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ABSTRACT
Model checking techniques applied to large industrial circuits suf-
fer from the state space explosion problem. A major technique
to address this problem is abstraction. The most commonly used
abstraction technique for hardware verification is localization re-
duction, which removes latches that are not relevant to the prop-
erty. However, localization reduction fails to reduce the size of the
model if the property actually depends on most of the latches. This
paper proposes to use predicate abstraction for verifying RTL Ver-
ilog, a technique successfully used for software verification. The
main challenge when using predicate abstraction is the discovery
of suitable predicates. We propose to use weakest preconditions of
Verilog statements in order to obtain new predicates during abstrac-
tion refinement. This technique has not been applied to circuits
before. On benchmarks taken from an industrial microprocessor,
we successfully verified safety properties with more than 32,000
latches in the cone of influence. We compare the performance of
our technique with a modern model checker that implements local-
ization reduction.

Categories and Subject Descriptors: B.5.2 [Hardware]: Register-
Transfer-Level Implementation–Design Aids; J.6 [Computer Aided
Engineering]: [Computer-Aided Design]

General Terms: Verification

Keywords: Predicate Abstraction, Verilog, SAT

1. INTRODUCTION
Formal verification techniques are widely applied in the hard-

ware design industry. Model checking [10] is one of the most com-
monly used formal verification techniques in a commercial setting.
However, model checking suffers from the state space explosion
problem. One principal method in state space reduction is abstrac-
tion. Abstraction techniques reduce the state space by mapping
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the set of states of the actual, concrete system to an abstract, and
smaller, set of states in a way that preserves the relevant behaviors
of the system.

In the hardware domain, the most commonly used abstraction
technique is localization reduction [18, 24, 6]. The abstract model
is created from the given circuit by removing a large number latches
together with the logic required to compute their next state. The
latches that are removed are called the invisible latches. The latches
remaining in the abstract model are called visible latches. The ini-
tial abstract model is created by making the latches present in the
property visible, and the rest invisible.

Localization reduction is a conservative over-approximation of
the original circuit for reachability properties. This implies that if
the abstraction satisfies the property, the property also holds on the
original circuit. The drawback of the conservative abstraction is
that when model checking of the abstraction fails, it may produce
a counterexample that does not correspond to any concrete coun-
terexample. This is called a spurious counterexample.

In order to check if an abstract counterexample is spurious, the
abstract counterexample is simulated on the concrete machine. This
is called the simulation step. As in Bounded Model Checking
(BMC) [4], the concrete transition relation for the design and the
given property are jointly unwound to obtain a Boolean formula.
The number of unwinding steps is given by the length of the ab-
stract counterexample. The Boolean formula is then checked for
satisfiability using a SAT procedure [24]. If the instance is satis-
fiable, the counterexample is real and the algorithm terminates. If
the instance is unsatisfiable, the abstract counterexample is spuri-
ous, and abstraction refinement has to be performed.

The basic idea of the abstraction refinement techniques is to cre-
ate a new abstract model which contains more detail (e.g., more vis-
ible latches) in order to prevent the spurious counterexample. This
process is iterated until the property is either proved or disproved.
It is known as the Counterexample Guided Abstraction Refinement
framework, or CEGAR for short [18, 7, 8, 3, 15, 24].

In the software domain, the most successful abstraction tech-
nique for large systems is predicate abstraction [16]. It abstracts
data by only keeping track of certain predicates on the data. Each
predicate is represented by a Boolean variable in the abstract pro-
gram, while the original data variables are eliminated. When ap-
plying predicate abstraction to circuits, two problems arise:

• Most model-checkers used in the hardware industry work on
a very low level design, usually a net-list. However, predi-
cate abstraction is only effective if the predicates can cover the
relationship between multiple latches. This typically requires
a word-level model given in register transfer language (RTL),
e.g., in Verilog. The RTL level languages are similar to lan-
guages used in the software domain, such as ANSI-C.
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• The second problem concerns the use of theorem provers for
computing the predicate abstraction. Theorem provers model
the variables using unbounded integer numbers. Overflow or
bit-wise operators are not modeled. However, hardware de-
scription languages like Verilog provide an extensive set of bit-
wise operators. For hardware designs, the use of these bit-level
constructs is ubiquitous.

