
Effective Bounding Techniques For Solving
Unate and Binate Covering Problems

Xiao Yu Li
Amazon

Seattle WA, USA

xiaoli@amazon.com

Matthias F. Stallmann
NC State University
Raleigh NC, USA

matt stallmann@ncsu.edu

Franc Brglez
NC State University
Raleigh NC, USA

brglez@ncsu.edu

ABSTRACT
Covering problems arise in many areas of electronic design
automation such as logic minimization and technology map-
ping. An exact solution can critically impact both size and
performance of the devices being designed. This paper in-
troduces eclipse, a branch-and-bound solver that can solve
many covering problems orders of magnitude faster than ex-
isting solvers. When used in place of the default covering
engine of a well-known logic minimizer, eclipse makes it pos-
sible to find, in less than six minutes, true minima for three
benchmark problems that have eluded exact solutions for
more than a decade.

Categories and Subject Descriptors
B.6 [Logic Design]: Optimization; G.1.6 [Optimization]:
Integer Programming; G.2.1 [Combinatorics]: Algorithms

General Terms
Algorithms, Performance, Experimentation

Keywords
covering, branch and bound, satisfiability, unate, binate

1. INTRODUCTION
Solutions to unate covering problems (UCPs) have tradi-
tionally been driven by problems in two-level optimization
of logic functions [1]. Notable examples of binate cover-
ing problems (BCPs) are those related to the minimization
of Boolean relations, state minimization for finite-state ma-
chines, and cell library bindings. Whereas both problems
are intractable, binate covering is more difficult in practice
than unate covering. A good introduction to these problems
can be found in [2] and [3]. Significant advances have been
made recently in both problem domains: UCP [4, 5, 6, 7, 8]
and BCP [5, 6, 9, 10, 11]. However, despite these advances
in branch-and-bound algorithms, many current benchmarks
remain unsolvable by the leading solvers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

Instances of unate/binate covering are special cases of
a Boolean constraint satisfaction problem known as Min
Ones [12] or minimum-cost satisfiability (MinCostSat) [2].
Given m constraints on n Boolean variables, the goal is to
find an assignment that satisfies all constraints while mini-
mizing

Pn
i=1 wixi, where wi ≥ 0 is the weight of variable xi.

While the problem can be formulated and solved as an in-
teger programming (IP) problem, special purpose, domain-
specific solvers introduced in the articles cited earlier are re-
ported to have outperformed IP solvers such as lp solve [13]
and cplex [14].

We introduce eclipse, a new branch-and-bound solver that
improves the state of the art for solving MinCostSat prob-
lems in general, and unate/binate problems in particular.
Our analysis and experiments demonstrate that eclipse’s
primary advantage lies in its handling of lower and upper
bounds.

Comprehensive treatment of optimization algorithms for
MinCostSat and the topics in this paper can be found in [15].
Specifically, as shown in [15], the MinCostSat formulation
provides an umbrella for classifying not only the traditional
unate/binate covering problems but also design automation
problems that were previously considered in relative isola-
tion, including FPGA detailed routing and generation of
minimum-size test patterns and minimum-length plans.

An unexpected outcome of this research is the experience
with cplex [14], a general-purpose integer-programming en-
gine. Until now cplex has not been considered competitive
by the design automation community for solving covering
problems. Our results suggest that sophisticated cutting-
plane techniques, added recently to cplex ’s IP solver, make
it a prominent contender.

An even more general formulation, pseudo-Boolean con-
straints, is proposed in [16]. The authors use constraint
propagation and conflict learning, generalizing these tech-
niques from satisfiability solvers. Constraint propagation
is implicit in the reduction techniques used by eclipse, but
conflict learning is orthogonal to all of the techniques we use
and hence may be worth considering in the future. We have
yet to compare eclipse to any variant of the solver in [16].

We rely on textbooks such as [2, 3] to give details on
notation, branch-and-bound basics, and IP. Section 2 out-
lines the principal features of eclipse. Section 3 analyzes the
key performance factors of a branch-and-bound algorithm.
Comparison of four solvers on a subset of the hardest logic
minimization benchmarks is reported in Section 4. The end
of that section illustrates the impact of eclipse on logic min-
imization: it is there that we present results for latte, the

24.3

385

name we give to our version of espresso [17], in which min-
cov is replaced by eclipse. Latte solves three problems that
have eluded other solvers for more than a decade, each in
less than six minutes. Conclusions and open problems are
summarized in Section 5.

