →2m is a shorthand for
the 2m-fold concatenation of →. This asserts that the (S, X ) list under r contains
precisely m elements of type X . We use X j to denote S0/→2 j , which encodes the
variable x j in φ.

(2) The connection between clauses and literals:

qc =
∧

i∈[1,n], j∈[1,m]

(qT
i, j ∧ q F

i, j ),

where

qT
i, j =

{
X j/S/→/S/→i/S/→[lab() = T ] if x j appears in Ci

X j/S/→/S/→i/S/→[lab() = S] otherwise

q F
i, j =

{
X j/S/→/→/S/→i/S/→[lab() = T ] if x̄ j appears in Ci

X j/S/→/→/S/→i/S/→[lab() = S] otherwise

 



We encode the clause Ci in terms of Ci under both the first and second L child of
X , where Ci is a shorthand for S/→i , that is, the i th C child of L from the left. For
each variable x j (i.e., X j ), if x j appears (positively) in Ci , then qT

i, j ensures that
Ci under the first L has a T child, that is, Ci is satisfied if x j is true; otherwise Ci

under the first L has no T child; similarly, q F
i, j encodes the connection between x̄ j

(i.e., x j appears negatively) and Ci . Note that these also assert that below each L
there are at least n many C children.

(3) Truth assignment:

qa =
∧

j∈[1,m]

(X j [L/S/→n+1[lab() = S] ∧ L/S/→n+2[lab() = S]).

We encode x j (i.e., X j ) such that it is assigned true if under the first L child of X j
there are precisely n elements of C type; similarly, x j is false if under the second
L child of X j there are n elements of C type. The qualifier qa asserts that for each
x j there is a single truth value, only one of the C lists under X j has n elements of
type C .

(4) Clauses:

qφ =
∧

i∈[1,n]

X/L[S/→n+1[lab() = S]]/Ci [T ].

This asserts that all clauses Ci (e.g., Ci ) must be satisfied for the truth assignment.
Taken together, the query XP(φ) is defined to be ε[qv ∧ qc ∧ qa ∧ qφ]. One can

easily verify that XP(φ) is satisfiable by an XML tree of the fixed, disjunction-free
and nonrecursive DTD D iff φ is satisfiable.

A mild variation of the proof above suffices to show that SAT(X (←, [ ])) is
NP-hard.

7.3. SATISFIABILITY WITH SIBLING AXES AND NEGATION. When negation is
introduced together with sibling axes, the situation is as bad as without sibling axis,
and may be worse. Indeed, similar to the result that SAT(X (↓, [ ], ¬)) is PSPACE-
hard (Theorem 5.2), we show that the lower bound remains intact if we substitute
→ (respectively, ←) for ↓ in the fragment, even when the DTDs are restricted or
absent. Below, by a no-star DTD, we mean that none of the productions in the DTD
contains the Kleene star.

PROPOSITION 7.3. SAT(X (→, [ ], ¬)) is PSPACE-hard either (1) under non-
recursive and no-star DTDs; or (2) in the absence of DTDs.

PROOF. We prove these by reduction from Q3SAT. Consider an instance φ =
Q1x1 Q2x2 · · · Qm xm E of Q3SAT, as described in the proof of Proposition 5.1.

1. Under nonrecursive and no-star DTDs. Given an instance φ of Q3SAT, we first
define a no-star and nonrecursive DTD D = (Ele, Att, P, R, r ) as follows:

Ele = {X, T, F, S}.
P: r → S, X, . . . , X /* n occurrences of X */ X → S, (T + ε), (F + ε),

T → ε, F → ε, S → ε.
Att = ∅, R(A) = ∅ for all A ∈ Ele.

 



Intuitively, we use the i th X child of the root is to encode the variable xi , which
has a truth assignment T or F .

We next encode φ = ε[q1 ∧ q2] in terms of a query XP(φ) in X (→, [ ], ¬),
where q1 encodes the quantifiers Q1x1 Q2x2 · · · Qm xm in φ, and q2 encodes the the
3SAT instance E = C1 ∧ · · · ∧ Cn . More specifically, q1 = ∧ ︷ ︸︸ ︷

i ∈ [1, m]
qi , where

qi = S/→i [S/→/→] if Qi is ‘∀’, and qi = S/→i [S/→[¬→]] if Qi is ‘∃’; here
→i denotes the i-fold concatenation of →. That is, if xi is universally quantified,
then both T and F values of xi should be considered; otherwise only one of these
truth values is needed. We define q2 to be (¬c1 ∧ · · · ∧ ¬cn), where ci represents
the negation of the clause Ci . More specifically, let Ci = l1

i ∨ l2
i ∨ l3

i , where l j
i is

a literal, that is, it is either a variable xi or the negation x̄i of a variable. Then, ci is
to code ¬l1

i ∧ ¬l2
i ∧ ¬l3

i . Without loss of generality, assume that the variables of
these literals are xs, xt and xu , respectively, with s < t < u. Then, ci is defined as
S/→s[Zs]/→t−s[Zt ]/→u−t [Zu], where Z j = Fj if x j appears in ci , and Z j = Tj
if x̄ j appears in ci , for j ranging over s, t, u. For example, if Ci = xs ∨ x̄t ∨ xu with
s < t < u, then ci = S/→s[F]/→t−s[T ]/→u−t [F]. Intuitively, ¬ci is to assert
that for all possible truth assignments consistent with q1, the clause Ci is true. One
can verify that (XP(φ), D) is satisfiable if and only if φ is true.

2. In the absence of DTDs. It suffices to show that the DTD D can be encoded in
terms of qualifiers in X (→, [ ], ¬) along the same lines as the proof of Theo-
rem 6.15(3). For the productions r → S, X, . . . , X and X → S, (T + ε), (F + ε),
we define Qr and Q X as:

Qr = S

[ ∧
i∈[1,n]

→i [lab() = X ]] ∧ ¬S[→n+1

]
,

Q X = ¬X [¬S] ∧ ¬X/S[→3]∧¬X/S[→ ∧ ¬→2 ∧ →[lab() 
= T ∧ lab() 
= F]]
¬X/S[→2 ∧ ¬(→[lab() = T ] ∧ →2[lab() = F])].

Let Q = XP(φ)[Qr ∧ Q X ], where XP(φ) is the query in the proof of part (1)
above. Then, one can verify that Q is satisfiable iff (XP(φ), D) is satisfiable. Thus,
from the proof of part (1), it follows that the PSPACE-hardness result holds in the
absence of DTDs.

Similarly, we can show that SAT(X (←, [ ], ¬)) is PSPACE-hard in these set-
tings.

THEOREM 7.4. SAT(X (↓, ↑, ←, →, ←∗, →∗, ∪, [ ], ¬)) is PSPACE-
complete.

PROOF. The PSPACE hardness follows from Proposition 7.3 as well as Propo-
sition 5.1. We prove its membership in PSPACE in two steps: we first show that
SAT(X (↓, ↑, ↓∗, ↑∗, ←, →, ←∗, →∗, ∪, [ ], ¬)) is in PSPACE under nonrecur-
sive DTDs (Lemma 7.5 below). We then show that for fragmentsX (∪, . . . ) contain-
ing union but not including the descendant and ancestor axes, there is a quadratic-
time reduction from SAT(X (∪, . . . )) under arbitrary DTDs to SAT(X (∪, . . . )) un-
der nonrecursive DTDs (Lemma 7.8). Putting these together, we get the PSPACE up-
per bound of SAT(X (↓, ↑, ←, →, ←∗, →∗, ∪, [ ], ¬)) under arbitrary DTDs.

We first prove the PSPACE membership of SAT(X (↓, ↑, ↓∗, ↑∗, ←, →, ←∗,
→∗, ∪, [ ], ¬)) under nonrecursive DTDs.

 



LEMMA 7.5. SAT(X (↓, ↑, ↓∗, ↑∗, ←, →, ←∗, →∗, ∪, [ ], ¬)) is in PSPACE
under nonrecursive DTDs.

