
Composable Code Generation for Distributed Giotto∗

Thomas A. Henzinger
EPFL and UC Berkeley

tah@epfl.ch

Christoph M. Kirsch
University of Salzburg
ck@cs.uni-salzburg.at

Slobodan Matic
University of California, Berkeley

matic@eecs.berkeley.edu

Abstract. We present a compositional approach to the implemen-
tation of hard real-time software running on a distributed platform.
We explain how several code suppliers, coordinated by a system
integrator, can independently generate different parts ofthe dis-
tributed software. The task structure, interaction, and timing is
specified as a Giotto program. Each supplier is given a part ofthe
Giotto program and a timing interface, from which the supplier
generates task and scheduling code. The integrator then checks,
individually for each supplier, in pseudo-polynomial time, if the
supplied code meets its timing specification. If all checks succeed,
then the supplied software parts are guaranteed to work together
and implement the original Giotto program. The feasibilityof the
approach is demonstrated by a prototype implementation.

Categories and Subject Descriptors C.3 [Special-purpose and
Application-based Systems]: Real-time and Embedded Systems;
D.1.3 [Software Techniques]: Distributed Programming

General Terms Languages, Reliability

Keywords Real Time, Distributed Compilation

1 Introduction
The distributed implementation of hard real-time systems is a
key challenge in modern control systems, especially in automo-
bile (drive-by-wire) and aircraft (fly-by-wire) control. Much of the
work in this area has been devoted to hardware-focused solutions,
such as the time-triggered architecture [1], which guarantees hard
real-time constraints across a distributed system by strict adher-
ence to clock-synchronized networking protocols. The costof such
a solution is paid in terms of flexibility, and even recent efforts
in the automotive industry (FlexRay, Autosar [2]) require that all
component processes, their dependencies, and their timingpro-
files be known in advance. We suggest that the competing goalsof
timely executionandcomposable designcan be achieved together
by adopting a software solution that requires only basic hardware
services such as clock synchronization and redundancy manage-
ment. We have previously proposed the LET (logical execution
time) paradigm, and the LET-based language Giotto, as a software

∗ This research was supported in part by the AFOSR MURI grant F49620-
00-1-0327 and the NSF grants CCR-0208875 and CCR-0225610.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’05, June 15–17, 2005, Chicago, Illinois, USA.

model that guarantees predictable real-time execution andat the
same time supports portable, composable code [3]. In this paper,
we demonstrate how Giotto can be implemented on a distributed
platform by distributed compilation with little global coordination.
In this way, Giotto offers a framework for the compositionaldesign
of hard real-time systems.

Giotto. Giotto is a domain-specific language for control appli-
cations [3]. A Giotto program executes a periodic set of LET tasks,
and the set of tasks, or their periods, may change whenever a Giotto
mode switch occurs. Instead of just a deadline, a LET task hasa re-
leaseand atermination time: the release time specifies the exact
time at which the task inputs are made available to the task; the
termination time specifies when the task outputs become available
to other tasks. The task must start running, may be preempted, and
must complete execution during its LET, which is the time from
release to termination. Thus the times when a LET task reads and
writes data are decoupled from the task execution. LET avoids race
conditions, and thus ensures the predictable, deterministic execu-
tion of a set of real-time tasks. LET tasks can be replaced andcom-
posed without modifying their behavior or timing. Since LETis
an abstract programming model, the compiler must ensure that the
generated code satisfies the LET assumption. This can be achieved
by compiling Giotto intoschedule-carrying code(SCC) [4] for a
pair of virtual machines: the E (embedded) machine mediatesbe-
tween tasks and the physical environment [5]; the S (scheduling)
machine mediates between tasks and the CPU [4]. E code specifies
when sensors and task inputs are read, and when actuators andtask
outputs are written; S code specifies when a task is executed on the
CPU. We have implemented the E and S machine as part of a high-
performance microkernel for real-time systems [6] and usedGiotto
to implement the flight-control system for a model helicopter [7].

Distributed hard real-time code. A Giotto program specifies
the functional and timing behavior of a dynamic set of tasks,for
example, the tasks of an automotive control system. Such a sys-
tem is typically executed by an on-board network with several hosts
(CPUs). Moreover, such a system is typically put together from sev-
eral parts, which correspond to different control problems, for ex-
ample, fuel injection and anti-lock brake control. While the differ-
ent software parts may interact, they are often developed bydiffer-
entsuppliers: the brake supplier will deliver its own software, etc.
Furthermore, to optimize the use of computational resources, there
need not be a one-to-one correspondence between hosts and suppli-
ers. The contracting company, orintegrator(e.g., the car manufac-
turer), then faces the challenge of putting together and maintaining
the entire system. Using today’s methodologies, a simple modifi-
cation in the software of a single supplier may induce a series of
modifications in the whole system. For example, a change of tim-
ing attributes (e.g., task execution times) in one softwarecompo-
nent may cause the schedule of other components to change. We
show how this problem can be avoided using Giotto.

Our approach. We view the Giotto program as the overall
system specification (timing and task interaction). Each supplier is

LCTES’05, 1 2005/4/16

given a part of the Giotto program with the charge to implement
the corresponding tasks. This information can be regarded as a
component specification. So that all supplied software parts will
fit together, each supplier also receives timing information in the
form of a timing interface. The timing interface specifies the time
slots that can be used by the supplier for computation on the
hosts, and the time slots that can be used by the supplier for
communication over the network. From a component specification
and a timing interface each supplier produces code. The integrator
then checks that the produced code complies to the timing interface
and meets, on the given hardware, the release and termination
times specified by the Giotto program. The first check is called
interface compliance; the second,time safety. Both checks are local
for each piece of supplied code and can be performed in pseudo-
polynomial time. If all checks go through, the integrator isassured
that all supplied software parts fit together and correctly implement
the original Giotto program (note that correctness includes the
satisfaction of all real-time constraints).

Why does this work? Essentially, we build a fully software-
based instance of the time-triggered paradigm. Instead of having
the hardware and network protocol enforce all timing interfaces,
each timing interface is enforced separately by the compiler (dur-
ing distributed code generation by the suppliers) and by program
analysis (during code integration by the integrator). The LET as-
sumption is crucial to this approach. The LET (release to termina-
tion) of a task is always non-zero. This allows us to communicate
values across the network without changing the timing of a task,
and without introducing nondeterminism, as long as the timing in-
terface ensures that all values are available in time to meetall task
release and termination times, and all sensor read and actuator up-
date times. By contrast, the synchrony assumption used by other
real-time languages [8] does not offer this flexibility, andhence an
important approach to distributing synchronous programs is based
on the Globally Asynchronous, Locally Synchronous paradigm [9].

What are the benefits?We obtain the benefits of the time-
triggered paradigm in terms of real-time assurance, and at the same
time achieve a high degree of flexibility. For example, a supplier
may be replaced by another one, and as long as the code produced
by the new supplier complies to its component specification and
timing interface, it will work together properly with all other code
in the system. Likewise, if new functionality is added to thesys-
tem, say by adding a new supplier, as long as the new software
passes the two checks (interface compliance and time safety), it
will not change the behavior (neither functionality nor timing) of
the original system in any way. This is because interface compli-
ance succeeds only if the original set of timing interfaces can ac-
commodate an additional timing interface with sufficient capacity,
and time safety succeeds only if the original set of hosts canac-
commodate the new tasks. The advantage of our approach lies in
the fact that the two checks can be performed automatically,and
the system integrator need not rely exclusively on testing to see if
the upgraded system behaves correctly.

Related work. Previously, Giotto had only been compiled for
single-CPU systems [10]. The contribution of this paper is two-
fold: we describe a methodology that supports (1)distributedreal-
time code generation for (2)distributed real-time systems. Mul-
tiple suppliers (1) can independently compile different parts of a
Giotto program to run on a system of multiple CPUs (2). Because
of the time-driven nature of our timing interfaces, (1) immedi-
ately enables (2) on clock-synchronized systems. Other approaches
for (2), however, may not necessarily support (1); for example, syn-
chronous reactive programs written in Lustre have been compiled
globally for distributed real-time systems [11]. Aimed at (1) are
scheduling techniques that address the problem of dividingtasks
into groups, and scheduling tasks within groups [12, 13]: the chal-

lenge is to develop compositional schemes for resource partitioning
such that each task group may be programmed as if it had dedicated
access to the resource and may be tested for schedulability with-
out global task knowledge. However, these techniques typically as-
sume a single CPU and no interaction between tasks. In distributed
real-time systems there are efforts [14] to define minimal but com-
plete interfaces that link components together. In avionics software,
where previously each control subsystem had its own dedicated re-
source, new solutions are proposed which offer a common com-
puting platform for multiple functions; [15] presents requirements
for the temporal partitioning of such a platform. The car manufac-
turers’ and suppliers’ perspectives on embedded software reuse are
described in [16], which presents a general framework in which
different software components can be classified according to their
degree of reusability, albeit without considering real-time commu-
nication in detail.

