
UCRL-CONF-203233

Automatic Blocking Of QR and
LU Factorizations for Locality

Q. Yi, K. Kennedy, H. You, K. Seymour, J.
Dongarra

March 29, 2004

The Second ACM SIGPLAN Workshop on Memory System
Performance
Washington , DC, United States
June 8, 2004 through June 8, 2004

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Automatic Blocking Of QR and LU Factorizations for Locality

Qing Yiy Ken Kennedyz Haihang Youx Keith Seymourx Jack Dongarrax

y Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
z Rice University, Houston, TX 77005, USA

x University of Tennessee, Knoxville, TN, 37996, USA

Abstract

QR and LU factorizations for dense matrices are im-
portant linear algebra computations that are widely
used in scienti�c applications. To eÆciently perform
these computations on modern computers, the factor-
ization algorithms need to be blocked when operating
on large matrices to e�ectively exploit the deep cache
hierarchy prevalent in today's computer memory sys-
tems. Because both QR (based on Householder trans-
formations) and LU factorization algorithms contain
complex loop structures, few compilers can fully au-
tomate the blocking of these algorithms. Though lin-
ear algebra libraries such as LAPACK provides man-
ually blocked implementations of these algorithms,
by automatically generating blocked versions of the
computations, more bene�t can be gained such as
automatic adaptation of di�erent blocking strategies.
This paper demonstrates how to apply an aggressive
loop transformation technique, dependence hoisting,
to produce eÆcient blockings for both QR and LU
with partial pivoting. We present di�erent blocking
strategies that can be generated by our optimizer and
compare the performance of auto-blocked versions
with manually tuned versions in LAPACK, both us-
ing reference BLAS, ATLAS BLAS and native BLAS
specially tuned for the underlying machine architec-
tures.

1 Introduction

QR and LU factorizations for dense matrices are two
important kernel computations in solving linear sys-
tem equations and are included in many popular lin-
ear algebra libraries such as LINPACK [9] and LA-
PACK [3]. Because they are at the heart of many
scienti�c applications, it is critical to provide eÆ-
cient implementations of the factorization algorithms
to achieve high performance on various advanced
machine architectures. Speci�cally, to exploit the

deep cache hierarchy prevalent in today's computer
memory systems, these algorithms must be eÆciently
blocked when operating on large matrices so that data
in caches are reused before being displaced from the
caches.

Blocking (or tiling) is a highly e�ective strategy
that enhances locality of applications by partitioning
computations into smaller blocks. A set of unimod-
ular loop transformation techniques [23, 6, 18] can
eÆciently block simple loop structures automatically.
However, on more complicated loop structures, such
as those in QR (based on Householder transforma-
tions) and LU (with partial pivoting) factorizations,
these techniques often fail, even when an e�ective
blocking is possible. As the result, few compilers can
fully automate the blocking of these computations.

To illustrate the requirements of automatically
blocking QR and LU, Figure 1 shows three equiv-
alent versions of LU factorization without pivoting.
These versions were initially introduced by Dongarra,
Gustavson and Karp [10], with each version placing
a di�erent loop(k, i or j) at the outermost position.
To fully block the non-pivoting LU code, a compiler
needs to strip-mine each of the three loops (k, i and j)
and then shift the strip-enumerating loops inside. To
achieve this blocking e�ect, the compiler must be able
to freely interchange the nesting order of the three
loops; that is, it must be able to freely translate be-
tween each pair of the three versions in Figure 1.

However, traditional unimodular transformation
techniques cannot translate between Figure 1(a) (or
(b)) and Figure 1(c) because these translations re-
quire the direct fusion and interchange of non-
perfectly nested loops. For example, to translate (a)
to (c), a compiler needs to fuse the k(s1) loop(k loop
surrounding s1) with the j(s2) loop in (a) and then
place the fused loop outside the k(s2) loop. The fu-
sion cannot be accomplished unless the original k loop
in (a) is �rst distributed. Since a dependence cycle
connecting s1 and s2 is carried by this k(s1; s2) loop,

1

do k = 1; n� 1
do i = k + 1; n

s1: a(i; k) = a(i; k)=a(k; k)
enddo
do j = k + 1; n
do i = k + 1; n

s2: a(i; j) = a(i; j)-a(i; k) � a(k; j)
enddo

enddo
enddo

@@
...

do i = 2; n
do k = 1; i � 1

s1: a(i; k) = a(i; k)=a(k; k)
do j = k + 1; n

s2: a(i; j) = a(i; j)� a(i; k) � a(k; j)
enddo

enddo
enddo

@@...

do j = 1; n
do k = 1; j � 1
do i = k + 1; n

s2: a(i; j) = a(i; j) � a(i; k) � a(k; j)
enddo

enddo
do i = j + 1; n

s1: a(i; j) = a(i; j)=a(j; j)
enddo

enddo
@@
...

(a) KJI (b) IKJ (c) JKI

Figure 1: Di�erent versions of non-pivoting LU by Dongarra, Gustavson and Karp

the distribution is not legal before fusion.

Both QR and LU with partial pivoting have similar
loop structures as the code fragments shown in Fig-
ure 1. Similarly, to block these computations, com-
pilers need the ability to directly fuse and interchange
non-perfectly nested loops. As this requirement is be-
yond the capability of traditional compiler loop trans-
formation techniques, few compiler implementations
can e�ectively block these computations.

In this paper, We show how to automatically pro-
duce eÆcient blockings for both QR and partial-
pivoting LU, using an earlier published novel loop
transformation technique, dependence hoisting [25],
that facilitates a combined fusion and interchange
transformation of arbitrarily nested loops. In addi-
tion, we compare the performance of the auto-blocked
QR and partial-pivoting LU with manually blocked
ones from the popular linear algebra library, LA-
PACK [3], which has been carefully optimized by pro-
fessional algorithm designers.

Although eÆcient blockings for QR and partial-
pivoting LU already exists in LAPACK, by automati-
cally blocking QR and LU, we potentially allow these
kernels to be better optimized through automatic
adaptation of di�erent blocking strategies, while al-
lowing libraries to maintain a single implementation
for each kernel. We illustrate the wider optimiza-
tion possibilities by automatically discovering block-
ing strategies other than the ones used by LAPACK.
In addition, we show that the e�ect of blocking in-
teracts with those of other lower-level optimizations.
Our results indicate that better portable performance
can be achieved by automatically constructing and
exploiting the optimization search spaces.

In the following, Section 2 �rst introduces related
work. Section 3 uses LU factorization without piv-
oting to illustrate how to apply dependence hoisting
transformations to block arbitrarily nested loop struc-
tures. Section 4 and 5 then present the blocking of
LU with partial pivoting and QR respectively. Sec-

tion 6 presents experimental measurements for both
QR and partial-pivoting LU. Conclusions are drawn
in Section 7.