PROOF. The proof follows the approach used in Calvanese et al. [2001] for
getting PSPACE bounds on queries with both backwards and forwards modalities
transposed to the context of trees (Calvanese et al. [2001] deals with graph queries
in the semi-structured data model). The idea is the following: we encode trees
in terms of strings, using the standard tag representation. We will show that for
a non-recursive DTD D, we can get (in polynomial time) a finite state machine
AD representing the set of codings of documents that conform to D (Claim 7.7).
From a query p in X (↓, ↑, ↓∗, ↑∗, ←, →, ←∗, →∗, ∪, [ ], ¬), we will obtain in
polynomial time an alternating word automaton Ap that accepts the strings coding
a tree that satisfies p (Claim 7.6). We have thus reduced the satisfiability problem
for this fragment to checking the non-emptiness of an alternating automaton (the
conjunction of the alternating automataAp andAD, representing the intersection of
the languages accepted by these automata). The result will then follow from the fact
that the emptiness problem for alternating word automata is known to be in PSPACE.

We first prove Claim 7.6 and then Claim 7.7.

7.3.1. Tree Encoding. We begin by discussing the coding of trees as words.
First, we define the alphabet of a streamed document tree with element labels �
as XML(�) = {〈A〉, 〈/A〉 | A ∈ �}. For any tree T with element labels �, define
stream(T ) ∈ (XML(�))∗ as stream(root(T )), where root(T ) is the root node of
T and for arbitrary tree nodes n in T ,

stream(n) = 〈A〉stream(n1) · . . . · stream(nk)〈/A〉,
where lab(n) = A ∈ �, [n1, n2, . . . , nk] is the ordered list of children of n, and
‘·’ denotes string concatenation.

In order to identify a selected node in a tree, we will also consider
streamed documents with an additional selected element. More specifically,
we label the opening tag of the selected node with true, while all other
opening tags are labeled with false. More formally, define the alphabet
XMLsel(�) = {(〈A〉, false), (〈A〉, true), 〈/A〉 | A ∈ �}, and for a given (se-
lected) node m in T define stream(T, m) ∈ (XMLsel(�))∗ as stream(root(T ), m)
where for arbitrary nodes n in T , stream(n, m) is

(〈A〉, false) stream(n1, m) · · · stream(nk, m)〈/A〉 if lab(n) = A ∈ �, n 
= m;
(〈A〉, true) stream(n1, m) · · · stream(nk, m)〈/A〉 if lab(n) = A ∈ �, n = m.

As above, [n1, n2, . . . , nk] is the ordered list of children of n.

7.3.2. Two-Way Alternating Automata. Our goal is to construct from an
expression p ∈ X (↓, ↑, ↓∗, ↑∗, ←, →, ←∗, →∗, ∪, [ ], ¬) and a nonrecursive
DTD D, an automaton that accepts exactly the set {stream(T ) | T |= (p, D)}. We
now describe what sort of automaton we will need.

For a string s, we let dom(s) be the set of positions in s, that is, dom(s) =
{1, . . . , |s|}, and for i ∈ dom(s) we denote with s(i) the label in s at position i .

Let DIR = {↑, ↓, ε}. For a string s, position i ∈ dom(s), dir ∈ DIR we let i · dir
be equal to the predecessor i − 1 of i if dir = ↑, i if dir = ε, and the successor
i + 1 of i if dir = ↓. The partial function i · dir is undefined whenever the required
predecessor or successor does not exist. For any set S let B+(S) be the set of

 



positive Boolean combinations over propositions Pi for i ∈ S, where we also
allow the formulas true and false. A formula φ ∈ B+(S) represents a collection
of subsets of S in the usual manner. For instance, for a set Q = {qi | i ∈ [1, n]}
of states, q1 ∧ q2 ∨ q3 is a formula in B+(Q).

A two-way alternating automaton (2WAA) is given by (Q, �, θ0, δ, F), where
Q is the state space, � an alphabet, θ0 ∈ B+(Q), F ⊆ Q, and δ is a function from
Q × �→B+(DIR × Q).

Given a 2WAA A, a string s over �, a run of A is a pair 〈F, τ 〉 consisting of
a finite forest F = (V, E) and a labeling function τ that assigns to each node of
F a pair from dom(s) × Q. Given i0 ∈ dom(s), a run accepts (s, i0) if:

—The labels of the root nodes of F are (i0, q0), . . . , (i0, qn), where
{q0, . . . , qn} |= θ0;

—For any x ∈ V , letting τ (x) = (i, q) and δ(q, s(i)) = θ , there is a set S ⊆ DIR×Q
such that S |= θ and for all (dir, q ′) ∈ S, there exists y ∈ V such that (x, y) ∈ E
and τ (y) = (i · dir, q ′); here S is referred to as a satisfying assignment;
and

—For every leaf l ofF , τ (l) = (i, q) for some position i ∈ dom(s) and state q ∈ F .

A 2WAA accepts at (s, i0) if it has a run accepting (s, i0).
We will also consider 2WAAs over the alphabet XMLsel(�), where � is the set

of elements in the DTD. More specifically, for a set of element labels �, a two-way
alternating selection automaton (2WASA) is simply an alternating automaton
over XMLsel(�). We denote XMLsel(�) by �sel . We will use an additional
structure, a distinguished set of states C ⊆ Q, which we call the critical states.
Intuitively, they represent states in the automaton where the automaton checks
for the presence of a selected element. More formally, we consider 2WASAs
of the form A = (Q, �sel, θ0, δ, F, C). Let N be an element label, q ∈ Q, and
ρ ⊆ DIR × Q. We say that ρ is a select-demanding assignment for (q, N ) if
ρ |= δ(q, (〈N 〉, true)) but ρ 
|= δ(q, (〈N 〉, false)). As we will show below, the set
C of critical states will be the only states that have select-demanding assignments.

We remark that the notion of two-way alternating word automata that we use
here is a mild extension of the standard one, allowing a forest instead of a tree.
The use of forests is a convenience in the compositional translation of XPath. It is
easy to move between this representation and the tree-based in polynomial time.
Indeed, one can convert a forest-based 2WAA into a tree-based one by adding a
new state that has self moves to all the initial states of the forest-based automaton.

7.3.3. Translation of XPath Expressions into 2WA(S)As. We first state the
relationship between expressions in X (↓, ↑, ↓∗, ↑∗, ←, →, ←∗, →∗, ∪, [ ], ¬)
and two-way alternating (selection) automata. More specifically, we define what
it means for such automata (respectively, selection automata) to define unary
(respectively, binary) relations on trees.

A 2WAA A over alphabet XML(�) is said to define a unary relation R on trees
with element labels in �, if for every such tree T and node n ∈ T , (T, n) |= R(n)
iff A accepts at (stream(T ), pos(n)), where pos(n) denotes the position of the
opening tag 〈lab(n)〉 of n in stream(T ).

A 2WASA A over alphabet XMLsel(�) defines a binary relation R on
trees with element labels in �, if for every such tree T and nodes m, n ∈ T ,
(T, n, m) |= R(n, m) iff A accepts at (stream(T, m), pos(n)).

 



FIG. 10. Transitions functions for the 2WASA corresponding to some of the XPath axes.

In a nutshell, we will use 2WAAs to characterize XPath qualifiers and 2WASAs
to encode node-selecting XPath queries. Recall that an XPath query p determines
a binary relation R. To check whether or not (T, n, m) |= R(n, m) for nodes n, m
in a tree with element labels in �, we convert T to a tree with element labels in
XMLsel(�), also denoted by T , by labeling the opening tag of m with true and
all other opening tags with false. We then use the 2WASA A characterizing p to
determine whether or not A accepts at (stream(T, m), pos(n)).

More formally, this is stated in the main claim of the proof.

CLAIM 7.6. Given sets of elements �, there are linear-time functions trans
and qtrans such that:

—trans takes an X (↓, ↑, ↓∗, ↑∗, ←, →, ←∗, →∗, ∪, [ ], ¬) expression p mention-
ing only elements in �, and returns a two-way alternating selection automaton
that defines the same binary relation on trees over � as p does;

—qtrans takes each X (↓, ↑, ↓∗, ↑∗, ←, →, ←∗, →∗, ∪, [ ], ¬) qualifier q
mentioning only elements in �, and returns a two-way alternating automaton
that defines the same unary relation on trees over � as q does.