Predicate abstraction tools used for software employ multiple
heuristics in order to reduce the cost of calling the theorem prover
while computing the abstraction. SLAM [3] applies ad-hoc heuris-
tics that limit the number of predicates in a query, i.e., it partitions
the set of predicates into smaller subsets. This speeds up the ab-
straction process, but the resulting abstraction contains additional
spurious behavior. If the SLAM toolkit encounters a spurious coun-
terexample, it first assumes that it is caused by a lack of predicates,
and attempts to find new predicates. If no new predicates are found,
SLAM concludes that the counterexample is caused by the parti-
tioning of the predicates during the abstraction. In this case, a sep-
arate refinement algorithm (called Constrain [2]) is invoked. This
step only addresses spurious behavior due to an inexact abstraction,
as opposed to spurious behavior caused by insufficient predicates.

In the BLAST tool [17], the abstraction is completely demand-
driven. Initially, BLAST uses a very coarse abstraction. Additional
abstraction is only performed when a spurious counterexample is
encountered. The abstraction is only done to the extent necessary
to remove the spurious behavior. This is called lazy abstraction.

Contribution. This paper introduces new techniques for word-
level predicate abstraction and refinement for circuits given in Ver-
ilog RTL. There are two challenges when applying predicate ab-
straction to circuits: 1) The computation of the abstract model is
hard in presence of large number of predicates, and 2) discovery of
suitable word-level predicates for abstraction refinement.

In order to address the first problem, we partition the set of pred-
icates into clusters of related predicates. The abstraction is com-
puted separately with respect to the predicates in each cluster. Since
each cluster contains only a small number of predicates, the com-
putation of the abstraction becomes more efficient. We refer to
this technique as predicate partitioning. We identify eager abstrac-
tion [12] and lazy abstraction [17] as special cases of predicate par-
titioning. The eager technique refers to the case when all predicates
are within a single cluster, while lazy abstraction corresponds to the
case in which very few predicates are used for computing the ab-
straction (clusters of small size). As in [12], we use SAT to compute
the abstract transition relation. However, the predicate partitioning
is also applicable with any other solver (or theorem prover).

Due to partitioning additional spurious counterexamples are in-
troduced which have to be removed during the refinement phase.
When a spurious counterexample is encountered, we first check
whether each transition in the counterexample can be simulated on
the original program. This is done by creating a SAT instance for
the simulation of each abstract transition. If the SAT instance for
an abstract transition is unsatisfiable, then the abstract transition
is spurious. In this case, we refine the abstraction by adding con-
straints on the abstract transition relation which eliminates the spu-
rious transition. We make use of the proof of unsatisfiability of
the SAT instance to identify a small subset of existing predicates to
eliminate the transition. The fewer predicates are found, the more
spurious counterexamples can be eliminated in one step.

When all SAT instances for simulation of abstract transitions are
satisfiable it means that none of the abstract transitions is spuri-
ous due to the partitioning. The immediate conclusion then is that
the spurious counterexample is caused by insufficient predicates.

Model
check

Spurious
transition?

Constrain
abstract
model

enter Abstractenter

Simulate

false

No Yes

predicates
Find new

concrete
bug

Property
holds

Spurious
counterexample

Figure 1: Abstraction-refinement loop in this paper.

In this case, we apply a novel word-level refinement technique: we
compute the weakest precondition of the property (or existing pred-
icates) with respect to the transition function given by the circuit
to obtain new word-level predicates. To the best of our knowledge,
this is the first time syntactic weakest preconditions of circuits have
been used for refinement in predicate abstraction. The overall flow
of the various techniques described above is shown in Fig. 1.

Related work. Namjoshi et al. [20] use weakest preconditions
for extracting finite state abstractions, from possibly infinite state
programs. However, no automatic refinement procedure is described
for spurious counterexamples. In [13], a SAT-based technique for
predicate abstraction of circuits given in Verilog is introduced. The
circuit is synthesized and transformed into net-list level. A SAT
solver is used to compute the abstraction, which makes it possible
to support all bit-level constructs. However, if refinement becomes
necessary, only bit-level predicates can be introduced.

