Composable Code Generation for Distributed Giotto

Thomas A. Henzinger Christoph M. Kirsch Slobodan Matic
EPFL and UC Berkeley University of Salzburg University of California, Berkeley
tah@epfl.ch ck@cs.uni-salzburg.at matic@eecs.berkeley.edu

Abstract. We present a compositional approach to the implemen- model that guarantees predictable real-time executionatrie

tation of hard real-time software running on a distributétfprm. same time supports portable, composable code [3]. In thpsrpa
We explain how several code suppliers, coordinated by a&syst we demonstrate how Giotto can be implemented on a distdbute
integrator, can independently generate different partthefdis- platform by distributed compilation with little global cagination.
tributed software. The task structure, interaction, ameirty is In this way, Giotto offers a framework for the compositiodakign
specified as a Giotto program. Each supplier is given a péatteof of hard real-time systems.

Giotto program and a timing interface, from which the sugpli Giotto. Giotto is a domain-specific language for control appli-
generates task and scheduling code. The integrator theskghe cations [3]. A Giotto program executes a periodic set of LESKS,
individually for each supplier, in pseudo-polynomial tiniethe and the set of tasks, or their periods, may change whenevietia G
supplied code meets its timing specification. If all cheaksceed, mode switch occurs. Instead of just a deadline, a LET taskhas
then the supplied software parts are guaranteed to workihtege leaseand atermination time the release time specifies the exact
and implement the original Giotto program. The feasibibfythe time at which the task inputs are made available to the tdmk; t
approach is demonstrated by a prototype implementation. termination time specifies when the task outputs becoméaiei

to other tasks. The task must start running, may be preemgabed
must complete execution during its LET, which is the timenfro
release to termination. Thus the times when a LET task readis a
writes data are decoupled from the task execution. LET aveide

Categories and Subject Descriptors C.3 [Special-purpose and
Application-based SysteindReal-time and Embedded Systems;
D.1.3 [Software TechniqugDistributed Programming

General Terms Languages, Reliability conditions, and thus ensures the predictable, deterigirsecu-
) o o tion of a set of real-time tasks. LET tasks can be replacecand
Keywords Real Time, Distributed Compilation posed without modifying their behavior or timing. Since LET
an abstract programming model, the compiler must ensutettea
1 Introduction generated code satisfies the LET assumption. This can bevachi

by compiling Giotto intoschedule-carrying codéSCC) [4] for a
pair of virtual machines: the E (embedded) machine mediates
tween tasks and the physical environment [5]; the S (scivegjul
machine mediates between tasks and the CPU [4]. E code specifi
when sensors and task inputs are read, and when actuataessénd
outputs are written; S code specifies when a task is executéteo
CPU. We have implemented the E and S machine as part of a high-
performance microkernel for real-time systems [6] and (Giedto
to implement the flight-control system for a model helicop@.
Distributed hard real-time code. A Giotto program specifies
the functional and timing behavior of a dynamic set of tasés,
example, the tasks of an automotive control system. Suctsa sy
temis typically executed by an on-board network with semwats
(CPUs). Moreover, such a system is typically put togett@nfsev-
eral parts, which correspond to different control problefas ex-
ample, fuel injection and anti-lock brake control. While ttiffer-
ent software parts may interact, they are often developetiftar-

“This research was supported in part by the AFOSR MURI graB6£a- entsuppliers the brake supplier will deliver its own software, etc.

00-1-0327 and the NSF grants CCR-0208875 and CCR-0225610. Furthermore, to optimize the use of computational resayrtere
need not be a one-to-one correspondence between hostgomtie su

ers. The contracting company, integrator (e.g., the car manufac-
turer), then faces the challenge of putting together andtaiaing
the entire system. Using today’s methodologies, a simpldifino
cation in the software of a single supplier may induce a sesfe
Permission to make digital or hard copies of all or part of thork for personal or _rnod|f|c_at|ons in the whole systt_am. FOI’ exgmple, a changeref i
classroom use is granted without fee provided that copiesiarmade or distributed ing attributes (e.g., task execution times) in one softvean@po-
for profit or commercial advantage and that copies bear titisand the full citation nent may cause the schedule of other components to change. We
on _the first page. To copy (_)t_henNise, to republish, to posteswess or to redistribute show how this problem can be avoided using Giotto.
tLOC";t:_Séfgg”'rJeuSang_slpfcz'f(')cogercmscjog Tlrl‘lﬁg’éatj'; Our approach. We view the Giotto program as the overall
’ ' ' 90 ' : system specification (timing and task interaction). EagipBer is

The distributed implementation of hard real-time systemsi
key challenge in modern control systems, especially inraato
bile (drive-by-wire) and aircraft (fly-by-wire) control. h of the
work in this area has been devoted to hardware-focused@udiit
such as the time-triggered architecture [1], which guaesihard
real-time constraints across a distributed system bytsidber-
ence to clock-synchronized networking protocols. The obstich

a solution is paid in terms of flexibility, and even recentoef§

in the automotive industry (FlexRay, Autosar [2]) requinatt all
component processes, their dependencies, and their tiprimg
files be known in advance. We suggest that the competing gbals
timely executiorand composable desigoan be achieved together
by adopting a software solution that requires only basiclilvare
services such as clock synchronization and redundancy geana
ment. We have previously proposed the LH®g{cal execution
time) paradigm, and the LET-based language Giotto, as a software

LCTES'05, 1 2005/4/16

given a part of the Giotto program with the charge to implemen
the corresponding tasks. This information can be regarded a
component specificatiorSo that all supplied software parts will
fit together, each supplier also receives timing infornraiio the
form of atiming interface The timing interface specifies the time
slots that can be used by the supplier for computation on the

lenge is to develop compositional schemes for resourcéipaimg
such that each task group may be programmed as if it had dedica
access to the resource and may be tested for schedulabitity w
out global task knowledge. However, these techniquesalipias-
sume a single CPU and no interaction between tasks. Intdistd
real-time systems there are efforts [14] to define minimaidom-

hosts, and the time slots that can be used by the supplier for plete interfaces that link components together. In aviosaftware,

communication over the network. From a component spedificat
and a timing interface each supplier produces code. Thgratiar
then checks that the produced code complies to the timiegfate

and meets, on the given hardware, the release and ternmnatio
times specified by the Giotto program. The first check is dalle
interface compliancehe secondime safetyBoth checks are local
for each piece of supplied code and can be performed in pseudo
polynomial time. If all checks go through, the integratoassured
that all supplied software parts fit together and correctlglement

the original Giotto program (note that correctness inciutiee
satisfaction of all real-time constraints).

Why does this work? Essentially, we build a fully software-
based instance of the time-triggered paradigm. Insteadheihb
the hardware and network protocol enforce all timing irsteefs,
each timing interface is enforced separately by the comfder-
ing distributed code generation by the suppliers) and bgnam
analysis (during code integration by the integrator). T Llas-
sumption is crucial to this approach. The LET (release tmitea-
tion) of a task is always non-zero. This allows us to commateic
values across the network without changing the timing ofsk,ta
and without introducing nondeterminism, as long as thertgrin-
terface ensures that all values are available in time to albttsk
release and termination times, and all sensor read andtectys
date times. By contrast, the synchrony assumption usedHhsr ot
real-time languages [8] does not offer this flexibility, amehce an
important approach to distributing synchronous prograsiisased
on the Globally Asynchronous, Locally Synchronous panadig).

What are the benefits?We obtain the benefits of the time-
triggered paradigm in terms of real-time assurance, arfteatame
time achieve a high degree of flexibility. For example, a $iepp

may be replaced by another one, and as long as the code pdoduce

by the new supplier complies to its component specificatioth a
timing interface, it will work together properly with all leér code
in the system. Likewise, if new functionality is added to #yes-

tem, say by adding a new supplier, as long as the new software

passes the two checks (interface compliance and time ¥afety
will not change the behavior (neither functionality nor itg) of

the original system in any way. This is because interfaceptiem
ance succeeds only if the original set of timing interfacas ac-
commodate an additional timing interface with sufficierpagity,

and time safety succeeds only if the original set of hostsazan
commodate the new tasks. The advantage of our approachlies i
the fact that the two checks can be performed automaticaiig,
the system integrator need not rely exclusively on testingee if

the upgraded system behaves correctly.