PROOF OF CLAIM. We prove Claim 7.6 by defining the functions trans and
qtrans by induction on the structure of p and q, followed by the correctness proof
of the translation.

Recall that we only consider non-recursive DTDs. Hence, provided that we are
dealing with a string that codes a tree satisfying a non-recursive DTD, we know that
if a start tag 〈N 〉, (〈N 〉, true), or (〈N 〉, false) appears, then sometime afterwards,
the corresponding end tag 〈/N 〉 must appear. Moreover, in between these two tags
there are no additional occurrences of 〈N 〉 or 〈/N 〉. Another consequence of using
nonrecursive DTDs is that we can calculate the maximal depth n of any element
label in a tree satisfying the DTD. We will use this bound in the construction below.

We now define functions trans and qtrans.

Induction basis. First, we consider base cases for queries and qualifiers,
beginning with the navigational axes.

(1) p = ↓: Then trans(↓) = (Q, �sel, θ0, δ, F, C), where Q =
{q0, q1, . . . , qn, q f }, θ0 = q0, and δ as defined in Figure 10(a). Moreover,
F = {q f } and C = {q1}. As depicted in Figure 11, only state q1 leads to an

 



FIG. 11. Illustration of a run 〈F, τ 〉 of trans(↓) on a string s. For convenience, we also include the
transition functions used in this run.

accepting state (q f ), whereas for 2 ≤ i ≤ n, states qi ’s are used to skip descendants
of the context node v . More specifically, when the start tag (〈N 〉, val) of a descendant
u of v is encountered at state qi , δ(qi , (〈N 〉, val)) moves to the next state qi+1. When
the end tag 〈/N 〉 of u is encountered at state qi , δ(qi , 〈/N 〉) moves to the previous
state qi−1, indicating that the element u has been passed and the 2WASA has moved
to a symbol corresponding to the next level up in the tree. Note that trans(↓) needs
states q1, . . . , qn since the maximal depth of the DTD is n. Here q1 is the only critical
state.

(2) p = ↑: Then trans(↑) = (Q, �sel, θ0, δ, F, C), where Q = {q, q0,
q1, . . . , qn, q f }, θ0 = q, and δ is as defined in Figure 10(b). The intuition
behind δ is similar to case (1) above. Moreover, F = {q f } and C = {q0}.

(3) p = →: Then trans(→) = (Q, �sel, θ0, δ, F, C), where Q = {q, q0,
q1, . . . , qn, q f }, θ0 = q0, and δ is as defined in Figure 10(c). The intuition behind
δ is similar to case (1) above. Moreover, F = {q f } and C = {q}.

(4) p = ↓∗: Then trans(↓∗) = (Q, �sel, θ0, δ, F), where Q = {q0, q1,
. . . , qn, q f }, θ0 = q0 and δ is as defined in Figure 10(d). The intuition be-
hind δ is similar to case (1) above. Moreover, F = {q f } and C = {q0, q1, . . . , qn}.
Note that in this case the set C consists of multiple critical states.

(5) The other base cases, ε, A, ←, ↑∗, ←∗ and →∗ are dealt with in a similar way.

Next, we consider qualifiers [q].
(6) q = “lab() = A”: Then qtrans(q) = (Q, �, θ0, δ, F), where Q = {q0, q f },

θ0 = q0 and δ(q0, 〈A〉) = (ε, q f ), δ(q f , α) = true for every α ∈ � and δ(q, α) =
false for all other (q, α) ∈ Q × �. Finally, F = {q f }.

(7) q = q1 ∧ q2: Suppose that qtrans(q1) = (Q, �, θ0, δ, F) and
qtrans(q2) = (Q′, �, θ ′

0, δ
′, F ′) with Q ∩ Q′ = ∅. Then qtrans(q1 ∧

q2) = (Q′′, �, θ ′′
0 , δ′′, F ′′), where Q′′ = Q ∪ Q′, θ ′′

0 = θ0 ∧ θ ′
0, δ′′ = δ ∪ δ′,

and F ′′ = F ∪ F ′.
(8) q = ¬q1: Suppose that qtrans(q1) = (Q, �, θ0, δ, F) then qtrans(¬q1) =

(Q′, �, θ ′
0, δ

′, F ′), where Q′ = Q, θ ′
0 = Dual(θ0), δ′(q, α) = Dual(δ(q, α)) for α

∈ �, F ′ = Q′ − F . Here, for θ ∈ B+(DIR × Q), Dual(θ ) is
defined by induction on the structure of θ : Dual(false) = true, Dual(true) =
false, Dual(

∨
θi ) = ∧

θi , Dual(
∧

θi ) = ∨
θi .

(9) q = p: Suppose that trans(p) = (Q, �sel, θ0, δ, F, C). Then qtrans(p), where
p is considered as a qualifier, is given by (Q′, �, θ ′

0, δ
′, F ′), where Q′ = Q, θ ′

0 = θ0,
and for all q ∈ Q′ and labels N , δ′(q, 〈N 〉) = δ(q, (〈N 〉, false)) ∨ δ(q, (〈N 〉, true))
and δ′(q, 〈/N 〉) = δ(q, 〈/N 〉). This is because for qualifiers the 2WASA ignores

 



FIG. 12. Illustration of the construction of trans(p1/p2). Critical states in trans(p1) are conjoined
with the initial states of trans(p2).

the labels true and false, since these labels are only used for selecting nodes.
Finally, F ′ = F .

Induction Steps for Expressions. We next consider the induction cases for
expressions. Suppose that trans(p1) = (Q, �sel, θ0, δ, F, C) and trans(p2) = (Q′,
�sel, θ

′
0, δ

′, F ′, C ′) such that Q ∩ Q′ = ∅.
(1) p = p1 ∪ p2: Then trans(p1 ∪ p2) = (Q′′, �sel, θ

′′
0 , δ′′, F ′′, C ′′), where

Q′′ = Q ∪ Q′, θ ′′
0 = θ0 ∨ θ ′

0, δ′′ = δ ∪ δ′, F ′′ = F ∪ F ′ and C ′′ = C ∪ C ′.
(2) p = p1/p2: Then trans(p1/p2) = (Q′′, �sel, θ

′′
0 , δ′′, F ′′, C ′′), where

Q′′ = Q ∪ Q′, θ ′′
0 = θ0. For the definition of the transition function δ, we consider

the following cases:

—q ∈ C , (〈N 〉, false) ∈ �sel : then δ′′(q, (〈N 〉, false)) = δ(q, (〈N 〉, false)) ∨
(δ(q, (〈N 〉, true)) ∧ θε

0 )), θε
0 is obtained from θ ′

0 by changing every occurrence
of a state q ′ in θ ′

0 to (ε, q ′);
—q ∈ Q − C , (〈N 〉, false) ∈ �sel : then δ′′(q, (〈N 〉, false)) = δ(q, (〈N 〉, false));
—q ∈ Q, (〈N 〉, true) ∈ �sel : then δ′′(q, (〈N 〉, true)) = δ′′(q, (〈N 〉, false));
—q ∈ Q, 〈/N 〉 ∈ �sel : then δ′′(q, 〈/N 〉) = δ(q, 〈/N 〉); and
—q ′ ∈ Q′, α ∈ �sel : then δ′′(q ′, α) = δ(q ′, α).

Moreover, F ′′ = F ′ and C ′′ = C ′.
As shown in Figure 12, trans(p1/p2) is constructed by conjoining the critical

states of trans(p1) and the start states of trans(p2). This is why we keep track
of critical states of 2WASAs. Since only the selected nodes are marked true
and trans(p1/p2) selects nodes different from those of trans(p1), we define
δ′′(q, (〈N 〉, false)) to be δ(q, (〈N 〉, false)) ∨ (δ(q, (〈N 〉, true)) ∧ θε

0 )) for the
critical states of trans(p1), such that trans(p1/p2) now treats the true and false labels
of those critical states of trans(p1) uniformly and indifferently. For the same reason,
we define δ′′(q, (〈N 〉, true)) = δ′′(q, (〈N 〉, false)) for any state q in trans(p1).
Note that trans(p1/p2) inherits the final states and critical states of trans(p2).

