Verifying Completeness of Relational Query Results in
Data Publishing

HweeHwa Pang* Arpit Jaint

ABSTRACT

In data publishing, the owner delegates the role of satisfy-
ing user queries to a third-party publisher. As the publisher
may be untrusted or susceptible to attacks, it could produce
incorrect query results. In this paper, we introduce a scheme
for users to verify that their query results are complete (i.e.,
no qualifying tuples are omitted) and authentic (i.e., all the
result values originated from the owner). The scheme sup-
ports range selection on key and non-key attributes, project
as well as join queries on relational databases. Moreover,
the proposed scheme complies with access control policies, is
computationally secure, and can be implemented efficiently.

1. INTRODUCTION

In data publishing, a data owner delegates the role of sat-
isfying user queries to a third-party publisher [10, 16]. This
model is applicable to a wide range of computing platforms,
including database caching [12], content delivery network
[26], edge computing [14], P2P databases [11], etc.

The data publishing model offers a number of advantages
over conventional client-server architecture where the owner
also undertakes the processing of user queries. By pushing
application logic and data processing from the owner out to
multiple publisher servers situated near user clusters, net-
work latency can be reduced. Adding publisher servers is
also likely to be a cheaper way to achieve scalability than
fortifying the owner’s data center and provisioning more net-
work bandwidth for every user. Finally, the data publishing
model removes the single point of failure in the owner’s data
center, hence reducing the database’s susceptibility to denial
of service attacks and improving service availability.

*Institute for Infocomm Research, Heng Mui Keng Terrace,
Singapore 119613

fDepartment of Computer Science and Engineering, Indian
Institute of Technology, Bombay, Powai Mumbai 400076,
India

fDepartment of Computer Science, National University of
Singapore, 3 Science Dr 2, Singapore 117543

Permission to make digital or hard copies of all or part o§ twork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantagel, that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGMOD 2005 June 14-16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/G%.00.

Krithi Ramamrithamf

Kian-Lee Tan!

To illustrate, a financial information provider could push
historical stock prices, together with analytics software, to
proxy servers operated by partner ISPs (Internet Service
Provider). Such an arrangement enables users to run dif-
ferent pricing and risk models off the proxy servers directly
instead of depending on a central data center that might be
situated thousands of miles away, thus reducing communi-
cation latency and processing bottlenecks.

Since the publisher servers are outside of the administra-
tive domain of the data owner, and in fact may reside on
poorly secured platforms, the query results that they gener-
ate cannot be accepted at face value, especially where they
are used as the basis for critical decisions. Instead, there
must be provisions for the user to check the “correctness”
of a query result, in terms of:

e Authenticity: All the values in the result originated
from the data owner. For example, for the Employee
table and query in Figure 1, the publisher indeed re-
turns the result { [005, A, 2000, ..], [002, C, 3500, ..],
[001, D, 8010, ..] }, and not { [005, C, 2000, ..], [002,
A, 3500, ..], [001, D, 8010, ..] } (the names in the first
two records have been swapped), nor { [005, A, 2000,
..J, [002, C, 3500, ..], [001, D, 8010, ..], [009, X, 8050,
..] } (the last record is spurious).

e Completeness: Every record satisfying the query con-
ditions is included in the result; e.g., the result { [005,
A, 2000, ..] , [001, D, 8010, ..] } for the query in
Figure 1 is incomplete as [002, C, 3500, ..] is omitted.

The problem of checking the authenticity of query results
has been studied recently in [10, 13, 17, 20]. Most of the pro-
posed solutions [10, 20] require the owner to build and sign
a hierarchy of digests over each data set, which the query
processor subsequently uses to construct a correctness-proof
for each query result; whereas [13] and [18] allow the pub-
lisher to aggregate the signatures of the result tuples into
a single result signature to reduce transmission and verifi-
cation overheads. To the best of our knowledge, only the
proposal by Devanbu et al in [10] provides for the verifica-
tion of query result completeness. Their scheme works by
exposing the tuples immediately beyond the left and right
boundaries of the query result for user inspection, and prov-
ing to the user that all the result tuples (including the two
boundary tuples) are contiguous in the database.