2 Related Work

A set of unimodular loop transformations, including
loop strip-mining, fusion, distribution, interchange,
skewing and index-set splitting [23, 16, 18, 8, 11, 5],
can be applied to successfully achieve blocking op-
timizations for scienti�c applications. These tech-
niques are inexpensive and are widely used in pro-
duction compilers to optimize simple loop structures,
both for locality and for parallelization. However,
these techniques are not e�ective enough when trans-
forming complex, non-perfectly nested loop struc-
tures. Through the automated blocking of QR
and LU factorizations, this paper illustrates how to
use the earlier published dependence hoisting tech-
nique [25] to extend these traditional techniques in ef-
fectively transforming arbitrarily complex loop nests,
Carr, Kennedy and Lehoucq [4, 6] investigated the

requirements for compilers to automatically optimize
dense matrix QR, LU and Cholesky factorizations
through unimodular loop transformation techniques.
For partial-pivoting LU factorization, they were able
to achieve comparable performance as that achieved
by LAPACK [3]. However, their blocking strategy
requires the insight that row interchange and column
update matrix operations commute, an insight that
can be achieved automatically by a compiler only
through specialized pattern matching steps. Addi-
tionally, Carr and Lehoucq were able to produce only
partial blocking for QR factorization, which were not
as eÆcient as the LAPACK version of QR for large
matrices. This paper further advances the results
of their study through the application of dependence
hoisting. Using dependence hoisting, we were able
to fully automate the blocking of partial-pivoting LU
without requiring any special commutativity insights.

2

We were also able to automatically producing eÆcient
blocking for QR and achieve competitive or even su-
perior performance than that of the LAPACK QR for
all matrix sizes.

Several compiler loop transformation frame-
works [15, 20, 1, 17, 22] are theoretically more power-
ful but are also much more expensive than the depen-
dence hoisting technique used in this paper. These
general frameworks typically adopt a mathematical
formulation of program dependences and transforma-
tions. They �rst compute a mapping from the iter-
ation spaces of statements into some uni�ed space.
The uni�ed space is then considered for transforma-
tion. Finally, a new program is constructed by map-
ping the selected transformations of the uni�ed space
onto the iteration spaces of statements. The compu-
tation of these mappings is expensive and generally
requires special integer programming tools such as the
Omega library [12]. Because of their high cost, these
frameworks are rarely used in commercial compilers.
In contrast, we seek simpler yet highly e�ective solu-
tions with a much lower compile-time overhead. The
compile-time overhead of applying dependence hoist-
ing is comparable to that of applying unimodular loop
transformation techniques, as presented in prior work
by Yi, Kennedy and Adve [25].

Although dependence hoisting is only a combined
loop fusion and interchange transformation, it can
be integrated with other compiler techniques such
as automatic selection of blocking factors [8, 16, 19],
heuristics for loop fusion [14, 13], multi-level mem-
ory hierarchy management [7], and data layout trans-
formations [21]. It thus extends traditional uni-
modular loop optimization systems with the ability
to eÆciently optimize arbitrarily complex structures.
Speci�cally, for linear algebra kernels that manifest
similar loop structures as those in QR and LU factor-
izations, by allowing multiple eÆcient blocked rou-
tines to be automatically generated, it enables these
computations to be �ner tuned automatically for high
performance on di�erent machine architectures.

3 Dependence Hoisting

We use the LU factorization code in Figure 1 to il-
lustrate how to apply a novel transformation, depen-
dence hoisting, to achieve eÆcient blocking for arbi-
trary loop structures. Dependence hoisting was de-
scribed by Yi, Kennedy and Adve in detail in [25].
This section recapitulates the safety analysis and ap-
plication steps of performing this transformation.

3.1 Safety Analysis

Dependence hoisting is a combined loop fusion and
interchange transformation that fuses a collection of
arbitrarily nested loops and then shifts the fused loop
to the outermost position of an input loop structure.
The collection of loops to be fused, together with their
alignments during fusion, is denoted as a computa-
tion slice (or simply slice). The safety of the whole
transformation is guaranteed by collecting only valid
computation slices.
Given an arbitrarily nested loop structure C, a

computation slice for C contains the following infor-
mation.

� stmt-set: the set of statements in C;

� slice-loop(s) 8s 2 stmt-set: for each statement
s in stmt-set, the slicing loop for s; that is, the
selected loop (surrounding s) to be shifted to the
outermost position;

� slice-align(s) 8s 2 stmt-set: for each statement
s in stmt-set, the alignment for slice-loop(s).

Given the above slice, a dependence hoisting trans-
formation fuses all the slicing loops into a single loop
`f at the outermost position of C s.t. 8 `(s) =
slice-loop(s),

Ivar(`f (s)) = Ivar(`(s)) + slice-align(s): (1)

Here Ivar(`(s)) and Ivar(`f (s)) are the induction
variables for loops `(s) and `f (s) respectively. Equa-
tion (1) speci�es that each iteration instance I of loop
`(s) (= slice-loop(s)) is executed at iteration I+slice-
align(s) of the fused loop `f after transformation.
To produce a correct dependence hoisting trans-

formation, a valid computation slice must satisfy the
following three conditions.

� it includes all the statements in C;

� all of its slicing loops can be legally shifted to the
outermost loop level;

� each pair of slicing loops `x(sx) and `y(sy) can
be legally fused s.t. Ivar(`x)+ slice-align(sx) =
Ivar(`y) + slice-align(sy).

The above constraints are determined by examining
the dependence constraints [2, 24, 25] of the original
code fragment C. Figure 3(a) shows the originalKJI

form of non-pivoting LU along with the dependence
constraints between statements s1 and s2, where each
dependence is marked with relations between itera-
tions of the surrounding loops. Note that these re-
lations involve not only iterations of common loops
surrounding both s1 and s2 (for example, k(s1; s2)),
but also non-common loops surrounding only one of

3

slicej :
stmt-set = fs1; s2g
slice-loop(s1) = k(s1)
slice-align(s1) = 0
slice-loop(s2) = j(s2)
slice-align(s2) = 0

slicek :
stmt-set = fs1; s2g
slice-loop(s1) = k(s1)
slice-align(s1) = 0
slice-loop(s2) = k(s2)
slice-align(s2) = 0

slicei :
stmt-set = fs1; s2g
slice-loop(s1) = i(s1)
slice-align(s1) = 0
slice-loop(s2) = i(s2)
slice-align(s2) = 0

Figure 2: Computation slices for non-pivoting LU

do k = 1; n� 1
do i = k + 1; n

s1: a(i; k) = a(i; k)=a(k; k)
enddo
do j = k + 1; n
do i = k + 1; n

s2: a(i; j) = a(i; j)-a(i; k) � a(k; j)
enddo

enddo
enddo

S1S2

k(S1)<j(S2)
k(S1)=k(S2)

k(S2)<k(S1)
j(S2) = k(S1)

)

do x = 1; n
do k = 1; n� 1
do i = k + 1; n
if (k = x) then

s1: a(i; k) = a(i; k)=a(k; k)
endif

enddo
do j = k + 1; n
do i = k + 1; n
if (j = x) then

s2: a(i; j) = a(i; j) � a(i; k) � a(k; j)
endif

enddo
enddo

enddo
enddo

S2 S1

k(S1)<j(S2)
k(S1)=k(S2)
x(S1) < x(S2)

j(S2) = k(S1)
k(S2)<k(S1)
x(S2)=x(S1)

(a) original code (b) after shifting dependence level

Figure 3: Transforming KJI version of non-pivoting LU. Step(1): shift dependence levels

the statements (for example, j(s2)). The extra in-
formation is necessary to precisely model dependence
constraints independent of the original loop structure.
Based on the dependence constraints in Fig-

ure 3(a), Figure 2 shows the three valid computation
slices for this code (similar slices can be collected for
Figure 3(b) and (c)). These slices can be used to
freely translate between any two of the three loop or-
derings for non-pivoting LU in Figure 1. Section 3.2
illustrates how to translate (a) to (c) using slicej.
Similarly, using slicei can translate (a) to (b), and
using slicek can translate (c) to (a).