(3) p = p1[q]: Suppose that qtrans(q) = (Q′, θ ′
0, δ

′, F ′). Then, we have
trans(p[q]) = (Q′′, �sel, θ

′′
0 , δ′′, F ′′, C ′′), where Q′′ = Q ∪ Q′, θ ′′

0 = θ0. For
the definition of the transition function δ, we distinguish the following cases; the
intuition behind the definition is similar to the case of p1/p2 described above.

—q ∈ C , (〈N 〉, true) ∈ �sel : then δ′′(q, (〈N 〉, true)) = δ(q, (〈N 〉, true)) ∧ θε
0 ,

where θε
0 is obtained from θ ′

0 by changing every occurrence of a state q ′ in θ ′
0

to (ε, q ′);
—q ∈ Q − C , (〈N 〉, true) ∈ �sel : then we have δ′′(q, (〈N 〉, true)) = δ(q, (〈N 〉,

true));

 



—q ∈ Q, (〈N 〉, false) ∈ �sel : then δ′′(q, (〈N 〉, false)) = δ(q, (〈N 〉, false));
—q ∈ Q, 〈/N 〉 ∈ �sel : then δ′′(q, 〈/N 〉) = δ(q, 〈/N 〉);
—q ′ ∈ Q′ and (〈N 〉, false), (〈N 〉, true) ∈ �sel : then δ′′(q ′, (〈N 〉, false)) = δ′′(q ′,

(〈N 〉, true)) = δ(q ′, 〈N 〉); and
—q ′ ∈ Q′, 〈/N 〉 ∈ �sel : then δ′′(q ′, 〈/N 〉) = δ′(q ′, 〈/N 〉).
Moreover, F ′′ = F ′ and C ′′ = C .

7.3.4. Properties of Accepting (Pseudo-)Runs. To prove the correctness of
the 2WASA construction, we will need some properties of 2WASA runs; these
properties will assure that the “projection steps” (e.g. for qualifiers of the form [p],
where p is an expression) are sound. Projection requires us to know more about
accepting runs of the 2WASAs we generate, and more generally for accepting
pseudo-runs of 2WASAs. Intuitively, pseudo-runs ignore the selected elements in
a stream of an XML tree.

Given a 2WASA A = (Q, �sel, θ0, δ, F, C) and a string s, a pseudo-run of A
is a pair 〈F, τ 〉 consisting of a finite labeled forest F = (V, E) and a labeling
function τ that assigns to each node of F a pair from dom(s) × Q. Given
i0 ∈ dom(s), a pseudo-run accepts (s, i0) if:

—The labels of the root nodes of F are (i0, q0), . . . , (i0, qn), where
{q0, . . . , qn} |= θ0;

—For any x ∈ V such that τ (x) = (i, q), either (a) s(i) = 〈/N 〉 for some N ,
and letting δ(q, s(i)) = θ , there is a set S ⊆ DIR × Q such that S |= θ ,
and for all (dir, q ′) ∈ S there exists a node y ∈ V such that (x, y) ∈ E and
τ (y) = (i · dir, q ′); or (b) s(i) = (〈N 〉, true) or s(i) = (〈N 〉, false) and for some
val ∈ {true, false}, letting δ(q, (〈N 〉, val)) = θ , there is a set S ⊆ DIR × Q
such that S |= θ , and for all (dir, q ′) ∈ S there exists a node y ∈ V such that
(x, y) ∈ E and τ (y) = (i · dir, q ′); and

—For every leaf l ofF , τ (l) = (i, q) for some position i ∈ dom(s) and state q ∈ F .

In contrast to a run, a pseudo-run treats true and false indifferently.
We say that 〈F, τ 〉 is a minimal pseudo-run of A accepting (s, i0) if it is a

pseudo-run accepting (s, i0) and moreover, there is no pseudo-run 〈F ′, τ ′〉 of A
such that F ′ is a sub-structure of F .

We now present the properties of a 2WASA A = trans(p).

PROPERTY 1 ((P1)). Let T be a tree that satisfies a nonrecursive DTD D, m
a node in T , 〈F, τ 〉 a minimal pseudo-run of A that accepts (stream(T, m), i0).
Then, there is some position i in the string stream(T, m), some vertex v in F
such that τ (v) = (i, q), q ∈ C, s(i) = (〈N 〉, val) for some element label N and
val ∈ {true, false}, and the children of v in F satisfy δ(q, (〈N 〉, true)).

That is, every pseudo-run of the automaton reaches a critical state on a node
that could be selected. We show that (P1) holds by induction on the structure of p.

To see that (P1) holds for all the base cases, note that the automata for all the
axes have nontrivial initial conditions and as a result, an accepting pseudo-run
cannot be empty. In a nonempty pseudo-run, the leaf nodes must be labeled with
accepting states, and in the automata for the axes the accepting state is only
reachable through a transition from a critical state q through δ(q, (〈N 〉, true)) for
some element label N . From this, it follows that (P1) holds for all the base cases.

 



We now show that (P1) is preserved inductively. For union, this is clear,
since a pseudo-run for the union is a pseudo-run for one of its components.
Now consider the case of p = p1/p2. We can see that there are no nonempty
pseudo-runs. Indeed, by induction the initial conditions are never vacuously
satisfied for all of the automata generated by expressions. By construction, since
the accepting states of the automaton trans(p1/p2) are the accepting states of
trans(p2), a pseudo-run for trans(p1/p2) must contain a pseudo-run for trans(p2)
as a subtree. Hence, (P1) holds by the induction hypothesis. Finally, considering
the case of p = p1[q], we see (by construction) that a pseudo-run must contain
a pseudo-run for the automaton trans(p1) as a subtree, and the result follows by
induction.

PROPERTY 2 ((P2)). Let 〈F, τ 〉 be a minimal pseudo-run as described in
Property I. If v1 and v2 are two vertices of the forestF , v2 is a descendant of v1 inF ,
τ (v1) = (i1, q1), τ (v2) = (i2, q2) and both q1 and q2 are critical states, then i1 
= i2.

That is, in every pseudo-run of the automaton, we cannot get to a critical state
twice on the same position in the stream.

Again, we show that (P2) holds by induction on the structure of p.
To see that (P2) holds for all the base cases, note that in the automata for all the

axes, the outgoing transitions of a critical state are either into a state that does not
reach a critical state, or are transitions into another critical state but in a direction
that is not ε and depends only on the axis, not the state. For instance, outgoing
transitions of a critical state for the child axis all move downward, for the parent
axis they all move upwards, and so on. Thus (P2) holds for the base cases.

For the inductive cases, preservation under union is clear, since a pseudo-run
for the union is a pseudo-run for one of the components. For p = p1/p2, we
observe that the critical states are those of p2, with their transitions the same as
in trans(p2). Hence, (P2) is preserved by induction. In the case of p = p1[q], it
is clear from the construction that a pseudo-run for the automaton trans(p1[q])
contains a pseudo-run for trans(p1) as a subtree, with the critical states lying
entirely within this sub-pseudo-run. Hence, (P2) is preserved by induction.

Let A = (Q, �sel, θ0, δ, F, C) be a 2WASA, N an element label, q ∈ Q,
and ρ ⊆ DIR × Q. Recall that we say ρ is a select-demanding assignment
for (q, N ) if ρ |= δ(q, (〈N 〉, true)) but ρ 
|= δ(q, (〈N 〉, false)). We say that
ρ is a select-denying assignment for (q, N ) if ρ |= δ(q, (〈N 〉, false)) and
ρ 
|= δ(q, (〈N 〉, true)). We say that a state q ∈ Q is select-indifferent if there are
no select-denying or select-demanding assignments for (q, N ) for any element
label N , and transitively select-indifferent if all states reachable from q via the
transition relation are select-indifferent.

Note that each pseudo-run assigns a set S ⊆ DIR × Q to each pair (q, N ),
referred to as assignments induced by the run.