Outline of the paper. In Section 2, we present a brief review of
Giotto and introduce a running example that we will use through-
out this paper. In Section 3, we discuss the algorithm that generates
from a given Giotto program virtual machine code (SCC) for each
host and each supplier. In Section 4, we introduce timing interfaces
and show how they can be composed. Section 5 describes our proto-
type implementation of distributed Giotto. In Section 6, weanalyze
distributed SCC generated from Giotto, present pseudo-polynomial
checks for interface compliance (w.r.t. a timing interface) and time
safety (w.r.t. the worst-case execution times of tasks), and prove the
distributed Giotto compiler correct.

2 The Giotto Language
We give a brief introduction to Giotto and refer to [3] for details.
A simple example of a Giotto programGA is shown in Fig. 1. For
now ignore the distribution annotations given in the brackets to the
right of the program. In this audio application a prerecorded PCM-
format audio file is read, processed, analyzed, and reproduced by
three real-time tasks. TheGenerator task synthesizes the digital
audio samples of the sound that resembles the plucking of a string.
This is done according to the Karplus-Strong algorithm [17], where
the period of the task determines the pitch of the generated sound.
TheMixer task merges the file samples with the synthesized sam-
ples amplifying the string pluck sound. TheAnalyzer task com-
putes a short-time Fourier series of the mix sound.

A Giotto program begins with port declarations. A port is a
typed variable. The setPorts is partitioned into the following four
sets: a setSensePorts of sensor ports, a setActPorts of actuator
ports, a setInPorts of task input ports, and a setOutPorts of task
output ports. The sensor ports include the integer-typed port pc, a
discrete clock. In Fig. 1 the sensor portAudioSampler represents a
vector of audio file samples, the actuator portMixPlayer a vector
of final waveform samples, and the task output portsSpectrum ,
MixSound , andStringSound , respectively, represent vectors of
Fourier coefficients, mix samples, and string samples. The Fig. 2
shows the data dependency graph for the tasks (rectangles with
rounded corners), the sensor, and the actuator. Each sensor(resp.
actuator) portp is read (resp. written) by a device driverdev [p].
Each task output port is double-buffered, i.e., it is implemented by
two copies, a local copy that is used by the task only, and a global
copy that is accessible to the rest of the program including other
tasks. The copy drivercopy [p] copies data from the local copy to
the global copy of the task output portp.

Giotto has two kinds of computational activities, tasks and
drivers. Tasks are released and their execution take time, while
drivers are executed in logically zero time. A Giotto taskt has a set
In[t] ⊆ InPorts of input ports, a setOut [t] ⊆ OutPorts of out-
put ports, and a task functiontask [t] from the input to the output
ports. The task function represents the result of the computational

LCTES’05, 2 2005/4/16

sensor

AudioSampler uses dev [AudioSampler];
actuator

MixPlayer uses dev [MixPlayer];
output

Spectrum uses copy[Spectrum];
MixSound uses copy[MixSound];
StringSound uses copy[StringSound];
task

Analyzer(In1) output(Spectrum);
Mixer(In2) output(MixSound);
Generator(In3) output(StringSound);
driver

InDrv1(MixSound) output(In1);
InDrv2(AudioSampler , StringSound) output(In2);
InDrv3() output(In3);
ActDrv(MixSound) output(MixPlayer);
start m1 {
mode m1 () period 8 {
actfreq 2 do MixPlayer(ActDrv);
taskfreq 1 do Analyzer (InDrv1);
taskfreq 2 do Mixer(InDrv2);
taskfreq 1 do Generator(InDrv3); }
}

[s1, h1]

[s1, h1]

[s1, h1]
[s2, h2]
[s3, h2]

Figure 1. Audio mixer Giotto programGA

Figure 2. Data dependency graph for the programGA

activity performed by the task. For example, the taskMixer is de-
fined with input portIn2, output portMixSound , and task function
task [Mixer]. In addition to the device and copy drivers described
above, drivers can be used to transport data between ports and to
initiate mode changes. A Giotto driverd has a setSrc[d] ⊆ Ports
of source ports, a setDst [d] ⊆ Ports of destination ports, a driver
function drv [d] from the source to the destination ports, and an
optional boolean condition on the source ports to control mode
switching. For instance,AudioSampler andStringSound are the
source ports andIn2 is the destination port of the driverInDrv2.
Let Tasks (resp.Drvs) be the set of tasks (resp. drivers).

A Giotto program is defined with a set of modes, each of which
consists of a set of periodic tasks. In each mode the invocation of
tasks is repeated after a fixed amount of time we call the mode
period. The task set can change at transitions (switches) from one
mode to another. LetModes be the set of modes, containing a start
modestart ∈ Modes . A Giotto modem has a periodπ[m] ∈
N>0, a set of task invocations, a set of actuator updates, and a set
of mode switches. Each task invocation(ωtask , t, d) consists of a
task frequencyωtask ∈ N>0 relative to the mode period, a taskt,
and a task input driverd, which loads the task inputs. In our ex-
ample there is only one modem1 with the periodπ[m1] = 8 time
units, in this case milliseconds. The audio file is discretized at the
rate of 11Khz, and 44 of its samples are read every 4ms. The mix
sound is also processed with the period of 4ms, so the frequency
of the Mixer task is 2, and one of the three task invocations of
modem1 is (2,Mixer , InDrv2). The LET character of theMixer
task implies that, even if it completes earlier, its outputMixSound
is made available through thecopy [MixSound] driver exactly at
4ms. Each actuator update(ωact , d) consists of an actuator fre-
quencyωact ∈ N>0, and an actuator driverd. Each mode switch
(ωswitch ,m

′, d) consists of a switch frequencyωswitch ∈ N>0, a
target modem ′, and a mode driverd which uses the boolean con-
dition on its source ports to control the mode switch. For thesingle
modem1 of the example, we have one actuator update(2,ActDrv)

mode m2 () period 8 {
exitfreq 4 do m1 (ModeDrv2);
actfreq 4 do MixPlayer(ActDrv);
taskfreq 1 do Analyzer (InDrv1);
taskfreq 4 do Mixer(InDrv2);
taskfreq 1 do Generator(InDrv3); }

Figure 3. Additional mode for the Giotto programGA

and no mode switches. In the rest of the paper we will refer to the
single-mode program in Fig. 1. However, if, for instance, wewant
to be able to switch to a modem2 in which taskMixer is executed
twice as fast, i.e. withωtask=4, the programGA should also contain
code form2 shown in Fig. 3.

For a modem , the least common multiple of the task, ac-
tuator, and mode-switch frequencies ofm is called the num-
ber of units of m , denotedωmax [m]. The duration of a unit is
γ[m] = π[m]/ωmax [m]. For the compilation procedure we need
the following sets which can, given a modem and an integer unit
0 ≤ k < ωmax [m], be directly determined from the Giotto pro-
gram. The settaskInvocations(m, k) contains all task invocations
of modem that are released at unitk, i.e., for whichk · γ[m]
is an integer multiple ofπ[m]/ωtask . For instance,γ[m1] = 4
and taskInvocations(m1 , 1) = {(2,Mixer , InDrv2)}, because
the Mixer task is the only task that is released at unit 1 ofm1 ,
at 4ms. An output port is in the settaskOutPorts (m, k) if in
mode m it is updated at unitk, i.e., if it is an output port of
a task in taskInvocations(m, k). A sensor port is in the set
senPorts(m, k) if in mode m it is read at unitk, i.e., if it is a
source port of an input driver of a task intaskInvocations(m, k).
The setactDrivers(m, k) contains all actuator drivers of mode
m that are invoked at unitk. Finally, an actuator port is in the set
actPorts(m, k) if in mode m it is updated at unitk, i.e., if it is
a destination port of a driver inactDrivers(m, k). For instance,
senPorts(m1 , 1) = {AudioSampler} andactPorts(m1 , 1) =
{MixPlayer}.

E code, S code, and schedule-carrying code (SCC).In [4]
we presented the execution of a Giotto program on a single pro-
cessor through the interpretation of code compiled for two virtual
machines,embeddedandschedulingmachine. The embedded ma-
chine [5] handles sensors, actuators, and all task requests. It runs
E codethat specifies the timing and control flow of Giotto tasks and
drivers. The embedded machine has three non-control-flow instruc-
tions. A call(d) instruction immediately invokes a driverd . A
release(t) instruction1 releases a taskt and proceeds to the next
E code instruction. Afuture(ℓ, a) instruction marks the E code at
the addressa for execution afterℓ ms elapse. The positive integer
ℓ specifies a time trigger, the simplest and only form of trigger that
we consider in this paper. In order to handle multiple activetrig-
gers, the embedded machine maintains a trigger queue. The Giotto
compiler generates a block of E code instructions for each unit of
each program mode.