3.2 Transformation Steps

We illustrate the application steps of dependence
hoisting by translating Figure 3(a) to (c), using slicej
from Figure 2. Speci�cally, we show how to facili-
tate the fusion of the k(s1) and j(s2) loops in (a) by
successfully distributing the original k(s1; s2) loop.
As discussed in Section 1, this distribution cannot
be achieved through unimodular loop transformation
techniques because of the dependence cycle that con-
nects statements s1 and s2 and is carried by the
k(s1; s2) loop.
The translation is in three steps. First, we create

a new dummy loop surrounding the original code in
Figure 3(a). This dummy loop has an index variable
x that iterates over the union of the iteration ranges
of loops k(s1) and j(s2). In the same step, we insert
conditionals in (a) so that statement s1 is executed

only when x = j and statement s2 is executed only
when x = k. Figure 3(b) shows the result of this step,
along with the modi�ed dependences which include
relations involving iterations of the new outermost x
loop.

Now, because the conditionals x = k and x = j

in Figure 3(b) synchronize the k(s1) and j(s2) loops
with the new x(s1; s2) loop in a lock-step fashion, loop
x(s1) always has the same dependence conditions as
those of loop k(s1), and loop x(s2) always has the
same dependence conditions as those of loop j(s2). As
shown in the dependence graph of (b), the new out-
ermost x loop now carries the dependence edge from
s1 to s2 and thus carries the dependence cycle con-
necting s1 and s2. This shifting of dependence level
makes it possible for the second transformation step
to distribute the k(s1; s2) loop in (b), which no longer
carries a dependence cycle. The transformed code af-
ter distribution is shown in Figure 4(a). Note that
this step requires interchanging the order of state-
ments s1 and s2.

Finally, we can now remove the redundant loops
k(s1) and j(s2) in Figure 4(a) along with the condi-
tionals that synchronize them with the outermost x

loop. To legally remove these loops and condition-
als, we substitute the index variable x for the index
variables of the removed loops k(s1) and j(s2). In ad-
dition, we adjust the upper bound of the k(s2) loop
to x�1, in e�ect because the j(s2) loop is exchanged
outward before being removed. The transformed code

4

do x = 1; n
do k = 1; n� 1
do j = k + 1; n
do i = k + 1; n
if (j = x) then

s2: a(i; j) = a(i; j) � a(i; k) � a(k; j)
endif

enddo
enddo

enddo
do k = 1; n� 1
do i = k + 1; n
if (k = x) then

s1: a(i; k) = a(i; k)=a(k; k)
endif

enddo
enddo

enddo

S2 S1

k(S1)<j(S2)
k(S1)=k(S2)
x(S1) < x(S2)

j(S2) = k(S1)
k(S2)<k(S1)
x(S2)=x(S1)

)

do x = 1; n
do k = 1; x� 1

do i = k + 1; n
s2: a(i; x) = a(i; x)� a(i; k) � a(k; x)

enddo
enddo
do i = x+ 1; n

s1: a(i; x) = a(i; x)=a(x;x)
enddo

enddo

S2 S1

x(S2)=x(S1)

x(S1)< x(S2)
x(S1)=k(S2)

k(S2)<x(S1)

(a) after distributing k(s1; s2) (b) after cleanup

Figure 4: Transforming KJI version of non-pivoting LU. Steps (2) and (3): distribute loops and cleanup

after this cleanup step is shown in Figure 4(b).
The �nal transformed code in Figure 4(b) is the

same as the JKI form of non-pivoting LU in Fig-
ure 1(c) except that the name of the outermost loop
induction variable is x instead of j. In reality, the
induction variables of the new loops can often reuse
those of the removed loops so that a compiler does
not have to create a new loop induction variable at
each dependence hoisting transformation.

3.3 Achieving Blocking

Because dependence hoisting can be seen as a loop in-
terchange transformation on arbitrarily nested loop
structures, by combining dependence hoisting with
loop strip-mining, we can achieve blocking for arbi-
trary loop structures. Speci�cally, given a collection
of valid computation slices for a single loop structure
C, we order these slices in the reverse of the desired
nesting order of the corresponding loops. After using
each slice to drive a dependence hoisting transforma-
tion, we strip-mine the new fused loop `f into a strip-
counting loop `c and a strip-enumerating loop `t. We
then use loop `t as the input loop nest for further de-
pendence hoisting transformations, which in turn will
shift a new set of loops outside loop `t but inside loop
`c, thus blocking loop `f . This process is further il-
lustrated in Section 4 in blocking partial-pivoting LU
factorization.

4 Blocking Partial-Pivoting LU

This section shows the e�ect of applying dependence
hoisting (together with loop strip-mining) to block
LU factorization with partial pivoting. Figure 6(a)
presents the original non-blocked version generated

slicej :
stmt-set = fs1; s2; s3; s4; s5g
slice-loop(s1) = j(s1)
slice-align(s1) = 0
slice-loop(s2) = j(s2)
slice-align(s2) = 0
slice-loop(s3) = j(s3)
slice-align(s3) = 0
slice-loop(s4) = j(s4)
slice-align(s4) = 0
slice-loop(s5) = j(s5)
slice-align(s5) = 0

slicek :
stmt-set = fs1; s2; s3; s4; s5g
slice-loop(s1) = j(s1)
slice-align(s1) = 0
slice-loop(s2) = j(s2)
slice-align(s2) = 0
slice-loop(s3) = k(s3)
slice-align(s3) = 0
slice-loop(s4) = j(s4)
slice-align(s4) = 0
slice-loop(s5) = k(s5)
slice-align(s5) = 0

Figure 5: Computation slices for partial-pivoting LU

from dgetf2, the right-looking Level2 LAPACK rou-
tine that computes the LU factorization of a m � n

matrix. We obtained Figure 6(a) by �rst inlining all
the subroutines invoked by dgetf2 and then removing
error-checking conditionals inside loops. In addition,
we manually performed a preliminary loop index-set
splitting transformation: as shown in Figure 6(a), the
two k loops (k = j; n and k = 1; j � 1) surround-
ing s3 and s03 were split from a single original loop
k = 1; n. This change is required to exclude state-
ment s03 from participating the dependence hoisting
transformations, as the dependence constraints con-
necting s03 would invalid the computation slice slicek
in Figure 5. Although this step can be automated, it
has not yet been implemented in our translator.
Before performing safety analysis of dependence

hoisting, our translator applies a preliminary loop dis-
tribution step to separate out the statements that can
disable certain dependence hoisting transformations.
As the result, the original j(s03) and k(s03) loops in
Figure 6(a) are separated into another loop nest, as
shown in Figure 6(b) and (c). Our translator can
then apply dependence hoisting transformations only
to loops surrounding statements other than s03.
Figure 5 presents the two valid computation slices

for the partial-pivoting LU code in Figure 6(a). The

5

do j = 1, min(m, n)
s1: ipiv(j) = j
s1: tmp = dabs(a(j,j))

do i = j+1,m
s2: if (dabs(a(i,j)).gt.tmp) then
s2: ipiv(j) = i
s2: tmp = dabs(a(i,j))
s2: endif

enddo
do k = j, n

s3: tmp1 = a(j, k)
s3: a(j,k) = a(ipiv(j), k)
s3: a(ipiv(j), k) = tmp1

enddo
do k = 1, j-1

s0

3: tmp2 = a(j, k)
s0

3: a(j,k) = a(ipiv(j), k)
s0

3: a(ipiv(j), k) = tmp2
enddo
do i = j+1, m

s4: a(i,j) = a(i,j) / a(j,j)
enddo
do k = j+1, n

do i = j+1, m
s5: a(i,k) = a(i,k) - a(i,j) * a(j,k)

enddo
enddo

enddo

@@
...