2. THE ALGORITHM: AN OUTLINE
Eclipse is a branch-and-bound solver. But, instead of re-
cursion it uses a priority queue to decide which branch to
explore next, allowing many different search patterns. The
search tree is a tree whose root represents the original prob-
lem instance. The interior nodes represent sub-instances –
the original instance with some variables already assigned.
The leaves represent complete variable assignments. Each
interior node has two children, sub-instances in which an
unassigned variable is assigned 0 and 1, respectively. The
outline of the basic algorithm follows.

Step 1. Initialize the root of the search-tree with the orig-
inal instance and set its lower-bound to 0. Put the root
node on a priority queue.

Step 2. If the priority queue is empty, then return the global
upper-bound and terminate. Otherwise, choose the most
promising node from the priority queue. If the lower-bound
of this node is ≥ the current global upper-bound, then dis-
card the node and repeat step 2.

Step 3. Choose a branching variable and generate the two
children of the node, setting the variable to 0 and 1. For
each child, (a) apply reduction techniques; (b) calculate
a lower-bound for the child – if the lower-bound is ≥ the
global upper-bound or the sub-instance is infeasible, then
discard the child; (c) do a local search at the child – if a
feasible solution costing less than the global upper-bound
is found, decrease the upper-bound to the new cost; (d) put
the child on the priority queue. Repeat step 2.

This is the eclipse algorithm – the two variants, eclipse-
lpr and eclipse-cp, discussed later, differ only in how the
lower bound is computed in step 3(b). We developed the
details of eclipse by experimentation, but later analyzed
the factors that explain its success. Seven of them, dis-
cussed in Section 3 and shown in Fig. 1, have led to the
performance improvements reported. Lower- and upper-
bounding techniques affect the number of nodes explored
by the search – better bounds increase the likelihood that
nodes will be ignored in Step 2 or that children will be dis-
carded in Step 3(b).

The use of a priority queue allows us to consider both
traditional depth-first search (recursion) and priority search
– choosing a node according to its likely contribution to a
quicker solution. Branching-variable selection influences not
only the order of exploration, but also the structure of the
search tree: the values of some variables lead more quickly
to sub-instance resolution.

Reduction techniques and search-tree pruning are pecu-
liar to covering problems. Reduction removes redundant
rows and columns from the constraint matrix. Pruning de-
duces that both children of a node can be discarded after
the lower bound for one of them is computed. Finally, the
data structure for the (sparse) constraint matrix is critical
– it allows frequent operations to be done in constant time.

Our experiments rely on benchmark instances whose names
and descriptions are introduced in earlier publications [1, 4,

9, 5, 6, 7, 8, 11]. Unless specified otherwise, all our experi-
ments in this work are done on a Pentium IV@2.0Ghz with
1GB of RAM under Linux.

3. PERFORMANCE FACTORS
Lower- and upper-bounding techniques dominate both the
execution time per node and the total number of nodes ex-
plored. Traditional algorithms for covering problems use a
maximal independent set of rows as a lower bound and some
combination of greedy and local-search methods to obtain
an initial upper bound. We improve lower bounds by in-
troducing techniques from IP. For upper bounds, we refine
local search and apply it at every interior node, not just at
the root. Other factors have considerably less impact and
are discussed briefly at the end of the section.

Factor 1: Lower-Bounding Technique. Our compari-
son begins with a standard greedy heuristic for maximum
independent set [5] (MIS1) and an enhanced version (MIS2)
that increments the bound whenever a row and its overlap-
ping rows cannot all be covered by a single variable (recall
that the MIS bound is based on the idea that two rows with
non-overlapping positive variables need at least two distinct
assignments of 1).

In IP solvers the usual lower bound heuristic relaxes the
integrality constraint on variable values, solving an LP (by,
e.g., the simplex method) instead. The LP relaxation (LPR)
yields poor lower bounds for many 0-1 IP problems, but
covering appears to be an exception.