PROPERTY 3 ((P3)). Let 〈F, τ 〉 be a minimal pseudo-run as in Property 1. If
this run induces a select-demanding or select-denying assignment S for some pair
(q, N ), then q is a critical state.

That is, all states that either require or forbid selection are critical states.
We show that (P3) holds by induction on the structure of p. All of these properties

are easily seen to hold in the base cases for expressions (i.e., all the axes). They

 



are also easily seen to be preserved inductively in the case of the union operator.
For the case that p = p1/p2 observe that for select demanding states of trans(p2),
they are critical states by induction. For states of trans(p1), note that none of them
can have a select-demanding transition, since the transition function is symmetric
in true and false by the definition of trans(p1/p2). Hence, the requirement is vac-
uously true for assignments to these states. Similarly, consider the case p = p1[q].
For this, we observe that only states for which the transitions are not symmetric in
true and false are the critical states of trans(p1), and thus the result follows.

PROPERTY 4 ((P4)). Let 〈F, τ 〉 be a minimal pseudo-run as in Property 1.
If this run induces a satisfying assignment ρ for some formula δ(q, (〈N 〉, true))
and q ∈ C, then all the states mentioned in ρ do not reach a critical state via
the transition relation. In particular, by (P3), all the states reachable via such a
transition are select-indifferent.

That is, once a run hits a critical state and selects a node, it cannot be forced to
select it again.

We show that (P4) holds by induction on the structure of p. We omit the base
cases and union for which (P4) is easily verified. Consider p = p1/p2. Notice
that the critical states of trans(p1/p2) are those of trans(p2), and the transitions
out of these states are the same as those of trans(p2). Hence, (P4) holds by
induction. Next, consider p = p1[q]. The critical states are those for trans(p1).
The transitions out of these go to a conjunction of either states in trans(p1) or
states in trans(q). The states in trans(q) are select-indifferent by the construction
(they do not distinguish true and false). Moreover, since states in trans(q) move
into states in trans(q), they are transitively select-indifferent. For each state in
trans(p), if it is not a critical state, then its transition function within trans(p1/p2)
is the same as within trans(p1). Hence, (P4) holds by the induction hypothesis.

PROPERTY 5 ((P5)). Let 〈F, τ 〉 be a minimal pseudo-run as in Property 1. If
this run induces a satisfying assignment ρ for some formula δ(q, α), then at most
one (dir, q) ∈ ρ reaches a critical state (and hence the other reachable states are
transitively select-indifferent). Similarly, if the run induces a satisfying assignment
ρ for the initial formula θ0 of the automaton, then at most one q ∈ ρ reaches any
critical state.

That is, there cannot be parallel threads that all demand the presence of a
selecting element.

We show that (P5) holds by induction on the structure of p. We observe that if a
transition does not contain a conjunction, then all minimal satisfying subsets will
be singletons, and hence (P5) is vacuously true. This implies that (P5) holds in
the base cases (which do not use conjunction) and in the inductive case for union,
since conjunction is not introduced there.

Consider the case of p = p1/p2. In this case, conjunction is introduced only
in the transitions for states in trans(p1). Hence, for states in trans(p2), the result
follows by induction. For the states in trans(p1), the introduced conjunctions are of
the form δ(q, (〈N 〉, true))∧θε

0 . Moreover, these are transitions both for (〈N 〉, true)
and (〈N 〉, false). In a minimal satisfying assignment ρ for such a transition, we
can partition the pairs into two sets ρ0 and ρ1, with ρ0 |= δ(q, (〈N 〉, true)) and
ρ1 |= θε

0 . States reachable from ρ1 do not distinguish true from false, hence all are
transitively select-indifferent. Since the conjunction above is the same for true as

 



for false, one can see that a state in trans(p1) is select-indifferent in trans(p1/p2)
iff it is select-indifferent in the automaton trans(p1). Hence, (P5) holds by
induction.

Next, consider p = p1[q]. All states of trans(q) are transitively select-indifferent,
so one needs to consider only states of trans(p1). The noncritical states of trans(p1)
have exactly the same transition as they do in trans(p); hence, the property (P5)
holds by induction for these states. We next consider the critical states of trans(p1).
Let ρ be a minimal satisfying assignment for a transition out of a critical state
of trans(p1[q]). As in the previous case, we partition ρ into ρ0 and ρ1. By the
definition of trans(p), states reachable from ρ1 do not distinguish true from false,
hence all are transitively select-indifferent. Moreover, the states reachable from ρ0
are select-indifferent by invariant (P4). Thus, the statement holds in this case.

7.3.5. Correctness of the Translation. We are now ready to prove Claim 7.6.
The proof is by induction on the structure of p.

Induction basis. It is easy to verify the claim for the base cases. We next concentrate
on the inductive cases.
Induction step. The inductive cases for boolean operators in qualifiers and for the
union operator are straightforward.
p = p1/p2: Suppose that we have T, m, n such that T |= p(n, m). Then, there
exists n′ ∈ T such that T |= p1(n, n′) and T |= p2(n′, m). By induction, we
have an accepting run 〈F1, τ1〉 for trans(p1) on the string stream(T, n′) at position
pos(n). Similarly, we have an accepting run 〈F2, τ2〉 for trans(p2) on the string
stream(T, m) at position pos(n′).

Since F1 is an accepting run, and hence an accepting pseudo-run, by (P1) there
must be a vertex v such that τ1(v) = (q, pos(n′)) with q a critical state of trans(p1),
and moreover, the children of v satisfy δ(q, (〈N 〉, true)), where (〈N 〉, true) is the
letter at position pos(n′) in stream(T, n′) (i.e., the selected element).

We now construct a new labeled forest 〈F, τ 〉 by appending F2 to F1 at vertex v
and letting τ = τ1 ∪ τ2. We claim that this is an accepting run for trans(p1/p2) on
stream(T, m) at position pos(n). This claim follows from the construction. Indeed,
〈F, τ 〉 is an accepting run because each node of trans(p1) becomes select-indifferent
within trans(p1/p2). Hence, the transitions of 〈F1, τ1〉 are valid for 〈F, τ 〉 even
though the selected node, that is, m, is different from that of the input for 〈F1, τ1〉,
that is, n′. Furthermore, 〈F, τ 〉 behaves the same as 〈F2, τ2〉 starting from v .

In the other direction, suppose that we have T and nodes m, n and assume that
trans(p1/p2) accepts on stream(T, m) starting at pos(n). Let 〈F, τ 〉 be a minimal
accepting run that witnesses this.

It is clear from the initial condition of the automaton that 〈F, τ 〉 must be
nonempty, and that all of its leaf nodes must be accepting states of trans(p2).
From (P1) we know that 〈F, τ 〉 must reach a critical state, and all such critical
states are states of trans(p2). Hence, at some point there must be a transition of
states in trans(p1) into states in trans(p2). Let v be a node in F of minimal depth
such that v has children that are labeled with states of trans(p2). Let n′ ∈ T be
the node corresponding to the i th position in stream(T, m), where τ (v) = (q, i).
From the definition of trans(p1/p2), it is clear that v is a critical state of trans(p1)
and the subtree in F below v represents an accepting run of trans(p2). Hence, by
induction, T |= p2(n′, m).