do k = 1, n, 1
if (k .ge. 2) then
do j = 1, min(m, -1 + k), 1

s3: tmp1 = a(j, k)
s3: a(j, k) = a(ipiv(j), k)
s3: a(ipiv(j), k) = tmp1

do i = 1 + j, m, 1
s5: a(i, k) = a(i, k) - a(i, j) * a(j, k)

enddo
enddo

endif
if (k .le. min(m,n)) then

s1: ipiv(k) = k
s1: tmp = dabs(a(k, k))

do i = 1 + k, m, 1
s2: if (dabs(a(i, k)) .gt. tmp) then
s2: ipiv(k) = i
s2: tmp = dabs(a(i, k))
s2: endif

enddo
s3: tmp1 = a(k, k)
s3: a(k, k) = a(ipiv(k), k)
s3: a(ipiv(k), k) = tmp1

do i = 1 + k, m, 1
s4: a(i, k) = a(i, k) / a(k, k)

enddo
endif

enddo
do k = 1, min(-1 + m, -1 + n), 1

do j = 1 + k, min(m, n), 1
s0

3
: tmp2 = a(j, k)

s0

3
: a(j, k) = a(ipiv(j), k)

s0

3
: a(ipiv(j), k) = tmp2
enddo

enddo

@@
...

do x = 1, n, 16
do j = 1, min(m,n-1, x-1), 1

do k = x, min(n, x + 15)
s3: tmp1 = a(j, k)
s3: a(j, k) = a(ipiv(j), k)
s3: a(ipiv(j), k) = tmp1

do i = 1+j, m, 1
s5: a(i, k) = a(i, k) - a(i, j) * a(j, k)

enddo
enddo

enddo
do j = x, min(m,n, x + 15), 1

s1: ipiv(k) = k
s1: tmp = dabs(a(j, j))

do i = max(1 + j, 1 + x), m, 1
s2: if (dabs(a(i, j)) .gt. tmp) then
s2: ipiv(j) = i
s2: tmp = dabs(a(i, j))
s2: endif

enddo
do k = j, min(n, x + 15)

s3: tmp1 = a(j, k)
s3: a(j, k) = a(ipiv(j), k)
s3: a(ipiv(j), k) = tmp1

enddo
do i = 1 + j, m, 1

s4: a(i, j) = a(i, j) / a(j, j)
enddo
do k = 1+j, min(n, x + 15)

do i = 1+j, m, 1
s5: a(i, k) = a(i, k) - a(i, j) * a(j, k)

enddo
enddo

enddo
enddo
do k = 1, min(-1 + m, -1 + n), 1

do j = 1 + k, min(m, n), 1
s0

3
: tmp2 = a(j, k)

s0

3
: a(j, k) = a(ipiv(j), k)

s0

3
: a(ipiv(j), k) = tmp2
enddo

enddo

@@
...

(a) original code (b) after dependence hoisting (c) after blocking

Figure 6: Blocking LU factorization with partial pivoting

�rst slice, slicej, selects the outermost j loop as slic-
ing loops for all the statements (s1,s2,s3,s4 and s5);
the second, slicek, selects the j loop for statements
s1,s2 and s4, but selects the k loops as slicing loops
for s3 and s5. Figure 6(b) shows the transformed
code after using slicek to perform a dependence hoist-
ing transformation, which e�ectively interchanges the
nesting orders of the original j and k loops surround-
ing s3 and s5, and is similar to the translation of
non-pivoting LU in Figure 4. Note that the original
k = j; n loop surrounding s3 in Figure 6(a) has been
split into k = j and k = j + 1; n in (b), which ac-
counts for s3 appearing in two places. The details of
the transformation algorithm can be found in [25].

In contrast to the original code in Figure 6(a),
which sweeps the matrix from left to right, the trans-
formed code in (b) defers all the row-interchange and
column update operations (statements s3 and s5) to
each column until the current column needs to be

pivoted and scaled. Since these accumulated oper-
ations update the current column by reading other
columns on its left, we have e�ectively translated the
right-looking computation in (a) into a left-looking
implementation in (b).

By strip-mining the outermost k loop in Figure 6(b)
and then using slicej in Figure 5 to perform another
dependence hoisting transformation, our translator
can automatically obtain the blocked partial-pivoting
LU code in Figure 6(c). This code operates on a
single block of columns at a time. As the update
of each column block requires reading the left-hand
side of the matrix, it is a left-looking computation.
This blocking strategy is based on the observation
that, although the code dealing with selecting piv-
ots in Figure 6(a) imposes bi-directional dependence
constraints among rows of the input matrix, the de-
pendence constraints among columns of the matrix
have only one direction|from columns on the left to

6

stmt-set = fs1; s2; s3; s4; s5; s6; s7g
slicei :
slice-loop(s1) = i(s1)
slice-align(s1) = 0
slice-loop(s2) = i(s2)
slice-align(s2) = 0
slice-loop(s3) = i(s3)
slice-align(s3) = 0
slice-loop(s4) = i(s4)
slice-align(s4) = 0
slice-loop(s5) = i(s5)
slice-align(s5) = 0
slice-loop(s6) = i(s6)
slice-align(s6) = 0
slice-loop(s7) = i(s7)
slice-align(s7) = 0

slicej :
slice-loop(s1) = i(s1)
slice-align(s1) = 0
slice-loop(s2) = i(s2)
slice-align(s2) = 0
slice-loop(s3) = i(s3)
slice-align(s3) = 0
slice-loop(s4) = i(s4)
slice-align(s4) = 0
slice-loop(s5) = i(s5)
slice-align(s5) = 0
slice-loop(s6) = j2(s6)
slice-align(s6) = 0
slice-loop(s7) = j2(s7)
slice-align(s7) = 0

Figure 7: Computation slices for QR

columns on the right. Therefore the factorization can
be blocked in the column direction of the matrix.
By reversing the application order of slicej and

slicek in Figure 5, our translator can produce a dif-
ferent blocking for LU. That is, by �rst strip-mining
the original outermost j loop in Figure 6(a) and then
using slicek to shift the k loops surrounding s3 and s5
outside, we can obtain a blocked right-looking version
that is very similar to the manually blocked routine
of LU by LAPACK [3]. Section 6 presents the perfor-
mance measurements of both blocked versions.
Note that the manually blocked partial-pivoting al-

gorithm in LAPACK takes advantage of the knowl-
edge that row interchange and column updates of
a single matrix commute, irrespective of the depen-
dence constraints among them. Our translator is
based on dependence analysis and does not have this
commutativity knowledge. The lack of such insight
can degrade the overall performance of our auto-
blocked codes, as shown in the performance measure-
ments in Section 6.

