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Why does an application that works just fine over a LAN 
come to a grinding halt across the wide-area network? 
You may have experienced this firsthand when trying to 
open a document from a remote file share or remotely 
logging in over a VPN to an application running in head-
quarters. Why is it that an application that works fine in 
your office can become virtually useless over the WAN? If 
you think it’s simply because there’s not enough band-
width in the WAN, then you don’t know jack about network 
performance.

Consider this real-life example of a large bank with 
headquarters in Europe and operations in North America. 
The bank’s CIO was getting big-time heat from a business 
unit with European users trying to access an important 
application from across the pond. Performance was hor-
rible. Under pressure, the CIO ordered his trusted network 
operations manager to fix the problem. The network 
manager dutifully investigated, measuring the transatlan-
tic link utilization and router queue statistics. He reported 
that there were absolutely no problems with the network, 
as it was only 3 percent utilized. “I don’t care, double 
the bandwidth!” the CIO ordered. The network manager 
complied, installing a second OC-3 link. And, guess what? 

The network went from 3 percent to 1.5 percent utilized, 
and application performance was still horrible. That CIO 
didn’t know jack about network performance.

In this example, and as is all too often the case, IT 
managers attribute poor application performance over the 
WAN to inadequate bandwidth, as bandwidth is gener-
ally equated with the “speed” of the network. Yet, while 
bandwidth plays an important role in limiting the overall 
maximum amount of data that can be moved from 
place to place in a fixed amount of time, it is only one 
of several important factors that affect an application’s 
performance. Other key factors—network latency, trans-
port protocol buffer management, congestion control 
dynamics, and the design of the application’s protocol 
itself—can impact performance so much that they can 
completely eliminate the useful benefits of upgrading a 
network to have greater bandwidth or “capacity.”

THE SLIDING WINDOW PROTOCOL
To understand why performance is more than a band-
width problem, let’s start by decomposing how the under-
lying transport protocol works. As you probably know, a 
typical application on the Internet will somehow employ 
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TCP/IP for moving data. TCP is a sort of advanced form 
of a sliding window protocol. It operates by sending one or 
more packets of information from a sender to a receiver. 
When packets are successfully delivered, the receiver 
sends a reply ACK (acknowledgment packet) back to the 
sender to indicate that it successfully received what the 
sender sent. In a sliding window protocol, the window size 
is the amount of data a sender is allowed to have “in” the 
network without having yet received an acknowledgment 
for it.

Given that most data transfers over the Internet or 
across an enterprise WAN use a sliding window protocol, 
what can we reason about the performance of such trans-
fers? Assume for a moment that a packet is always a fi xed 
size, p bytes. We can express the window size in terms of 
some number of packets, k.  The window size, w, is simply 
the product of these two: w=kp. Now, if we are worried 
about how much data we can move in a certain amount 
of time over a network, we are really worried about how 
many windows can be moved in some amount of time.

Thus, to determine the rate of a transfer, we need 
to compute the rate at which windows of data can be 
transmitted across the network—that is, we need to 
understand how much time it takes to move w bits. This, 
in turn, requires knowledge of the time required to move 
any information (even one bit) between the sender and 
receiver, which is called the network latency, or delay. 
Although the latency can be measured as either one-way 
(source to destination) or two-way (source to destina-
tion and back), it is generally the two-way delay we are 
concerned with. This value is called the RTT (round-trip 
time). Note that the RTT, which can vary over time, is 
rarely twice the one-way delay time, but it is frequently 
approximated this way.

Latency arises from several distinct sources. First, there 
is the propagation delay, generally controlled by nature. 
For coaxial cable, bits propagate at between 60 and 90 
percent of the speed of light, while for RF and optical, 
they propagate at effectively the speed of light. 

Another component of latency is transmission delay, 
which derives directly from the bandwidth of the 
underlying communication link. For example, sending 
a 100-byte packet over a 100-byte-per-second network 

link requires one second to inject the entire packet into 
the network. Note that the transmission delay is just the 
packet injection time; it says nothing about the addi-
tional time required for a packet to reach its destination. 