Andraus et al. [1] present a scheme for automatic abstraction of
behavioral RTL Verilog to the CLU language used by the UCLID
system [5]. However, the abstractions produced by their approach
can be coarse as there is no direct support for bit-vectors and bit-
wise operators in the CLU language. Also no refinement is done
when a spurious counterexample is obtained.
Outline. In section 2, we provide the notation used throughout
the paper. Section 3 describes the SAT-based predicate abstrac-
tion. Techniques for partitioning predicates are given in section
4. We present techniques for word-level abstraction refinement in
section 5. We report the experimental results in section 6, and con-
clude the paper in section 7. The formal semantics of the subset of
Verilog we handle can be found in our technical report [11].

2. PRELIMINARIES
Let R = {r1, . . . ,rn} denote the set of registers. The state of

the Verilog program is given by the valuation of these registers.
We consider the external inputs to be registers without a next-state
function. Let Q ⊆R denote the set of registers that are not external
inputs, i.e., have a next-state function. We denote the next-state
function of a word-level register ri ∈ Q by fi(r1, . . . ,rn), or fi(r̄)
using vector notation. The transition relation R(r̄, r̄′) relates the
current state r̄ ∈ S to the next state r̄′ and is defined as follows:

R(r̄, r̄′) :=
∧

ri∈Q
(r′i ⇔ fi(r̄))

Example: Consider a register x of size 8 bits. In each clock cycle, if
x is less than five, then the value of x is incremented by two, else the
value of x remains unchanged. Thus, the next state function of x is
given by ((x < 5)?(x+2) : x), where ? denotes the choice operator.
Note that we have a next state function for the whole register x and
not for the individual bits in x.
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3. PREDICATE ABSTRACTION
In predicate abstraction [16], the variables of the concrete pro-

gram are replaced by Boolean variables that correspond to a predi-
cate on the variables in the concrete program. These predicates are
functions that map a concrete state r̄ ∈ S into a Boolean value. Let
B = {π1, . . . ,πk} be the set of predicates over the given program.
When applying all predicates to a specific concrete state, one ob-
tains a vector of Boolean values, which represents an abstract state
b̄. We denote this function by α(r̄). It maps a concrete state into an
abstract state and is therefore called an abstraction function.

We perform an existential abstraction [9], i.e., the abstract model
can make a transition from an abstract state b̄ to b̄′ iff there is a
transition from r̄ to r̄′ in the concrete model and r̄ is abstracted to
b̄ and r̄′ is abstracted to b̄′. We call the abstract machine T̂ , and we
denote the transition relation of T̂ by R̂.

R̂ := {(b̄, b̄′) |∃r̄, r̄′ ∈ S : R(r̄, r̄′)∧
α(r̄) = b̄∧α(r̄′) = b̄′} (1)

The initial state I(r̄) is abstracted as follows:

Î(b̄) := ∃r̄ ∈ S : (α(r̄) = b̄ )∧ I(r̄)
The abstraction of a safety property P(r̄) is defined as follows: for
the property to hold on an abstract state b̄, the property must hold
on all states r̄ that are abstracted to b̄.

P̂(b̄) := ∀r̄ ∈ S : (α(r̄) = b̄) ⇒ P(r̄)
Thus, if P̂ holds on all reachable states of the abstract model, P also
holds on all reachable states of the concrete model.

SAT-based predicate abstraction. In [12], a SAT solver is
used to compute the abstraction of a sequential ANSI-C program.
This approach supports all ANSI-C integer operators, including the
bit-vector operators. We use a similar technique for computing the
abstraction of the Verilog programs. A symbolic variable bi is asso-
ciated with each predicate πi. Each concrete state r̄ = {r1, . . . ,rn}
maps to an abstract state b̄ = {b1, . . . ,bk}, where bi = πi(r̄). If
the concrete machine makes a transition from state r̄ to state r̄′ =
{r′1, . . . ,r

′
n}, then the abstract machine makes a transition from state

b̄ to b̄′ = {b′1, . . . ,b
′
k}, where b′i = πi(r̄′).