5 Blocking QR

This section shows the e�ect of applying our trans-
lator to automatically block QR factorization. Fig-
ure 8(a) presents the original version generated from
the level2 (non-blocked) LAPACK routine, dgeqr2,
that computes the QR factorization of a real m by n
matrix. Similarly to partial-pivoting LU, we inlined
the invoked subroutines in dgeqr2 and then removed
error-checking conditionals inside loops.
Figure 7 shows the two valid computation slices for

QR. Note here that statement s05 is excluded from
dependence hoisting transformations and is thus sep-
arated into a single loop nest in the blocked code,
shown in Figure 8(b). The separated i(s05) loop re-
stores the diagonal elements of the matrix with cor-
rect pivot values, which were saved in array aii by

statement s5 during the factorization process.

The computation slices for QR are very similar to
the ones for partial-pivoting LU. This is due to the al-
most identical dependence patterns of these two com-
putations. As shown in the identical pictorial illustra-
tions in Figure 8 and 6, both computations evaluate
a pivot at each diagonal element (statements s1,s2,
s3 for QR and statements s1, s2 for partial-pivoting
LU) by reading the lower half of the current column.
Both of them then use the pivot value to scale the
lower half of the current column (statement s4 for
both QR and LU). The scaled values of the current
column are then used to update the right-hand side of
the matrix(statements s6,s7 for QR and statements s5
for LU). For both computations, the update of each
element a(i; j) depends only on the values of other
elements a(i0; j0) when j0 � j. Since the value of
each element a(i; j) depends only on other elements
that are on the left of a(i; j), we can block both fac-
torizations in the column direction by accumulating
operations on columns of the matrix.

Figure 8(b) shows the blocked left-looking QR fac-
torization code, automatically generated by follow-
ing similar steps as those for generating the partial-
pivoting LU code in Figure 6(c). First, our translator
uses slicej to shift the j2(s6) and j2(s7) loops outside
of the original outermost i loop in Figure 8(a). After
strip-mining slicej, it then shifts the loops in slicei
outside the strip-enumerating loop of j2(s6; s7). The
blocked computation in Figure 8(b) e�ectively defers
all the update operations (by statements s6 and s7)
by performing the accumulated updates one block of
columns at a time right before the column block needs
to be pivoted and scaled. As the update of each col-
umn block requires reading the left-hand side of the
matrix, it is a left-looking computation.

Similarly, by reversing the application order of
slicej and slicei; that is, by �rst strip-mining the
original i loop and then using slicej to shift the j2(s6)
and j2(s7) loops outside, we can produce a di�erently
blocked right-looking version of QR. This version de-
lays using the evaluated values at each column to up-
date the right-hand side of the matrix (by statements
s6 and s7) until after a block of columns has been eval-
uated. The values of the whole block of columns are
then collectively used to update the right-hand side
of the matrix. Our blocked right-looking code is very
similar to the manually blocked QR routine dgeqrf in
LAPACK [3]. Section 6 will present the performance
measurements for both automatic forms of blocking.

7

6 Experimental Results

To evaluate the e�ectiveness of the optimizations
described in this paper, this section compares the
performance of the automatically blocked QR and
LU factorization routines to that of the manually
blocked routines(dgeqrf and dgetrf) in the LAPACK
library [3]. We show that the auto-blocked implemen-
tations can achieve comparable or even superior per-
formance than the manually blocked LAPACK ones,
and that the overall performance of both QR and LU
in LAPACK can be further improved through auto-
matic construction and tuning of their optimization
spaces.
The QR and LU factorization implementations in

LAPACK are built on top of BLAS, a collection of
lower-level basic linear algebra subprograms includ-
ing vector-vector operations (level1 BLAS), matrix-
vector operations (level2 BLAS) and matrix-matrix
operations(level3 BLAS). Many di�erent implemen-
tations of BLAS exist and are optimized at di�er-
ent levels. To separate the e�ect of di�erent blocking
strategies from that of di�erent BLAS-level optimiza-
tions, we must ensure that for each kernel, all blocked
implementations are based on the same BLAS-level
routines. Consequently, we present measurements af-
ter manually rewriting our auto-blocked QR and LU
to invoke the same set of BLAS routines as those in-
voked by the LAPACK implementations.
In the following explanations, Reference LAPACK

refers to the reference implementation of LAPACK
version 3.0, Reference BLAS refers to the reference
implementation of BLAS, both available from Netlib.
ATLAS refers to the automatically tuned BLAS from
ATLAS version 3.6.0. MKL refers to the Intel Math
Kernel Library version 6.1.1, which includes both LA-
PACK and BLAS routines.

6.1 Benchmark Measurements

Our translator has applied dependence hoisting trans-
formations to perform a single optimization, block-
ing, to both QR and partial-pivoting LU factoriza-
tions. The initial versions of QR and LU are shown
in Figure 8(a) and 6(a) respectively, which were hand-
inlined versions of the level-2 (non-blocked) LAPACK
routines dgeqr2 and dgetf2. Our translator automat-
ically produced two blocked versions for each factor-
ization code (see Sections 4 and 5). In the following,
we use block1 to denote the blocked right-looking ver-
sions and use block2 to denote the blocked left-looking
versions.
Blocking is only one of the optimizations per-

formed by LAPACK, which receives other optimiza-

tions through building on the BLAS library. To apply
the same level of other optimizations to our auto-
blocked routines as those received by LAPACK, we
manually rewrote the auto-blocked routines to re-
verse the inlining e�ect; that is, when possible, we
rewrote the code fragments that were originally from
inlined BLAS subroutines back into the correspond-
ing BLAS subroutine calls. This strategy allows us to
factor out the performance impact from inlining when
comparing auto-blocked versions with LAPACK rou-
tines. For performance measurements of the inlined
versions, see [25].
After rewriting the auto-blocked routines in a

straightforward fashion to reverse the inlining e�ect,
the de-inlined versions invoke only level2 BLAS rou-
tines that were in the original non-blocked LAPACK
routines, dgeqr2 and dgetf2. This situation places the
auto-blocked routines in a serious disadvantage when
compared with the manually blocked LAPACK rou-
tines, dgeqrf and dgetrf, which directly invoke level3
BLAS and speci�cally invoke dgemm, which are opti-
mized at a much higher degree in ATLAS and vendor
provided BLAS libraries. To separate the impact of
blocking from other optimizations, we again manu-
ally rewrote the auto-blocked right-looking versions
to invoke the level3 BLAS routines that were also in-
voked by dgeqrf and dgetrf, both of which also use a
right-looking blocking strategy. In the following, we
use block1-rewrite to denote the auto-blocked right-
looking routines that invoke level3 BLAS. We did not
produce the corresponding block2-rewrite versions for
QR and LU because these left-looking routines have
dramatically di�erent loop structures than the right-
looking ones, and we were unable to identify a similar
set of level3 routines to be invoked within them.
We measured the performance of all the routines

on a single processor Intel Itanium2 machine with
900MHz clock speed, 4GB memory, L1 instruction
and data caches of 16KB each (L1 data cache not in-
volved in oating-point loads), 256KB L2 cache and
1.5MB L3 cache. The operating system is Redhat
Linux version 7.2 (kernel 2.4.18). All code was com-
piled with the Intel Fortran compiler (ifort) version
8.0 using optimization ag \-O3". Since the Itanium2
can issue 4 instructions per cycle, the theoretical peak
performance is 3600 Mop/s.