LPR is further enhanced by adding cutting-planes (CP):
the IP problem is solved in its LPR form; instead of stop-
ping there (if the solution has fractional values) CP system-
atically generates new constraints, called Gomory cuts [18,
19], and adds them to the tableau (in the simplex method).
The new constraints eliminate the current fractional solution
(and perhaps others) but they never exclude any optimal in-
teger solutions. Therefore, the new LP problem created is
guaranteed to contain the same optimal integer solution as
the original one. Its optimal objective value is no smaller
than that of the LPR and sometimes larger.

CP is more time-consuming than LPR. The extra work
comes from generating the Gomory cuts and solving the

Factor 1: Lower bounding Techniques
a. MIS1 (maximum independent set)
b. MIS2 (maximum independent set improved)
c. LPR (linear programming relaxation)
d. CP (cutting planes)

Factor 2: Upper bounding Techniques
a. No local search
b. Local search only at the root
c. Local search at each node

- Initialization (Random/Using lower bound solution)
- Amount of Search (Fixed/Dependent on tree depth)

d. Ask the Oracle
Factor 3: Search-Tree Exploration Strategy

a. Depth-First Search
b. Priority Search

Factor 4: Branching Variable Selection Heuristics
Factor 5: Reduction Techniques
Factor 6: Search Pruning
Factor 7: Data Structures

Figure 1: The seven performance factors in eclipse.

386

Table 1: Comparison of four lower bounding techniques on unate and binate covering benchmarks.

For each group of benchmarks, the minimum cost cover (opt) is shown in the second column. The linear programming
relaxation (LPR) and cutting planes (CP) techniques never perform worse than the maximal independent set techniques,
MIS1 and MIS2. CP outperforms LPR for benchmarks such as exam.pi in the unate group and apex4.a in the binate
group. The differences from left to right are particularly significant for test4.pi (unate) and count.b, apex4.a, rot.b, and
e64.b (binate). In the c* group (binate), the lower-bounds at the root are far from the optimum, especially for MIS1 and
MIS2, because all but a few rows contain −1’s and rows with −1’s cannot be added to the independent set.

unate covering benchmarks

benchmark opt MIS1 MIS2 LPR CP
lin rom 120 115 115 120 120
exam.pi 63 52 55 60 62

bench1.pi 121 116 116 120 121
prom2 278 264 264 278 278

prom2.pi 287 273 273 287 287
max1024 245 236 238 244 244

max1024.pi 259 250 252 258 258
ex5.pi 65 60 60 64 64

ex5 37 32 32 36 36
test4.pi ≤ 101 56 56 80 80

m100 100 10 30 11 4 4 7 7
m100 100 10 15 10 4 4 8 8
m100 100 10 10 12 5 5 10 10
m200 100 10 30 11 3 4 8 8
m200 100 30 50 6 1 2 3 3

binate covering benchmarks

benchmark opt MIS1 MIS2 LPR CP
count.b 24 17 17 24 24

clip.b 15 10 10 14 14
jac3 15 12 12 15 15

f51m.b 18 14 15 16 17
sao2.b 25 24 25 25 25
5xp1.b 12 9 9 11 11

apex4.a 776 525 525 756 773
rot.b 115 95 98 111 114

alu4.b 50 38 39 47 47
e64.b ≤ 48 32 32 37 40

c432 F37gat@1 9 1 1 3 3
misex3 Fb@1 8 1 1 2 2

c1908 F469@0 11 1 1 4 4
c6288 F69gat@1 6 1 1 2 2

c3540 F20@1 6 1 1 3 3

new LP problem. But CP sometimes provides much bet-
ter lower bounds than the other methods. For example, at
the root of the search tree for the binate instance apex4.a,
the four lower-bounding methods provide lower bounds of
525 (MIS1), 525 (MIS2), 756 (LPR) and 773 (CP), respec-
tively. Table 1 shows lower bounds achieved by each of the
four methods on the unate and binate benchmarks and the
optimum solution, if known.