For example, consider the Employee table in Figure 1.
which is sorted on the Salary attribute. With Devanbu’s
scheme, the query in Figure 1, issued by the HR manager,
would retrieve { [005, A, 2000, ..], [002, C, 3500, ..], [001, D,

Emp:

ID | Name | Salary | Dept | Photo |
005 A 2000 1
002 C 3500 2

001 D 8010 1

004 B 12100 3

003 B 25000 2

Access Control Policies:
- Human Resource (HR) Manager sees all records
- HR Executive sees only records with Salary < 9000

Query: SELECT * FROM Emp WHERE Salary < 10000

Figure 1: Example Database

8010, ..], [004, B, 12100, ..] }. By proving those four records
are contiguous in the database, the publisher can satisfy
the HR manager that the result contains all the qualifying
records, as the last record in the result has a salary that
exceeds her query condition.

Now, suppose that the access policy on the database states

that human resource (HR) executives can access only records
of employees earning less than $9000, while records of (pre-
sumably more senior) employees earning more than that
should be visible only to the HR manager. When the same
query in Figure 1 is submitted by a HR executive, the access
control mechanism would rewrite the query to: SELECT *
FROM Emp WHERE Salary < 9000. Devanbu’s scheme
would then return the same set of records as for the HR
manager, including the record with a salary of $12100, in
an attempt to prove that all records with salary less than
$9000 are included. Clearly, this contradicts the stipulated
access policy for the HR executive.
Contributions: The objective of our work is to devise an
authentication mechanism that enables a user to verify the
completeness of a relational query result generated by an
untrusted server, without compromising any access control
rules on the database.

We first introduce a basic scheme that generates, for an
ordered list (r1,72,..,7) and a query range [a,b], crypto-
graphic proof that the two entries bordering the answer
(riy..,75), 1 <1 < j < n fall outside the query range, i.e.,
ri—1 < a and b < 7j41. This scheme can be adapted easily
to support queries that retrieve up to all the data entries.
Moreover, the scheme is secure in the sense that it is com-
putationally infeasible for a rogue publisher to devise such
a proof for an incorrect query answer.

Building upon the basic scheme, we then present exten-
sions for verifying general select-project queries, as well as
an important class of select-project-join queries involving
primary key-foreign key joins. Thus, referring to the ex-
ample in Figure 1, our scheme would enable the publisher
to return only { [005, A, 2000, ..], [002, C, 3500, ..], [001,
D, 8010, ..] }, and provide proof that the next record has
a higher salary than stated in the query condition, with-
out revealing directly or indirectly what that salary amount
is. Besides range query that retrieves all the tuples within
a specified interval on the sorted attribute (e.g. “Salary <
10000” in Figure 1), our scheme can also handle range query
on unsorted attribute that pulls back multiple partitions of
tuples, such as “Dept = 1”7 in Figure 1.

We also demonstrate that, with just a simple enhance-
ment, our scheme can concurrently verify the authenticity
of a query result. Finally, to make our scheme amenable
to efficient implementation, we propose an algorithm that
generates the correctness proof in time complexity that is
logarithmic in the size of the domain underlying the ele-
ments 7;’s in the ordered list. The resulting query and up-
date overheads of our scheme are significantly lower than
existing solutions like [10] and [20] that are based on digest
hierarchies (specifically, Merkle Hash Trees as explained in
the next section).

The remainder of this paper is organized as follows. Sec-
tion 2 describes some cryptographic primitives for our work,
the data publishing model and associated threats, as well as
related work. The basic approach of our completeness ver-
ification scheme is introduced in Section 3. Section 4 then
extends the scheme to support select-project-join queries on
relational databases. Following that, Section 5 presents op-
timization techniques for the proposed scheme, and Section
6 analyses the computation and transmission costs incurred
by the scheme. Finally, Section 7 concludes the paper and
discusses avenues for future work.

2. BACKGROUND

This section begins by defining some cryptographic prim-
itives. Following that, we present the target system deploy-
ment model and the associated security threats, before sum-
marizing related work.

2.1 Cryptographic Primitives

Our proposed solution and many of the related work are
based on the following cryptographic primitives:

One-way hash function: A one-way hash function, de-
noted as h(.), works in one direction: it is easy to compute
a hash value h(m) from a pre-image m; however, it is hard
to find a pre-image that hashes to a given hash value. Ex-
amples include MD5 [22] and SHA [6]. We will use the terms
hash, hash value and message digest interchangeably.