The fi nal component of latency is the queuing delay, 
which represents the time a packet must wait in a hold-
ing area (e.g., a queue in a router) while other packets are 
transmitted, until the fi rst bit of that packet makes its way 
onto the communication link. In many cases, including 
the Internet, the queuing delay is not easily measured 
and varies rapidly. 

The RTT is the sum of all these latency components—
the propagation delay, the queuing delay, and the trans-
mission delay—for each communication link along both 
the forward and reverse path between sender and receiver.

Now that we understand all the components of the 
RTT, we can look at how it impacts the performance of a 
data transfer. Given that TCP provides reliable communi-
cations over the potentially lossy IP network layer, there 
must be some way to recover from unexpected packet loss. 
To handle such losses, TCP uses packet retransmissions, 
where the sender retransmits packets that have been lost 
in the network. To implement retransmissions, TCP must 
keep a copy of any data it has injected into the network 
that it doesn’t yet know has been received properly by 
the receiver. Said another way, TCP must buffer a copy of 
a window’s worth of data (w in our terminology) until it 
has received an acknowledgment for it. Thus, the window 
size is never permitted to grow larger than the amount of 
buffer space (i.e., memory) available at the sender. In real 
systems, there is usually a fi xed pool of memory reserved 
for each TCP connection (frequently called the socket buf-
fer, a value that applications can modify).

TCP PERFORMANCE
Given the concepts of the retransmission window and the 
RTT, we can now reason about the performance of TCP’s 
sliding window communication scheme. Let’s suppose 
the sender uses a window size of 100 bytes. As such, the 
sender is able to inject 100 bytes into the network but 
then must wait until it receives the corresponding ACK 
for that data. At an absolute minimum, the sender must 
wait one RTT for this to happen, as there is no way it 
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could receive an ACK for a message headed to the destina-
tion earlier than the time it takes to reach the destination 
and return. At that point, the sender can inject another 
100 bytes into the network.

How does this behavior translate into throughput? In 
steady state, the scheme moves w bytes of information 
every RTT amount of time, which in simple mathemati-
cal terms means the throughput is w / RTT. You probably 
remember from high school algebra that the function 
y=1/x defi nes a hyperbola, implying that throughput 
decays hyperbolically with increasing RTT.  In other words, 
as the RTT gets large, the throughput degrades rapidly.

So, why not just set the window size (w) to a corre-
spondingly larger value by increasing packet size (p) or 
number of packets (k) to achieve better throughput? Pro-
tocol designers long ago addressed this question and con-
cluded that there was, in fact, an “optimal” window size 
for a given network environment that maximizes network 
throughput. The best window size turns out to be the 
one that causes the sender to entirely “fi ll the pipe.” If we 
think of the path between sender and receiver as a pipe, 
we want to compute its volume by taking its “width” (its 
throughput, which is really more like its cross-sectional 
area, in bits per second) times its “length” (the one-way 
delay, in seconds). This yields the BDP (bandwidth-delay 
product) and is measured in bits. In other words, the pipe 
size represents the number of bits that are physically in 
transit “on the wire” between the sender and receiver. 

The optimal window size allows the sender to keep 
transmitting such that the network is busy and full, car-
rying data all of the time (hence, never idle and wast-
ing time). This turns out to be a pipe full of bits in the 
forward direction, then another pipe full while waiting 
for the ACK for the fi rst packet in the window to come 
back. Once that fi rst ACK arrives, the sender slides its 
window forward and can thus send another packet. If the 
window is just big enough, ACKs continue to arrive back 
at the sender just in time to continually send just the 
right number of packets to sustain optimal throughput. 
You can think of this as packets riding on the top of a full 
conveyor belt, with the ACKs returning on the bottom.

Thus, achieving optimal throughput merely requires 
that the sender set its window to the RTT times the 
network bandwidth. This should be easy, right? Unfortu-
nately, there are many reasons the sender often ends up 
using a suboptimal window. For example, as mentioned 
previously, the sender’s buffer may be less than this opti-
mal size, imposing an operational limit. 