Factor 2: Upper-Bounding Technique. The effective-
ness of branch and bound is regulated by two bounds: a
local lower bound and a global upper bound. Whenever the
lower bound at a node is ≥ the global upper bound, that
node is discarded and the search subtree below it is pruned.
Eclipse puts much effort into lower bounds, but equally im-
portant is the calculation of good upper bounds. The upper
bound is defined as the cost of the best solution found so
far. Eventually it is the cost of the optimal solution. A
good upper-bounding strategy finds an optimal solution as
quickly as possible, thus pruning as many nodes as possi-
ble. However, a near-optimal upper bound allows pruning
of many nodes whose lower bound exceeds that of the root,
and may be almost as good. We list four sources of upper
bounds, in order of increasing effectiveness.

1. Search-tree leaf: This is the most naive method – there
is no explicit search for an upper-bound. The only update
of the upper-bound (initially ∞) occurs when a feasible
solution is found at a leaf of the search tree. Performance of
this approach is unreliable, as it depends heavily on where,
with respect to the search order, the best solutions reside.
In the worst case, the good solutions that cause pruning
are not found until nearly all nodes have been searched.

2. Local search at the root: Many two-phase branch-and-
bound solvers use this method – the first phase finds a
good upper bound at the root of the search tree, and all
future pruning relies on the relationship of lower bounds
to this upper bound (or better ones encountered at the
leaves). A solver using this method is more effective than
one that only uses leaves. Good or even optimal solutions

for many benchmarks can be found relatively quickly using
local search.

3. Local search at each node: If local search works well at
the root, why not use it at other interior nodes? The fact
that some variables are already assigned often forces the
search into previously unexplored territory. The benefits
of this additional coverage can be quite dramatic (see, for
example, max1024 in Table 2).

4. Ask the oracle: If the cost of the optimal solution is given
a priori as an upper bound, we get the maximum possible
pruning. We can use this method as a reference to see how
well each of the other methods is doing.

Local search starts with an initial assignment, chosen ran-
domly or by some heuristic. Variable values are changed
one at a time, either to decrease the number of violated
constraints or to decrease cost.1 The search continues for
a specified number of steps (instead of stopping at a ‘local
optimum’). Choosing this number is not easy.

• Too many steps increase processing time at each node
and slow eclipse down.

• Too few steps risk overlooking an opportunity to im-
prove the bound.

The search space is cut in half as each new variable is
assigned, so it makes sense to halve the number of search
steps for each branch taken relative to the root. In eclipse
the number of search steps at any node is (1/2)d ∗ cf ∗ S,
where d is the depth of the node (number of tree edges from
the root), cf is a constant,2 and S is the size (number of non-
zero coefficients) of the constraint matrix. Along any search-
tree path from the root toward a leaf, the number of local-
search steps decreases exponentially (with some additional
decrease due to shrinking matrix size).

Table 2 summarizes the results of experiments with dif-
ferent upper-bounding methods used in combination with

1Eclipse uses techniques borrowed from gsat [20], walk-
sat [21], and tabu search [22].
2We use cf = 5, a value, arrived at by trial and error, that
appears to work well across different problem instances.

387

Table 2: Comparison of four different upper-bounding methods with eclipse.

From left to right, results are shown (wrt local search) for (1) no search at all, (2) search at the root, (3) search at each
node, and (4) using a known optimum (oracle). The mean and standard deviation for runtime and nodes are reported,
based on 32 runs with different random seeds. Local search at every node is much better than search only at the root
and not much worse than knowing the optimum ahead of time.

none root each node oracle
benchmark time nodes time nodes time nodes time nodes

exam.pi 300/0∗ 2355/89 7.74/5.53 15/24 5.4/5.0 12/22 4.4/3.9 10/19
bench1.pi 300/0∗ 609/15 211.0/136.2 447/293 4.7/1.4 7/4 3.8/1.8 3/2
max1024 251.4/15.6 263/45 148.4/80.7 148/81 27.5/18.7 27/20 17.8/1.7 11/1

ex5 300/0∗ 97/3 25.3/33.4 6/11 15.1/7.7 5/3 3.7/0.2 1/0
5xp1.b 26.6/3.5 594/92 2.84/1.26 9/5 3.1/1.5 10/7 2.5/1.8 7/6

jac3 10.8/1.6 130/70 8.3/0.6 3/0 8.1/1.0 3/0 2.4/0.3 1/0
∗ times out at 300 seconds.

the best possible lower bound (CP). Mean and standard
deviation are based on 32 runs of each instance/algorithm
combination with different random seeds.