Digital signature: A digital signature algorithm is a cryp-
tographic tool for authenticating the integrity of the signed
message as well as its origin. In the algorithm, a signer keeps
a private key secret and publishes the corresponding public
key. The private key is used by the signer to generate digi-
tal signatures on messages, while the public key is used by
anyone to verify the signatures on messages. RSA [24] and
DSA [5] are two commonly-used signature algorithms.

Signature aggregation: As introduced in [8], this is a
multi-signer scheme that aggregates signatures generated
by distinct signers on different messages into one signature.
Signing a message m involves computing the message hash
h(m) and then the signature on the hash value. To aggre-
gate t signatures, one simply multiplies the individual signa-
tures, so the aggregated signature has the same size as each
individual signature. Verification of an aggregated signature
involves computing the product of all message hashes and
then matching with the aggregated signature.

Merkle hash tree: We shall only explain the Merkle hash
tree with the example in Figure 2, which is intended for
authenticating data values di, .., ds4; a detailed definition
can be found in [15]. Each leaf node N; is assigned a di-
gest h(d;), where h is a one-way hash function. The value

N1p34= (N5 [N3y

N, = h(d) N,=h(d) Ng=h(d) N,=hd,)

Figure 2: Example of a Merkle Hash Tree

User
result +
public correctness
key query proof
Owner Publisher
data +
signatures

Figure 3: Data Publishing Model

of each internal node is derived from its child nodes, e.g.
Ni2 = h(N1 | N2) where | denotes concatenation. In
addition, the value of the root node is signed. The tree
can be used to authenticate any subset of the data val-
ues, in conjunction with a verification object (VO). For ex-
ample, to authenticate di1, the VO contains N2, N34 and
the signed Ni2z4. The recipient first computes h(d;) and
h(h(h(d1) | N2) | N34), then checks if the latter is the same
as the signed Ni2s4. If so, di is accepted; otherwise, di has
been tampered with.

2.2 System and Threat Models

Figure 3 depicts the data publishing model, which sup-
ports three distinct roles:

e The data owner maintains a master database, and dis-
tributes it with one or more associated signatures that
proves the authenticity of the database. Any data that
has a matching signature is accepted by the user to be
trustworthy.

e The publisher hosts the database, and performs query
processing on behalf of the owner, possibly after some
query-rewriting to comply with the access control rules
on the database. The access control model may be
discretionary, mandatory or role-based (e.g., see [25]).
Regardless of the exact model, the publisher should
ensure that only data that satisfy the rewritten queries
are returned, so as to avoid contradicting the access
control rules. There could be several publisher servers
that are situated at the edge of the network, near the
user applications. The publisher is not required to be
trusted, so the query results that it generates must
be accompanied by some “correctness proof”, derived

from the database and signatures issued by the owner.

e The user, who issues queries to the publisher explic-
itly, or else gets redirected to the publisher, e.g. by
the owner or a directory service. To verify the query
results, the user obtains the public key of the owner
through an authenticated channel, such as a public key
certificate issued by a certificate authority.

There are several security considerations in the data pub-
lishing model. Given that the publisher servers are not
trusted, one concern is privacy of the data. Obviously, an
adversary who gains access to the operating system or hard-
ware of a publisher server may be able to browse through
the database, or make illegal copies of the data. Solutions
to mitigate this concern include encryption (e.g. [3], [2],
[4]) and steganographic storage (e.g. [7], [21], [1]), and are
orthogonal to our work here.

Another concern relates to user authentication and access
control, in specifying what actions each user is permitted to
perform. Those issues have been studied extensively (e.g.
[9], [19], [25]) and are complementary to this work.

Our primary concern addressed in this paper is the threat
that a dishonest publisher may return incorrect query re-
sults to the users, whether intentionally or under the influ-
ence of an adversary. An adversary who is cognizant of the
data organization in the publisher server may attempt to
make logical alterations to the data, thus inducing incorrect
query results; an example is to illegally effect fund trans-
fers between two accounts. Even if the data organization
is hidden, for example through data encryption or stegano-
graphic schemes ([7, 21]), the adversary may still sabotage
the database by overwriting physical pages within the stor-
age volume. In addition, a compromised publisher server
could be made to return incomplete query results by with-
holding data intentionally. Therefore mechanisms for users
to verify the completeness of their query results are essential
here.