Related work. Previously, Giotto had only been compiled for
single-CPU systems [10]. The contribution of this papemis-t
fold: we describe a methodology that supportsdis}ributedreal-
time code generation for (3)istributed real-time systems. Mul-
tiple suppliers (1) can independently compile differenttpaf a
Giotto program to run on a system of multiple CPUs (2). Beeaus
of the time-driven nature of our timing interfaces, (1) indihe
ately enables (2) on clock-synchronized systems. Othaoaphes
for (2), however, may not necessarily support (1); for extemgyn-
chronous reactive programs written in Lustre have been decthp
globally for distributed real-time systems [11]. Aimed &) @re
scheduling techniques that address the problem of divitlisgs
into groups, and scheduling tasks within groups [12, 13]:dhal-

LCTES'05,

where previously each control subsystem had its own desticat
source, new solutions are proposed which offer a common com-
puting platform for multiple functions; [15] presents régments

for the temporal partitioning of such a platform. The car ofan-
turers’ and suppliers’ perspectives on embedded softveargerare
described in [16], which presents a general framework inctvhi
different software components can be classified accordirbeir
degree of reusability, albeit without considering reatg¢icommu-
nication in detail.

Outline of the paper. In Section 2, we present a brief review of
Giotto and introduce a running example that we will use tgteu
out this paper. In Section 3, we discuss the algorithm tha¢gees
from a given Giotto program virtual machine code (SCC) fartea
host and each supplier. In Section 4, we introduce timingrfates
and show how they can be composed. Section 5 describes ¢or pro
type implementation of distributed Giotto. In Section 6,amalyze
distributed SCC generated from Giotto, present pseudgapatial
checks for interface compliance (w.r.t. a timing interfeaad time
safety (w.r.t. the worst-case execution times of taskg) pmave the
distributed Giotto compiler correct.

2 The Giotto Language

We give a brief introduction to Giotto and refer to [3] for dis.
A simple example of a Giotto progradi 4 is shown in Fig. 1. For
now ignore the distribution annotations given in the bréske the
right of the program. In this audio application a prerecdrB&€M-
format audio file is read, processed, analyzed, and repeadbyg
three real-time tasks. Th@enerator task synthesizes the digital
audio samples of the sound that resembles the plucking oihg st
This is done according to the Karplus-Strong algorithm [WHere
the period of the task determines the pitch of the generatedds
The Mizer task merges the file samples with the synthesized sam-
ples amplifying the string pluck sound. Thenalyzer task com-
putes a short-time Fourier series of the mix sound.

A Giotto program begins with port declarations. A port is a
typed variable. The sdtorts is partitioned into the following four
sets: a sebensePorts of sensor ports, a setctPorts of actuator
ports, a sefnPorts of task input ports, and a s€wutPorts of task
output ports. The sensor ports include the integer-typetpo a
discrete clock. In Fig. 1 the sensor pdri.dioSampler represents a
vector of audio file samples, the actuator phfitzPlayer a vector
of final waveform samples, and the task output pd&tisctrum,
MizSound, and StringSound, respectively, represent vectors of
Fourier coefficients, mix samples, and string samples. TigeZ
shows the data dependency graph for the tasks (rectangles wi
rounded corners), the sensor, and the actuator. Each sgespr
actuator) porip is read (resp. written) by a device drivéev|p).
Each task output port is double-buffered, i.e., it is impbened by
two copies, a local copy that is used by the task only, and badjlo
copy that is accessible to the rest of the program includihgro
tasks. The copy drivetopy[p] copies data from the local copy to
the global copy of the task output paort

Giotto has two kinds of computational activities, tasks and
drivers. Tasks are released and their execution take tirhde w
drivers are executed in logically zero time. A Giotto taslas a set
In[t] C InPorts of input ports, a seOut[t] C OutPorts of out-
put ports, and a task functiofsk[t] from the input to the output
ports. The task function represents the result of the coatiouial

2005/4/16

sensor

AudioSampler uses dev[AudioSampler]; [s1, h1]
actuator

MizPlayer uses dev|[MizPlayer]; [s1, h1]
output

Spectrum uses copy|Spectrum]; [s1,h1]

MizSound uses copy|[MizSound]; [s2, h2]

StringSound uses copy[StringSound]; [s3, h2]

task
Analyzer(Iny) output(Spectrum);
Mizer(Ing) output(MizSound);
Generator(Ingz) output(StringSound);
driver
InDrvy(MizSound) output(Iny);
InDrvs(AudioSampler, StringSound) output(Ing);
InDrvs() output(Ins);
ActDrv(MizSound) output(MizPlayer);
start my {
mode m; () period 8 {
actfreq2do MizPlayer(ActDrv);
taskfreq 1ldo Analyzer(InDrvy);
taskfreq 2 do Mizer(InDrvg);
taskfreq 1do Generator(InDrvs); }

}

Figure 1. Audio mixer Giotto prograniG 4

MixPlayer
[s1./1]

AudioSampler
2 [s1,7]

)
,,
%,

Figure 2. Data dependency graph for the progréin

(\ (\
Generator Mixer N Analyzer

U [s3.h))

[s2,/,) i\ [si. /)

activity performed by the task. For example, the tagkeer is de-
fined with input port/nz, output portMizSound, and task function
task[Mizer]. In addition to the device and copy drivers described
above, drivers can be used to transport data between pattoan
initiate mode changes. A Giotto drivérhas a sebrc[d] C Ports
of source ports, a sdbst[d] C Ports of destination ports, a driver
function drv[d] from the source to the destination ports, and an
optional boolean condition on the source ports to controtieno
switching. For instancedudioSampler and StringSound are the
source ports andn; is the destination port of the drivénDrvs.
Let Tasks (resp.Drvs) be the set of tasks (resp. drivers).

A Giotto program is defined with a set of modes, each of which
consists of a set of periodic tasks. In each mode the invatati

mode mg () period 8 {
exitfreq4do m;(ModeDruvs);
actfreq4do MizPlayer(ActDrv);
taskfreq 1do Analyzer(InDrvy);
taskfreq 4 do Mizer(InDrvs);
taskfreqldo Generator(InDrvg); }

Figure 3. Additional mode for the Giotto prograr@ 4

and no mode switches. In the rest of the paper we will refen¢o t
single-mode program in Fig. 1. However, if, for instance,wamnt
to be able to switch to a mode, in which taskMizer is executed
twice as fast, i.e. withv;,s, =4, the prograntz 4 should also contain
code formg shown in Fig. 3.

For a modem, the least common multiple of the task, ac-
tuator, and mode-switch frequencies of is called the num-
ber of units of m, denotedw...[m]. The duration of a unit is
~y[m] = 7[m]/wmas[m]. For the compilation procedure we need
the following sets which can, given a modeand an integer unit
0 < k < wmae|m], be directly determined from the Giotto pro-
gram. The setaskInvocations(m, k) contains all task invocations
of mode m that are released at unit, i.e., for whichk - v[m]
is an integer multiple ofr[m]/wi.s,. FOr instanceyy[m;] = 4
and taskInvocations(mq,1) = {(2, Mizer, InDrv2)}, because
the Mixzer task is the only task that is released at unit 1nof,
at 4ms. An output port is in the setaskOutPorts(m,k) if in
mode m it is updated at unitk, i.e., if it is an output port of
a task in taskInvocations(m, k). A sensor port is in the set
senPorts(m, k) if in mode m it is read at unitk, i.e., if itis a
source port of an input driver of a task taskInvocations(m, k).
The setactDrivers(m, k) contains all actuator drivers of mode
m that are invoked at uni. Finally, an actuator port is in the set
actPorts(m, k) if in mode m it is updated at unik, i.e., if it is
a destination port of a driver inctDrivers(m, k). For instance,
senPorts(mi,1) = {AudioSampler} and actPorts(m;,1) =
{MizPlayer}.

E code, S code, and schedule-carrying code (SCQh [4]
we presented the execution of a Giotto program on a single pro
cessor through the interpretation of code compiled for tiral
machinesembeddedndschedulingmachine. The embedded ma-
chine [5] handles sensors, actuators, and all task requestss
E codethat specifies the timing and control flow of Giotto tasks and
drivers. The embedded machine has three non-control-flstnic
tions. A call(d) instruction immediately invokes a drivet. A
release(t) instructiort releases a taskand proceeds to the next

tasks is repeated after a fixed amount of time we call the mode E code instruction. Auture(¢, a) instruction marks the E code at

period. The task set can change at transitions (switches) tme
mode to another. Le¥/odes be the set of modes, containing a start
mode start € Modes. A Giotto modem has a periodr[m| €

the address for execution aftef ms elapse. The positive integer
¢ specifies a time trigger, the simplest and only form of trigeat
we consider in this paper. In order to handle multiple actig:

N, a set of task invocations, a set of actuator updates, and a segers, the embedded machine maintains a trigger queue. T Gi

of mode switches. Each task invocati@o:..x, t, d) consists of a
task frequencyu:.sr. € N> relative to the mode period, a task
and a task input drivet, which loads the task inputs. In our ex-
ample there is only one mode; with the periodr[m;] = 8 time
units, in this case milliseconds. The audio file is discetiat the
rate of 11K hz, and 44 of its samples are read every 4 The mix
sound is also processed with the period of4 so the frequency
of the Mizer task is 2, and one of the three task invocations of
modem; is (2, Mizer, InDrvz). The LET character of thé/izer
task implies that, even if it completes earlier, its outpfitzSound

is made available through thepy[MizSound] driver exactly at
4ms. Each actuator updat@v..:, d) consists of an actuator fre-
quencyw..: € Nxso, and an actuator drivef. Each mode switch
(Wswiten, m’, d) consists of a switch frequeneyswiten, € Nso, @
target moden’, and a mode drivet which uses the boolean con-
dition on its source ports to control the mode switch. Forsingle
modem; of the example, we have one actuator updatedctDrv)

LCTES'05, 3

compiler generates a block of E code instructions for eadhafin
each program mode.