For example, in Fig. 4, the block of E code for unit 0 of mode
m1 is identified by the labelE (m1 , 0). It initiates the execution
of the copy drivers that update the three task output ports, and the
execution of the audio player device driver. Then the audio sampler
device driver and the three task input drivers update the input ports
of the three tasks that are released next. Note the order of driver
call instructions: copy drivers are followed by device drivers,
followed by task input drivers. Finally, a time trigger withaddress
labelE (m1 , 1) is activated. So, after 4ms the embedded machine
executes the block of E code starting at the addressE (m1 , 1).
The last instruction of this block activates another 4ms trigger,
now with addressE (m1 , 0). In this way the execution of each

1 Therelease instruction corresponds to theschedule instruction in [5],
but has been renamed for clarity.

LCTES’05, 3 2005/4/16

E(m1 , 0):
call(copy[Spectrum])
call(copy[MixSound])
call(copy[StringSound])
call(ActDrv)
call(dev[MixPlayer])
call(dev[AudioSampler])
call(InDrv1)
call(InDrv2)
call(InDrv3)
release(Analyzer)
release(Mixer)
release(Generator)
future(4, E(m1 , 1))

E(m1 , 1):
call(copy[MixSound])
call(ActDrv)
call(dev [MixPlayer])
call(dev [AudioSampler])
call(InDrv2)
release(Mixer)
future(4, E(m1 , 0))

Figure 4. E code blocks for the programGA

S(m1 , 0):
dispatch(Mixer , 4)
dispatch(Generator , 4)
dispatch(Analyzer , 4)

S(m1 , 1):
dispatch(Mixer, 4)
dispatch(Generator, 4)
dispatch(Analyzer , 4)

Figure 5. S code blocks for the programGA

of the two blocks is repeated every 8ms. Note that the task and
driver functions are external to the embedded machine and must be
implemented in some other language.

The scheduling machine [4] determines when, and in what or-
der, tasks released by the E code are executed (dispatched).It re-
places the system task scheduler, since the code that it runs, S code,
defines a schedule according to which, at run time, a simple dis-
patcher selects which task to execute. The scheduling machine also
has three instructions, one of which iscall(d) as for the embed-
ded machine. Adispatch(t , ℓ) instruction resumes (or starts) the
execution of a released taskt until ℓ ms elapse, measured from
the start instant of the current S code block. The integerℓ spec-
ifies the simplest and the only form oftimeoutsthat we consider
in this paper. The task executes until either it completes orthe
timeout becomes true, whichever happens first, and after that the
scheduling machine proceeds to the next instruction. Anidle(ℓ)
instruction causes the scheduling machine to idle until thetimeout
ℓ becomes true. Each block of E code is annotated with a block
of S code which starts execution in a separate thread after the last
instruction of the E code block. An important difference between
E and S code is that each E code block executes instructions in-
stantaneously, whereas each block of S code executes over time.
We call the resulting code, consisting of both E and S code blocks,
schedule-carrying code(SCC). The example S code in Fig. 5 con-
tains a possible schedule for the Giotto programGA. The block of
S code at the labelS(m1 , 0) is interpreted after the block of E code
at the labelE (m1 , 0). It starts with the execution of theMixer
task followed by the other two tasks. The task executing at 4ms is
suspended and resumed with the correspondingdispatch instruc-
tion in theS(m1 , 1) block. We note that an S code instruction that
dispatches a task not yet released is simply ignored. With the SCC
code in Fig. 4 and 5 theMixer task is executed twice every 8ms,
and the tasksGenerator andAnalyzer once, exactly as specified
by the Giotto programGA.

3 Distributed Code Generation
In our distributed model the systemintegrator generates a Giotto
programG to be implemented by a setS of supplierson a setH of
hosts. A supplier is an independent code developer. A host is a self-
contained computational element with its own processor, memory,
and communication interface. We assume that hosts are connected
by a shared bus or a broadcast network. Hosts communicate by
exchanging messages containing port values. For a portp ∈ Ports ,
let µ[p] be the message with the portp value.

The integrator assigns each task and each driver defined inG to
a particular host and supplier. For a taskt ∈ Tasks let h̄(t) (resp.

s̄(t)) be the host (resp. supplier) which executes (resp. implements)
taskt. We similarly definēh(d) and s̄(d) for a driverd ∈ Drvs .
Let Taskss,h (resp.Drvss,h) be the set of all tasks (resp. drivers)
assigned to suppliers on hosth. We require that a task and its
input and copy drivers be assigned to the same supplier on the
same host. Also, an actuator driver and the corresponding device
driver must be assigned to the same supplier on the same host.With
such an assignment the integrator also allocates each port of G to a
particular host and supplier. Ifp ∈ Ports is a sensor or an actuator
port, then̄s(p) = s̄(dev[p]) andh̄(p) = h̄(dev[p]). If p is a taskt
input or output port, i.e., ifp ∈ In[t] ∪ Out [t], thens̄(p) = s̄(t)
and h̄(p) = h̄(t). Finally, each messageµ[p] is associated with a
supplier̄s(p) and host̄h(p), namely, the sending supplier and host.
Let Msgss,h be the set of all messages that are associated with
suppliers on hosth.

In the rest of the paper we assume that the example Giotto
programGA, a streaming audio application, is to be implemented
by three suppliers on two hosts. In Fig. 1 each annotation given
in brackets to the right of a port denotes the supplier and the
host to which the port is allocated. The assignment for tasksis
shown in Fig. 2. The audio file is read on hosth1, and every
4ms 44 of its samples are sent to hosth2 for processing. The
Mixer andGenerator tasks, implemented respectively by the sup-
pliers s2 and s3, run on h2. After receiving the samples from
h1, the taskMixer merges them with the generated samples, and
within the same 4ms, the resultingMixSound samples are sent
back to hosth1. The final waveform is there reproduced and an-
alyzed by theAnalyzer task implemented by suppliers1. The
sets of tasks, drivers, and messages that are associated, for in-
stance, withs2 on h2 areTaskss2,h2

= {Mixer}, Drvss2,h2
=

{InDrv2, copy [MixSound]}, andMsgss2,h2
= {µ[MixSound]}.

For each suppliers ∈ S and each hosth ∈ H , the integrator
gives out (see the next sections for formal definitions)

1. an E code moduleEs,h that describes the timing and control
flow of driver, task, and message invocations for suppliers on
hosth, and

2. a timing interfaceTs,h that specifies the computation and trans-
mission time instants on hosth that are available for suppliers.

Once a suppliers receives the E code moduleEs,h and timing
interfaceTs,h for hosth it generates

1. an S code moduleSs,h for hosth,
2. functionality code for all tasksTasks s,h and driversDrvss,h

(sequential functions written in, e.g., native C code), and
3. worst-case execution (transmission) time estimatesws,h for the

tasks inTaskss,h (messages inMsgss,h).

Provided with the worst-case execution and transmission times
the integrator then verifies each generated S code module against
the corresponding timing interface and E code module. In this way
the integrator can check the composability of all supplied Scode
modules and ensure that the resulting distributed SCC program
satisfies the semantics (including the timing) of the original Giotto
programG. Moreover, once a supplier modifies its S code module
on a host it is sufficient to check whether the new module complies
to its timing interface to preserve Giotto semantics.

Distributed Giotto compilation. LetP be the entire distributed
SCC program. The setPortsP of distributed SCC ports contains
additional ports (Ports ⊆ PortsP) to store the data sent over the
network. Namely, if according to the Giotto programG and port-to-
host allocation a value of the portp ∈ Ports is needed as input to
a driver on a hosth different from the originating host̄h(p), i.e., if
a message with the value ofp must be sent over the network, then
the hosth must keep its own copyph of port p. For a given port
p, let the setrecHosts(p) be the set of hosts that need to receive

LCTES’05, 4 2005/4/16

Algorithm 1 The distributed Giotto compiler (modem)
k := 0; γ[m] := π[m]/ωmax [m];
while k < ωmax [m] do
∀s ∈ S . ∀h ∈ H : link Es,h (m, k) to next address ofEs,h ;
∀p ∈ taskOutPorts(m, k).∀h ∈ recHosts(p) ∪ {h̄(p)}.∀s ∈S :

5: emit(s, h, call(copy [ph]));
∀d ∈ actDrivers(m, k):
emit (̄s(d), h̄(d), call(d));

∀p ∈ actPorts(m, k):
emit (̄s(p), h̄(p), call(dev [p]));

10: Mode SwitchCompilationAlgorithm [10]
∀p ∈ senPorts(m, k):
emit (̄s(p), h̄(p), call(dev [p]));
if recHosts(p) 6= ∅ then
emit (̄s(p), h̄(p), release(µ[p]; ǫ));

15: ∀(·, t, d) ∈ taskInvocations(m, k):
ǫ1 := 0; ǫ2 := 0;
if Src[d] ∩ senPorts(m, k) 6= ∅ then ǫ1 := ǫ;
if sendOutPorts(t) 6= ∅ then ǫ2 := ǫ;
emit (̄s(t), h̄(t), release(ǫ1; t; ǫ2));

20: ∀p ∈ sendOutPorts(t) :
emit (̄s(t), h̄(t), release(ǫ;µ[p]));

∀s ∈ S . ∀h ∈ H :
emit(s, h, future(γ[m], Es,h (m, (k + 1) mod ωmax [m])));

∀s ∈ S . ∀h ∈ H : emit(s, h, return);
25: k := k + 1;

end while

messages with portp values during program execution in at least
one mode, i.e., the set of hosts on which a task input, actuator, or
mode switch driverd is executed in at least one mode such thatp is
a source port ofd. The host̄h(p) to which the portp is allocated is
not inrecHosts(p). For a given taskt, let the setsendOutPorts(t)
be the set of taskt output portsp for which there are hosts that
must receive the message with the portp value (i.e., those with
recHosts(p) 6= ∅).