2.3 Related Work

The existing work that is most relevant to this paper is
[10], which describes a scheme for verifying the complete-
ness and authenticity of query results produced by untrusted
third-party publishers. The scheme requires the data owner
to construct a Merkle hash tree (MHT) over each database
table, and disseminate the signed root digest to users di-
rectly. To prove the completeness of the result for a range
query [a, b] over an ordered list (r1,72,..,75), the publisher
needs to disclose to the user the two entries that are imme-
diately below and above the query range, respectively. In
other words, the query result becomes (ri—1,7s,..,75,7j+1)
where ri—1 < a <7, 1; <b<rjt1,1 <i<j<n. The user
can then check the expanded result, together with an asso-
ciated verification object (VO), against the signed digest for
the MHT.

This work by Devenbu et al [10] is among the first so-
lutions for authenticating query results in data publishing.
Their scheme exhibits the following characteristics:

1. A MHT is constructed for every sort-order on a table.

2. Each VO contains digests all the way to the root of
the tree index, thus the VO grows linearly to the query
result and logarithmically to the base table.

3. Even attributes that are supposed to be filtered out
through projection must be offered to users for veri-
fication. Besides potentially conflicting with column-
based access control policies, this also could lead to
wasteful data transfer especially if the filtered attributes
are BLOBEs, e.g. the photo attribute in Figure 1.

4. To check for completeness, tuples beyond the left and
right boundaries of the query result must be exposed to
the user; this could contradict row-based access control
policies on the database, as explained in the Introduc-
tion.

5. The scheme works for range query on sorted attribute,
but not range query on unsorted attribute that pulls
back several segments of tuples.

[20] proposed a VB-tree that augments the B+-tree with
a hierarchy of digests. The digests are computed using a
cumulative and commutative hash function, thus overcom-
ing limitation (1) above. To avoid limitation (2), each node
digest in the VB-tree is signed, so the VO only needs to
contain proofs for the smallest subtree that envelops the
query result. Moreover, the VB-tree is built from the tuple
attributes (instead of working at tuple granularity); this cir-
cumvents limitation (3). However, VB-tree does not check
for completeness of query results.

More recently, Ma et al introduced an even more effi-
cient authentication scheme in [13]: The owner constructs
an MHT on the attribute values of individual tuples, then
signs the root digest of each MHT. To prove the authenticity
of a query result, the server only needs to supply a VO for
those attributes that are projected out in each tuple, plus
one single signature that combines the signed digest of the
result tuples using the signature aggregation scheme in [§]
or [18]. Again, query result completeness was not addressed.

3. BASIC APPROACH

The goal of our work is to devise an authentication mech-
anism that enables a user to verify the query results gen-
erated by an untrusted server. Our proposed mechanism is
designed to satisfy all the following objectives, of which the
first four are security requirements while the last is intended
to ensure that the overheads incurred by the mechanism are
acceptable in practice:

e Completeness — The user can verify that all the records
that satisfy the conditions of a query are included in
the result.

e Precision — Only records and attribute values that sat-
isfy the conditions of each query are returned. The mo-
tivation is to avoid contradicting access control rules
on the database, which would become (part of) the
query conditions through query rewriting.

e Authenticity — The user can check that all the values
in a query result originated from the owner; they have
not been tampered with, nor have spurious records
been introduced.

e Security — It is computationally infeasible for the pub-
lisher to cheat by generating a proof for an incorrect
query result.

e Efficiency — The procedure for the publisher to gener-
ate the proof for a correct (i.e., complete and authen-
tic) query result has polynomial complexity. Likewise
the procedure performed by the user to verify a query
result has polynomial complexity.

In Section 3.1, we first solve the problem of verifying com-
pleteness, while concurrently achieving high precision, of the
output for a greater-than predicate on a sorted list. Follow-
ing that, Section 3.2 gives an informal proof of the security of
our proposed scheme, and Section 4 extends the scheme for
relational Selection-Projection-Join queries. We also show in
Section 4.1 that our scheme can ensure authenticity, while
optimization techniques to achieve efficiency are presented
in Section 5.