For example, in Fig. 4, the block of E code for unit O of mode
m; is identified by the labeFE (m;,0). It initiates the execution
of the copy drivers that update the three task output ponts tiae
execution of the audio player device driver. Then the audioer
device driver and the three task input drivers update thetipprts
of the three tasks that are released next. Note the orderivafrdr
call instructions: copy drivers are followed by device drivers,
followed by task input drivers. Finally, a time trigger wisldldress
label E(my, 1) is activated. So, afterrds the embedded machine
executes the block of E code starting at the addi@és:;, 1).
The last instruction of this block activates anothendtrigger,
now with addresst'(m;,0). In this way the execution of each

1Therelease instruction corresponds to thehedule instruction in [5],
but has been renamed for clarity.

2005/4/16

E(mj.,O): E(mj,l)i
call(copy[Spectrum]) call(copy[MizSound])
call(copy[MizSound]) call(ActDrv)

call(copy[StringSound])
call(ActDrv)

(

E call(dev[MizPlayer])
callEdev[Mia:Player])

(

(

(

call(dev[AudioSampler])
call(InDrvs)
release(Mizer)

future(4, E(my,0))

call(dev[AudioSampler])
call(InDrvy)
call(InDrvs)
call(InDrvg)
release(Analyzer)
release(Mizer)
release(Generator)
future(4, E(my, 1))

Figure 4. E code blocks for the prograi@ 4

S(my,0):
dispatch(Mizer, 4)
dispatch(Generator, 4)
dispatch(Analyzer, 4)

S(m1 s 1):
dispatch(Mizer, 4)
dispatch(Generator, 4)
dispatch(Analyzer, 4)

Figure 5. S code blocks for the prograd 4

of the two blocks is repeated everyn8. Note that the task and
driver functions are external to the embedded machine arsd lneu
implemented in some other language.

The scheduling machine [4] determines when, and in what or-
der, tasks released by the E code are executed (dispatthest).
places the system task scheduler, since the code that jiSwosle
defines a schedule according to which, at run time, a simgle di
patcher selects which task to execute. The scheduling maatso
has three instructions, one of whichds11(d) as for the embed-
ded machine. Alispatch(¢, £) instruction resumes (or starts) the
execution of a released tagkuntil £ ms elapse, measured from
the start instant of the current S code block. The integspec-
ifies the simplest and the only form tifmeoutsthat we consider
in this paper. The task executes until either it completesher
timeout becomes true, whichever happens first, and aftethiea
scheduling machine proceeds to the next instructionidre(¢)
instruction causes the scheduling machine to idle untititheout

¢ becomes true. Each block of E code is annotated with a block

of S code which starts execution in a separate thread aftdash
instruction of the E code block. An important differencevbetn

E and S code is that each E code block executes instructiens in

stantaneously, whereas each block of S code executes ower ti
We call the resulting code, consisting of both E and S codekislo
schedule-carrying codéSCC). The example S code in Fig. 5 con-
tains a possible schedule for the Giotto progrém. The block of

S code at the labed (m;, 0) is interpreted after the block of E code
at the labelE(m,,0). It starts with the execution of théfizer
task followed by the other two tasks. The task executinghat &
suspended and resumed with the correspondirgatch instruc-
tion in theS(m;y, 1) block. We note that an S code instruction that
dispatches a task not yet released is simply ignored. WiISBC
code in Fig. 4 and 5 thé/izer task is executed twice everyr8,
and the tasks7enerator and Analyzer once, exactly as specified
by the Giotto progranG.a.

3 Distributed Code Generation

In our distributed model the systeimtegrator generates a Giotto
programd to be implemented by a sStof supplierson a setd of
hosts A supplier is an independent code developer. A host is a self
contained computational element with its own processomarg,
and communication interface. We assume that hosts are ceahe

5(t)) be the host (resp. supplier) which executes (resp. impieshe
taskt. We similarly definei(d) and 5(d) for a driverd € Drus.

Let Taskss,, (resp.Druss) be the set of all tasks (resp. drivers)
assigned to supplies on hosth. We require that a task and its
input and copy drivers be assigned to the same supplier on the
same host. Also, an actuator driver and the correspondinigele
driver must be assigned to the same supplier on the samé/idst.
such an assignment the integrator also allocates eachfpGrtma
particular host and supplier. #f € Ports is a sensor or an actuator
port, thens(p) = 3(dev[p]) andh(p) = h(dev[p]). If p is a taski
input or output port, i.e., ip € In[t] U Out[t], thens(p) = 5(¢)
andh(p) = h(t). Finally, each messageép] is associated with a
suppliers(p) and hosth(p), namely, the sending supplier and host.
Let Msgs, , be the set of all messages that are associated with
suppliers on hosth.

In the rest of the paper we assume that the example Giotto
programGa, a streaming audio application, is to be implemented
by three suppliers on two hosts. In Fig. 1 each annotatioangiv
in brackets to the right of a port denotes the supplier and the
host to which the port is allocated. The assignment for tasks
shown in Fig. 2. The audio file is read on hdst, and every
4ms 44 of its samples are sent to hast for processing. The
Mizer and Generator tasks, implemented respectively by the sup-
pliers s2 and sz, run on he. After receiving the samples from
hi, the taskMizer merges them with the generated samples, and
within the same #s, the resultingMizSound samples are sent
back to hosth;. The final waveform is there reproduced and an-
alyzed by theAnalyzer task implemented by supplier;. The
sets of tasks, drivers, and messages that are associateid; fo
stance, withs, on hy are Taskss, n, = {Mizer}, Drvsg, n, =
{InDrv2, copy[MizSound]}, andMsgs , ;. = {u[MizSound]}.

For each supplies € S and each host € H, the integrator
gives out (see the next sections for formal definitions)

1. an E code modul€; ;, that describes the timing and control
flow of driver, task, and message invocations for supplien
hosth, and

2. atiming interfaceT ;, that specifies the computation and trans-
mission time instants on hoktthat are available for supplier

Once a suppliers receives the E code modul ;, and timing
interfaceT’ ;, for hosth it generates

1. an S code moduls; ;, for hosth,

2. functionality code for all task§askss,, and driversDruvs,,
(sequential functions written in, e.g., native C code), and

3. worst-case execution (transmission) time estimatesfor the
tasks inTaskss,, (messages idsgs, ;).

Provided with the worst-case execution and transmissinadi
the integrator then verifies each generated S code modulesaga
the corresponding timing interface and E code module. by
the integrator can check the composability of all suppliecb8e
modules and ensure that the resulting distributed SCC anogr
satisfies the semantics (including the timing) of the oagji@iotto
programG. Moreover, once a supplier modifies its S code module
on a host it is sufficient to check whether the new module c@spl
to its timing interface to preserve Giotto semantics.

Distributed Giotto compilation. Let P be the entire distributed
SCC program. The sdPorts p of distributed SCC ports contains
additional ports Ports C Portsp) to store the data sent over the
network. Namely, if according to the Giotto prograiand port-to-

by a shared bus or a broadcast network. Hosts communicate byhost allocation a value of the pgsite Ports is needed as input to

exchanging messages containing port values. For perPorts,
let u[p] be the message with the partalue.

The integrator assigns each task and each driver defin€ddn
a particular host and supplier. For a task Tasks let h(t) (resp.