6.2 Performance of QR

Figure 9 compares the performance of di�erent block-
ing implementations of QR factorization, using Ref-
erence BLAS, ATLAS BLAS and MKL BLAS respec-
tively. The performance measurements for the follow-
ing versions are presented:

8

� Reference-LAPACK dgeqrf: manually blocked
routine dgeqrf from Reference LAPACK;

� Reference-LAPACK dgeqr2: level2 (non-
blocked) QR routine from Reference LAPACK;

� dgeqr2-block1: auto-blocked right-looking rou-
tine from dgeqr2;

� dgeqr2-block2: auto-blocked left-looking routine
from dgeqr2;

� dgeqr2-block1-rewrite: manually rewritten
dgeqr2-block1 to invoke level3 BLAS.

� MKL LAPACK dgeqrf: manually blocked routine
dgeqrf from MKL LAPACK.

Here because the MKL LAPACK routine dgeqrf re-
quires special features that are present only in MKL
BLAS, it was not measured using ATLAS or Ref-
erence BLAS. Both dgeqr2-block1 and dgeqr2-block2
were manually rewritten to reverse the inlining ef-
fect. We measured the performance of these versions
using di�erent block sizes, and presented the results
using the best block sizes. The block size used by the
Reference LAPACK routine dgeqrf is 32.
From Figure 9(a), using Reference-BLAS, the auto-

blocked left-looking version (dgeqr2-block2) performs
much better than the blocked right-looking versions,
including both dgeqr2-block1-rewrite and Reference-
LAPACK dgeqrf, which have very similar perfor-
mance. Here because both level3 and level2 BLAS
routines receive a similar level of optimization by the
underlying Itanium2 compiler, the performance im-
pact from invoking di�erent BLAS routines is not
signi�cant. Because the blocked left-looking imple-
mentation manifests better cache locality, it achieves
better performance than the other versions.
Note that dgeqr2-block1, the auto-blocked right-

looking version without invoking level3 BLAS, did
not even out-perform the original non-blocked ver-
sion, dgeqr2, in all graphs. This further indicates that
the right-looking blocking strategy is not as bene�cial
as the left-looking one for QR.
When using ATLAS BLAS and MKL BLAS, how-

ever, the advantage of invoking level3 BLAS becomes
dominant. As the result, the performance of the
left-looking dgeqr2-block2 (which invokes only level2
BLAS) lags behind those of dgeqr2-block1-rewrite and
Reference LAPACK, both of which invoke level3 rou-
tines. If the left-looking dgeqr2-block2 version were
able to invoke specially optimized level3 BLAS rou-
tines as well, even better performance may possibly
be achieved. However, since no such routines are yet
available, it is left to future investigations.
Note that dgeqr2-block1-rewrite is able to perform

better than Reference-LAPACK dgeqrf in both Fig-
ure 9(b) and (c). In certain cases, it can even ap-

proach the performance of MKL LAPACK routine,
which has been specially tuned for the Itanium2
machine. Here because dgeqr2-block1-rewrite has a
very similar loop structure as that of the Reference
LAPACK routine dgeqrf, the performance di�erence
comes from our ability to manually select the best
block sizes for the auto-blocked version (note that
di�erent block sizes were selected when using ATLAS
and MKL BLAS). This indicates that Reference LA-
PACK can further bene�t from �ner tunings of dif-
ferent block sizes.
In summary, the auto-blocked versions were able to

achieve similar or even superior performance than the
Reference LAPACK versions for QR, though manual
rewrite to invoke level3 BLAS routines is required in
most cases. It is our future research to automate
this process so that the auto-blocked versions can di-
rectly invoke specially optimized level3 BLAS. The
automated translation may require techniques similar
to the traditional compiler back-end peep-hole opti-
mizations in selecting better machine instructions, ex-
cept here the instructions are library routine calls, so
knowledge about the semantics of the library routines
as well as further loop restructuring may be required.

6.3 Performance of LU

Figure 9 presents the performance measurements for
partial-pivoting LU, with a similar set of di�erent im-
plementations:

� Reference-LAPACK dgetrf: manually blocked
routine dgetrf from Reference LAPACK;

� Reference-LAPACK dgetf2: level2 non-blocked
LU routine from Reference LAPACK;

� dgetf2-block1: auto-blocked right-looking routine
from dgetf2;

� dgetf2-block2: auto-blocked left-looking routine
from dgetf2;

� dgetf2-block1-rewrite: manually rewritten dgetf2-
block1 to invoke level3 BLAS.

� MKL LAPACK dgetrf: manually blocked routine
dgetrf from MKL LAPACK

Here the block size for the Reference LAPACK rou-
tine dgetrf is 64. Similar to QR, the MKL LAPACK
routine dgetrf was measured using MKL BLAS only.
When we manually generated dgetf2-block1-rewrite,
we assumed the knowledge that row-interchange and
column-update matrix operations commute, an in-
sight also assumed by the manually blocked LAPACK
routine dgetrf. Note that this knowledge was not as-
sumed by our translator when automatically generat-
ing dgetf2-block1 and dgetf2-block2.

9

When comparing di�erent LU implementations in
Figure 10, the patterns are very similar to those for
QR in Figure 9 except that here all blocked routines
consistently out-perform the non-blocked dgetf2 rou-
tine. When using Reference-BLAS in Figure 10(a),
the auto-blocked left-looking version dgetf2-block2
performs better than all the right-looking ones for
large matrices due to better cache locality. However,
when using ATLAS BLAS and MKL BLAS in (b)
and (c), the advantage of invoking level3 BLAS be-
comes dominant, and the performance of all versions
that invoke level2 BLAS lag behind. After being
manually rewritten to invoke level3 BLAS routines,
the auto-blocked right-looking version dgetf2-block1-
rewrite is able to perform comparably as Reference-
LAPACK dgetrf when usingMKL BLAS and perform
slightly worse than Reference-LAPACK dgetrf when
using ATLAS BLAS. Here although both dgetf2-
block1-rewrite and Reference-LAPACK dgetrf invoke
the level3 subroutine, dgemm, the LAPACK rou-
tine dgetrf additionally invokes another level3 routine
dlaswp and thus has a slight advantage. In contrast,
for QR, the rewritten dgeqr2-block1-rewrite invokes
the same set of subroutines as those invoked by the
LAPACK blocked routine dgeqrf.