Another reason for a suboptimal window is that the 
sender may impose congestion control upon itself. This is 

a long-standing area of research in TCP, and new meth-
ods appear regularly. Suffi ce it to say that the congestion 
control procedure is an algorithm that restricts the TCP 
window size (by reducing k in our equation) to a smaller 
value than it would otherwise use to avoid overloading, 
or congesting, the network. When the network becomes 
overloaded and drops packets, TCP reduces its window 
size in response, resulting in an effective reduction in its 
overall sending rate. For networks where packet loss is a 
strong indicator of congestion, this procedure works well 
and causes each sender to adjust its window so it receives 
some share of the network bandwidth. For other networks 
(e.g., wireless or satellite), where losses may be a result of 
data corruption instead of congestion, this technique can 
artifi cially limit the throughput of TCP. This issue has also 
been an area of intense research interest.

Another potential bottleneck can arise on the receiver 
end. Even if the sender were capable of using the optimal 
window size, the receiver might not have enough mem-
ory available to hold and process all of that data at once. 
To deal with this fl ow control problem, TCP includes 

in each packet a value called the window advertise-
ment, which essentially signals to the sender how much 
additional data the receiver is willing to accept. If the 
receiver’s buffer becomes full or is too small, the receiver 
reduces the value signaled in the window advertisement 
to a manageable level. This value can end up being less 
than the optimal window size, thereby degrading perfor-
mance. 

In addition, a peculiarity of the original TCP design 
can cause the advertised window to be smaller than 
desired. Because only 16 bits were allocated to the win-
dow advertisement fi eld in the TCP header, the maximum 
possible window was limited to 65,535 bytes, a signifi cant 
impairment to performance in so-called “large, fat net-
works” (those with large bandwidth-delay products). For-
tunately, in 1992, the issue was addressed and solved in 

The best window size 
turns out to be the one that causes 
the sender to entirely “fi ll the pipe.”



Network 
Performanceabout

you
don’tknow
jack

58  May 2005  QUEUE rants: feedback@acmqueue.com

an interesting way by RFC 1323. The technique involves 
scaling the window value carried in the TCP header by 
multiplying it by 2n for some value n, called the window 
scale. The value of n is exchanged between the two TCP 
endpoints at connection establishment time. As n is 
allowed a maximum value of 14, the largest possible win-
dow that TCP can represent when window scaling is used 
is 230 bytes (1 GB), considerably larger than the original 
65,535-byte maximum. This capability is often called TCP 
with “large windows” and is now automatically negoti-
ated by modern TCP implementations.

APPLICATION PERFORMANCE
All of the limitations to window size discussed so far are 
a result of the transport protocol implemented in the 
end systems. More issues arise when we look at applica-
tion performance. For example, although applications are 
generally free to choose the sending and receiving buffer 
sizes, they often don’t and simply rely on the default sizes 
provided by the operating system. The “knobs” control-
ling the buffer sizes are often hidden behind layers of 
software or middleware that the application programmer 
has no control over. Even if the application deliberately 
confi gures the buffers, the programmer must choose some 
a priori value, but the optimal size cannot be known at 
development time since different end hosts communicat-
ing over different network paths each need a different 
optimal value. Moreover, esoteric details about how and 
when an application sets these buffer sizes compared with 
other connection setup functions can cause the large win-
dow negotiation to fail in subtle ways that the program-
mer may not catch. Finally, depending on the particular 
application, making buffers unnecessarily large can 
increase the overall end-to-end delay and hurt, instead of 
help, application performance. Doing so can also increase 
the memory pressure on a busy server, discouraging appli-
cation programmers from using such large buffers.

Even when all the buffers are set optimally, when the 
network has plenty of bandwidth, and when TCP conges-
tion control works fl awlessly, application performance 
over the wide area can still suffer signifi cantly because of 
the application protocols themselves. Every TCP-based 
application must implement some form of a higher-level 

messaging protocol on top of the reliable TCP connec-
tion. Imagine for a moment how TCP acts when such 
an application protocol ceases to supply data for trans-
mission on the network. Naturally, the TCP itself stops 
sending. 