LCTES'05,

a driver on a hosk different from the originating host(p), i.e., if

a message with the value pfmust be sent over the network, then
the hosth must keep its own copy;, of port p. For a given port
p, let the setrecHosts(p) be the set of hosts that need to receive

2005/4/16

Algorithm 1 The distributed Giotto compiler (modg)

10:

15:

20:

25:

k = 0; ’y[’m] = ﬂ[m} /W'maz‘ [m]'
while k < winaz[m] do

Vs € S.Vh € H:link Eg j,(m, k) to next address o ;,;

Vp € taskOutPorts(m, k).Yh € recHosts(p) U {h(p)}.Vs €8S:

emit(s, h, call(copy[pn]));
Vd € actDrivers(m, k):

emit(5(d), h(d), call(d));
Vp € actPorts(m, k):

emit(5(p), h(p), call(dev[p]));
Mode Switch Compilation Algorithm[10]
Vp € senPorts(m, k):

emit(3(p), h(p), call(dev[p)));

if recHosts(p) # 0 then

emit(5(p), h(p), release(u[p];¢));

V(-,t,d) € taskInvocations(m, k):

€1 :=0; €2 :=0;

if Src[d] N senPorts(m, k) # @ thene; :=¢;

if sendOutPorts(t) # (0 thenes :=¢;

emit(5(t), h(t), release(e1;t; €2));

Vp € sendOutPorts(t) :

emit(5(t), h(t), release(e; u[p)));

Vs €S .Vh e H:

emit(s, h, future(y[m], Es p(m, (k + 1) mod wmaz[m])));
Vs € S .Vh € H: emit(s, h, return);
k=k+1,

end while

messages with pogt values during program execution in at least
one mode, i.e., the set of hosts on which a task input, aatuzto
mode switch drivet! is executed in at least one mode such ghist

a source port ofl. The hosth(p) to which the porp is allocated is
not inrecHosts(p). For a given task, let the sekendOutPorts(t)

be the set of task output portsp for which there are hosts that
must receive the message with the pprvalue (i.e., those with

recHosts(p) # 0).

According to Giotto semantics, each taskput (resp. copy)
driver reads (resp. writes) input (resp. output) ports atrélease
(resp. termination) time instants defined by the beginnieg(.
end) of the task period. In the distributed SCC implementation
each copy driver is still executed by an E code instructiothat
end of the task period. However, each task input driver isuesl
by an S code instruction and it is delayed if its source pagtdto
be sent over the network first. In general, in each task petiwd
transmission of sensor ports precedes task execution hvyni:
cedes the transmission of task output ports. More pregistly be
the task input driver for a taskassigned to hosk. For all sensor
portsp € Src[d] such thath(p) # h, a messagg[p] is received
at h. The completion of the messaggp] transmission updates on
each host’ € recHosts(p) (including k) the sensor pont;, . The
taskt input driver read®;, (and other ports), applies its function,
and writes to the taskinput ports. It succeeds all sensor port mes-
sages and precedes the tagkecution. The completion of the task
t writes to the local copy of the tagkoutput ports. The dispatch
of the task output port messag@’] for p’ € Out[t] succeeds the
taskt completion. The completion of the task output port message
u[p'] writes on each of the hosts itf’ € recHosts(p’) to the task
output portp},,. Finally, at eachh” € recHosts(p') U {h}, the
copy|[p},~] driver copies local into global task output ports at the
end of the task period (i.e., at the termination time of the task).

We assume that the transmission of a sensor port value is per-
formed in a time interval of length after the time instant the sen-
sor is read. Théatencyvaluee must be determined at compile time
and for simplicity we also assume that this value is the samalFf
ports. If a task reads a sensor port that needs to be recéhe,
the task input driver is called exac#ytime instants after the task is

LCTES'05,

Esl Jhy (m1 5 0):
call(copy[MizSoundp,])
call(copy[Spectrum])
call(drv[ActDrv])
call(dev[MizPlayer])
call(dev[AudioSampler])
release(u[AudioSampler]; 1)
release(0; Analyzer; 0)
future(4, Es; ny (m1,1))

Esl Jh1 (m1 5 1):
call(copy|[MizSoundp,])
call(drv[ActDrv])
call(dev[MizPlayer])
call(dev[AudioSampler])
release(pu[AudioSampler]; 1)
future(4, By, n, (m1,0))

E52,h2(m1,0):
call(copy[MizSound])
call(copy[StringSound])
release(1l; Mizer;1)
release(1; u[MizSound)])
future(4, By, n, (mi, 1))

Eog hy (Mg, 1):
call(copy[MizSound))
release(1l; Mizer; 1)
release(1; p[MizSound])
future(4, By, n, (m1,0))

E537h2 (m1 5 0):
call(copy[MizSound])
call(copy[StringSound))
release(0; Generator;0)
future(4, Eoy hy (M1, 1))

ES3,)12 (ml ’ 1):
call(copy[MizSound])
future(4, Egy p, (m1,0))

Figure 6. E code modules for the prograia compiled by Alg. 1

released. Otherwise, it is executed at the time the taskdaged.
Symmetrically, the transmission of task output ports ifqrened

in a time interval of lengtlk before the task is terminated (i.e., be-
fore its period expires). We require that the timbe less than or
equal to the mode unit timgm] = w[m]/wma=[m] for each mode
m. This implies that the task input driver is always calleddvefits
source ports are updated with values that are more recemivat

is allowed by the LET semantics.

Given a Giotto program, Alg. 1 generates all E code modules
Es,n, executing in moden. This is done in parallel for each supplier
s € S and each host € H. The while loop generates a block of
E code for each unt of modem. The E code compiler command
emit(s, h, instr) generates the E code instructiomstr for sup-
plier s on hosth. The compiler first generateall instructions to
the task output (copy) drivers, actuator drivers, and aotudevice
drivers. Line 10 refers to [10] for details on generating achl of
E code instructions that addresses mode switching; thighiego-
nal to the issues discussed in this paper. The last segmedieksa
call instructions for sensor device drivers, the invocatiorasks
and messages, and the future invocation of the embeddedmaach
at the next unit. Theelease instructions in the algorithm (lines
14, 19 and 21) are of a special form not needed for singlegassmr
SCC. They indirectly contain precedence constraints tieat@ces-
sary for correct communication by explicitly specifyingtlatency
time e. This number does not affect the program execution itself,
but a supplier needs it in order to construct a correct sdbeda.,

S code module. We treat messages sent over the network analo-
gous to tasks. In particular, we use the same SCC instrigcfan
messages. The instructiarlease(u[p]; €) releases the message
u[p] with the sensor porp value, but demands that the message
transmission be completed by tirmmérom the release. The instruc-
tion release(es; t; €2) releases the taskwith the constraint that
the task be dispatched no earlier than timafter the release, and
completed at the latest time before the task termination time.
The instructionrelease(e; u[p]) releases the message with task
output portp, with the constraint that the message be sent no earlier
thane time before the tasktermination. The finafuture instruc-

tion causes the embedded machine to wait for tifze] and then
execute the E code for the next unit.

Fig. 6 shows the E code modules compiled by Alg. 1 from
the audio mixer Giotto prograni4. The code for different sup-
pliers on the same host is separated by a single horizomi/ li
and the code for different hosts is separated by two lineg Th
latency is chosen to be = 1ms. For instance, the command
release(u[AudioSampler]; 1) releases the message with the sen-

2005/4/16

sor port AudioSampler value, but also specifies a constraint that
the message must be sent befoneslexpires.

Note that the code generation scheme of Alg. 1 implies the
order of execution: copy drivers are followed by actuatdvets,
mode switch drivers, and task input drivers, in that ordemvelver,

E code blocks compiled for the same host and same unit of a mode

are fully composable, i.e., they can be executed in any ottler
a task output porp is a source port of an actuator, mode switch,
or task input driver that executes at a hasin a modem, then

h € recHosts(p) U{h(p)}. The set of hosts that receive pprilata

& e
: : : . . D
GEEE WOW
——
ng,hg
S S S —
o 1 2 3 4 8

does not depend on the program mode. This means that a message

with the portp value is sent to the host even if the program
executes in a mode in whighis not a source port to any driver
on h. This is so because in a mode wheris used,p must have a
correct value even in the first period of execution in the mode

4 Timing Interfaces

As presented in Section 3, each supplier obtains for eachamos
E code module specifying the release times of the tasks.(resp
messages) that it implements, and for which it has to determi
the times of execution (resp. transmission). Since bothpeaation
and communication resources are shared, this informaticst be
accompanied by a temporal specification that provides siau
time windows for task execution (resp. message transnmissiis
specification, which we call timing interface, is also gitereach
supplier. A timing interface defines the available compataaind
communication time windows, but not when to perform a patsic
action within these windows. This gives flexibility to a slipp
especially if multiple tasks are assigned to a supplier omst.h
It also enables timing modifications that are local to a seppl
and host, if a modification in the corresponding E module.{e.g
adding a task) is made. In the next sections we show thatttiegi
interface contains all information necessary for corréstrithuted
code generation.

