
54 May 2005 QUEUE rants: feedback@acmqueue.com

KEVIN FALL, INTEL RESEARCH
STEVE MCCANNE, RIVERBED

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1066051.1066069&domain=pdf&date_stamp=2005-05-01

 QUEUE May 2005 55 more queue: www.acmqueue.com

Why does an application that works just fine over a LAN
come to a grinding halt across the wide-area network?
You may have experienced this firsthand when trying to
open a document from a remote file share or remotely
logging in over a VPN to an application running in head-
quarters. Why is it that an application that works fine in
your office can become virtually useless over the WAN? If
you think it’s simply because there’s not enough band-
width in the WAN, then you don’t know jack about network
performance.

Consider this real-life example of a large bank with
headquarters in Europe and operations in North America.
The bank’s CIO was getting big-time heat from a business
unit with European users trying to access an important
application from across the pond. Performance was hor-
rible. Under pressure, the CIO ordered his trusted network
operations manager to fix the problem. The network
manager dutifully investigated, measuring the transatlan-
tic link utilization and router queue statistics. He reported
that there were absolutely no problems with the network,
as it was only 3 percent utilized. “I don’t care, double
the bandwidth!” the CIO ordered. The network manager
complied, installing a second OC-3 link. And, guess what?

The network went from 3 percent to 1.5 percent utilized,
and application performance was still horrible. That CIO
didn’t know jack about network performance.

In this example, and as is all too often the case, IT
managers attribute poor application performance over the
WAN to inadequate bandwidth, as bandwidth is gener-
ally equated with the “speed” of the network. Yet, while
bandwidth plays an important role in limiting the overall
maximum amount of data that can be moved from
place to place in a fixed amount of time, it is only one
of several important factors that affect an application’s
performance. Other key factors—network latency, trans-
port protocol buffer management, congestion control
dynamics, and the design of the application’s protocol
itself—can impact performance so much that they can
completely eliminate the useful benefits of upgrading a
network to have greater bandwidth or “capacity.”

THE SLIDING WINDOW PROTOCOL
To understand why performance is more than a band-
width problem, let’s start by decomposing how the under-
lying transport protocol works. As you probably know, a
typical application on the Internet will somehow employ

 Network
Performance

Bandwidth is only part of the problem.

about

you
don’tknow
jack

56 May 2005 QUEUE rants: feedback@acmqueue.com

TCP/IP for moving data. TCP is a sort of advanced form
of a sliding window protocol. It operates by sending one or
more packets of information from a sender to a receiver.
When packets are successfully delivered, the receiver
sends a reply ACK (acknowledgment packet) back to the
sender to indicate that it successfully received what the
sender sent. In a sliding window protocol, the window size
is the amount of data a sender is allowed to have “in” the
network without having yet received an acknowledgment
for it.

Given that most data transfers over the Internet or
across an enterprise WAN use a sliding window protocol,
what can we reason about the performance of such trans-
fers? Assume for a moment that a packet is always a fi xed
size, p bytes. We can express the window size in terms of
some number of packets, k. The window size, w, is simply
the product of these two: w=kp. Now, if we are worried
about how much data we can move in a certain amount
of time over a network, we are really worried about how
many windows can be moved in some amount of time.

Thus, to determine the rate of a transfer, we need
to compute the rate at which windows of data can be
transmitted across the network—that is, we need to
understand how much time it takes to move w bits. This,
in turn, requires knowledge of the time required to move
any information (even one bit) between the sender and
receiver, which is called the network latency, or delay.
Although the latency can be measured as either one-way
(source to destination) or two-way (source to destina-
tion and back), it is generally the two-way delay we are
concerned with. This value is called the RTT (round-trip
time). Note that the RTT, which can vary over time, is
rarely twice the one-way delay time, but it is frequently
approximated this way.

Latency arises from several distinct sources. First, there
is the propagation delay, generally controlled by nature.
For coaxial cable, bits propagate at between 60 and 90
percent of the speed of light, while for RF and optical,
they propagate at effectively the speed of light.

Another component of latency is transmission delay,
which derives directly from the bandwidth of the
underlying communication link. For example, sending
a 100-byte packet over a 100-byte-per-second network

link requires one second to inject the entire packet into
the network. Note that the transmission delay is just the
packet injection time; it says nothing about the addi-
tional time required for a packet to reach its destination.

The fi nal component of latency is the queuing delay,
which represents the time a packet must wait in a hold-
ing area (e.g., a queue in a router) while other packets are
transmitted, until the fi rst bit of that packet makes its way
onto the communication link. In many cases, including
the Internet, the queuing delay is not easily measured
and varies rapidly.