An important factor in local search is the starting assign-
ment. While the search itself is randomized in the results
reported in Table 2, the starting assignment is not. Linear
programming solutions can be close to the integral optimum
and, if rounded to the nearest integer (0 or 1 in our case), can
yield much better than random starting assignments. When
a CP lower bound is calculated, the dual simplex method
yields a not-necessarily feasible integer ‘solution’ (a feasible
solution to the dual problem) that can be used directly. In
the table below, we see the benefit of choosing a starting
assignment based on CP (the heuristic init columns) ver-
sus how a random initial assignment (random-init) would
perform under the same circumstances (those of Table 2).

random init heuristic init
benchmark time nodes time nodes

exam.pi 20.8/50.0 117/474 5.4/5.0 12/22
bench1.pi 300/0∗ 597/5 4.7/1.4 7/4
max1024 143.9/86.6 303/333 27.5/18.7 27/20

ex5 16.3/5.3 4/1 15.1/7.7 5/3
5xp1.b 3.0/1.5 10/7 3.1/1.5 10/7

jac3 8.7/1.5 3/1 8.1/1.0 3/0

Other Factors. Another factor for which we report com-
parisons is tree exploration. A well-chosen node exploration
sequence can lead quickly to good upper bounds and prun-
ing. In eclipse, all unexplored nodes are kept on a priority
queue and the node to be explored next has the minimum
lower bound. Intuitively, an optimal solution is more likely
to reside below such a node in the search-tree. The table
below compares eclipse’s strategy, priority search (best FS),
with depth-first search (depth FS). Overall, priority search
has better performance if all other factors are equal.

depth FS best FS
benchmark time nodes time nodes

exam.pi 7.0/5.4 15/23 5.4/5.0 12/22
bench1.pi 7.91/12.0 12/21 4.7/1.4 7/4
max1024 74.1/27.0 68/43 27.5/18.7 27/20

ex5 16.2/6.7 4/2 15.1/7.7 5/3
5xp1.b 3.0/1.4 10/7 3.1/1.5 10/7

jac3 8.6/1.5 3/1 8.1/1.0 3/0

The remaining performance factors are branching variable
selection, reduction, search pruning, and data structures.

Eclipse uses a criterion similar to the one in [9], modified us-
ing the LP solution, for selecting a branching variable. For
reductions, essentiality, row dominance and column domi-
nance [3] are used. Search pruning in eclipse again borrows
from [9] (the ‘Cl lower bound’). Doubly-linked lists of both
rows and columns implement the sparse matrix [17] so that
reduction operations can be performed efficiently.

4. EXPERIMENTAL RESULTS
With every factor except for the lower bound we ended
up with a clear-cut decision about what method to use in
eclipse. The tradeoff between the LPR lower bound, which
takes less time to compute, and the CP lower bound, which
may be significantly better, is benchmark-dependent. We
therefore include both eclipse-lpr and eclipse-cp in the re-
sults reported. Both search for an upper bound using a
non-random starting assignment at every node. Both also
use priority search and the other factor decisions mentioned
at the end of the previous section. The only difference is the
use of the LPR versus the CP lower bound, respectively.

We chose scherzo [5] to represent solvers designed specif-
ically for covering problems – it was able to solve both
unate and binate problems at least as well as solvers such
as auraII [7] and bsolo [11] (except that auraII was able
to solve ex5.pi and ex5 in about 7 minutes each, instead
timing out at one hour). Cplex [14], the gold standard of
general-purpose IP solvers, is version 7.5 using default set-
tings. Recent experiments with version 9.0 and a variety of
different settings did not yield significantly different results.