Formally, a supplies € S on hosth € H receives for each
modem € Modes of the Giotto programG a timing interface
which is a pair of predicate$;, = (D", X{",). The predicates
D, X5 {0, .., w[m] — 1} — {0, 1} are defined as follows:

e D7, (£) = 1iffin mode m at time/ suppliers on hosth may
execute a task fronTasks p;
m

on(£) = 1iffin mode m at time£ suppliers on hosth may
send a message froMsgs., ;.

Let Tsn = {T.|m € Modes} andT = {T, »|s € S,h € H}.

Fig. 7 shows a graphical representation of a timing interfac
the programG4 from Fig. 1. The computation slots are shaded
light; for these time units the corresponding predicBtés equal
to 1. Recall the E modulé€;, », of Fig. 6, in particular the blocks
labeled E;, , (m;,0) and E, 5, (mz,1). The timing interface
given to suppliers; on hosth; can be interpreted as follows. The
task Analyzer may be executed at any time in the intervals (1,3)
and (5,7yns (modulo 8ns, which is the period of the mode;).
Furthermore, the@s-sample of thedudioSampler sensor value
may be sent at any time in the interval (Osk)s, and the 4ns-
sample of the same sensor may be sent in (45)

We assume that all hosts are clock-synchronized, so that com
munication is performed according to the Time Division Nflk
Access (TDMA) protocol: in each time slot only one node is al-
lowed to send data while all other nodes can listen for da@. W
have defined timing interfaces considering a simple comoatiain
architecture, where each host has only one processor foicbaot-
putation and communication tasks. A host with an additicleali-
cated communication processor, e.g., a node in the Tinggdred
Architecture [1], can be modeled as two hosts.

LCTES'05,

Figure 7. Timing interface for the progrant' 4

We next defindnterface feasibility a property needed for the
composition of SCC modules. First, we require that the tgnmin
interface windows for the same resource but different sappl
must be disjoint, i.e., at every time instant on each host @tm
one supplier may execute a task, and at most one of the stgplie
may send a message. Second, when a host is supposed to receive
data, no task execution is allowed. In particular, for sepsat data
this is true in the latency time window-(vindow) after the data
is read, and for task output port data, in thevindow before the
task termination time. Both properties are satisfied foitherface
shown in Fig. 7.

Formally, atiming interfacd” = (D, X) isfeasiblefor a Giotto
program@ if the following two conditions are satisfied:

¢ (Resource SharigFor all modesm € Modes, suppliers
S1, S2 es (Wlth S1 75 82), hOStSh1,h2 c H (Wlth hy 75 hz),
and time¥ € {0, ..., 7[m] — 1},

* atmostone oD} ;, (), D 4, (€), X 1, (£), andX) 5, (£)
is equal to 1, and
» atmostone o[, (€), X7 5, (€), X7 5, (€), @ndX 3 5, (€)

isequal to 1.

o (Data Reception For all modesm € Modes, units k €
{0, ...,wmaz[m] — 1}, portsp € SensePorts U OutPorts,
and time< € Ny, if either

» p € senPorts(m, k) andk - y[m] < £ < k- ~y[m] + ¢, or
» p € taskOutPorts(m,k + 1) and(k + 1) - y[m] — e <
< (k+1)-~[m],

and if X[5,y (€) = 1, thenD{, (¢) = 0 for each supplier

s € S and hosth € recHosts(p).

Given a Giotto program and a set of timing interfaces, oneéah
supplier, host, and mode, the feasibility conditions cacherked
independently for each interface.

Earliest-deadline-first S code.Provided with the pattern of
task and message releases in an E code ma&uyleand available
time windows in a timing interfacd’ 5, the suppliers generates
the schedule for hodt, i.e., the order and timing of tasks and mes-
sages orh, and encodes it as an S code modSlg,. We briefly
explain a potential generation scheme&Qr,. Even with the tim-
ing constraints imposed by ;, it can be shown that the Earliest
Deadline First (EDF) strategy is an optimal strategy withpect to
schedule feasibility, i.e., if tasks and messages are sitdgd in
T, time windows by some strategy, then they are also schedula-
ble by the EDF strategy. The release and deadline timeskf tal
messages to be implemented by a supplien a host, in modem
are implicitly contained in the E code modug ,. So, the supplier
s can always check the EDF strategy and, if feasible, gendérate
S code modul&; ;, according to the following scheme.

Let, for instance, an intervdl:, ¢2) C [0, w[m]), with integer
bounds/?;,¢> € Ny, be a computation window of the timing
interface 777, i.e., for all ¢ € [{1,02) be D, (¥) 1. Let

Kl

2005/4/16

Ssq,my (M1, 0): Sy ,hy (Mg, 1)

call(InDrvq) dispatch(u[MizPlayer], 1)
dispatch(u[MizPlayer], 1) idle(1)
idle(1) dispatch(Analyzer, 3)

dispatch(Analyzer, 3)

Ssg ,hg (M1, 0): Ssg,hp (M, 1)

idle(1) idle(1)
call(InDrvs) call(InDrvs)
dispatch(Mizer, 2) dispatch(Mizer, 2)
idle(3) idle(3)

dispatch(u[MizSound],4) dispatch(u[MizSound], 4)

SSSvhz (my,0):
call(InDrvg)
idle(2)
dispatch(Generator, 3)

SS3 sho (ml 9 1):
idle(2)
dispatch(Generator, 3)

Figure 8. S code modules for the prograéu

t1,t2, ..., Y| Tasks, ,| D€ the EDF permutation of taskBasks,,, at

unit £ of modem (the taskt; has the earliest deadline). The EDF

S code modul&; ;, has the following sequence of instructions:
idle(¢1 — k - y[m])
dispatch(ty, 42 — k - y[m])
dispatch(ta, 2 — k - y[m])

;i';-spatCh(t\Taskss)h\vz2 — k- y[m])

The entire EDF S code module consists of such code segments fo
each computation or communication slot of the timing irateef

Fig. 8 shows all EDF S code modules for the Giotto progrém
which are generated using the timing interface of Fig. 7.eNbat
these modules also contain invocations of task input dsiver

5 Implementation

Our test system consists of several off-the-shelf PC hogts w
200MHz Pentium Pro processors and 128MB RAM. All hosts are
equipped with standard 100Mbit Ethernet network cards aed a
locally connected. The underlying operating system is RUkj
where standard Linux runs under the control of a real-time ke
nel as the lowest priority task [18]. In contrast to Linuxirfime-
sharing scheduling, RTLinux uses a simple priority-baseg¢mp-
tive scheduler, thus permitting real-time functions torape in a
predictable and low-latency environment. In our tests thgimum
scheduling latency was about39

Real-time communication is attained through a special odtw
driver [19] that precludes the standard Ethernet CSMA/C@qar
col by establishing a TDMA-based time-triggered protoadigre
each node has exclusive access to the network within itsistda:
time slot. A software-based synchronization of the hostaisied
out by controlling the period of a thread that performs send a
receive network operations. The control algorithm usesathigal
times of incoming data packets. The communication cyclbass
in Fig. 9. For the purposes of synchronization, one of thashiss
designated as master and all others as clients. In eachthgateas-
ter sends a sync packet with the id of the client that is sugghts
respond by sending a resync packet in the next slot. The guese
slots are reserved for each of the hosts to send actual deltatpa
If Ty is the duration of a single slot, ard is the number of hosts
operating under the time-triggered protocol, then theeyepeats
after timeTo - (N + 2).

In general, the protocol latency, i.e., the time betweerstrel
call of the network driver and the arrival of the data packit;
pends on the time instant at which the call is made. Howelier, t
driver provides a function that synchronizes the sendirggithwith
the network schedule, i.e., the driver resumes the threash\ith
reaches the exclusive time slot to send a message. This mecha
nism enables the precise timing in the interpretation ofS6€ in-

LCTES'05,

]

Figure 9. Cycle of the communication protocol [19]

Client 1 |
Send

Client N-1
Send

Master

Resync
Y Send

Sync

>
>

structions (including message dispatch) with respect ¢ogtbbal
time. The distributed SCC virtual machine is built as a dyham
cally loadable RTLinux kernel module. For the code of eagh+ su
plier the machine maintains a context data structure sirtalahe
non-distributed implementation described in [6]. To inmpént dis-
tributed SCC correctly we make use of special RTLinux caié t
suspend and resume task threads.