The RTT is the sum of all these latency components—
the propagation delay, the queuing delay, and the trans-
mission delay—for each communication link along both
the forward and reverse path between sender and receiver.

Now that we understand all the components of the
RTT, we can look at how it impacts the performance of a
data transfer. Given that TCP provides reliable communi-
cations over the potentially lossy IP network layer, there
must be some way to recover from unexpected packet loss.
To handle such losses, TCP uses packet retransmissions,
where the sender retransmits packets that have been lost
in the network. To implement retransmissions, TCP must
keep a copy of any data it has injected into the network
that it doesn’t yet know has been received properly by
the receiver. Said another way, TCP must buffer a copy of
a window’s worth of data (w in our terminology) until it
has received an acknowledgment for it. Thus, the window
size is never permitted to grow larger than the amount of
buffer space (i.e., memory) available at the sender. In real
systems, there is usually a fi xed pool of memory reserved
for each TCP connection (frequently called the socket buf-
fer, a value that applications can modify).

TCP PERFORMANCE
Given the concepts of the retransmission window and the
RTT, we can now reason about the performance of TCP’s
sliding window communication scheme. Let’s suppose
the sender uses a window size of 100 bytes. As such, the
sender is able to inject 100 bytes into the network but
then must wait until it receives the corresponding ACK
for that data. At an absolute minimum, the sender must
wait one RTT for this to happen, as there is no way it

Network
Performanceabout

you
don’tknow
jack

 QUEUE May 2005 57 more queue: www.acmqueue.com

could receive an ACK for a message headed to the destina-
tion earlier than the time it takes to reach the destination
and return. At that point, the sender can inject another
100 bytes into the network.

How does this behavior translate into throughput? In
steady state, the scheme moves w bytes of information
every RTT amount of time, which in simple mathemati-
cal terms means the throughput is w / RTT. You probably
remember from high school algebra that the function
y=1/x defi nes a hyperbola, implying that throughput
decays hyperbolically with increasing RTT. In other words,
as the RTT gets large, the throughput degrades rapidly.

So, why not just set the window size (w) to a corre-
spondingly larger value by increasing packet size (p) or
number of packets (k) to achieve better throughput? Pro-
tocol designers long ago addressed this question and con-
cluded that there was, in fact, an “optimal” window size
for a given network environment that maximizes network
throughput. The best window size turns out to be the
one that causes the sender to entirely “fi ll the pipe.” If we
think of the path between sender and receiver as a pipe,
we want to compute its volume by taking its “width” (its
throughput, which is really more like its cross-sectional
area, in bits per second) times its “length” (the one-way
delay, in seconds). This yields the BDP (bandwidth-delay
product) and is measured in bits. In other words, the pipe
size represents the number of bits that are physically in
transit “on the wire” between the sender and receiver.

The optimal window size allows the sender to keep
transmitting such that the network is busy and full, car-
rying data all of the time (hence, never idle and wast-
ing time). This turns out to be a pipe full of bits in the
forward direction, then another pipe full while waiting
for the ACK for the fi rst packet in the window to come
back. Once that fi rst ACK arrives, the sender slides its
window forward and can thus send another packet. If the
window is just big enough, ACKs continue to arrive back
at the sender just in time to continually send just the
right number of packets to sustain optimal throughput.
You can think of this as packets riding on the top of a full
conveyor belt, with the ACKs returning on the bottom.

Thus, achieving optimal throughput merely requires
that the sender set its window to the RTT times the
network bandwidth. This should be easy, right? Unfortu-
nately, there are many reasons the sender often ends up
using a suboptimal window. For example, as mentioned
previously, the sender’s buffer may be less than this opti-
mal size, imposing an operational limit.

Another reason for a suboptimal window is that the
sender may impose congestion control upon itself. This is

a long-standing area of research in TCP, and new meth-
ods appear regularly. Suffi ce it to say that the congestion
control procedure is an algorithm that restricts the TCP
window size (by reducing k in our equation) to a smaller
value than it would otherwise use to avoid overloading,
or congesting, the network. When the network becomes
overloaded and drops packets, TCP reduces its window
size in response, resulting in an effective reduction in its
overall sending rate. For networks where packet loss is a
strong indicator of congestion, this procedure works well
and causes each sender to adjust its window so it receives
some share of the network bandwidth. For other networks
(e.g., wireless or satellite), where losses may be a result of
data corruption instead of congestion, this technique can
artifi cially limit the throughput of TCP. This issue has also
been an area of intense research interest.