According to Giotto semantics, each taskt input (resp. copy)
driver reads (resp. writes) input (resp. output) ports at the release
(resp. termination) time instants defined by the beginning (resp.
end) of the taskt period. In the distributed SCC implementation
each copy driver is still executed by an E code instruction atthe
end of the task period. However, each task input driver is executed
by an S code instruction and it is delayed if its source ports need to
be sent over the network first. In general, in each task period, the
transmission of sensor ports precedes task execution, which pre-
cedes the transmission of task output ports. More precisely, letd be
the task input driver for a taskt assigned to hosth. For all sensor
portsp ∈ Src[d] such that̄h(p) 6= h, a messageµ[p] is received
at h. The completion of the messageµ[p] transmission updates on
each hosth ′ ∈ recHosts(p) (includingh) the sensor portph′ . The
taskt input driver readsph (and other ports), applies its function,
and writes to the taskt input ports. It succeeds all sensor port mes-
sages and precedes the taskt execution. The completion of the task
t writes to the local copy of the taskt output ports. The dispatch
of the task output port messageµ[p′] for p′ ∈ Out [t] succeeds the
taskt completion. The completion of the task output port message
µ[p′] writes on each of the hosts inh ′′ ∈ recHosts(p′) to the task
output portp′h′′ . Finally, at eachh ′′ ∈ recHosts(p′) ∪ {h}, the
copy [p′h′′] driver copies local into global task output ports at the
end of the taskt period (i.e., at the termination time of the task).

We assume that the transmission of a sensor port value is per-
formed in a time interval of lengthǫ after the time instant the sen-
sor is read. Thelatencyvalueǫmust be determined at compile time
and for simplicity we also assume that this value is the same for all
ports. If a task reads a sensor port that needs to be received,then
the task input driver is called exactlyǫ time instants after the task is

Es1,h1
(m1 , 0):

call(copy[MixSoundh1
])

call(copy[Spectrum])
call(drv [ActDrv])
call(dev[MixPlayer])
call(dev[AudioSampler])
release(µ[AudioSampler]; 1)
release(0; Analyzer ; 0)
future(4, Es1,h1

(m1 , 1))

Es1,h1
(m1 , 1):

call(copy[MixSoundh1
])

call(drv [ActDrv])
call(dev [MixPlayer])
call(dev [AudioSampler])
release(µ[AudioSampler]; 1)
future(4, Es1,h1

(m1 , 0))

Es2,h2
(m1 , 0):

call(copy[MixSound])
call(copy[StringSound])
release(1; Mixer; 1)
release(1; µ[MixSound])
future(4, Es2,h2

(m1 , 1))

Es2,h2
(m1 , 1):

call(copy[MixSound])
release(1;Mixer; 1)
release(1; µ[MixSound])
future(4, Es2,h2

(m1 , 0))

Es3,h2
(m1 , 0):

call(copy[MixSound])
call(copy[StringSound])
release(0; Generator; 0)
future(4, Es3,h2

(m1 , 1))

Es3,h2
(m1 , 1):

call(copy[MixSound])
future(4, Es3,h2

(m1 , 0))

Figure 6. E code modules for the programGA compiled by Alg. 1

released. Otherwise, it is executed at the time the task is released.
Symmetrically, the transmission of task output ports is performed
in a time interval of lengthǫ before the task is terminated (i.e., be-
fore its period expires). We require that the timeǫ be less than or
equal to the mode unit timeγ[m] = π[m]/ωmax [m] for each mode
m . This implies that the task input driver is always called before its
source ports are updated with values that are more recent than what
is allowed by the LET semantics.

Given a Giotto program, Alg. 1 generates all E code modules
Es,h executing in modem . This is done in parallel for each supplier
s ∈ S and each hosth ∈ H . The while loop generates a block of
E code for each unitk of modem . The E code compiler command
emit(s, h, instr) generates the E code instructioninstr for sup-
plier s on hosth. The compiler first generatescall instructions to
the task output (copy) drivers, actuator drivers, and actuator device
drivers. Line 10 refers to [10] for details on generating a block of
E code instructions that addresses mode switching; this is orthogo-
nal to the issues discussed in this paper. The last segment handles
call instructions for sensor device drivers, the invocation of tasks
and messages, and the future invocation of the embedded machine
at the next unit. Therelease instructions in the algorithm (lines
14, 19 and 21) are of a special form not needed for single-processor
SCC. They indirectly contain precedence constraints that are neces-
sary for correct communication by explicitly specifying the latency
time ǫ. This number does not affect the program execution itself,
but a supplier needs it in order to construct a correct schedule, i.e.,
S code module. We treat messages sent over the network analo-
gous to tasks. In particular, we use the same SCC instructions for
messages. The instructionrelease(µ[p]; ǫ) releases the message
µ[p] with the sensor portp value, but demands that the message
transmission be completed by timeǫ from the release. The instruc-
tion release(ǫ1; t; ǫ2) releases the taskt with the constraint that
the task be dispatched no earlier than timeǫ1 after the release, and
completed at the latestǫ2 time before the taskt termination time.
The instructionrelease(ǫ;µ[p]) releases the message with taskt
output portp, with the constraint that the message be sent no earlier
thanǫ time before the taskt termination. The finalfuture instruc-
tion causes the embedded machine to wait for timeγ[m] and then
execute the E code for the next unit.

Fig. 6 shows the E code modules compiled by Alg. 1 from
the audio mixer Giotto programGA. The code for different sup-
pliers on the same host is separated by a single horizontal line,
and the code for different hosts is separated by two lines. The
latency is chosen to beǫ = 1ms. For instance, the command
release(µ[AudioSampler]; 1) releases the message with the sen-

LCTES’05, 5 2005/4/16

sor portAudioSampler value, but also specifies a constraint that
the message must be sent before 1ms expires.

Note that the code generation scheme of Alg. 1 implies the
order of execution: copy drivers are followed by actuator drivers,
mode switch drivers, and task input drivers, in that order. However,
E code blocks compiled for the same host and same unit of a mode
are fully composable, i.e., they can be executed in any order. If
a task output portp is a source port of an actuator, mode switch,
or task input driver that executes at a hosth in a modem , then
h ∈ recHosts(p)∪{h̄(p)}. The set of hosts that receive portp data
does not depend on the program mode. This means that a message
with the portp value is sent to the hosth even if the program
executes in a mode in whichp is not a source port to any driver
on h. This is so because in a mode wherep is used,p must have a
correct value even in the first period of execution in the mode.

4 Timing Interfaces
As presented in Section 3, each supplier obtains for each host an
E code module specifying the release times of the tasks (resp.
messages) that it implements, and for which it has to determine
the times of execution (resp. transmission). Since both computation
and communication resources are shared, this information must be
accompanied by a temporal specification that provides exclusive
time windows for task execution (resp. message transmission). This
specification, which we call timing interface, is also givento each
supplier. A timing interface defines the available computation and
communication time windows, but not when to perform a particular
action within these windows. This gives flexibility to a supplier,
especially if multiple tasks are assigned to a supplier on a host.
It also enables timing modifications that are local to a supplier
and host, if a modification in the corresponding E module (e.g.,
adding a task) is made. In the next sections we show that the timing
interface contains all information necessary for correct distributed
code generation.

Formally, a suppliers ∈ S on hosth ∈ H receives for each
modem ∈ Modes of the Giotto programG a timing interface,
which is a pair of predicatesTm

s,h = (Dm
s,h , X

m
s,h). The predicates

Dm
s,h ,X

m
s,h : {0, ..., π[m] − 1} → {0, 1} are defined as follows:

• Dm
s,h(ℓ) = 1 iff in mode m at timeℓ suppliers on hosth may

execute a task fromTasks s,h ;
• Xm

s,h(ℓ) = 1 iff in mode m at timeℓ suppliers on hosth may
send a message fromMsgss,h .

Let Ts,h = {Tm
s,h |m ∈ Modes} andT = {Ts,h |s ∈ S , h ∈ H }.

Fig. 7 shows a graphical representation of a timing interface for
the programGA from Fig. 1. The computation slots are shaded
light; for these time units the corresponding predicateD is equal
to 1. Recall the E moduleEs1,h1

of Fig. 6, in particular the blocks
labeledEs1,h1

(m1 , 0) and Es1,h1
(m1 , 1). The timing interface

given to suppliers1 on hosth1 can be interpreted as follows. The
taskAnalyzer may be executed at any time in the intervals (1,3)
and (5,7)ms (modulo 8ms, which is the period of the modem1).
Furthermore, the 0ms-sample of theAudioSampler sensor value
may be sent at any time in the interval (0,1)ms, and the 4ms-
sample of the same sensor may be sent in (4,5)ms.