To test the virtual machine we implemented the audio appli-
cation G4 through the distributed SCC program shown in Fig. 6
and 8. Note that in Fig. 8 eachispatch instruction with a task
(resp. message) as an argument executes in computatiqgn (res
communication) slots shown in Fig. 7. In this setup each sioe
lastsTo = 1ms, and an entire communication cycle ladis.s
(IN=2). The maximum bandwidth available to each host in such a
configuration is 2.86/bit/s. The tests show that the sound card
is fed continuously with samples. The audio reproduced lzdck
hi plays without any noticeable interruption or other sound de
fects. The estimated overhead of the network driver symibae
tion thread is 2hs. The overhead of the virtual machine, i.e., the
time it takes to go through the machine event loop with twg-tri
ger and thread instances, is less thansl@livided roughly equally
between E and S parts). Since the machine is invoked at 1kez, t
system overhead is aboRir%. The actuator jitter is less thap2,
since in Giotto a task output is written at the task termoratime.

In these measurements we used the Pentium time stamp gounter
the most precise PC clock.

6 Compositional SCC Analysis

We first characterize the control-flow graphs of the disteéduSCC
program that is compiled from a Giotto prograthaccording to
the scheme presented in Section 3. The distributed SCCanoigr
then represented as a set of state-transition systemspoeadh
supplier and host, which are used to verify the correctnésisio
implementation ofG.

6.1 Giotto-Generated Distributed SCC

We start by describing E and S code modules separately, and th
define the entire distributed SCC program. Iiebe a Giotto pro-
gram with/ modes. Ley;, , be equal td Taskss |+ |Msgsé.’h| +
|Drvss.il, i.€., gs,» represents the size of the program part which
is allocated to supplies on hosth. Let a node of a directed graph
without predecessor (resp. successor) be called a soes &ink)
node of the graph. A7-generated E modulé; ;, consists of a di-
rected acyclic control-flow graphvfh, Ef’h), two edge-labeling
functions x and A\, and a node-labeling function. Each edge
e € EX, is labeled with an instructior(e) and an argument(e),
and each node € V£, is labeled with a paif(v) = (m, k) such
thatm is a mode and is a unit ofm, i.e.,k € {0, ..., wmaz[m]}.
The graph(V,, E<,) has the following properties:
e Each path from a source to a sink consists of
» asequence dP(g;,,) edges:, each with a:(e) = callin-
struction that calls a driveX(e) from Drus, p, followed by
» a sequence of(gs,n) edgese, each with ak(e)
release instruction that releases a task or message
from Taskss,n U Msgs, ,, and followed by
* a single edge: with a k(e) = future instruction and an

argument\(e) = (4,v’) that marks a source’ of V&, for
execution aftep € N~ units of time.

2005/4/16

¢ Foreach mode: € Modes and each unit € {0, ..., wmaz[m]}
there exists

= exactly one source nodesuch that)(v) = (m, k), and

» at most one node such thatn(v) (m, k) andv has
more than one successor; such a nodeas less tha/
successors.

Let all numbers inG, i.e., mode periods as well as task and actuator
frequencies and,...[m], be bounded by.. For instance, for the
Giotto program G4, the largest constant is equal to 8. The
number of sources ofV5,, E£,) is O(M - n), and the number

of sinks isO(M? - n). Assuming, for simplicity, that the number
M of modes is bounded, the size%fh isO(gs,n - m).

A G-generated S modul§; ; consists of a directed control-
flow graph(V:3,, ES),), two node-labeling functions andv, and
an edge-labeling functioh. We require that the graptv.%,, E,)
consists of chains of total length(g;,», - n). Each control location
u € V is labeled by one of the following:

® p(u) = dispatch, v(u) € Taskss, U Msgs, ,, and node
u has a successar’ such that\(u,u’) € Nso. If v(u) €
Taskss,n, then the execution of, dispatches the task(u).
Control proceeds ta’ if v(u) completes or the firsk(u,u’)
time units pass from the time at which the thread with this-con
trol location was created. f(u) € Msgs, ,, then the anal-

S

beré € Ny of time units for which the thread has been executed.
Let ¢ be the function such that for each task Tasks, the sta-
tusc(t) € Ny indicates that has been released and executed for
c(t) > 0 time units; the statug(t) = L indicates that has been
completed (or not yet released). For a mesgage Msgs, c(u) is
defined analogously for the message release and transmissio
The appendix presents the semantics of a distributed SGC pro
gram P by defining a transition system on the space of statd3. of
Each transition represents either the execution of an E @ds ¢
instruction on one of the hosts, or a time step. A serieB tfin-
sitions corresponding to a block of E code instructions are taken
when a trigger becomes true. dompletion S transitions taken
when a task or message completesin@eout S transitionwhen
a timeout on alispatch or idle instruction becomes true; and a
transient S transitiorwhen an S codeall instruction is executed.
For a given initial statey, a trace of the distributed SCC
programP is an infinite sequencey, g1, . . . of states ofP such
that for alli € Ny, there exists a transition from to g;+1. Let
ws,n : Taskss,n U Msgs, , — Nso be the worst-case execution
or transmission time (wcet) function for the tasks and mgssa
of suppliers € S on hosth € H, and letw be the set of such
functions for all suppliers and all hosts. A tracefofs anw-traceif
for each supplies € S, hosth € H, and each invocation of a task
or message € Taskssn U Msgs, ,, the invocationz completes
execution (transmission) within time; ,, (z).

ogous explanation holds for the transmission of the message 6.2 Interface Compliance and Time Safety

v(u).

¢ p(u) = idle andu has a successar’ such that\(u,u’) €
Ns. The execution of; idles the processdr until A(u,u’) €
N time units pass from the time of thread creation.

e p(u) = call andu has a successar’ such that\(u,u’) €
Drus, . The execution ofu, ") calls driver(u, u').

¢ p(u) = v andu has no successor indicates thread termination.

A G-generated SCC modulg; ;, for a suppliers and a hosth
consists of aG-generated E modulé; », a G-generated S module
Ss.n, and anannotation function®; ;, that maps each sink of the
control graph of; ; to a node in the control graph &% ,. When
the E code execution arrives at a simkthis creates a new thread
of S code which starts at control locatidn ,(v). Let Vi€ be the
union of node seti/fh over all supplierss € S, i.e., the set of
all E code control locations on hokt Each function®, , maps a
sink nodev’ € V£, to a source nod@, ,(v') € V3, such that
if (v,0') € Ef, andk(v,v’) = future and\(v,v’) = (£,-),
then the chain inV.3,, ES),) that starts from the nodeé ; (v')
does not contain numbers, i.e., clock timeoutsiigpatch and
idle instructions, larger thad. According to the last condition,
if the next E code instruction is executed afetime units, then
the chain of S code instructions describes the scheduld fapst
the next¢ time units. Note that ifG is a single-mode program,
then both(VE,, EZ,) and (V.3,, ES),) consist of chains of size
O(gs,n)- Lastly, aG-generated distributed SCC prografover a
setS of suppliers and a séf of hosts is a function that assigns to
eachs € S and eacth € H a G-generated SCC modulg, ;, for
a suppliers and a host.

Transition-system semantics A stateof a G-generated dis-
tributed SCC progran® consists of a port valuation functiorthat
maps each port itPorts p to a value of the appropriate type, a pro-
gram counter functiom that assigns to each hadste H a control
nodew;, € Vi€, a status functior : Tasks U Msgs — No U {L},

a trigger functionr that assigns to each hodt € H a queue
T C (Ng x Vi£)* of future invocations, and a thread function
0 that assigns to each haste H a setd), of threads. Each thread
(u,d) € 0, consists of a program counter € V;° and a num-

LCTES'05, 8

For the compositional analysis of a distributed SCC progven
need the following two properties. Lét be a (multi-mode) Giotto
program, letT , be a timing interface for a supplierand a host

h, let P ;, be the G-generated SCC module, and let ; be a
wcet function. The modul®; ;, interface-compliesvith T's ;, if all
dispatch instructions ofP; ; execute in time intervals provided
by T . In our example each SCC modulg , defined by the

E and S code blocks in Fig. 6 and 8 interface-complies with the
timing interfaceT ;, shown in Fig. 7, because the S code in Fig. 8
was generated as EDF S code with respect to this interface.

The moduleP; ;, is time-safef (1) no driver reads from output
ports of a task (resp. message) assigned to supplien host
h before it completes execution (resp. transmission), afd¢2
driver writes to input ports of a task (resp. message) aftstaits
execution (resp. transmission). This requirement enstirasall
task release and termination times of the original Giottmgpam
are maintained [10]. Let, for instance, the worst-case @@t
(resp. transmission) times of all tasks (resp. messaged)rhe
Each SCC modul®; ;, defined by the E and S code blocks in Fig. 6
and 8 is time-safe. For example,i, »,, the input ports of the task
Mizer are written at time s (InDrv. driver), its output ports are
read at 4ns (copyMixSound driver), and the task starts execution
at Ims, but completes beforernzs.