 



Consider next the run 〈F1, τ1〉 formed from 〈F, τ 〉 as follows: remove all vertices
of F associated by τ with states of trans(p2), and let τ1 be the restriction of τ to
this sub-forest. 〈F1, τ1〉 is a run on stream(T, n′) starting at pos(n), and we show
that it is an accepting run, which will imply that T |= p1(n, n′). It is clear from the
construction that 〈F1, τ1〉 is a pseudo-run of trans(p1) accepting stream(T, n′) at
pos(n), since every transition must correspond to a transition of trans(p1) for either
true or false. What remains to argue is that in changing the selected node from
n to n′, we did not destroy the acceptance of 〈F, τ 〉. Consider nodes in F1. The
construction of the automaton guarantees that the children of v in 〈F1, τ1〉 satisfy
the transition of trans(p1). From (P4), it follows that the descendants of v in 〈F1, τ1〉
must be transitively select-indifferent states of trans(p1). Hence, the subtree below
v will still satisfy the transition function for trans(p1) on stream(T, n′). Now
consider the nodes above v in 〈F1, τ1〉. If they are not critical states of trans(p1),
then they are select-indifferent and hence will satisfy the appropriate transition. If
they are critical states of trans(p1), then by (P2) they cannot be labeled with the
same position as v . Since they have a descendent that corresponds to a critical state
(namely v), it follows from (P4) that their children cannot satisfy the disjunct of
the transition in trans(p1/p2) that corresponds to the selection (recall the definition
of trans(p1/p2)); this is because such a transition would lead only to transitively
select-indifferent states. Hence, since 〈F, τ 〉 was an accepting run, the children
of such a node must have satisfied the disjunct corresponding to nonselection.
Since this node is not the selected node, this means that the children satisfy
the transition formula for trans(p1) on stream(T, n′). Finally, for the nodes that
are neither ancestors nor descendants of v , they cannot be in a critical state of
trans(p1), by property (P5), and hence they are select-indifferent for trans(p1).
Hence, the run 〈F1, τ1〉 must be an accepting run of trans(p1) on stream(T, n′), as
required.

p = p1[q]: Suppose that we have T, m, n such that T |= p1[q](n, m). We
first show that trans(p1[q]) accepts stream(T, m) at position pos(n). Note that
T |= p1(n, m) and by induction trans(p1) accepts stream(T, m) at position pos(n).
Let 〈F1, τ1〉 be an accepting run of trans(p1) that witnesses this. From property
(P1), we know that there exists a vertex v ∈ F1 labeled with (q, pos(m)), where
q is a critical state such that the children of v in F1 satisfy δ(q, (〈N 〉, true)), in
which (〈N 〉, true) is the letter at position pos(m) in stream(T, m).

Similarly, let 〈F2, τ2〉 be a run of qtrans(q) which accepts stream(T ) at position
pos(m). Let 〈F, τ 〉 be the run obtained by attaching F2 to F1 at v and letting
τ = τ1 ∪ τ2. Then, 〈F, τ 〉 is an accepting run for the automaton trans(p1[q]).
Indeed, this follows from the construction of trans(p1[q]) and the fact that the
nodes of qtrans(q) are transitively select-indifferent by construction.

Conversely, suppose that we have T, m, n as above and that trans(p1[q]) accepts
stream(T, m) at position pos(n). Let 〈F, τ 〉 be a run that witnesses this. We show
that T |= p1[q](n, m). It is clear from the construction that 〈F, τ 〉 can be pruned
to become an accepting run for trans(p1) by eliminating the subtree of nodes
labeled with states in trans(q). Hence, by induction, T |= p1(n, m). Moreover,
from property (P1), we know that 〈F, τ 〉 must reach a critical state with a node
that could be selected. Looking at the transition for critical states, we see that
there must be a subtree of the run which is an accepting run of trans(q) starting at
pos(m). Putting these together, we have that T |= p1[q](n, m).

We next consider the case of qualifiers q = p.

 



Consider the 2WAA qtrans(p), where p is regarded as a qualifier. Suppose that
qtrans(p) accepts stream(T ) at position pos(n) for some node n ∈ T . Let 〈F, τ 〉 be
a minimal accepting run of qtrans(p) that witnesses this. We show that T |= q(n).

Clearly, 〈F, τ 〉 can be regarded as a pseudo-run for trans(p), when p is regarded
as a normal expression, that is, not a qualifier. By property (P1), there is some vertex
v inF such that τ (v) = (pos(m), q ′), where q ′ is a critical state such that the children
of v in F satisfy δ(q ′, (〈N 〉, true)), in which (〈N 〉, true) is the letter at position
pos(m) in stream(T, m) for some node m ∈ T . Choose the highest such node v inF .

To show that T |= p(n, m), it is sufficient (by induction) to show that 〈F, τ 〉
is an accepting run for trans(p), where p is viewed as a normal expression, on
stream(T, m) at position pos(n).

Consider a vertex w of F such that τ (w) = (q ′′, i). Recall that N is the element
label of node m in T . Since N is the only tag labeled with true in stream(T, m)
it is sufficient to look at transitions involving this tag. By the definition of the
automaton qtrans(p) and the fact that 〈F, τ 〉 is an accepting run, we know that
the successors of w satisfy δ′(q ′′, 〈N 〉) = δ(q ′′, (〈N 〉, false)) ∨ δ(q ′′, (〈N 〉, true)).
Here δ′ and δ denote the transition function of qtrans(p) and trans(p), respectively.

To show that 〈F, τ 〉 is an accepting run for trans(p) on stream(T, m) at position
pos(n), we need to show that successors of w satisfy δ(q ′′, (〈N 〉, false)) if
i 
= pos(m), and satisfy δ(q ′′, (〈N 〉, true)) if i = pos(m).

If w = v , then we know that this is true by the choice of v . Next, we consider the
case where w is an ancestor of v in F . If q ′′ is a critical state, then stream(T, m) can
only have a symbol at the i th position of the form (〈N ′〉, false) for some tag N ′,
by property (P4). In addition, property (P2) implies that i 
= pos(m) in this case.
Hence, we know δ(q ′′, (〈N 〉, false)) iff i 
= pos(m) holds as required. If q ′′ is not a
critical state, then it is select-indifferent by property (P3), and hence both disjuncts
of the transition in qtrans(p) are satisfied (recall the definition of qtrans(p)). If w is
a descendant of v inF , then it is select-indifferent by property (P4), and hence again
the appropriate disjunct is satisfied. If w is neither an ancestor nor a descendant of
v , then let w ′ be their least common ancestor, and consider the successors of w ′ in
F . By property (P5), at most one of these can reach a critical state, and this must be
the ancestor of v . Hence, in particular, w is select-indifferent, and the conclusion
follows.

Conversely, suppose that T |= q(n). We show that there is an accepting run of
qtrans(p) on the string stream(T ) at position pos(n). By induction we know that
there exists a node m and an accepting run of trans(p) on the string stream(T, m)
at position pos(n). It is easy to construct from this an accepting run of qtrans(p)
starting at position pos(n).

This completes the proof of Claim 7.6.

7.3.6. Enforcing the Correct Form of Strings. So far, we assumed that strings
given as input of the 2WA(S)As are of the form stream(T ) or stream(T, m), where
T is a tree satisfying a non-recursive DTD D. We now show how to code such a
DTD D in terms of a 2WAA. We say that a 2WAA AD weakly enforces D if (a)
for every tree T satisfying D, stream(T ) is accepted by AD, and (b) if a string s
is accepted by A, then s = stream(T ) for some tree T satisfying D.

CLAIM 7.7. Given a nonrecursive DTD D, there is a 2WAA AD that weakly
enforces D, which can be found in PTIME.

 



PROOF OF CLAIM. Indeed, let Ele be the element set of D. For every element
N ∈ Ele, we can write an ordinary finite state machine that enforces the input
string such that, whenever we see a symbol 〈N 〉, then sometime afterwards there
is a symbol 〈/N 〉, and in between those there are no additional occurrences of
〈N 〉. Let AN be this automaton and sN its initial state. Then, the 2WAA AD
is the disjoint union of AN over all N ∈ Ele together with the initial formula
θ0 = ∧

N∈Ele sN . That is, we verify each of these properties in parallel. The fact
that D is nonrecursive guarantees that this is correct.

We remark that we can obtain a similar 2WASA AD for strings of the form
stream(T, m). The difference is that we also need to enforce that there is unique
symbol (〈N 〉, true) in the accepted strings.

We also need to enforce that only streams satisfying the DTD are accepted.
For this, we observe that we can encode the nonrecursive DTD D in terms of a
qualifier qD in X (↓, ↑, ↓∗, ↑∗, ←, →, ←∗, →∗, ∪, [ ], ¬) such that for any tree
T , root(T ) satisfies qD iff T satisfies D. As stated in Claim 7.6, qD can be encoded
in terms of a 2WAA trans(qD).