Unate/Binate Covering Results. Table 3 shows results
on various logic minimization benchmarks. In each category,
unate and binate, they are sorted by the number of non-zeros
in the covering matrix. The unate table shows the percent-
age of variables whose value is 1 in an optimum solution
– a larger value here puts eclipse-lpr at a disadvantage for
two reasons: (a) priority search tends to favor exploration
of the 0-branches in the search tree, and (b) eclipse-lpr ’s
starting assignment for local search, based on LP rounding,
usually has fewer 1’s than the dual-feasible solution used by
eclipse-cp.

In the binate table we show the percentage of non-zero
entries that are −1, i.e., the extent to which the instance
deviates from being unate. More −1’s favor cplex because
they render useless most of the special-purpose techniques
for covering problems.

388

Table 3: Comparison of five solvers on a logic minimization subset of unate/binate covering benchmarks.

The benchmarks used to compare solvers below are from logic minimization. Scherzo uses MIS-based lower bounds and is
competitive primarily on small binate benchmarks that have nearly optimal MIS bounds, such as sao2.b and f51m.b (see Table 1).
Cplex, eclipse-lpr, and eclipse-cp, have similar runtime. The results given for eclipse-lpr and eclipse-cp are for typical runs
exhibiting average behavior. As seen in Table 2 and other factor comparisons, the standard deviation on 32 runs can be large.
Eclipse-cp almost always has the smallest number of nodes and either the shortest or close to the shortest runtime. Cplex, however,
gains the upper hand on sao2.b, jac3, rot.b, and apex4.a, which have the highest percentage of −1’s. Eclipse-lpr manages to run
faster than at least one of the other two when the LPR and CP bounds are identical and close to optimal; the exceptions to this
are max1024 and max1024.pi, which are unusual in having an optimum solution with about 20% of the variables set to 1.

Unate benchmarks: runtime comparisons

benchmark max1024.pi max1024 bench1.pi prom2 prom2.pi exam.pi ex5.pi ex5 test4.pi
non-zeros 6974 7221 9563 15507 15545 25694 40681 41085 109318

% 1’s in opt. 20.3 19.4 2.6 10.6 11.0 1.3 2.6 1.5 < 0.1
scherzo 1749.3 224.3 1349.8 376.9 650.5 3600∗ 3600∗ 3157.9 3600∗

cplex 21.1 18.6 4.4 5.2 6.0 21.0 25.6 65.6 3600∗
eclipse-lpr 53.0 39.3 3.8 2.2 2.4 162.2 7.7 18.2 3600∗
eclipse-cp 18.0 15.9 2.2 8.0 6.1 3.1 9.0 11.3 3600∗

Unate benchmarks: comparisons of number of nodes

benchmark max1024.pi max1024 bench1.pi prom2 prom2.pi exam.pi ex5.pi ex5 test4.pi
scherzo 414030 533635 2001438 25865 23585 – – 615187 –

cplex 119 118 10 1 1 1379 104 550 –
eclipse-lpr 282 224 32 1 1 2768 9 29 –
eclipse-cp 16 11 4 1 1 2 3 3 –

Binate benchmarks: runtime comparisons

benchmark sao2.b f51m.b count.b jac3 5xp1.b rot.b apex4.a
non-zeros 12820 13397 17335 24011 29889 40755 57595

% −1’s 5.6 3.6 3.6 9.2 2.7 6.5 19.1
scherzo 0.4 0.9 333.7 2.6 2.1 3600∗ 87.4

cplex 1.6 1.9 0.7 1.5 5.0 62.0 9.9
eclipse-lpr 3.1 3.0 0.7 2.6 2.3 3600∗ 3600∗
eclipse-cp 3.5 2.7 1.8 7.8 4.1 370.0 29.5

Binate benchmarks: comparisons of number of nodes

benchmark sao2.b f51m.b count.b jac3 5xp1.b rot.b apex4.a
scherzo 285 1562 1429 294 2661 – 33185

cplex 236 199 20 7 258 3001 587
eclipse-lpr 64 140 1 3 128 – –
eclipse-cp 14 37 1 3 36 735 77

∗ Solver times out at 3600 seconds.