Another potential bottleneck can arise on the receiver
end. Even if the sender were capable of using the optimal
window size, the receiver might not have enough mem-
ory available to hold and process all of that data at once.
To deal with this fl ow control problem, TCP includes

in each packet a value called the window advertise-
ment, which essentially signals to the sender how much
additional data the receiver is willing to accept. If the
receiver’s buffer becomes full or is too small, the receiver
reduces the value signaled in the window advertisement
to a manageable level. This value can end up being less
than the optimal window size, thereby degrading perfor-
mance.

In addition, a peculiarity of the original TCP design
can cause the advertised window to be smaller than
desired. Because only 16 bits were allocated to the win-
dow advertisement fi eld in the TCP header, the maximum
possible window was limited to 65,535 bytes, a signifi cant
impairment to performance in so-called “large, fat net-
works” (those with large bandwidth-delay products). For-
tunately, in 1992, the issue was addressed and solved in

The best window size
turns out to be the one that causes
the sender to entirely “fi ll the pipe.”

Network
Performanceabout

you
don’tknow
jack

58 May 2005 QUEUE rants: feedback@acmqueue.com

an interesting way by RFC 1323. The technique involves
scaling the window value carried in the TCP header by
multiplying it by 2n for some value n, called the window
scale. The value of n is exchanged between the two TCP
endpoints at connection establishment time. As n is
allowed a maximum value of 14, the largest possible win-
dow that TCP can represent when window scaling is used
is 230 bytes (1 GB), considerably larger than the original
65,535-byte maximum. This capability is often called TCP
with “large windows” and is now automatically negoti-
ated by modern TCP implementations.

APPLICATION PERFORMANCE
All of the limitations to window size discussed so far are
a result of the transport protocol implemented in the
end systems. More issues arise when we look at applica-
tion performance. For example, although applications are
generally free to choose the sending and receiving buffer
sizes, they often don’t and simply rely on the default sizes
provided by the operating system. The “knobs” control-
ling the buffer sizes are often hidden behind layers of
software or middleware that the application programmer
has no control over. Even if the application deliberately
confi gures the buffers, the programmer must choose some
a priori value, but the optimal size cannot be known at
development time since different end hosts communicat-
ing over different network paths each need a different
optimal value. Moreover, esoteric details about how and
when an application sets these buffer sizes compared with
other connection setup functions can cause the large win-
dow negotiation to fail in subtle ways that the program-
mer may not catch. Finally, depending on the particular
application, making buffers unnecessarily large can
increase the overall end-to-end delay and hurt, instead of
help, application performance. Doing so can also increase
the memory pressure on a busy server, discouraging appli-
cation programmers from using such large buffers.

Even when all the buffers are set optimally, when the
network has plenty of bandwidth, and when TCP conges-
tion control works fl awlessly, application performance
over the wide area can still suffer signifi cantly because of
the application protocols themselves. Every TCP-based
application must implement some form of a higher-level

messaging protocol on top of the reliable TCP connec-
tion. Imagine for a moment how TCP acts when such
an application protocol ceases to supply data for trans-
mission on the network. Naturally, the TCP itself stops
sending.

Although TCP has various techniques and options to
overcome window limitation, it is powerless to overcome
a similar problem in the application. If an application’s
protocol involves requests and responses, and if it fails
to implement any way of “keeping the network full”
(e.g., by allowing multiple outstanding requests), it can

be driven into a condition where it is able to process
only one request per RTT. This sort of “chatty” applica-
tion behavior results in many ineffi cient back-and-forth
exchanges between the end hosts and causes performance
to degrade hyperbolically with increasing RTT, just like
the throughput of a sliding window protocol. This can
be a serious consequence, indeed, for users forced to use
applications never designed for large RTT or, more gener-
ally, large BDP environments.

It’s easy to see how these applications have become
commonplace. In a nutshell, it’s hard to build an applica-
tion protocol that doesn’t work well over a LAN. Consider
a LAN based on 100-Mbps Ethernet. LANs generally
span only a limited area and incur limited overall delay.
Assume the RTT on an Ethernet network is 0.1 ms (.0001
second). The BDP is then about 0.01 MB = 1.3 KB. For
an Ethernet packet of 1,500 bytes, the 1.3 KB represents
about one packet. It is easily represented by TCP with-
out window scaling and is almost certainly adequately

Systems may appear to run fi ne
in a LAN environment, yet be
unbearably slow in a WAN.