The formula that is passed to the SAT solver directly follows
from the definition of the abstract transition relation R̂ as given
in equation 1. The set of abstract transitions R̂ is computed by
transforming equation 1 into conjunctive normal form (CNF) and
passing the resulting formula to a SAT solver. The satisfying as-
signments obtained form the abstract transition relation R̂.
Example: Let the transition relation R(x,y,x′,y′) be x′ = y∧ y′ =
x. Let the set of predicates be {x = 1,y = 1}. The equation for
computing the R̂ is given as follows:

∃x,y,x′,y′ : (b1 ⇔ (x = 1))∧ (b2 ⇔ (y = 1))∧
R(x,y,x′,y′) ∧ (b′1 ⇔ (x′ = 1)) ∧ (b′2 ⇔ (y′ = 1))

The set of satisfying assignments to the above equation results in
R̂ := ((b′1 ⇔ b2) ∧ (b′2 ⇔ b1)).

Note that the predicates used for abstraction can be arbitrary
Boolean expressions allowed by the Verilog syntax. Thus, the pred-
icates can involve operators for concatenation, extraction etc. For
example, a[3:0]>7, ram[{addr,1’b0}]==d[9:2] are al-
lowed as predicates.

4. PREDICATE PARTITIONING
We call the computation of the exact existential abstraction as

described in the previous section the eager approach. In the worst
case, the number of satisfying assignments is exponential in the
number of predicates. As a result computing abstractions using the

eager approach can be very slow even for a small number of predi-
cates. The speed of the abstraction computation can be improved if
we do not aim at the most precise abstract transition relation. That
is, we allow our abstraction to be an over-approximation of the
abstract transition relation generated by the eager approach. The
SLAM toolkit, for example, limits the number of predicates in each
theorem prover query. Extending the idea in SLAM we partition
the set of the predicates and their next-state versions into smaller
sets of related predicates. We call these sets clusters, and denote
them by C1, . . . ,Cl , with Cj ⊆ {π1, . . . ,πk,π′

1, . . . ,π
′
k}, where π′i de-

notes the next state version of πi. The equation for abstracting the
transition system with respect to Cj is given as follows:

∃r̄, r̄′ :
∧

πi∈Cj

bi = πi(r̄) ∧ R(r̄, r̄′) ∧
∧

π′
i∈Cj

b′i = πi(r̄′)

The satisfying assignments to the above equation correspond to the
abstract transition relation R̂ j, which is represented symbolically
using BDDs. The number of satisfying assignments to the above
equation is limited by size of cluster Cj, that is, 2|Cj |. Clearly, by
limiting the size of Cj, we can compute the abstract transition rela-
tions much faster as compared to the eager approach.

The conjunction of l abstract transition relations R̂1, . . . , R̂l re-
sults in the abstract transition relation R̂:

R̂ :=
l∧

i=1

R̂i (2)

We refer to the above technique of partitioning the set of predi-
cates in various clusters, and using these clusters for computing the
abstraction R̂, as predicate partitioning.

Claim. If Q̂ denotes the transition relation obtained by using
the eager approach (Eqn. 1), and R̂ denotes the transition relation
obtained by predicate partitioning (Eqn. 2), then Q̂ ⇒ R̂.

The above claim is proved by observing that for all 1 ≤ j ≤ l,
Q̂ ⇒ R̂ j. Thus, R̂ is an over-approximation of Q̂, and hence, a
conservative over-approximation of the original circuit.

We evaluate two different techniques for creating predicate clus-
ters used in predicate partitioning, cone partitioning and partition-
ing for lazy abstraction.

Syntactic cone partitioning. This technique clusters a next
state predicate with a set of current state predicates if the variables
appearing in the current state predicates affect the value of the next
state predicate. Example: Let the transition relation R(x,y,x′,y′)
be x′ = y∧ y′ = x. Let the set of predicates be {x = 1,y = 1,x′ =
1,y′ = 1}. The value of the predicate y′ = 1 is affected by the value
of x (as y′ equals x). Note that the value of y′ = 1 is not affected by
the value of y. Thus, we keep x = 1 and y′ = 1 together in a cluster
C1. Similarly, the other cluster C2 := {y = 1,x′ = 1} is obtained.

Syntactic partitioning for lazy abstraction. The idea of
lazy abstraction [17] is to defer the abstraction until required by
a spurious counterexample. A completely lazy abstraction corre-
sponds to using no clusters. Thus, the initial abstraction is simply
true. Motivated by this idea, we use a very inexpensive syntac-
tic partitioning to compute a very coarse initial abstraction. This is
done to compute initial abstractions of large circuits quickly.