We assume that all hosts are clock-synchronized, so that com-
munication is performed according to the Time Division Multiple
Access (TDMA) protocol: in each time slot only one node is al-
lowed to send data while all other nodes can listen for data. We
have defined timing interfaces considering a simple communication
architecture, where each host has only one processor for both com-
putation and communication tasks. A host with an additionaldedi-
cated communication processor, e.g., a node in the Time-Triggered
Architecture [1], can be modeled as two hosts.

0 1 4 832

Ts2,h2

Ts1,h1

Ts3,h2

D

X

Figure 7. Timing interface for the programGA

We next defineinterface feasibility, a property needed for the
composition of SCC modules. First, we require that the timing
interface windows for the same resource but different suppliers
must be disjoint, i.e., at every time instant on each host at most
one supplier may execute a task, and at most one of the suppliers
may send a message. Second, when a host is supposed to receive
data, no task execution is allowed. In particular, for sensor port data
this is true in the latency time window (ǫ-window) after the data
is read, and for task output port data, in theǫ-window before the
task termination time. Both properties are satisfied for theinterface
shown in Fig. 7.

Formally, a timing interfaceT = (D,X) is feasiblefor a Giotto
programG if the following two conditions are satisfied:

• (Resource Sharing) For all modesm ∈ Modes , suppliers
s1, s2 ∈S (with s1 6= s2), hostsh1, h2 ∈ H (with h1 6= h2),
and timesℓ ∈ {0, ..., π[m] − 1},

at most one ofDm
s1,h1

(ℓ),Dm
s2,h1

(ℓ),Xm
s1,h1

(ℓ), andXm
s2,h1

(ℓ)
is equal to 1, and
at most one ofXm

s1,h1
(ℓ),Xm

s2,h1
(ℓ),Xm

s1,h2
(ℓ), andXm

s2 ,h2
(ℓ)

is equal to 1.

• (Data Reception) For all modesm ∈ Modes , units k ∈
{0, ..., ωmax [m] − 1}, portsp ∈ SensePorts ∪ OutPorts ,
and timesℓ ∈ N0, if either

p ∈ senPorts(m, k) andk · γ[m] ≤ ℓ < k · γ[m] + ǫ, or
p ∈ taskOutPorts(m, k + 1) and(k + 1) · γ[m] − ǫ ≤
ℓ < (k + 1) · γ[m],

and ifXm
s̄(p),h̄(p)(ℓ) = 1, thenDm

s,h(ℓ) = 0 for each supplier
s ∈ S and hosth ∈ recHosts(p).

Given a Giotto program and a set of timing interfaces, one foreach
supplier, host, and mode, the feasibility conditions can bechecked
independently for each interface.

Earliest-deadline-first S code.Provided with the pattern of
task and message releases in an E code moduleEs,h , and available
time windows in a timing interfaceTs,h , the suppliers generates
the schedule for hosth, i.e., the order and timing of tasks and mes-
sages onh, and encodes it as an S code moduleSs,h . We briefly
explain a potential generation scheme forSs,h . Even with the tim-
ing constraints imposed byTs,h , it can be shown that the Earliest
Deadline First (EDF) strategy is an optimal strategy with respect to
schedule feasibility, i.e., if tasks and messages are schedulable in
Ts,h time windows by some strategy, then they are also schedula-
ble by the EDF strategy. The release and deadline times of tasks and
messages to be implemented by a suppliers on a hosth in modem
are implicitly contained in the E code moduleEs,h . So, the supplier
s can always check the EDF strategy and, if feasible, generatethe
S code moduleSs,h according to the following scheme.

Let, for instance, an interval[ℓ1, ℓ2) ⊆ [0, π[m]), with integer
boundsℓ1, ℓ2 ∈ N0, be a computation window of the timing
interfaceTm

s,h , i.e., for all ℓ ∈ [ℓ1, ℓ2) be Dm
s,h(ℓ) = 1. Let

LCTES’05, 6 2005/4/16

Ss1,h1
(m1 , 0):

call(InDrv1)
dispatch(µ[MixPlayer], 1)
idle(1)
dispatch(Analyzer , 3)

Ss1,h1
(m1 , 1):

dispatch(µ[MixPlayer], 1)
idle(1)
dispatch(Analyzer , 3)

Ss2,h2
(m1 , 0):

idle(1)
call(InDrv2)
dispatch(Mixer, 2)
idle(3)
dispatch(µ[MixSound], 4)

Ss2,h2
(m1 , 1):

idle(1)
call(InDrv2)
dispatch(Mixer, 2)
idle(3)
dispatch(µ[MixSound], 4)

Ss3,h2
(m1 , 0):

call(InDrv3)
idle(2)
dispatch(Generator, 3)

Ss3,h2
(m1 , 1):

idle(2)
dispatch(Generator, 3)

Figure 8. S code modules for the programGA

t1, t2, ..., t|Taskss,h | be the EDF permutation of tasksTaskss,h at
unit k of modem (the taskt1 has the earliest deadline). The EDF
S code moduleSs,h has the following sequence of instructions:

idle(ℓ1 − k · γ[m])
dispatch(t1, ℓ2 − k · γ[m])
dispatch(t2, ℓ2 − k · γ[m])
...
dispatch(t|Taskss,h |, ℓ2 − k · γ[m])

The entire EDF S code module consists of such code segments for
each computation or communication slot of the timing interface.
Fig. 8 shows all EDF S code modules for the Giotto programGA

which are generated using the timing interface of Fig. 7. Note that
these modules also contain invocations of task input drivers.

5 Implementation
Our test system consists of several off-the-shelf PC hosts with
200MHz Pentium Pro processors and 128MB RAM. All hosts are
equipped with standard 100Mbit Ethernet network cards and are
locally connected. The underlying operating system is RTLinux,
where standard Linux runs under the control of a real-time ker-
nel as the lowest priority task [18]. In contrast to Linux’ fair time-
sharing scheduling, RTLinux uses a simple priority-based preemp-
tive scheduler, thus permitting real-time functions to operate in a
predictable and low-latency environment. In our tests the maximum
scheduling latency was about 30µs.

Real-time communication is attained through a special network
driver [19] that precludes the standard Ethernet CSMA/CD proto-
col by establishing a TDMA-based time-triggered protocol,where
each node has exclusive access to the network within its scheduled
time slot. A software-based synchronization of the hosts iscarried
out by controlling the period of a thread that performs send and
receive network operations. The control algorithm uses thearrival
times of incoming data packets. The communication cycle is shown
in Fig. 9. For the purposes of synchronization, one of the hosts is
designated as master and all others as clients. In each cyclethe mas-
ter sends a sync packet with the id of the client that is supposed to
respond by sending a resync packet in the next slot. The subsequent
slots are reserved for each of the hosts to send actual data packets.
If T0 is the duration of a single slot, andN is the number of hosts
operating under the time-triggered protocol, then the cycle repeats
after timeT0 · (N + 2).

In general, the protocol latency, i.e., the time between thesend
call of the network driver and the arrival of the data packet,de-
pends on the time instant at which the call is made. However, the
driver provides a function that synchronizes the sending thread with
the network schedule, i.e., the driver resumes the thread when it
reaches the exclusive time slot to send a message. This mecha-
nism enables the precise timing in the interpretation of theSCC in-

Figure 9. Cycle of the communication protocol [19]

structions (including message dispatch) with respect to the global
time. The distributed SCC virtual machine is built as a dynami-
cally loadable RTLinux kernel module. For the code of each sup-
plier the machine maintains a context data structure similar to the
non-distributed implementation described in [6]. To implement dis-
tributed SCC correctly we make use of special RTLinux calls that
suspend and resume task threads.

To test the virtual machine we implemented the audio appli-
cationGA through the distributed SCC program shown in Fig. 6
and 8. Note that in Fig. 8 eachdispatch instruction with a task
(resp. message) as an argument executes in computation (resp.
communication) slots shown in Fig. 7. In this setup each timeslot
lastsT0 = 1ms, and an entire communication cycle lasts4ms
(N=2). The maximum bandwidth available to each host in such a
configuration is 2.86Mbit/s. The tests show that the sound card
is fed continuously with samples. The audio reproduced backat
h1 plays without any noticeable interruption or other sound de-
fects. The estimated overhead of the network driver synchroniza-
tion thread is 25µs. The overhead of the virtual machine, i.e., the
time it takes to go through the machine event loop with two trig-
ger and thread instances, is less than 12µs (divided roughly equally
between E and S parts). Since the machine is invoked at 1kHz, the
system overhead is about3.7%. The actuator jitter is less than 2µs,
since in Giotto a task output is written at the task termination time.
In these measurements we used the Pentium time stamp counter,
the most precise PC clock.