As already noted, lower bounds are the most important
factor in determining not only the number of nodes visited,
but runtime as well. This causes eclipse-cp to do at least as
well as cplex in most cases. Unfortunately eclipse-cp solves
a new LP and recomputes cutting planes at every node,
whereas cplex reuses cuts in the sub-instances and incorpo-
rates variable assignments incrementally. This is seen in the
results on the larger binate instances.

The importance of upper bounds can also be seen in the
table. The main advantage that eclipse-cp has over cplex is
the use of local search at every node. Without the exponen-
tial decay based on search-tree depth, the time spent doing
local search would overwhelm any advantage gained.3

Logic Minimization. To illustrate the importance of hav-
ing an improved set-covering solver, we took espresso [17],
a well-known two-level logic minimizer, and replaced its
unate-covering solver, mincov, with eclipse-cp, calling the
result latte. Espresso can run as a fast heuristic if an opti-
mal solution is not required. Our experiment, however, used

3In fact, cplex has an option to allow local search periodi-
cally, but for a fixed number of iterations that is independent
of problem size or node depth. Experiments with this option
did not yield any improvement.

espresso in exact mode.4 The table below shows that latte
finds exact solutions of several logic minimization bench-
marks that had not previously been solvable. In particular,
each of the three runs of latte took less than six minutes.

espresso (hours) latte (secs)
benchmark cover total cover total

ex5 – 12∗ 129.58 139.24
max1024 – 12∗ 329.11 329.5

prom2 – 12∗ 12.97 14.75
∗ times out at 12 hours.

The resulting solutions are also noticably better with re-
spect to number of product terms than those produced by
espresso in its heuristic mode. This suggests that the effort
to find exact solutions is not wasted.

orig espressoheur latte
benchm prod lit prod lit prod lit

ex5 256 9668 74 1903 65 1193
max1024 1024 13472 274 2266 259 2207

prom2 287 5610 287 5526 287 5528

4Specifically, espresso -Dexact, which minimizes the num-
ber of product terms as its primary objective, see, e.g., [3,
p. 217]. Latte is identical to espresso except that eclipse is
used in place of mincov.

389

5. CONCLUSIONS
We showed that by careful analysis of factors and experimen-
tal design, we can obtain a finely-tuned branch-and-bound
covering solver that is able to yield significant performance
improvement over previous special-purpose solvers. The role
of IP solvers, such as cplex is more important than we ini-
tially realized. Future covering solvers will have to take ad-
vantage of IP techniques, covering-specific techniques, and
perhaps techniques from satisfiability (e.g., those of [16]).

Future work on eclipse will focus on improving the per-
formance of our lower bound engine and possibly applying
it more selectively instead of at each node. We know from
profiling that lower bound computation accounts for nearly
all of the runtime of both eclipse-lpr and eclipse-cp on larger
benchmarks. Soon to be released is a version that uses
our own dual simplex engine instead of the one provided
by cplex. Besides the obvious advantage of not being de-
pendent on cplex, this also gives us finer control over the
number of dual-simplex iterations performed at each node.
Since intermediate data from the tableaux can yield both
lower bounds and hints for variable selection, we need not
wait for the LP to reach optimality.

Initial experiments with larger benchmarks suggest that
space, as well as time, might be a limiting factor, given a
large explosion in number of nodes on the queue (each node
has its own copy of the constraint matrix). This can be mit-
igated by storing only the current assignment at each node
instead of the whole matrix, but incurs an additional sub-
stantial penalty in time. A smooth tradeoff between space
and time is clearly worth looking into.

Acknowledgments. Results of comparative experiments
reported in this paper rely not only on benchmarks in the
public domain but also on state-of-the-art unate/binate cover
solvers that were genereously shared by several researchers
cited in this paper. We shall follow suit in similar vein with
our solvers eclipse and latte – once the experiments for the
journal version of this paper have been completed and or-
ganized similarly to the schema described in [23]. We also
thank the anonymous reviewers for constructive comments
that helped us clarify the presentation in this paper.

Researchers interested in the status of current versions of
these solvers and data sets can contact the authors directly.

6. REFERENCES
[1] R. Rudell and A.L. Sangiovanni-Vincentelli. Multiple-valued

optimization for PLA optimization. IEEE Transactions on
CAD/ICAS, CAD-6(5):727–750, September 1987.