There are many ways to perform a partitioning for a coarse ab-
straction. One simple technique is to create k clusters, each con-
taining exactly one next-state predicate π′i. We follow a variant of
this technique: all next-state predicates that contain the exact same
set of variables are kept in the same cluster. This is useful if the
given set of predicates contains many mutually exclusive (or re-
lated) predicates such as x′ = 1,x′ = 2,x′ = 3. Keeping these pred-
icates in separate clusters will result in an exponential number of
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contradicting abstract states, such as an abstract state in which both
x′ = 1 and x′ = 2 are true.
Example: Let the set of next-state predicates be {x′ < 200,x′ =
31,y′ = 10,z′ > 10}. The clusters produced for lazy abstraction are
C1 := {x′ < 200,x′ = 31}, C2 := {y′ = 10}, C3 := {z′ > 10}.

Once the abstraction of the concrete system is obtained, we model-
check it using the NuSMV model-checker [21]. If the abstract
model satisfies the property, the property also holds on the origi-
nal, concrete circuit. If the model checking of the abstraction re-
turns false, we obtain a counterexample from the model-checker. In
order to check if an abstract counterexample corresponds to a con-
crete counterexample, a simulation step is performed. If the coun-
terexample cannot be simulated on the concrete model, it is called
a spurious counterexample. The elimination of spurious counterex-
amples from the abstract model is described in the next section.

5. ABSTRACTION REFINEMENT
When refining the abstract model, we distinguish between two

cases of spurious behavior, as done in [13]: Spurious transitions
are abstract transitions which do not have any corresponding con-
crete transitions. By definition, spurious transitions cannot appear
in the most precise abstraction as computed by the eager approach.
However, as we noted earlier, computing the most precise abstract
model is expensive and thus, we make use of the various parti-
tioning techniques. These techniques can typically result in many
spurious transitions. Spurious prefixes are prefixes of the abstract
counterexample that do not have a corresponding concrete path.
This happens when the set of predicates is not rich enough to cap-
ture the relevant behaviors of the concrete system, even for the most
precise abstraction.

An abstract counterexample is a sequence of abstract states s̄(1),
. . . , s̄(l), where each abstract state s̄( j) corresponds to a valuation
of the k predicates π1, . . . ,πk. The value of πi in a state s̄ is denoted
by s̄i. Recall that π′

i denotes the next state version of πi. In order to
check if an abstract transition s̄ to t̄ can be simulated on the concrete
model, we create a SAT instance given by the following equation:

k∧

i=1

πi = s̄i ∧ R(r̄, r̄′) ∧
k∧

i=1

π′
i = t̄i

The equation above is transformed into CNF and passed to a SAT
solver. If the SAT solver detects the equation to be satisfiable, the
abstract transition can be simulated on the concrete model. Other-
wise, the abstract transition is spurious.

Removing spurious transitions. If the abstract transition is
spurious, the CNF instance is unsatisfiable. In this case, we use the
ZChaff SAT solver [19] for finding a small subset of clauses in the
CNF instance which is also unsatisfiable (called an unsatisfiable
core). It is computed by making use of the proof of unsatisfiability
of the SAT instance [25]. We use the unsatisfiable core to deter-
mine a subset of existing predicates which are sufficient to show
that the abstract transition is spurious. The spurious transition is
removed from the abstract model by adding a constraint in terms of
the predicates appearing in the unsatisfiable core.
Example: Consider the abstract transition from s̄ = {b1 = 0,b2 =
1} to t̄ = {b′1 = 0,b′2 = 0}, where b1, b2 represent the current state
values and b′1, b′2 represent the next state values of predicates x > 2,
y = 3, respectively. Let the next state functions be x′ = y, y′ = x.
Observe that in s̄, the predicate y = 3 is true. This implies that
x′ = 3, and thus, b′1 must hold in t̄. However, b′1 is false in t̄ and
thus, the transition from s̄ to t̄ is spurious. This transition can be
eliminated by adding the constraint ¬(¬b1∧b2∧¬b′1 ∧¬b′2) to the
abstract model. However, this constraint removes just one spurious

transition. By making use of an unsatisfiable core, we can make the
constraint more general, thereby eliminating many spurious transi-
tions at the same time. In this example, the cause of the spurious
behavior is due to b2 = 1, and b′1 = 0. The unsatisfiable core allows
us to discover this fact. Now we can eliminate this abstract transi-
tion and many more spurious transitions by adding the following
constraint to the abstract model: ¬(b2 ∧¬b′1).