6 Compositional SCC Analysis
We first characterize the control-flow graphs of the distributed SCC
program that is compiled from a Giotto programG according to
the scheme presented in Section 3. The distributed SCC program is
then represented as a set of state-transition systems, one for each
supplier and host, which are used to verify the correctness of this
implementation ofG.

6.1 Giotto-Generated Distributed SCC

We start by describing E and S code modules separately, and then
define the entire distributed SCC program. LetG be a Giotto pro-
gram withM modes. Letgs,h be equal to|Tasks s,h |+|Msgss,h |+
|Drvss,h |, i.e.,gs,h represents the size of the program part which
is allocated to suppliers on hosth. Let a node of a directed graph
without predecessor (resp. successor) be called a source (resp. sink)
node of the graph. AG-generated E moduleEs,h consists of a di-
rected acyclic control-flow graph(V E

s,h , E
E
s,h), two edge-labeling

functions κ and λ, and a node-labeling functionη. Each edge
e ∈ EE

s,h is labeled with an instructionκ(e) and an argumentλ(e),
and each nodev ∈ V E

s,h is labeled with a pairη(v) = (m, k) such
thatm is a mode andk is a unit ofm , i.e.,k ∈ {0, ..., ωmax [m]}.
The graph(V E

s,h , E
E
s,h) has the following properties:

• Each path from a source to a sink consists of

a sequence ofO(gs,h) edgese, each with aκ(e) = call in-
struction that calls a driverλ(e) from Drvss,h , followed by
a sequence ofO(gs,h) edgese, each with aκ(e) =
release instruction that releases a task or messageλ(e)
from Taskss,h ∪ Msgss,h , and followed by

a single edgee with a κ(e) = future instruction and an
argumentλ(e) = (δ, v′) that marks a sourcev′ of V E

s,h for
execution afterδ ∈ N>0 units of time.

LCTES’05, 7 2005/4/16

• For each modem ∈ Modes and each unitk ∈ {0, ..., ωmax [m]}
there exists

exactly one source nodev such thatη(v) = (m, k), and
at most one nodev such thatη(v) = (m, k) and v has
more than one successor; such a nodev has less thanM
successors.

Let all numbers inG, i.e., mode periods as well as task and actuator
frequencies andωmax [m], be bounded byn. For instance, for the
Giotto programGA, the largest constantn is equal to 8. The
number of sources of(V E

s,h , E
E
s,h) is O(M · n), and the number

of sinks isO(M 2 · n). Assuming, for simplicity, that the number
M of modes is bounded, the size ofV E

s,h isO(gs,h · n).
A G-generated S moduleSs,h consists of a directed control-

flow graph(V S
s,h , E

S
s,h), two node-labeling functionsρ andν, and

an edge-labeling functionλ. We require that the graph(V S
s,h , E

S
s,h)

consists of chains of total lengthO(gs,h · n). Each control location
u ∈ V is labeled by one of the following:

• ρ(u) = dispatch, ν(u) ∈ Taskss,h ∪ Msgss,h , and node
u has a successoru′ such thatλ(u, u′) ∈ N>0. If ν(u) ∈
Taskss,h , then the execution ofu dispatches the taskν(u).
Control proceeds tou′ if ν(u) completes or the firstλ(u, u′)
time units pass from the time at which the thread with this con-
trol location was created. Ifν(u) ∈ Msgss,h , then the anal-
ogous explanation holds for the transmission of the message
ν(u).

• ρ(u) = idle andu has a successoru′ such thatλ(u, u′) ∈
N>0. The execution ofu idles the processorh until λ(u, u′) ∈
N>0 time units pass from the time of thread creation.

• ρ(u) = call andu has a successoru′ such thatλ(u, u′) ∈
Drvss,h . The execution of(u, u′) calls driverλ(u, u′).

• ρ(u) = ▽ andu has no successor indicates thread termination.

A G-generated SCC modulePs,h for a suppliers and a hosth
consists of aG-generated E moduleEs,h , aG-generated S module
Ss,h , and anannotation functionΦs,h that maps each sink of the
control graph ofEs,h to a node in the control graph ofSs,h . When
the E code execution arrives at a sinkv, this creates a new thread
of S code which starts at control locationΦs,h(v). Let V E

h be the
union of node setsV E

s,h over all supplierss ∈ S , i.e., the set of
all E code control locations on hosth. Each functionΦs,h maps a
sink nodev′ ∈ V E

s,h to a source nodeΦs,h(v′) ∈ V S
s,h such that

if (v, v′) ∈ EE
s,h andκ(v, v′) = future andλ(v, v′) = (ℓ, ·),

then the chain in(V S
s,h , E

S
s,h) that starts from the nodeΦs,h(v′)

does not contain numbers, i.e., clock timeouts indispatch and
idle instructions, larger thanℓ. According to the last condition,
if the next E code instruction is executed afterℓ time units, then
the chain of S code instructions describes the schedule for at most
the nextℓ time units. Note that ifG is a single-mode program,
then both(V E

s,h , E
E
s,h) and (V S

s,h , E
S
s,h) consist of chains of size

O(gs,h). Lastly, aG-generated distributed SCC programP over a
setS of suppliers and a setH of hosts is a function that assigns to
eachs ∈ S and eachh ∈ H aG-generated SCC modulePs,h for
a suppliers and a hosth.

Transition-system semantics.A stateof a G-generated dis-
tributed SCC programP consists of a port valuation functionr that
maps each port inPortsP to a value of the appropriate type, a pro-
gram counter functionv that assigns to each hosth ∈ H a control
nodevh ∈ V E

h , a status functionc : Tasks ∪ Msgs → N0 ∪ {⊥},
a trigger functionτ that assigns to each hosth ∈ H a queue
τh ⊆ (N0 × V E

h)∗ of future invocations, and a thread function
θ that assigns to each hosth ∈ H a setθh of threads. Each thread
(u, δ) ∈ θh consists of a program counteru ∈ V S

h and a num-

ber δ ∈ N0 of time units for which the thread has been executed.
Let c be the function such that for each taskt ∈ Tasks , the sta-
tus c(t) ∈ N0 indicates thatt has been released and executed for
c(t) ≥ 0 time units; the statusc(t) = ⊥ indicates thatt has been
completed (or not yet released). For a messageµ ∈ Msgs , c(µ) is
defined analogously for the message release and transmission.

The appendix presents the semantics of a distributed SCC pro-
gramP by defining a transition system on the space of states ofP .
Each transition represents either the execution of an E or S code
instruction on one of the hosts, or a time step. A series ofE tran-
sitionscorresponding to a block of E code instructions are taken
when a trigger becomes true. Acompletion S transitionis taken
when a task or message completes; atimeout S transition, when
a timeout on adispatch or idle instruction becomes true; and a
transient S transition, when an S codecall instruction is executed.

For a given initial stateq0, a trace of the distributed SCC
programP is an infinite sequenceq0, q1, . . . of states ofP such
that for all i ∈ N0, there exists a transition fromqi to qi+1. Let
ws,h : Taskss,h ∪ Msgss,h → N>0 be the worst-case execution
or transmission time (wcet) function for the tasks and messages
of suppliers ∈ S on hosth ∈ H , and letw be the set of such
functions for all suppliers and all hosts. A trace ofP is anw-traceif
for each suppliers ∈ S , hosth ∈ H , and each invocation of a task
or messagex ∈ Taskss,h ∪ Msgss,h , the invocationx completes
execution (transmission) within timews,h(x).

6.2 Interface Compliance and Time Safety

For the compositional analysis of a distributed SCC programwe
need the following two properties. LetG be a (multi-mode) Giotto
program, letTs,h be a timing interface for a suppliers and a host
h, let Ps,h be theG-generated SCC module, and letws,h be a
wcet function. The modulePs,h interface-complieswith Ts,h if all
dispatch instructions ofPs,h execute in time intervals provided
by Ts,h . In our example each SCC modulePs,h defined by the
E and S code blocks in Fig. 6 and 8 interface-complies with the
timing interfaceTs,h shown in Fig. 7, because the S code in Fig. 8
was generated as EDF S code with respect to this interface.

The modulePs,h is time-safeif (1) no driver reads from output
ports of a task (resp. message) assigned to suppliers on host
h before it completes execution (resp. transmission), and (2) no
driver writes to input ports of a task (resp. message) after it starts
execution (resp. transmission). This requirement ensuresthat all
task release and termination times of the original Giotto program
are maintained [10]. Let, for instance, the worst-case execution
(resp. transmission) times of all tasks (resp. messages) be1ms.
Each SCC modulePs,h defined by the E and S code blocks in Fig. 6
and 8 is time-safe. For example, inPs2,h2

, the input ports of the task
Mixer are written at time 1ms (InDrv2 driver), its output ports are
read at 4ms (copy[MixSound] driver), and the task starts execution
at 1ms, but completes before 2ms.