Although TCP has various techniques and options to 
overcome window limitation, it is powerless to overcome 
a similar problem in the application. If an application’s 
protocol involves requests and responses, and if it fails 
to implement any way of “keeping the network full” 
(e.g., by allowing multiple outstanding requests), it can 

be driven into a condition where it is able to process 
only one request per RTT. This sort of “chatty” applica-
tion behavior results in many ineffi cient back-and-forth 
exchanges between the end hosts and causes performance 
to degrade hyperbolically with increasing RTT, just like 
the throughput of a sliding window protocol. This can 
be a serious consequence, indeed, for users forced to use 
applications never designed for large RTT or, more gener-
ally, large BDP environments.

It’s easy to see how these applications have become 
commonplace. In a nutshell, it’s hard to build an applica-
tion protocol that doesn’t work well over a LAN. Consider 
a LAN based on 100-Mbps Ethernet. LANs generally 
span only a limited area and incur limited overall delay. 
Assume the RTT on an Ethernet network is 0.1 ms (.0001 
second). The BDP is then about 0.01 MB = 1.3 KB. For 
an Ethernet packet of 1,500 bytes, the 1.3 KB represents 
about one packet. It is easily represented by TCP with-
out window scaling and is almost certainly adequately 

Systems may appear to run fi ne 
in a LAN environment, yet be 
unbearably slow in a WAN.
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provided for by default buffer size allocations. In fact, 
because the optimal window size is only about one packet 
for this small RTT, even a poorly engineered applica-
tion may perform well. Applications of this kind are in 
some ways the most troubling, because they will perform 
signifi cantly worse when moved from a LAN to a WAN, 
where the RTTs are larger.

LAN VS. WAN
If we compare the LAN scenario with a high-speed WAN 
scenario, the situation looks somewhat different. Assum-
ing that the RTT is now 80 ms and the bandwidth is 1 
Gbps, we have a BDP of about 10 MB. With Ethernet 
1,500-byte packet framing, that’s about 7,100 packets. 
In this case it could be challenging to make full use of 
the network unless care is taken at each layer (applica-
tion through transport) to ensure full utilization of the 
network’s throughput capacity.

You can check out all these concepts using Ethereal 
or your favorite packet capture and analysis tool. Set it 
up to look for traffi c on TCP port 445, which allows you 
to watch the Windows fi le sharing protocol in action. 
Then, do something as simple as opening a document 
from a network fi le share using Microsoft Word. Go back 
to Ethereal, which will decode the fi le system protocol 
commands, and eyeball the trace. What you’ll see will 
probably surprise you: hundreds, if not thousands, of 
commands going back and forth between your Word 
application and the fi le server, just to open and load a 
fi le. Depending on the document, you might see Word 
open and close it several times, read different parts of 
the fi le in nonsequential order, read the same data more 
than once, copy the data to a temporary fi le, retrieve the 
same meta-information about the fi le and the directory 
multiple times, and so forth. 

Every one of these operations is executed sequentially, 
requiring a round trip across the network. On your LAN 
this is no big deal: 1,000 round trips times 0.1 ms per trip 
is a tenth of a second. Over an 80-ms WAN link, however, 
1,000 round trips is more than a minute. Even if you 
upgrade the WAN circuit to a 45-Mbps DS3 or a 155-Mbps 
OC-3, it will still take more than a minute to open that 
document.

If you take away just one concept from this article, 
remember that network performance is more than 
bandwidth. The seemingly simple problem of develop-
ing applications with good throughput performance may 
not be so simple, after all. Bad performance creeps up 
on us for many different reasons: physical factors (RTT, 
packet loss), transport protocol factors (limited buffers, 

limited ability to encode a large window, limited receiv-
ing application run rate), and application layer protocol 
dynamics. A poor implementation of either the transport 
or application layers can easily lead to poor performance. 
To further frustrate us, entire systems may appear to run 
fi ne in a LAN environment, yet be unbearably slow in a 
WAN or other high-delay environment. 

This article aims to help shed some light on these 
sometimes-complex interactions, so that end users can 
benefi t from deeper understandings of these issues among 
application and middleware software developers. If any-
thing, you can now say you do know jack about network 
performance. Q
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