Removing spurious prefixes. In [13], the elimination of spu-
rious prefixes is done by adding a monolithic bit-level predicate. In
contrast to that, we make use of weakest preconditions as done in
software verification. We generate new word-level predicates from
the weakest precondition of the given property with respect to the
transition function given by the RTL level circuit as described next.

Weakest preconditions for Verilog. In software verification,
the weakest precondition wp(st,γ) of a formula γ is usually defined
with respect to a statement st (e.g., an assignment). It is the weakest
formula whose truth before the execution of st entails the truth of
γ after st terminates. In case of hardware, each state transition can
be viewed as a statement where the registers are assigned values
according to their next-state functions.

Recall that the set of registers that have a next-state function is
denoted by Q . That is, external inputs do not appear in this set.
The next-state function for register ri ∈ Q is given by fi(r̄). We
use f̄ to denote the vector of the next state functions for the regis-
ters in Q . For any expression e, the expression e[x̄/ȳ] denotes the
simultaneous substitution of each xi in e by yi from ȳ.

The weakest precondition of the property γ(r̄) with respect to
one concrete transition is defined as follows:

wp1( f̄ ,γ(r̄)) := γ(r̄) [r̄/ f̄ ]
The weakest precondition with respect to i consecutive concrete
transitions is defined inductively as follows:

wpi( f̄ , γ)) := wp1( f̄ , wpi−1( f̄ , γ)) (i > 1)
In order to refine a spurious counterexample of length l > 0, we
compute wpl( f̄ ,τ), where τ is the safety property we are inter-
ested in checking. Intuitively, τ holds holds after l transitions iff
wpl( f̄ ,τ) holds before l transitions. Refinement corresponds to
adding the boolean expressions occurring in wpl( f̄ ,τ) to the ex-
isting set of predicates.
Example: Let the property be x < 3, and the next state function for
the register x be ((x < 5)?(x+2) : x). Suppose we obtain a spurious
counterexample of length equal to 1. The weakest precondition
wp1 of x < 3 is given as (((x < 5) ? (x+2) : x ) < 3).

Simplifying the weakest preconditions. The problem with the
approach above is that when the spurious counterexample is long
the weakest precondition computation becomes expensive and the
predicates generated can become very complex (see wp1 above).
This adversely affects the abstraction refinement loop. In software
verification, this problem is solved by computing the weakest pre-
condition with respect to the statements appearing in the spurious
trace only. This is not directly applicable to a synchronous circuit.

Instead, we apply a syntactic simplification to the weakest pre-
conditions at each step. The simplification uses data from the ab-
stract error trace. We exploit the fact that many of the control flow
guards in the Verilog file are also present in the current set of pred-
icates. The abstract trace assigns truth values to these predicates in
each abstract state. In order to simplify the weakest preconditions,
we substitute the guards in the weakest preconditions with their
truth values. Furthermore, we only add the atomic predicates in the
weakest precondition as the new predicates (more details in [11]).
Example: Suppose the guard x < 5 is present in the current set of
predicates. Let the value of x < 5 in an abstract state s̄ be true.
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The weakest precondition given as (((x < 5) ? (x+2) : x ) < 3),
can be simplified in s̄, by substituting the value of x < 5. This
results in a new predicate x+2 < 3 (or x < 1).

With weakest precondition simplification, it is not always enough
to compute the weakest precondition of the given property for re-
finement. For example, we may need the weakest precondition of
the guard x < 5 in the example above, which will not be computed
if we do the simplification of the weakest precondition. Thus, one
needs to identify a subset of existing predicates, whose weakest
precondition must be computed for removing the spurious behav-
ior. This is done by simulating the entire spurious counterexample.
The unsatisfiable core obtained identifies a subset of existing pred-
icates responsible for the spurious behavior. If a copy of predicate
p in cycle k appears in the unsatisfiable core, then we compute the
weakest precondition of p for k steps.

6. EXPERIMENTAL RESULTS
The experiments are performed on a 1.5 GHZ AMD machine

with 3 GB of memory running Linux. A time limit of one hour and
a memory limit of 700 MB was set for each run. We compare our
technique against a non-commercial version of the Cadence SMV
model checker [14]. The Cadence SMV tool is a net-list based
model checker, which implements localization reduction.