6.4 Summary of Results

From Figure 9 and 10, the automatically generated
blocked routines are quite e�ective for both QR and
LU. Speci�cally, in all the performance graphs. at
least one of the auto-blocked QR routines(dgeqr2-
block1, dgeqr2-block2 and dgeqr2-block1-rewrite) has
achieved better performance than the Reference-
LAPACK level3 routine dgeqrf. Similarly, at least
one of the auto-blocked LU routines (dgetf2-block1,
dgetf2-block2 and dgetf2-block1-rewrite) has achieved
comparable or slightly worse performance than the
corresponding Reference-LAPACK implementation
dgetrf.
Note that the overall performance of both the

auto-blocked and Reference-LAPACK level3 routines
can be further improved. As shown in Figure 9(c)
and 10(c), the vendor-provided MKL-LAPACK im-
plementations of QR and LU have achieved bet-
ter performance than both the auto-blocked and
Reference-LAPACK versions. The high performance
of MKL-LAPACK, however, is not portable. In fact,
because MKL-LAPACK uses special features of the
underlying machine, it can be built only on top of
MKL-BLAS, and is likely to achieve poor perfor-
mance if built on a di�erent machine architecture.
Since we cannot expect all computer vendors to

supply their specially optimized LAPACK and BLAS

libraries, a more general approach is to combine
Reference-LAPACK or automatic-blocking with em-
pirical tuning approaches to achieve portable high
performance. Figure 9(b) and 10(b) present the per-
formance measurements of linking di�erent versions
of QR and LU with ATLAS BLAS (empirically tuned
BLAS library), where the best blocked versions have
achieved 75-85% of the MFLOP achieved by MKL-
LAPACK + MKL-BLAS. We believe that much bet-
ter performance can be achieved if empirical tuning
is applied beyond BLAS. The need for better tun-
ing is demonstrated by the performance of dgeqr2-
block2 and dgetf2-block2, for which linking with AT-
LAS BLAS have actually degraded performance when
compared with linking with Reference-BLAS. Fur-
ther, better block-size selection is necessary because
when linked with di�erent versions of BLAS, each
blocking strategy must use di�erent block-sizes to
achieve the best performance. These results indi-
cate that the interactions between the blocking op-
timization in LAPACK and the other optimizations
in BLAS need to be empirically tuned to achieve bet-
ter performance.

In general, when optimizing the performance of ap-
plications, di�erent optimizations often interact with
each other and the overall search space is explosively
large. The empirically tuned ATLAS BLAS library
has been successful in achieving portable high perfor-
mance. However, because the optimization space of
ATLAS BLAS was constructed manually, it does not
cover the entire optimization space and is not always
optimal when linked with di�erent applications. By
providing better compiler techniques to automate the
blocking of QR and LU, we potentially facilitate the
fully automated generation and exploitation of their
optimization spaces, and thus allow a much bigger
search space to be exploited for better performance.

7 Conclusions

This paper illustrates how to apply a novel loop
transformation technique, dependence hoisting, to au-
tomatically produce eÆcient blocking optimizations
for both dense matrix QR and LU factorizations.
By demonstrating our ability to automatically block
arbitrarily complex loop structures for locality, we
present the possibility of using compiler techniques
to automatically adapt di�erent loop structures for
scienti�c applications.

10

References

[1] N. Ahmed, N. Mateev, and K. Pingali. Synthe-
sizing transformations for locality enhancement
of imperfectly-nested loop nests. In Proceedings
of the 2000 ACM International Conference on
Supercomputing, Santa Fe, New Mexico, May
2000.

[2] R. Allen and K. Kennedy. Optimizing Compilers
for Modern Architectures. Morgan Kaufmann,
San Francisco, October 2001.

[3] E. Anderson, Z. Bai, C. Bischof, S. Black-
ford, J. Demmel, J. Dongarra, J. D. Croz,
A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen. LAPACK Users' Guide. The
Society for Industrial and Applied Mathematics,
1999.

[4] S. Carr and K. Kennedy. Compiler blockability
of numerical algorithms. In Proceedings of Su-
percomputing, Minneapolis, Nov. 1992.

[5] S. Carr and K. Kennedy. Improving the ratio of
memory operations to oating-point operations
in loops. ACM Transactions on Programming
Languages and Systems, 16(6):1768{1810, 1994.

[6] S. Carr and R. Lehoucq. Compiler blockability of
dense matrix factorizations. ACM Transactions
on Mathematical Software, 23(3), 1997.

[7] L. Carter, J. Ferrante, and S. F. Hummel. Hi-
erarchical Tiling for Improved Superscalar Per-
formance. In Proc. 9th International Parallel
Processing Symposium, Santa Barbara, CA, Apr.
1995.

[8] S. Coleman and K. S. McKinley. Tile size selec-
tion using cache organization. In Proceedings of
the SIGPLAN Conference on Programming Lan-
guage Design and Implementation, La Jolla, CA,
June 1995.

[9] J. Dongarra, J. Bunch, C. Moler, and G.Stewart.
LINPACK Users' Guide. Society for Industrial
and Applied Mathematics, 1979.

[10] J. J. Dongarra, F. G. Gustavson, and A. Karp.
Implementing linear algebra algorithms for dense
matrices on a vector pipeline machine. SIAM
Review, 26(1):91{112, Jan. 1984.

[11] D. Gannon, W. Jalby, and K. Gallivan. Strate-
gies for cache and local memory management by

global program transformation. Journal of Par-
allel and Distributed Computing, 5(5):587{616,
Oct. 1988.

[12] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Sh-
peisman, and D. Wonnacott. The Omega Li-
brary Interface Guide. Technical report, Dept.
of Computer Science, Univ. of Maryland, Col-
lege Park, Apr. 1996.

[13] K. Kennedy. Fast greedy weighted fusion. In
Proceedings of the International Conference on
Supercomputing, Santa Fe, NM, May 2000.

[14] K. Kennedy and K. S. McKinley. Typed fusion
with applications to parallel and sequential code
generation. Technical Report TR93-208, Dept.
of Computer Science, Rice University, Aug. 1993.
(also available as CRPC-TR94370).

[15] I. Kodukula, N. Ahmed, and K. Pingali. Data-
centric multi-level blocking. In Proceedings of
the SIGPLAN '97 Conference on Programming
Language Design and Implementation, Las Ve-
gas, NV, June 1997.

[16] M. Lam, E. Rothberg, and M. E. Wolf. The
cache performance and optimizations of blocked
algorithms. In Proceedings of the Fourth Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS-IV), Santa Clara, Apr. 1991.

[17] A. W. Lim, G. I. Cheong, and M. S. Lam. An
aÆne partitioning algorithm to maximize paral-
lelism and minimize communication. In Proceed-
ings of the 13th ACM SIGARCH International
Conference on Supercomputing, Rhodes, Greece,
June 1999.

[18] K. S. McKinley, S. Carr, and C.-W. Tseng. Im-
proving data locality with loop transformations.
ACM Transactions on Programming Languages
and Systems, 18(4):424{453, July 1996.

[19] N. Mitchell, L. Carter, J. Ferrante, and K. Hgst-
edt. Quantifying the multi-level nature of tiling
interactions. In 10th International Workshop on
Languages and Compilers for Parallel Comput-
ing, August 1997.