We now give the formal definitions of interface compliance
and time safety as safety properties, so that it becomes luiwa
to check them. A state of a distributed SCC progr&with a
program counter function and thread functiof violatesinterface
compliance withTs, = (Ds,n, Xs,5) if there exists a thread
(u,d) € 6 such thatp(u) = dispatch, n(vy) = (m, k), and
either (1)v(u) € Taskss, and D7, (k - y[m] + 9) 0, or
(2) v(u) = Msgs,, and X", (k - v[m] + 0) = 0. We say that
(Ps,n,ws,p) interface-compliesvith T 5, if for all ws, ,-tracesy of
{Ps,}, no state of violates interface compliance witH; ;.

A state of a distributed SCC programwith a program counter
function v, status functiorc, and thread functio violatestime
safety on(s, h) if there exists a task or messagec Tasks,,n, U
Msgs, , such that either (@), has a successof, with (v, v;,) =
call and A(vy,v,) = d (E code driver), or (b) there exists a

2005/4/16

(ms,0) (mi1,1) ample. The size 0P, is O(gs,, - n), because bothV:,, EX)
and(Vf,L, Eﬁh) are of the same size. Constructing the transition
graphP; j, annotating it with states, and checking its states can be

. doneinO(gs,,-n) time. Therefore, we have the following theorem.

(m2,0) (me,1) (me,2) (me,3) THEOREM1. Let G be a single-modeGiotto program with all

numbers bounded by. Let g » and T ; be the size of the part
of G and the timing interface assigned to supplieon hosth. Let
thread (u,-) € 6, with p(u) = call, u has a successar P, » andws, , be theG-generated SCC module and wcet function

and A(u,u’) = d (S code driver), and one of the following: (1) oF SuPpliers on hosth. It can be checked in imé(g. .. - n)
Sre[d] N Outlz] # @ andc(z) # L, or (2) Dst[d] N In[z] # § and whether(P, ws,») interface-complies witlf’s , and is time-safe.
c(x) # 0. We say that s »,ws,1) is time-saféf for all w; ,-traces 6.3 Distributed Code Generation Correctness

1 of { P, 5}, no state of violates time safety ofs, k).

Checking interface compliance and time safetyl'he paper [4]
discusses time safety checking for single-mode, single&-Gtto
programs. These results are here generalized to both tinéualisd
and multi-mode settings. For distributed single-mode mog G
we give pseudo-polynomial algorithms for checking the rifiatee X
compliance and time safety of eack-generated SCC module. Let G be a Giotto program, |ef' = { T s | s € Sand h € H}
For distributed multi-mode programs the checks are sufficieor be a feasible interface faf, let P = { P, | s € S and h € H}
details and proofs the reader is referred to [20]. L&t-generated D€ @G-generated distributed SCC program, anduet {w,» |

Figure 10. Graph related t@®; ;, for Ga with additional moden.

We show that LET semantics of a Giotto program is preserved by
the distributed SCC program generated according to Algeach
SCC module satisfies interface compliance and time safean |
SCC program preserves the LET semantics of a Giotto program w
say that it implements the Giotto program.

SCC module be given as &-generated E modulé, ,, a G- s € Sand h € H} be a weet function forP. Let r and r/’
generated S moduls, ,, and an annotation functioh,_ . We first be the port valuation functions at tinfec No for G and P [3].
construct a directed graph,., by connecting the control graphs A trace of P and a trace of7 areinput-compatible(resp.output-
of £,.» andS,., through edges from each sink BE, (resp.VS,) compatiblg if they have the same sensor (resp. actuator) port values

at the same times, i.ez” (p) = £ (p) for eachp € SensePorts
(respp € ActPorts) and each time instaite Ny. The pair P,w)
implementshe Giotto programG if for every w-trace of P and
every trace ofGG, input-compatibility implies output-compatibility
(i.e., if, for all sensor inputs, they produce the same dotiaitputs
at the same times). The paiP (w) interface-complies tdl" if for
each supplies € S and host € H, the G-generated SCC module
(Ps,n,ws,p) interface-complies withTs ;. We say that P,w) is
time-safe if (Ps,»,ws,1) is time-safe for each € S andh € H.

to a source o3, (resp.V,) determined by the mag. , and
control flow of €, 5. It can be shown that each graph,;, is acyclic

even if G is a multi-mode program [20]. For instance, consider the
Giotto programG 4 with the original moden; and the additional
modemg given in Fig. 3, in which thelfizer task is invoked every
2ms. Fig. 10 shows a graph in which each edge abstracts a chain
of O(gs,») edges of the grapRs 5.

We next construct a state-transition graph by annotatirdy ea
node of the graphP; ; with a particular state of the SCC module
Ps . The graphP; 5 is acyclic, so the nodes can be sorted and THEOREM2. Let G be a Giotto program, letI’ be a feasible
processed in topological order. Each source nodePgf, (for timing interface forG, let P be the distributed SCC program
each mode there is exactly one such node) is annotated véith th -generated according to Alg. 1, and let be a wcet function.
state in which the trigger queue and thread set are emptyt@nd t |f (P,w) interface-complies toI' and is time-safe, thenHw)

status function maps each € Taskss,, U Msgs, , to L (recall implementsG.
thatc(x) = L means that has not yet been released). For the . .
other nodes of?, , we proceed by transforming the state of their For the proof of this theorem we refer to [20]. Instead we give

immediate predecessors. We do so by performing one or moreinformal explanation why interface feasibility, intereacompli-
transition steps defined by the semantics of SCC programp.(Ap 2Nce, and time safety ensure correctness of the impleriemntét

A). Task execution-time nondeterminism in time transititeps i~ interface feasibility is violated, e.g., the time windows @ host
eliminated by assuming that each task (or messagedmpletes are not disjoint, even if each supplier produces mteriam_&p_llant
exactly after the time given by the wcet, 1, (z). If a nodev has and time-safe code, the host may be overloaded and missrsadl

more than one predecessdrthen the status function value atnode ~ defined by the LET semantics. A similar outcome is possibiledif
v, for eachz € Tasks,, U Msgs, ,, is the least value among the ~ interface is feasible, and each supplier on each host gesesa
status function values far at all predecessorsg. So, for the nodes SCC module that is individually time-safe, but it ignoree ih-

with more than one incoming edge, we compute the task executi terfagg. Lastly, if a .module QOes not saﬂsfy one of th.e. tBately
time pointwise and conservatively. conditions, e.g., a time slot in the interface is not suffitielarge,

Checking the states of the graﬁh,h offers a sufficient condi- then a task or message Invocation may result in Incorreqiubut

tion for time safety and interface compliance of all exemnsi of the The compositional nature of interface c_ompliance and tiefety
distributed SCC modulé; ;. If no state of the grapt®; , violates of (P,w).ensurfe.s that i, for some suppllelanq hOSTh’ one mod-
time safety and interface compliance, then tBejenerated SCC ~ Ul€ F’s.n is modified, then for to implement it suffices to check
module(Ps 1, ws 1) interface-complies with's ;, and is time-safe. if (Pé%f“.ws’h) interface-complies withl’, ., and if it 1S time-safe.
If this is not the case then, for a general multi-mode Giotip-p ~ COMPining Theorems 1 and 2, we have the following.

gram G, we cannot conclude that SCC modyle; ., ws,,) does COROLLARY 1. Let G be a single-modeGiotto program of sizg
not interface-comply withT’; ;, (or is not time-safe). This is be- with all numbers bounded by. It can be checked in tim@(g - n)
cause in the state construction Bf,, different incoming edges if (P, w) implementsG. Moreover, if(P, ,,w;) is modified for
of a node may impose conservative approximations on differe 3 single suppliers and hosth, then it can be checked in time
tasks. Also, there may be unreachable modes [10]. Howdveér, i (g, ,, - n) if (P, w) stillimplementsG.

is a single-mode program, then the state-transition giaphis a
chain. So, ifP; ;, does not interface-comply or is not time-safe at 2 For multi-mode Giotto the pseudo-polynomial check is oniffisient but
some state, then the trace along the chain upg@ a counterex- not necessary.