We now give the formal definitions of interface compliance
and time safety as safety properties, so that it becomes clear how
to check them. A state of a distributed SCC programP with a
program counter functionv and thread functionθ violatesinterface
compliance withTs,h = (Ds,h ,Xs,h) if there exists a thread
(u, δ) ∈ θh such thatρ(u) = dispatch, η(vh) = (m, k), and
either (1)ν(u) ∈ Taskss,h andDm

s,h(k · γ[m] + δ) = 0, or
(2) ν(u) = Msgss,h andXm

s,h(k · γ[m] + δ) = 0. We say that
(Ps,h ,ws,h) interface-complieswith Ts,h if for all ws,h -tracesψ of
{Ps,h}, no state ofψ violates interface compliance withTs,h .

A state of a distributed SCC programP with a program counter
function v, status functionc, and thread functionθ violates time
safety on(s, h) if there exists a task or messagex ∈ Taskss,h ∪
Msgss,h such that either (a)vh has a successorv′h with κ(vh , v′h) =
call and λ(vh , v

′
h) = d (E code driver), or (b) there exists a

LCTES’05, 8 2005/4/16

(m2 , 0) (m2 , 1) (m2 , 2) (m2 , 3)

(m1 , 1)(m1 , 0)

Figure 10.Graph related toPs,h for GA with additional modem2

thread(u, ·) ∈ θh with ρ(u) = call, u has a successoru′,
andλ(u, u′) = d (S code driver), and one of the following: (1)
Src[d]∩Out [x] 6= ∅ andc(x) 6= ⊥, or (2)Dst [d]∩ In[x] 6= ∅ and
c(x) 6= 0. We say that (Ps,h ,ws,h) is time-safeif for all ws,h -traces
ψ of {Ps,h}, no state ofψ violates time safety on(s, h).

Checking interface compliance and time safety.The paper [4]
discusses time safety checking for single-mode, single-CPU Giotto
programs. These results are here generalized to both the distributed
and multi-mode settings. For distributed single-mode programsG
we give pseudo-polynomial algorithms for checking the interface
compliance and time safety of eachG-generated SCC module.
For distributed multi-mode programs the checks are sufficient. For
details and proofs the reader is referred to [20]. Let aG-generated
SCC module be given as aG-generated E moduleEs,h , a G-
generated S moduleSs,h , and an annotation functionΦs,h . We first
construct a directed graphPs,h by connecting the control graphs
of Es,h andSs,h through edges from each sink ofV E

s,h (resp.V S
s,h)

to a source ofV S
s,h (resp.V E

s,h) determined by the mapΦs,h and
control flow ofEs,h . It can be shown that each graphPs,h is acyclic
even ifG is a multi-mode program [20]. For instance, consider the
Giotto programGA with the original modem1 and the additional
modem2 given in Fig. 3, in which theMixer task is invoked every
2ms. Fig. 10 shows a graph in which each edge abstracts a chain
of O(gs,h) edges of the graphPs,h .

We next construct a state-transition graph by annotating each
node of the graphPs,h with a particular state of the SCC module
Ps,h . The graphPs,h is acyclic, so the nodes can be sorted and
processed in topological order. Each source node ofPs,h (for
each mode there is exactly one such node) is annotated with the
state in which the trigger queue and thread set are empty and the
status function maps eachx ∈ Taskss,h ∪ Msgss,h to ⊥ (recall
that c(x) = ⊥ means thatx has not yet been released). For the
other nodes ofPs,h we proceed by transforming the state of their
immediate predecessors. We do so by performing one or more
transition steps defined by the semantics of SCC programs (App.
A). Task execution-time nondeterminism in time transitionsteps is
eliminated by assuming that each task (or message)x completes
exactly after the time given by the wcetws,h(x). If a nodev has
more than one predecessorv′, then the status function value at node
v, for eachx ∈ Taskss,h ∪ Msgss,h , is the least value among the
status function values forx at all predecessorsv′. So, for the nodes
with more than one incoming edge, we compute the task execution
time pointwise and conservatively.

Checking the states of the graphPs,h offers a sufficient condi-
tion for time safety and interface compliance of all executions of the
distributed SCC modulePs,h . If no state of the graphPs,h violates
time safety and interface compliance, then theG-generated SCC
module(Ps,h , ws,h) interface-complies withTs,h and is time-safe.
If this is not the case then, for a general multi-mode Giotto pro-
gramG, we cannot conclude that SCC module(Ps,h , ws,h) does
not interface-comply withTs,h (or is not time-safe). This is be-
cause in the state construction ofPs,h different incoming edges
of a node may impose conservative approximations on different
tasks. Also, there may be unreachable modes [10]. However, if G
is a single-mode program, then the state-transition graphPs,h is a
chain. So, ifPs,h does not interface-comply or is not time-safe at
some stateq, then the trace along the chain up toq is a counterex-

ample. The size ofPs,h is O(gs,h · n), because both(V E
s,h , E

E
s,h)

and(V S
s,h , E

S
s,h) are of the same size. Constructing the transition

graphPs,h , annotating it with states, and checking its states can be
done inO(gs,h ·n) time. Therefore, we have the following theorem.

THEOREM1. Let G be a single-mode2 Giotto program with all
numbers bounded byn. Let gs,h and Ts,h be the size of the part
of G and the timing interface assigned to suppliers on hosth. Let
Ps,h andws,h be theG-generated SCC module and wcet function
for supplier s on hosth. It can be checked in timeO(gs,h · n)
whether(Ps,h , ws,h) interface-complies withTs,h and is time-safe.

6.3 Distributed Code Generation Correctness

We show that LET semantics of a Giotto program is preserved by
the distributed SCC program generated according to Alg. 1 ifeach
SCC module satisfies interface compliance and time safety. If an
SCC program preserves the LET semantics of a Giotto program we
say that it implements the Giotto program.

LetG be a Giotto program, letT = {Ts,h | s ∈ S and h ∈ H }
be a feasible interface forG, let P = {Ps,h | s ∈ S and h ∈ H }
be aG-generated distributed SCC program, and letw = {ws,h |
s ∈ S and h ∈ H } be a wcet function forP . Let rG

ℓ and rP
ℓ

be the port valuation functions at timeℓ ∈ N0 for G andP [3].
A trace ofP and a trace ofG are input-compatible(resp.output-
compatible) if they have the same sensor (resp. actuator) port values
at the same times, i.e.,rG

ℓ (p) = rP
ℓ (p) for eachp ∈ SensePorts

(resp.p ∈ ActPorts) and each time instantℓ ∈ N0. The pair (P ,w)
implementsthe Giotto programG if for every w-trace ofP and
every trace ofG, input-compatibility implies output-compatibility
(i.e., if, for all sensor inputs, they produce the same actuator outputs
at the same times). The pair (P ,w) interface-complies toT if for
each suppliers ∈ S and hosth ∈ H , theG-generated SCC module
(Ps,h ,ws,h) interface-complies withTs,h . We say that (P ,w) is
time-safe if (Ps,h ,ws,h) is time-safe for eachs ∈ S andh ∈ H .

THEOREM2. Let G be a Giotto program, letT be a feasible
timing interface forG, let P be the distributed SCC program
G-generated according to Alg. 1, and letw be a wcet function.
If (P ,w) interface-complies toT and is time-safe, then (P ,w)
implementsG.

For the proof of this theorem we refer to [20]. Instead we give
informal explanation why interface feasibility, interface compli-
ance, and time safety ensure correctness of the implementation. If
interface feasibility is violated, e.g., the time windows on a host
are not disjoint, even if each supplier produces interface-compliant
and time-safe code, the host may be overloaded and miss deadlines
defined by the LET semantics. A similar outcome is possible ifthe
interface is feasible, and each supplier on each host generates an
SCC module that is individually time-safe, but it ignores the in-
terface. Lastly, if a module does not satisfy one of the time-safety
conditions, e.g., a time slot in the interface is not sufficiently large,
then a task or message invocation may result in incorrect output.
The compositional nature of interface compliance and time safety
of (P ,w) ensures that if, for some suppliers and hosth, one mod-
ulePs,h is modified, then forP to implementG it suffices to check
if (Ps,h ,ws,h) interface-complies withTs,h and if it is time-safe.
Combining Theorems 1 and 2, we have the following.

COROLLARY 1. LetG be a single-mode2 Giotto program of sizeg
with all numbers bounded byn. It can be checked in timeO(g · n)
if (P , w) implementsG. Moreover, if(Ps,h ,ws,h) is modified for
a single suppliers and hosth, then it can be checked in time
O(gs,h · n) if (P , w) still implementsG.

2 For multi-mode Giotto the pseudo-polynomial check is only sufficient but
not necessary.

LCTES’05, 9 2005/4/16

Note that(Ps,h ,ws,h) can be modified either by modifyingEs,h

(i.e., modifying task invocation and/or environment interaction),
Ss,h (schedule), orws,h (wcet). Suppose that in the audio example
the integrator wants to assign additional functionality tosuppliers3
on hosth2, say, mix with another synthesized sound with a pitch
twice as high. Suppliers3 implements a new taskGenerator2
(of two times higher frequency) with input driverInDrv4, and
modifies the S moduleSs3,h2

as shown below. Then, for correctness
of the entire programP , only the modified modulePs3,h2

needs to
be checked for interface compliance and time safety.