[2] G. D. Micheli. Synthesis and Optimization of Digital
Circuits. McGraw-Hill Publishers, 1994.

[3] G.D. Hachtel and F. Somenzi. Logic Synthesis and
Verification Algorithms. Kluwer Academic Publishers, 1996.

[4] P.C. McGeer, J.V. Sanghavi, R.K. Brayton, and A.L.
Sangiovanni-Vincentelli. Espresso-signature: A new exact
minimizer for logic functions. In Proceedings of the 30th
Design Automation Conference, pages 618–624, 1993.

[5] O. Coudert. On solving covering problems. In Proceedings of
the 33rd Design Automation Conference, pages 197–202, 1996.

[6] S. Liao and S. Devadas. Solving covering problems using
lpr-based lower bounds. In Proceedings of the 34th Design
Automation Conference, pages 117–120, 1997.

[7] E.I. Goldberg, L.P. Carloni, T. Villa, R.K. Brayton, and A.L.
Sangiovanni-Vincentelli. Negative thinking in
branch-and-bound: the case of unate covering. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 19:1–16, 2000.

[8] R. Cordone, F. Ferrandi, D. Sciuto, and R. Wolfler. An
efficient heuristic approach to solve the unate covering
problem. In Proceedings of the Design, Automation and Test
in Europe, 2000.

[9] O. Coudert and J.C. Madre. New ideas for solving covering
problems. In Proceedings of the 31st Design Automation
Conference, 1995.

[10] T. Villa, T. Kam, R.K. Brayton, and A.L.
Sangiovanni-Vincentelli. Explict and implicit algorithms for
binate covering problems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
16:677–691, 1997.

[11] V.M. Manquinho and J.P. Marques-Silva. Search pruning
techniques in SAT-based branch-and-bound algorithms for the
binate covering problem. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
21:505–516, 2002.

[12] S. Khanna, M. Sudan, L. Trevisan, and D. P. Williamson. The
approximability of constraint satisfaction problems. SIAM J.
Comput., 30(6):1863–1920, 2000.

[13] M. Berkelaar. FTP site for lp solve, 2004. Source code is
available at ftp://ftp.es.ele.tue.nl/pub/lp-solve.

[14] ILOG. CPLEX Homepage, 2004. Information on CPLEX is
available at http://www.ilog.com/products/cplex/.

[15] X. Y. Li. Optimization Algorithms for the Minimum-Cost
Satisfiability Problem. PhD thesis, Computer Science, North
Carolina State University, Raleigh, N.C., August 2004. This
thesis is accessible at http://www.lib.ncsu.edu/theses/-
available/etd-10072004-021218/.

[16] D. Chai and A. Kuehlmann. A fast pseudo-Boolean constraint
solver. In Proceedings of the 40th Design Automation
Conference, pages 830–835, June 2003.

[17] R.L. Rudell. Logic synthesis for VLSI design. Ph.D.
Dissertation, Department of EECS, University of California
at Berkeley, 1989.

[18] R.E. Gomory. Outline of an algorithm for integer solution to
linear programs. Bulletin of the American Mathematical
Society, 64:275, 1958.

[19] R.E. Gomory. An algorithm for the mixed integer problem.
RM-2537. Santa Monica California: Rand Corporation, 1960.

[20] B. Selman, H.J. Levesque, and D. Mitchell. A new method for
solving hard satisfiability problems. In P. Rosenbloom and
P. Szolovits, editors, Proceedings of the Tenth National
Conference on Artificial Intelligence, pages 440–446, Menlo
Park, California, 1992. AAAI Press.

[21] D.A. McAllester, B. Selman, and H. Kautz. Evidence for
invariants in local search. In Proceedings of AAAI/IAAI,
pages 321–326, 1997.

[22] F. Glover. Future paths for integer programming and links to
artificial intelligence. Computers and Operations Research,
5:533–549, 1986.

[23] F. Brglez, X. Y. Li, and M. F. M. Stallmann. On SAT instance
classes and a method for reliable performance experiments
with SAT solvers. Ann. Math. Artif. Intell., 43(1):1–34, 2005.

390