LCTES'05, 9 2005/4/16

Note that(P; »,ws,) can be modified either by modifying ;,
(i.e., modifying task invocation and/or environment i@igtion),
Ss.n (schedule), otws,;, (wcet). Suppose that in the audio example
the integrator wants to assign additional functionalitgupplierss

on hosthz, say, mix with another synthesized sound with a pitch

twice as high. Suppliess implements a new taskienerators
(of two times higher frequency) with input drivdnDrv,, and
modifies the S modulé;, », as shown below. Then, for correctness
of the entire progran®, only the modified modulés, ., needs to
be checked for interface compliance and time safety.

553’}12(777,1,0): 553’}12(777,1,1):
call(InDrvg) call(InDrvy)
call(InDrvy) idle(2)
idle(2) dispatch(Generators, 3)

dispatch(Generatorsa, 3)
dispatch(Generator, 3)

dispatch(Generator, 3)

7 Conclusion

We introduced timing interfaces and showed how they can &d us
to distribute the code generation for Giotto programs arwd di
tributed target platforms. The integration of the indivadly com-
piled components is performed by individually checking the

terface compliance and time safety of each component. Our ap

proach guarantees global timing requirements withoutisgha

global scheduling problem: as part of the continuing eftdrthe

Giotto project to trade performance for predictability aminpos-
ability, the burden is shifted to the generation of timinteifaces.
There are related efforts [12, 13, 21], how they can be optohi
for different criteria is a topic for future research.

References

[1] H. Kopetz. Real-Time Systems: Design Principles for Distributed
Embedded ApplicationKluwer, 1997.

[2] http://www.flexray-group.com; http://www.autosago

[3] T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto: iae-triggered
language for embedded programming. Aroc. IEEE91, pp. 84-99,
2003.

[4] T.A. Henzinger, C.M. Kirsch, and S. Matic. Schedulergarg code.
In Proc. EMSOFTLNCS 2855, pp. 241-256, Springer, 2003.

[5] T.A. Henzinger and C.M. Kirsch. The Embedded Machinedictable,
portable real-time code. IRroc. PLD|, pp. 315-326, ACM, 2002.

[6] C.M. Kirsch, M.A.A. Sanvido, and T.A. Henzinger. A praanmable
microkernel for real-time systems. Rroc. VEE ACM, 2005.

[7] C.M. Kirsch, M.A.A. Sanvido, T.A. Henzinger, and W. Pre& Giotto-
based helicopter control system. Proc. EMSOFTLNCS 2491, pp.
46-60, Springer, 2002.

[8] N. Halbwachs. Synchronous Programming of Reactive Systems
Kluwer, 1993.

[9] A. Benveniste, L.P. Carloni, P. Caspi, and A.L. Sangioviavincentelli.
Heterogeneous reactive systems modeling and correcttstraiction
deployment. IrProc. EMSOFTLNCS 2855, pp.35-50, Springer, 2003.

[10] T.A.Henzinger, C.M. Kirsch, R. Majumdar, and S. Mafléme-safety
checking for embedded programs. Rroc. EMSOFTLNCS 2491, pp.
76-90, Springer, 2002.

[11] P. Caspi, et al. From Simulink to SCADE/Lustre to TTA:ayéred
approach for distributed embedded applicationsPioc. LCTES pp.
153-162, ACM, 2003.

[12] A. Mok and X. Feng. Real-time virtual resource: a timalystraction
for embedded systems. Froc. EMSOFTLNCS 2491, pp. 182-196,
Springer, 2002.

[13] I. Shinand I. Lee. Periodic resource model for compasél real-time
guarantees. IRroc. RTSSpp. 2-13, IEEE, 2003.

[14] H. Kopetz and N. Suri. Compositional design of realdisystems:
a conceptual basis for the specification of linking integfac InProc.
ISORGC pp. 51-60, 2003.

LCTES'05, 10

[15] J. Rushby. Partitioning in avionics architecturesquieements,
mechanisms, and assurance.NASA Contractor Report 209343RI
International, 1999.

[16] B. Hardung, T. Koelzow, and A. Krueger. Reuse of sofavar
distributed embedded automotive systems. Ploc. EMSOFT pp.
203-210, ACM, 2004.

[17] K. Karplus and A. Strong. Digital synthesis of pluckstling and
drum timbres. inComputer Music Journal, pp. 43-55, 1983.

[18] V.Yodaiken. RTLinux Manifesto. IfProc. LinuxExpo1999.

[19] S. Lankes, A. Jabs, and M. Reke. A time-triggered Etbepnotocol
for real-time CORBA. IrProc. ISORCpp. 215-222, 2002.

[20] T.A. Henzinger and S. MaticDistributed Schedule-Carrying Code
Tech. Rep. UCB/CSD-04-1360, 2004.

[21] S. Shigero, M. Takashi, and H. Kei. On the schedulabdidnditions
on partial time slots. IfProc. RTCSApp. 166-173, IEEE, 1999.

Appendix A. Formal Distributed SCC Semantics

In [4] we give an operational semantics of schedule-cagytode by
defining a state-transition system in which all port values @bstracted
away. Here we are interested in the input-output behaviadistfibuted
SCC, so we extend the formalism by taking into account pduegand the
distributed nature of code. We present the interleavingasgics for SCC
modules of all suppliers on all hosts. To use the same natédionessages
as for tasks, let the message input pdrigu[p]] formally be {p}, let the
message output port®ut|u[p]] be {p,, | h € recHosts(p)}, and let
the message functiotusk[1[p]] be the identity function from the message
input to output ports. A state = (r, v, ¢, 7, 0) has atransitionto a state
q = (r',v', ¢, 7', 0") if one of the following is true:

Completion S transition The state; is completion enablingthat is, there
exist a hosth € H and a threadu,) € 6), such thate(v(u)) = L
andp(u) = dispatch. Let the successor aef beu’. Thenr’ = r ex-
cept thatr’ (Out[v(uv)]) = task[v(w)](r(In[v(w)])), (', c,7") =
(v,¢,7), andd’ = 0 except that] = (0,\{(u,9)}) U {(v,9)}.

Transient S transition The statey is not completion enabling btansient
enabling that is, there exist a hodt € H and a threadu,) € 6y,
such thatp(u) = call. Let the successor af bew’. Thenr’ = r
except thatr’ (Dst[A(u,v’)]) = drv[A(u,u)](r(Sre[A(u, u’)])),
W', ¢, 1") = (v,¢,7), andd’ = 6 except thav = (8, \{(u,0)}) U
{(',9)}.

E transition The statey is neither completion nor transient enabling But
enabling that is, there exists a hoat € H and either (1)v;, has no
successor anfD, -) € 7, or (2) vy, has a successef, . In case (1) let
(0, v) be the first such pair im,. Thenp = p’, v = v except thav, =
7, ¢ = ¢, 7" = 7 except that;, = 7, \ {(0,9)}, and§’ = 6. In case
(2) one of the following: (a):(vp, v},) = call andr’ = r except that
v/ (Dst[A(vg, v})]) = dro[A(vn, o)) (r(Sre[A(vn, o)), ¢/ = e,
andr’ = 7; (b) k(vp, v},) = release andr’ = r, ¢’ = c except that
c(Mop,v},)) = 0,7 = 7;0r () (v, v},) = future andr = 77/,
¢’ = ¢, andr’ = 7 except thatr] = 75, o {\(vp,,v})}. In all three
cases, ivy, is a sink, ther’ = 6 except thad;, = 6, U{(®4(v},),0)};
if v} is not a sink, thed’ = 6.

Timeout S transition The statey is neither completion nor transient nor E
enabling butimeout enablingthat is, there exist a ho#ét € H and a
thread(u, 6) €), suchthap(u) € {dispatch, idle}, the successor
of uwis v/, AMu,u’) € No, andA(u,u’) < 8. Then(r’,v',¢,7') =
(r,v,¢,7), andd = ¢’ except that, = (0,\{(u,d)}) U {(v/,0)}.

Time transition The state; is neither completion nor transient nor E nor
timeout enabling. Then’ (p) = r(p) for all p € Portsp \ {p.}, and
r’(pc) = r(pe) + 1. Foré = r(p.), we call the functionr, = r the
port valuation at timel. For eachh € H, let X;, = {z | (u,-) €
0h, p(u) = dispatch,v(u) = z}, and letz;, € X} be the task or
message to be executed bnThenv’ = v; the queuer] results from
7, by replacing each trigger bindin@, «) by (6 — 1,w); the thread
setf}, results fromd), by replacing each thread., 6) by (u, d + 1); if
x € Tasks, ,, U Msgs, 5, for somes € S, thenc/(z) = ¢(x) + 1 or
d(z) = Lifz = zp,andd (z) = c(z) if z # zp,. Incase’ (z) = L
we say that on the transitiofy, ¢’), the task or message completes
after execution time(z) + 1.

2005/4/16