[20] W. Pugh. Uniform techniques for loop optimiza-
tion. In Proceedings of the 1991 ACM Interna-
tional Conference on Supercomputing, Cologne,
Germany, June 1991.

11

[21] G. Rivera and C.-W. Tseng. Data transfor-
mations for eliminating conict misses. In
ACM SIGPLAN Conference on Programming
Language Design and Implementation, Montreal,
Canada, June 1998.

[22] William Pugh and Evan Rosser. Iteration Space
Slicing For Locality. In LCPC 99, July 1999.

[23] M. E. Wolf and M. Lam. A data locality optimiz-
ing algorithm. In Proceedings of the SIGPLAN
Conference on Programming Language Design
and Implementation, Toronto, June 1991.

[24] M. J. Wolfe. Optimizing Supercompilers for Su-
percomputers. The MIT Press, Cambridge, MA,
1989.

[25] Q. Yi, K. Kennedy, and V. Adve. Transforming
complex loop nests for locality. The Journal Of
Supercomputing, 27:219{264, 2004.

12

tinoco2
This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

do i = 1, min(m,n)
s1: scale = zero
s1: ssq = one

do j1 = i+1, m
s2: if (a(j1,i).ne.zero) then
s2: absxi = abs(a(j1,i))
s2: if (scale.lt.absxi)then
s2: ssq = one + ssq*(scale/absxi)**2
s2: scale = absxi
s2: else
s2: ssq = ssq + (absxi/scale)**2
s2: endif
s2: endif

enddo
s3: xnorm = scale * sqrt(ssq)
s3: absxi = abs(a(i,i))
s3: if (absxi .le. xnorm) then
s3: ssq = xnorm*sqrt(one+(absxi / xnorm)**2)
s3: else
s3: ssq = absxi*sqrt(one+(xnorm / absxi)**2)
s3: endif
s3: beta = -sign(ssq, a(i,i))
s3: tau(i) = (beta-a(i,i)) / beta

do j1 = i+1, m
s4: a(j1,i) = a(j1,i) / (a(i,i) - beta)

enddo
s5: a(i,i) = beta
s5: aii(i) = a(i, i)
s5: a(i, i) = one

do j2 = i+1, n
s6: work(j2) = zero

do j1 = i, m
s6: work(j2) = work(j2) + a(j1,j2) * a(j1, i)

enddo
enddo
do j2 = i+1, n

do j1 = i, m
s7: a(j1,j2) = a(j1,j2) - tau(i) * a(j1,i) * work(j2)

enddo
enddo

s0

5
: a(i, i) = aii(i)

enddo
@@

...

do x = 1, max(n-1, m), 16
do i = 1, x-1, 1

do j2 = x, min(n-1, 15 + x), 1
s6: work(j2 + 1) = zero

do j1 = i, m, 1
s6: work(j2 + 1) = work(j2 + 1) + a(j1, j2 + 1) * a(j1, i)
s7: a(j1, j2 + 1) = a(j1, j2 + 1) - tau(i) * a(j1, i) * work(j2 + 1)

enddo
enddo

enddo
do i = x, min(m,n, 15+x), 1

s1: scale = zero
s1: ssq = one

do j1 = 1 + i, m, 1
s2: if (a(j1, i) .ne. zero) then
s2: absxi = abs(a(j1, i))
s2: if (scale .lt. absxi) then
s2: ssq = one + ssq * (scale / absxi) ** 2
s2: scale = absxi
s2: else
s2: ssq = ssq + (absxi / scale) ** 2
s2: endif
s2: endif

enddo
s3: xnorm = scale * sqrt(ssq)
s3: absxi = abs(a(i, i))
s3: if (absxi .le. xnorm) then
s3: ssq = xnorm * sqrt(one + (absxi / xnorm) ** 2)
s3: else
s3: ssq = absxi * sqrt(one + (xnorm / absxi) ** 2)
s3: endif
s3: beta = -sign(ssq, a(i, i))
s3: tau(i) = (beta - a(i, i)) / beta

do j1 = 1 + i, m, 1
s4: a(j1, i) = a(j1, i) / (a(i, i) - beta)

enddo
s5: a(i, i) = beta
s5: aii(i) = a(i, i)
s5: a(i, i) = one

do j2 = x, min(n -1, 15 + x), 1
s6: work(j2 + 1) = zero

do j1 = i, m, 1
s6: work(j2 + 1) = work(j2 + 1) + a(j1, j2 + 1) * a(j1, i)
s7: a(j1, j2 + 1) = a(j1, j2 + 1) - tau(i) * a(j1, i) * work(j2 + 1)

enddo
enddo

enddo
enddo
do i = 1, min(m, n), 1
s0

5
: a(i, i) = aii(i)

enddo

@@
...

(a) original code (b) after blocking

Figure 8: Blocking QR factorization

13

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
fl
o
p
/s

Matrix Size

QR Using Reference BLAS -- Mflop/s -- 900MHz Itanium 2

Reference LAPACK DGEQRF
Reference LAPACK DGEQR2
dgeqr2-block1 (block size=16)
dgeqr2-block2 (block size=16)

dgeqr2-block1-rewrite (block size=16)

(a) Reference BLAS

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
fl
o
p
/s

Matrix Size

QR Using ATLAS BLAS -- Mflop/s -- 900MHz Itanium 2

Reference LAPACK DGEQRF
Reference LAPACK DGEQR2
dgeqr2-block1 (block size=16)
dgeqr2-block2 (block size=16)

dgeqr2-block1-rewrite (block size=128)

(b) ATLAS BLAS

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
fl
o
p
/s

Matrix Size

QR Using MKL BLAS -- Mflop/s -- 900MHz Itanium 2

Reference LAPACK DGEQRF
Reference LAPACK DGEQR2
dgeqr2-block1 (block size=16)
dgeqr2-block2 (block size=32)

dgeqr2-block1-rewrite (block size=64)
MKL LAPACK DGEQRF

(c) MKL BLAS

Figure 9: Performance of QR

200

400

600

800

1000

1200

1400

1600

1800

2000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
fl
o
p
/s

Matrix Size

LU Using Reference BLAS - Mflop/s - 900MHz Itanium 2

Reference LAPACK DGETRF
Referebce LAPACK DGETF2
dgetf2-block1(block size = 16)
dgetf2-block2(block size = 16)

dgetf2-block1-rewrite(block size = 16)

(a) Reference BLAS

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
fl
o
p
/s

Matrix Size

LU Using ATLAS BLAS - Mflop/s - 900MHz Itanium 2

Reference LAPACK DGETRF
Reference LAPACK DGETF2
dgetf2-block1(block size = 16)
dgetf2-block2(block size = 16)

dgetf2-block1-rewrite(block size = 64)

(b) ATLAS BLAS

0

500

1000

1500

2000

2500

3000

3500

4000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
fl
o
p
/s

Matrix Size

LU Using MKL BLAS - Mflop/s - 900MHz Itanium 2

Reference LAPACK DGETRF
Reference LAPACK DGETF2
dgetf2-block1(block size = 16)
dgetf2-block2(block size = 32)

dgetf2-block1-rewrite(block size = 32)
MKL LAPACK DGETRF

(c) MKL BLAS

Figure 10: Performance of partial-pivoting LU

14