This completes the proof of Claim 7.7.

7.3.7. Completion of the Proof. Given D and p, we define the 2WASA AD,p
as the conjunction of trans(p), AD and trans(qD). Here conjunction refers to taking
the disjoint union of the automata and conjoining the initial formulas.

From Claims 7.6, 7.7, and the construction of qD, it is clear that testing
nonemptiness of AD,p is equivalent to testing the satisfiability of (D, p). Since
testing the nonemptiness of two-way alternating automata is known to be in
PSPACE, we have the desired upper bound.

Recall that the PSPACE algorithm consists of building an equivalent one-way
nondeterministic automaton. Although this requires exponential time (see, e.g.,
kupferman et al. [2001]), the one-way automata can be explored in PSPACE, by
building it “on-the-fly” (see, e.g., Appendix A.1 of Martens and Neven [2005]; note
that all of our automata are “loop-free” in the sense of Martens and Neven [2005]).
This is sufficient for testing nonemptiness since this is essentially checking for the
reachability of an accepting state.

We next show that for any XPath fragment X (∪, . . . ) that contains ‘∪’ but does
not allow ‘↓∗, ↑∗’, there is a quadratic time reduction from SAT(X (∪, . . . )) under
arbitrary DTDs to SAT(X (∪, . . . )) under nonrecursive DTDs.

LEMMA 7.8. Let X (∪, . . . ) be any XPath fragment that contains union but
does not allow the descendant and ancestor axes. Then, there exists a function f :
X (∪, . . . ) → X (∪, . . . ), computable in O(|p|2) time, and moreover, for each query
p ∈ X (∪, . . . ), there exists a function N Rp from normalized DTDs to nonrecursive
normalized DTDs, computable in O(|D||p|) time, such that for any DTD D, (p, D)
is satisfiable if and only if ( f (p), N Rp(D)) is satisfiable.

PROOF. We first introduce a notion of depth: For any query p ∈ X (∪, . . . ) and
any tree T , we identify the depth of the deepest node in T involved in the eval-
uation of p. More specifically, we define the depth of p, denoted by depth(p),
inductively on the structure of p as follows: (a) depth(ε) = depth(→) =
depth(←) = depth(→∗) = depth(←∗) = depth(↑) = 0; (b) depth(A) =
depth(↓) = 1 for any label A in p; (c) depth(p1/p2) = depth(p1) + depth(p2);

 



(d) depth(p1 ∪ p2) = max{depth(p1), depth(p2)}; (e) depth(p1[q]) =
depth(p1) + depth([q]); (f) depth([q]) = depth(q); (g) depth(q1 ∧ q2) =
depth(q1 ∨ q2) = max{depth(q1), depth(q2)}; (h) depth(¬q1) = depth(q1);
(i) depth(lab() = A) = 0; (j) depth(p/@a = c) = depth(p); and
(k) depth(p/@a op p′/@b) = max{depth(p), depth(p′)}.

We now define the function f : X (∪, . . . ) → X (∪, . . . ) that maps each query
p to an expression f (p) ∈ X (∪, . . . ). Let n = depth(p), and for each label
A occurring in p, we introduce n new labels Ai , i ∈ [1, n]. We define f (p) by
rewriting p as follows: (1) replacing each label A occurring in p by the expression
(A1 ∪ · · · ∪ An); and (2) replacing each label test lab() = A in p by (lab() =
A1) ∨ · · · ∨ (lab() = An). The function f is clearly computable in O(|p|2) time.

Let T be an XML document and let depthT () be the function that assigns to
each node v of T its the depth in T , that is, the length of the path in T from v up
to the root of T . We denote this by depthT (v). We define the layered version of T
as the XML document T� obtained from T by replacing the label of each node v
in T by the label lab(n)depthT (v). It can be easily verified that T |= p if and only if
T� |= f (p). In fact, if we define T ≤n

� to be the subtree of T� obtained by removing
all nodes from T� below depth n, then we also have that T |= p if and only if
T ≤n

� |= f (p).
Let D = (Ele, Att, P, R, r ). We now define the mapping N Rp that maps

D to a non-recursive DTD N Rp(D). More specifically, let N Rp(D) =
(Ele′, Att′, P ′, R′, r ′), where Ele′ = {Ai | A ∈ Ele, i ∈ [1, n]} ∪ {r ′}; Att′ = Att;
r ′ = r0; R′(Ai ) = R(A); and for i ∈ [1, n − 1], P ′ consists of the produc-
tions (a) P ′(Ai ) = B(i+1)

1 + · · · + B(i+1)
k if P(A) = B1 + · · · + Bk , (b) P ′(Ai ) =

B(i+1)
1 , . . . , B(i+1)

k if P(A) = B1, . . . , Bk , and (c) P ′(Ai ) = (B(i+1))∗ if P(A) = B∗.
A special case is the production P ′(r0). If, for example, P(r ) = B1, . . . , Bk , then
P ′(r0) = B1

1 , . . . , B1
k ; similarly if P(r ) = B1 + . . . + Bk or P(r ) = B∗. Finally,

we extend P ′ by adding the productions P ′(An) = ε for all labels A ∈ Ele. Clearly,
N Rp(D) is a nonrecursive DTD and the function N Rp is computable in O(|D||p|)
time.

It is easy to verify that if T |= D, then T ≤n
� |= N Rp(D). Moreover, if T |=

(p, D), then T ≤n
� |= ( f (p), N Rp(D)). Conversely, if a tree T ′ |= ( f (p), N Rp(D))

we can obtain a tree T |= (p, D) by (1) replacing each label Ai in T ′ by A; and (2)
extending T ′ to a tree that conforms to D, by applying productions in D to the leaf
nodes in T ′.

7.4. SATISFIABILITY WITH SIBLING AXES AND DATA VALUES. Similarly, unde-
cidability results can be obtained for SAT(X (↑, ←, →, →∗, ∪, [ ], =, ¬)) under
restricted DTDs and in the absence of DTDs.

THEOREM 7.9. SAT(X (↑, ←, →, →∗, ∪, [ ], =, ¬)) is undecidable either (1)
under non-recursive, fixed and disjunction-free DTDs; or (2) in the absence of
DTDs.

PROOF. We prove these by reduction from the halting problem for two-register
machines (2RM). Recall from the proof of Theorem 5.4 the description of 2RM
machines M and the statement of the halting problem.

 



FIG. 13. Illustration of the DTD used in the undecidability proof of SAT(X (↑, ←, →, →∗, ∪, [ ],
=, ¬)).

1. Under non-recursive, fixed and disjunction-free DTDs. We first define the fixed
DTD D = (Ele, Att, P, R, r ) as follows:

Ele = {r, C, X, Y }.
P: r → C∗, C → X∗, Y ∗.
Att = {@s, @id}, R(C) = {@s}, R(X ) = R(Y ) = {@id}.

As depicted in Figure 13, an XML tree of the DTD D consists of an unbounded
number of C children, which encodes the execution of a 2RM M starting from
the leftmost C element. Each C element encodes an ID of M : it has an s attribute
indicating the state of the ID, and a list of X children followed by a list of Y children
on the right. The number of X (respectively, Y ) children represents the contents
of register1 (respectively, register2). To count the number of X children with the
same parent, an X.id attribute is defined for X elements, which is to serve as a
local key for these X elements. Similarly, for the Y children.

To encode M we use the following X (↑, ←, →, →∗, ∪, [ ], =, ¬)-qualifiers at
the root r .

(1) Initial ID. We code the initial ID (0, 0, 0) of M by using the leftmost C child
of r .

Qstart = C[(ε/@s = 0 ∧ ¬(← ∨ X ∨ Y ))].

(2) Halting state. The final ID ( f, 0, 0) of M is expressed as

Qhalting = Qstart/→∗[(ε/@s = f ∧ ¬(→ ∨ X ∨ Y ))].

This asserts that there exists an ID (i.e., a C child of r ) reachable from the initial
ID such that it is ( f, 0, 0), and moreover, no more computation is conducted (or ID
is reached) after M enters ( f, 0, 0).