Ss3,h2
(m1 , 0):

call(InDrv3)
call(InDrv4)
idle(2)
dispatch(Generator2, 3)
dispatch(Generator, 3)

Ss3,h2
(m1 , 1):

call(InDrv4)
idle(2)
dispatch(Generator2, 3)
dispatch(Generator, 3)

7 Conclusion
We introduced timing interfaces and showed how they can be used
to distribute the code generation for Giotto programs and dis-
tributed target platforms. The integration of the individually com-
piled components is performed by individually checking thein-
terface compliance and time safety of each component. Our ap-
proach guarantees global timing requirements without solving a
global scheduling problem: as part of the continuing effortof the
Giotto project to trade performance for predictability andcompos-
ability, the burden is shifted to the generation of timing interfaces.
There are related efforts [12, 13, 21], how they can be optimized
for different criteria is a topic for future research.

References
[1] H. Kopetz. Real-Time Systems: Design Principles for Distributed

Embedded Applications. Kluwer, 1997.
[2] http://www.flexray-group.com; http://www.autosar.org.
[3] T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto: a time-triggered

language for embedded programming. InProc. IEEE91, pp. 84–99,
2003.

[4] T.A. Henzinger, C.M. Kirsch, and S. Matic. Schedule-carrying code.
In Proc. EMSOFT, LNCS 2855, pp. 241–256, Springer, 2003.

[5] T.A. Henzinger and C.M. Kirsch. The Embedded Machine: predictable,
portable real-time code. InProc. PLDI, pp. 315–326, ACM, 2002.

[6] C.M. Kirsch, M.A.A. Sanvido, and T.A. Henzinger. A programmable
microkernel for real-time systems. InProc. VEE, ACM, 2005.

[7] C.M. Kirsch, M.A.A. Sanvido, T.A. Henzinger, and W. Pree. A Giotto-
based helicopter control system. InProc. EMSOFT, LNCS 2491, pp.
46–60, Springer, 2002.

[8] N. Halbwachs. Synchronous Programming of Reactive Systems.
Kluwer, 1993.

[9] A. Benveniste, L.P. Carloni, P. Caspi, and A.L. Sangiovanni-Vincentelli.
Heterogeneous reactive systems modeling and correct-by-construction
deployment. InProc. EMSOFT, LNCS 2855, pp.35–50, Springer, 2003.

[10] T.A. Henzinger, C.M. Kirsch, R. Majumdar, and S. Matic.Time-safety
checking for embedded programs. InProc. EMSOFT, LNCS 2491, pp.
76–90, Springer, 2002.

[11] P. Caspi, et al. From Simulink to SCADE/Lustre to TTA: a layered
approach for distributed embedded applications. InProc. LCTES, pp.
153-162, ACM, 2003.

[12] A. Mok and X. Feng. Real-time virtual resource: a timelyabstraction
for embedded systems. InProc. EMSOFT, LNCS 2491, pp. 182–196,
Springer, 2002.

[13] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. InProc. RTSS, pp. 2–13, IEEE, 2003.

[14] H. Kopetz and N. Suri. Compositional design of real-time systems:
a conceptual basis for the specification of linking interfaces. InProc.
ISORC, pp. 51–60, 2003.

[15] J. Rushby. Partitioning in avionics architectures: requirements,
mechanisms, and assurance. InNASA Contractor Report 209347, SRI
International, 1999.

[16] B. Hardung, T. Koelzow, and A. Krueger. Reuse of software in
distributed embedded automotive systems. InProc. EMSOFT, pp.
203–210, ACM, 2004.

[17] K. Karplus and A. Strong. Digital synthesis of plucked-string and
drum timbres. inComputer Music Journal7, pp. 43–55, 1983.

[18] V.Yodaiken. RTLinux Manifesto. InProc. LinuxExpo, 1999.
[19] S. Lankes, A. Jabs, and M. Reke. A time-triggered Ethernet protocol

for real-time CORBA. InProc. ISORC, pp. 215–222, 2002.
[20] T.A. Henzinger and S. Matic.Distributed Schedule-Carrying Code.

Tech. Rep. UCB/CSD-04-1360, 2004.
[21] S. Shigero, M. Takashi, and H. Kei. On the schedulability conditions

on partial time slots. InProc. RTCSA, pp. 166–173, IEEE, 1999.

Appendix A. Formal Distributed SCC Semantics
In [4] we give an operational semantics of schedule-carrying code by
defining a state-transition system in which all port values are abstracted
away. Here we are interested in the input-output behavior ofdistributed
SCC, so we extend the formalism by taking into account port values and the
distributed nature of code. We present the interleaving semantics for SCC
modules of all suppliers on all hosts. To use the same notation for messages
as for tasks, let the message input portsIn [µ[p]] formally be{p}, let the
message output portsOut[µ[p]] be {ph | h ∈ recHosts(p)}, and let
the message functiontask [µ[p]] be the identity function from the message
input to output ports. A stateq = (r , v, c, τ, θ) has atransition to a state
q′ = (r ′, v′, c′, τ ′, θ′) if one of the following is true:

Completion S transition The stateq is completion enabling, that is, there
exist a hosth ∈ H and a thread(u, δ) ∈ θh such thatc(ν(u)) = ⊥
andρ(u) = dispatch. Let the successor ofu beu′. Thenr ′ = r ex-
cept thatr ′(Out [ν(u)]) = task [ν(u)](r(In [ν(u)])), (v′, c′, τ ′) =
(v, c, τ), andθ′ = θ except thatθ′

h
= (θh\{(u, δ)}) ∪ {(u′, δ)}.

Transient S transition The stateq is not completion enabling buttransient
enabling, that is, there exist a hosth ∈ H and a thread(u, δ) ∈ θh

such thatρ(u) = call. Let the successor ofu be u′. Thenr ′ = r
except thatr ′(Dst [λ(u, u′)]) = drv [λ(u, u′)](r(Src[λ(u, u′)])),
(v′, c′, τ ′) = (v, c, τ), andθ′ = θ except thatθ′

h
= (θh\{(u, δ)}) ∪

{(u′, δ)}.
E transition The stateq is neither completion nor transient enabling butE

enabling, that is, there exists a hosth ∈ H and either (1)vh has no
successor and(0, ·) ∈ τh , or (2)vh has a successorv′

h
. In case (1) let

(0, v̄) be the first such pair inτh . Thenp = p′, v′ = v except thatv′
h

=
v̄, c′ = c, τ ′ = τ except thatτ ′

h
= τh \ {(0, v̄)}, andθ′ = θ. In case

(2) one of the following: (a)κ(vh , v′
h
) = call andr ′ = r except that

r ′(Dst [λ(vh , v′
h
)]) = drv [λ(vh , v′

h
)](r(Src[λ(vh , v′

h
)])), c′ = c,

andτ ′ = τ ; (b) κ(vh , v′
h
) = release andr ′ = r , c′ = c except that

c′(λ(vh , v′
h
)) = 0, τ ′ = τ ; or (c) κ(vh , v′

h
) = future andr = r ′,

c′ = c, andτ ′ = τ except thatτ ′
h

= τh ◦ {λ(vh , v′
h
)}. In all three

cases, ifv′
h

is a sink, thenθ′ = θ except thatθ′
h

= θh∪{(Φh (v′
h
), 0)};

if v′
h

is not a sink, thenθ′ = θ.
Timeout S transition The stateq is neither completion nor transient nor E

enabling buttimeout enabling, that is, there exist a hosth ∈ H and a
thread(u, δ) ∈ θh such thatρ(u) ∈ {dispatch, idle}, the successor
of u is u′, λ(u, u′) ∈ N0, andλ(u, u′) ≤ δ. Then(r ′, v′, c, τ ′) =
(r , v, c, τ), andθ = θ′ except thatθ′

h
= (θh\{(u, δ)}) ∪ {(u′, δ)}.

Time transition The stateq is neither completion nor transient nor E nor
timeout enabling. Thenr ′(p) = r(p) for all p ∈ PortsP \ {pc}, and
r ′(pc) = r(pc) + 1. For ℓ = r(pc), we call the functionrℓ = r the
port valuation at timeℓ. For eachh ∈ H , let Xh = {x | (u, ·) ∈
θh , ρ(u) = dispatch, ν(u) = x}, and letx̄h ∈ Xh be the task or
message to be executed onh. Thenv′ = v; the queueτ ′

h
results from

τh by replacing each trigger binding(δ, u) by (δ − 1, u); the thread
setθ′

h
results fromθh by replacing each thread(u, δ) by (u, δ + 1); if

x ∈ Taskss,h ∪ Msgss,h for somes ∈ S , thenc′(x) = c(x) + 1 or
c′(x) = ⊥ if x = x̄h , andc′(x) = c(x) if x 6= x̄h . In casec′(x) = ⊥
we say that on the transition(q, q′), the task or messagex completes
after execution timec(x) + 1.

LCTES’05, 10 2005/4/16