 QUEUE May 2005 59 more queue: www.acmqueue.com

provided for by default buffer size allocations. In fact,
because the optimal window size is only about one packet
for this small RTT, even a poorly engineered applica-
tion may perform well. Applications of this kind are in
some ways the most troubling, because they will perform
signifi cantly worse when moved from a LAN to a WAN,
where the RTTs are larger.

LAN VS. WAN
If we compare the LAN scenario with a high-speed WAN
scenario, the situation looks somewhat different. Assum-
ing that the RTT is now 80 ms and the bandwidth is 1
Gbps, we have a BDP of about 10 MB. With Ethernet
1,500-byte packet framing, that’s about 7,100 packets.
In this case it could be challenging to make full use of
the network unless care is taken at each layer (applica-
tion through transport) to ensure full utilization of the
network’s throughput capacity.

You can check out all these concepts using Ethereal
or your favorite packet capture and analysis tool. Set it
up to look for traffi c on TCP port 445, which allows you
to watch the Windows fi le sharing protocol in action.
Then, do something as simple as opening a document
from a network fi le share using Microsoft Word. Go back
to Ethereal, which will decode the fi le system protocol
commands, and eyeball the trace. What you’ll see will
probably surprise you: hundreds, if not thousands, of
commands going back and forth between your Word
application and the fi le server, just to open and load a
fi le. Depending on the document, you might see Word
open and close it several times, read different parts of
the fi le in nonsequential order, read the same data more
than once, copy the data to a temporary fi le, retrieve the
same meta-information about the fi le and the directory
multiple times, and so forth.

Every one of these operations is executed sequentially,
requiring a round trip across the network. On your LAN
this is no big deal: 1,000 round trips times 0.1 ms per trip
is a tenth of a second. Over an 80-ms WAN link, however,
1,000 round trips is more than a minute. Even if you
upgrade the WAN circuit to a 45-Mbps DS3 or a 155-Mbps
OC-3, it will still take more than a minute to open that
document.

If you take away just one concept from this article,
remember that network performance is more than
bandwidth. The seemingly simple problem of develop-
ing applications with good throughput performance may
not be so simple, after all. Bad performance creeps up
on us for many different reasons: physical factors (RTT,
packet loss), transport protocol factors (limited buffers,

limited ability to encode a large window, limited receiv-
ing application run rate), and application layer protocol
dynamics. A poor implementation of either the transport
or application layers can easily lead to poor performance.
To further frustrate us, entire systems may appear to run
fi ne in a LAN environment, yet be unbearably slow in a
WAN or other high-delay environment.

This article aims to help shed some light on these
sometimes-complex interactions, so that end users can
benefi t from deeper understandings of these issues among
application and middleware software developers. If any-
thing, you can now say you do know jack about network
performance. Q

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

KEVIN FALL has held numerous research and teaching
positions in networking at the University of California in San
Diego, Berkeley, and Santa Cruz; at MIT; and at the Lawrence
Berkeley National Laboratory. He was co-founder of NetBoost
Corporation (now an Intel company). Since 2000, he has
led the Delay Tolerant Networking (DTN) research effort at
Intel and served as chair of the Delay Tolerant Networking
Research Group (DTNRG), part of the Internet Research Task
Force, a companion organization of the Internet Engineer-
ing Task Force. As chair of DTNRG, he has been involved in
the formulation of DARPA’s Disruption Tolerant Networking
program. He received his B.A. in computer science from the
University of California, Berkeley, and his M.Sc. and Ph.D. in
computer science from UC, San Diego.
STEVE McCANNE co-founded Riverbed Technology in 2002
and serves as its CTO. Prior to Riverbed, he co-founded
FastForward Networks, which he later sold to Inktomi
Corporation. Before embarking on his business career,
McCanne served on the faculty in electrical engineering and
computer science at the University of California, Berke-
ley, where he taught and conducted research in Internet
protocols and systems. He received the 1997 ACM Doctoral
Dissertation Award for his Ph.D. work at U.C. Berkeley on
layered multicast video compression and transmission. In
2002 MIT’s Technology Review named him one of the top
100 young technology innovators for his Internet-related
contributions. From 1988 to 1996 he was a member of the
Network Research Group at the Lawrence Berkeley National
Laboratory, where he developed a number of widely used
technologies. This work included protocol development that
now forms the foundation of today’s Internet standard for
streaming media.
© 2005 ACM 1542-7730/05/0500 $5.00