6.1 Benchmarks and Properties Verified
Our benchmarks are taken from the Instruction Cache Unit (ICU),

and the Instruction Cache RAM (ICRAM) unit of the Sun PicoJava
II microprocessor [23]. The ICU fetches the instructions from the
instruction cache and passes them to the decode unit. We checked
the property that in case of a cache read miss the ICU controller
implementation simulates a miss state transition diagram given in
the picoJava-II micro-architecture guide [23].

The ICRAM maintains a RAM of size 16KB (organized as 2048
entries of 64 bits) each. If the write is enabled (icu ram we[1:0] =
2’b10), then the value of data input (icu din) is written to the higher
32 bits of the location addressed by the input address (icu addr).
This functionality of the ICRAM was encoded in form of a safety
property using the current and the next state of the variables. Ob-
serve that the property depends on the contents of the RAM. Thus,
even after applying the techniques such as localization reduction,
the system will have 16KB (16× 1024 × 8) latches. In order to
simplify the problem, we verified the property for the RAM of sizes
512 byte, 1KB, 2KB, and 4KB. These benchmarks are denoted as
M512B, M1KB, M2KB, M4KB, in the Table 1, respectively.

The benchmarks starting with ”AR” perform arithmetic opera-
tions on two registers a and b in each clock cycle. The next state
functions of a and b are given as follows: a′ :=(a < 100)?(a+b) : a
and b′ := a. Initial values of these registers are 1 and 0, respectively.
We check the property that a < 200 in each clock cycle. The bench-
marks AR100, AR200, AR500, AR1000 in Table 1 are variants of
this circuit obtained by increasing the size of the registers a and b.

The experimental results are summarized in Table 1. The col-
umn ”Latches” contains the total number of latches in the cone of
influence of the property. We compare two different techniques for
verifying these benchmarks. The columns marked with ”Predicate
Abstraction” contain the results of applying the predicate abstrac-
tion and refinement techniques discussed in this paper. The ”Time”,
”Abs”, ”MC”, and ”Ref” columns contain the total time, followed
by the breakup of the total time into the time taken by abstraction,
model checking, and refinement including simulation. The ”P/I”
column contains the final number of predicates followed by the to-
tal number of iterations.

The results of running Cadence SMV are given in the ”CSMV”

column. Of the various options to Cadence SMV, we found the
counterexample-based abstraction refinement option -absref3
to result in the best performance when checking the various bench-
marks. We report the total time taken by Cadence SMV when run-
ning with this option.

Bench- Latches Predicate Abstraction CSMV
mark Time Abs MC Ref P/I Time
ICU 28 1.3 0.6 0.1 0.6 5/1 0.1
M512B 4137 107.1 2.2 0.8 104.1 3/8 2.3
M1KB 8234 180.8 9.3 0.8 170.7 3/8 7.5
M2KB 16427 450.7 24 0.9 425.3 3/8 25.0
M4KB 32796 843.3 37 0.8 805.5 3/8 -
AR100 202 3.5 2.8 0.12 0.55 3/3 182.4
AR200 402 9.6 8.4 0.12 1.1 3/3 2147
AR500 1002 32.2 29.3 0.12 2.8 3/3 *
AR1000 2002 122.6 116.8 0.16 5.6 3/3 *

Table 1: Experimental results: All runtimes are in seconds. A ”*”
indicates a timeout of 1 hour. A ”-” indicates the model checker termi-
nated due to the large number of BDD variables.

6.2 Summary of Results
On the ICU benchmark, Cadence SMV outperforms predicate

abstraction. Since the state space of this benchmark is very small,
no abstraction is necessary. On the M512B, M1KB, and M2KB
benchmarks, the runtime of Cadence SMV is better than the pred-
icate abstraction runtime. However, Cadence SMV is not able to
handle the M4KB benchmark which has a much larger state space.
Cadence SMV timeouts on the AR500 and the AR1000 bench-
marks, while the predicate abstraction method is able to complete
these benchmarks with better runtimes. Some of the inferences
drawn from these observations are as follows:

• The runtime of localization reduction grows exponentially with
each newly added latch. This trend is visible in the AR100 to
AR1000 benchmarks. In these benchmarks, Cadence SMV is
not able to reduce the number of latches in the abstract model
created, making the model checking step expensive.