(3) Local key. We enforce X.id to be a local key for the set of X children:

QxKey = ¬C[X/@id = →/→∗[lab() = X ]/@id],

This asserts that under any C element, the X.id of any X element is different from
the X.id of any of its X siblings; in other words, all the X children of C have
distinct X.id values. Similarly, we define QyK ey for Y elements.

(4) Transition. For each i ∈ [0, l], we code the i th instruction Ii in terms of a
qualifier Qi , based on the type of Ii .

(Case 1: Addition). If Ii is an addition transition (i, rg, j), where rg = register1,
then Qi is defined to ensure that for any C element c1 with state c1.s = i , (i) its

 



right sibling c2 has state c2.s = j (state change); (ii) c2 has one more X child
than c1 (register1 is incremented by 1); and moreover, (iii) c2 has the same num-
ber of Y children as c1 (register2 remains unchanged). These are expressed as
follows:

Qi = ¬C[ε/@s = i ∧ (→/@s 
= j ∨ Q X
a ∨ QY )]

Q X
a = (X [¬(ε/@id = ↑/→/X/→∗[lab() = X ]/@id)]) ∨

(→/X/→∗[lab() = X ∧ →[lab() = X ] ∧ ¬(ε/@id = ↑/←/X/→∗[lab() = X ]/@id)])

QY = (Y [¬(ε/@id = ↑/→/Y/→∗/@id)]) <sib ∨(→/Y [¬(ε/@id = ↑/←/Y/→∗/@id)]).

Here, Qi , Q X
a and QY assert the conditions (i–iii) above. Similarly, Qi , Q X

a and
QY can be defined for rg = register2.

(Case 2: Subtraction). If Ii is a subtraction (i, rg, j, k), where rg = register1,
then Qi is defined to ensure that for any C element c1 with state c1.s = i , (i) its
right sibling c2 has state c2.s = j if c1 has no X child (i.e., register1 is 0), and
furthermore, c2 has no X child and it has the same number of Y children as c1;
and (ii) if c1 has an X child (i.e., register1 
= 0), then c2 has state c2.s = k, and
moreover, c2 has one less X child than c1 (register1 is decremented by 1), while the
number of Y children of c2 is the same as that of c1 (register2 remains unchanged).
These are expressed as follows:

Qi = ¬C
[
ε/@s = i ∧ (Q0

s ∨ Q X
s )

]
Q0

s = (¬X ∧ (→/@s 
= j ∨ →[X ] ∨ QY ))

Q X
s = (X ∧ (→/@s 
= k ∨ X [→∗[lab() = X ∧ →[lab() = X ] ∧

¬(ε/@id = ↑/→/X/→∗[lab() = X ]/@id)]) ∨
(→/X [¬(ε/@id = ↑/←/X/→∗[lab() = X ]/@id)])

Here, QY is the same as defined in Case 1, and Qi , Q0
s and Q X

s assert the con-
ditions (i – ii) above. Similarly, Qi , Q0

s and Q X
s can be defined for rg = register2.

Putting these together, we define the query Q in X (↑, ←, →, →∗, ∪, [ ], =, ¬)
to be

Q = ε

[
Qstart ∧ Qhalting ∧ QxKey ∧ QyKey ∧

∧
i∈[0,l]

Qi

]
.

One can verify that (Q, D) is satisfiable iff the 2RM M halts, that is, (0, 0, 0) ⇒M
( f, 0, 0).

2. In the absence of DTDs. We encode the DTD D given in part (1) using qualifiers.
First, the production P(r ) can be easily expressed by a qualifier saying that there
should be a C child of the root, followed only by C labeled right siblings:

Qr = C[¬(←) ∧ ¬(→∗[lab() 
= C])].

Second, for the production P(C) we encode a mild variation P(C) = S, X∗, Y ∗
since then we know that C has at least one child to which we can go down (we do not
have ↓ in the XPath fragment). It can be easily verified that the undecidability proof
of (1) goes through after this minor modification. We now encode (the modified)
P(C) with the following qualifier, asserting that there should be a single leftmost

 



S child below C , followed by only X and Y labeled right siblings in the right order
(Y after X ):

QC = ¬C[S[← ∨ →/→∗[lab() 
= X ∧ lab() 
= Y ]] ∧ ¬S] ∧
¬C[S/→/→∗[lab() = Y ]/→/→∗[lab() = X ]].

One can verify that for Q in the proof of (1), ε[Qr ∧ QC ]/Q is satisfiable if and
only if (Q, D) is satisfiable if and only if the 2RM M halts.

7.5. CONTAINMENT ANALYSIS. Obviously, Proposition 3.2 still holds in the
presence of the sibling axes. From this and the lower bounds established in this
section, it follows:

COROLLARY 7.10. For the containment problem,

(1) CNT(X (→, [ ], ¬)) and CNT(X (←, [ ], ¬)) are PSPACE-hard (a) under non-
recursive and no-star DTDs, and (b) in the absence of DTDs;

(2) CNT(X (↑, →, [ ], ¬)) is EXPTIME-hard under fixed, disjunction-free and non-
recursive DTDs;

(3) CNT(X (↑, ←, →, →∗, ∪, [ ], =, ¬)) is undecidable (a) under non-recursive,
disjunction-free and fixed DTDs, and (b) in the absence of DTDs.

These are among the first lower bound results for containment analysis of
XPath with sibling axes. Indeed, the only other result that we are aware of is the
EXPTIME-hardness given by Marx [2004] for CNT(X (↓, ↓∗, ∪, [ ], ¬)). Corol-
lary 7.10 strengthens that result by showing that CNT(X (↑, →, [ ], ¬)) is already
EXPTIME-hard under restricted DTDs.

Furthermore, Proposition 3.2 also remains intact in the presence of the sibling
axes. Indeed, the function inverse in the proof of Proposition 3.2 can be extended
by including inverse(→) = ←, inverse(→∗) = ←∗, inverse(←) = → and
inverse(←∗) = →∗, and the rest of that proof can be carried over. In this way,
additional complexity results for the containment problem in the presence of sibling
axes can be obtained.

8. Conclusion

We have studied the satisfiability problem for a variety of XPath fragments in the
presence of DTDs, in the absence of DTDs, and under restricted DTDs. The main
complexity results are summarized in Table I, annotated with their corresponding
theorems.

Under arbitrary (any) DTDs, the table shows that the complexity of SAT(X )
ranges from PTIME to NP-complete when X is a positive XPath fragment. When
negation is added, the complexity ranges from PSPACE-complete to undecidable,
depending on different combinations of the negation operator, the recursive axes
and data-value joins.

Under nonrecursive (nonrec) DTDs, the satisfiability problem becomes much
simpler for XPath fragments with recursive axes; however, the absence of DTD
recursion does not help the satisfiability analysis of XPath fragments without recur-
sive axes. The absence of disjunction (+-free) in DTDs simplifies the satisfiability
analysis of positive XPath fragments, but does not help fragments with negation.
Fixing the DTD has little impact on the worst-case analysis, while the absence
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of DTDs (DTD-free) diminishes the complexity for positive fragments but not for
those fragments with negation.

We have also investigated the satisfiability problem for XPath fragments with
sibling axes (those results are not included in Table I). Our main conclusion
here is that the presence of sibling axes does not complicate the satisfiability
analysis.

There is still much to be done for the analysis of XPath fragments with nega-
tion and data values. An open question is the complexity of SAT(X (↓, ↑, ↓∗,
↑∗, ∪, [ ], =, ¬)) that is, the largest fragment with recursive and upward axes,
negation and data-value joins, in the absence of DTDs, DTD disjunctions, or DTD
recursion. We only know that the problem is undecidable in the absence of DTDs or
DTD disjunctions if we allow position() or equality on node identity. Another issue
is the decidability of SAT(X (↓, ↓∗, ∪, [ ], =, ¬)), that is, the largest downward
fragment. We only know that the problem is decidable either under non-recursive
DTDs, or in absence of the recursive axis (↓∗). It would also be interesting to see
if the NEXPTIME bound for nonrecursive DTDs remains valid when queries have
access to a document ordering.
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