• When using predicate abstraction the size of the abstract model
remains constant even when the number of latches are increased.
This is because for many properties the number of word-level
predicates needed for the proof does not grow, as the sizes of
the registers appearing in the property is increased. This trend
is visible in the M* and the AR* benchmarks, where the num-
ber of predicates needed to prove the property does not change
as the number of latches is increased. Thus, the model checking
(MC) time is similar across M* and across AR* benchmarks.

• The computation of the abstract model using predicate abstrac-
tion requires the use of a decision procedure, which is a SAT
solver in our case. In general, the problem of computing the
precise existential abstraction (Eqn. 1) is itself exponential in
the number of predicates and the size of the transition relation
(number of latches). However, this complexity is not observed
in our experiments due to two reasons: 1) the use of state of
art SAT solvers like ZChaff [19] and Siege [22] for comput-
ing abstraction, 2) the use of predicate partitioning technique
(Sec. 4) to handle the large number of predicates. The exper-
imental results indicate that the abstraction computation time
does not grow exponentially with each newly added latch.

A plot of the total time needed by the predicate abstraction tech-
nique compared to the number of latches is given in Fig. 2(a) and
Fig. 2(b) for the M* and the AR* benchmarks, respectively. Ob-
serve that the runtime does not increase exponentially with number
of latches. These experiments support the hypothesis that the it-
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Figure 2: Runtime of the predicate abstraction and refinement with respect to number of latches: (a) M* benchmarks (b) AR* benchmarks

erative predicate abstraction and refinement can scale to circuits
involving thousands of latches.

Predicate partitioning techniques. We use two different tech-
niques for creating predicate clusters (section 4), namely cone par-
titioning and partitioning for lazy abstraction. Both techniques are
complementary to each other. Cone partitioning attempts to keep
all related predicates together, thus, the abstract model produced is
more precise as compared to lazy abstraction. However, the time
taken for abstraction using cone partitioning can become a bottle-
neck. In such cases, lazy abstraction works well if the property
can be checked using a coarse abstract model. Cone partitioning
is used for AR* benchmarks, while the lazy abstraction is used for
M* benchmarks. Observe that the total time is dominated by the
abstraction time in case of AR* benchmarks, and the refinement
time in case of the M* benchmarks. Additional experiments can be
found in our technical report [11].

Performance on Vapor benchmarks. The Vapor tool [1] performs
abstraction of the Verilog models to the CLU language [5] for veri-
fication. In [1], Vapor was used to verify control related properties
of the ITC99 circuits. We found that 18 of the 22 properties of the
ITC-b13 benchmark are proved trivially using predicate abstrac-
tion. The time taken is less than one second, and two predicates,
one refinement iteration is required on average. The remaining four
properties are proved in less than 4 seconds, and 12 predicates, four
refinement iterations are required on average. The other ITC99
circuits reported in [1] are also handled in a straightforward way.

7. CONCLUSIONS
Localization reduction fails if the property depends on too many

latches. We overcome this limitation by using a stronger abstrac-
tion technique called predicate abstraction. We present novel algo-
rithms for computing and refining predicate abstractions of circuits
given in RTL Verilog using SAT.

There are two challenges when using predicate abstraction on
Verilog: 1) the computation of the abstract model, and 2) how to
obtain good predicates. We address the first challenge by introduc-
ing predicate partitioning, a hybrid between eager abstraction and
lazy abstraction [17]. We make use of unsatisfiable cores of SAT
instances in order to eliminate multiple spurious transitions caused
by an over-approximation of the eager abstraction.

In order to obtain the right set of predicates, we compute new
word-level predicates by using weakest preconditions of Verilog
RTL. Weakest preconditions are commonly used in the software
domain. However, this technique was not applied to hardware be-
fore, despite of the fact that high-level RTL closely resembles lan-
guages like ANSI-C. Our experimental results show that this tech-
nique is very effective in discovering new word-level predicates for

refinement. On the large benchmarks, our new algorithm scales
well with the design size and clearly outperforms existing algo-
rithms that use localization reduction. Our techniques are imple-
mented in a tool called VCEGAR, which is publically is available
from http://www.cs.cmu.edu/∼modelcheck/vcegar.
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