3.1 Greater-Than Predicate

Problem Definition: Consider the data publishing model
in Section 2.2. Suppose the data owner creates a sorted list
of distinct values, R = (r1,72,..,mn), 7 € (L,U)V1<i<mn
where L and U are the lower and upper bounds of the do-
main, respectively. (Duplicate values can be disambiguated
by appending a replica number, so that the r;|repl# entries
are distinct.) Now a user submits a query for the r;’s that
are larger than or equal to some constant o € (L,U), i.e.,
or>a(R). The publisher needs to prove to the user that the
result Q = (ra,7a+1,..,7) is complete, namely,

e Contiguity — Each pair of successive entries r;, ;41 in
Q also appear consecutively in R.

e Terminal — The last element of Q is also the last ele-
ment of R, i.e., rp = rp.

e Origin — r, is the first element in R that satisfies the
query condition.

To simplify the solution, the owner inserts two fictitious
entries, a left delimiter ro € (L,U) and a right delimiter
rne1 € (L,U), into R, so the sorted list becomes R =
(ro, 71,72, ..; T, Tnt1). The two fictitious entries are certified
as such by the owner, so users would recognize them to be
delimiters if they are encountered in any query result. We
also assume that the lower and upper bounds, L and U, are
known to everyone.

Conceptually, the contiguity condition of the result can
be proved by creating a digital signature (see Section 2.1)
for each r;, 1 <1i < n, based on r; itself and the immediate
left and right neighbors:

sig(ri) = s(h(g(ri-1) | g(ri) [g(ri+1))) (1)

where s is a signature function using the owner’s private key,
h is a collision-resistant hash function, g(r;) is a function to
produce a digest for entry/record r; and is defined simply as
g(ri) = h(r;) initially, and | denotes concatenation. More-
over, for the two delimiters,

sig(ro) = s(h(h(L) [g(ro) | g(r1)))
sig(rnt1) = s(h(g(rn) | g(rn+1) | R(U)))

Together with the query result Q, the publisher returns
the associated signatures sig(r:), a <i < n-+1, plus g(ra—1)

IFor ease of presentation, we assume here that ro > L and
Tn+1 < U. With careful implementation, it is possible to set
ro =L and rp41 =U.

Result Q
K—/%

Publisher: h“'r“"'l(ra_l) I, Ty eee I, g,

TEITTTT

User: g, gr) glry,) «-- g)

\ S

sl(sig(r,))? s(sigr,,))?

Figure 4: Completeness Check for Greater-Than
Predicate

and g(rn+1). The user then computes the digest for every
entry in Q, and matches with the signatures:

s~ (sig(ri)) 7= h(g(ri-1) | g(ri) | g(risa))

to verify that successive entries in Q are indeed neighboring
entries in the original list R. In particular, a successful test
against the signature for the right delimiter 7,41 proves that
the terminal of the result, r,,, is correct.

To prove that the result has the correct origin, i.e., ro—1 <
a, theoretically we could re-define g as g(ri) = h(U — r;)
where h is an additive hash function such that h(xz + y) =
h(z) o h(y). The publisher would then return h(a — rq—1),
and the user would compute h(U — «) followed by g(ro—1) =
h(U —=rq-1) = h(U —a) o h(a — rq—1). Thus, the user could
derive g(rq—1) from just U and «, without knowledge of the
actual value of r4_1.

Unfortunately, there is as yet no known algebraic function
satisfying the additive property for which there is no simple
way to derive the inverse function h(z) for x < 0. The
existence of the inverse function allows a cheating publisher
server to return h(a—rq—1) even for rq—1 > «, thus breaking
the security of the above scheme.

In the absence of a suitable additive hash function, we
need to devise another way to check the result for correct
origin; we re-define the function g to:

g(r)=h""""1(r) (2)

where h'(r) hashes r iteratively such that h’(r) = A" (h(r))
and h°(r) applies a collision-resistant hash function h on 7.
To prove that r—1 < «, the publisher computes and returns
an intermediate digest h* "e=1"!(r,_1) (in place of g(rq—1)
above); the user then hashes it (U —a) more times to produce
g(ra_1) = hU—F@rar=D(p)y = pU=Te1=1(p, 1) for
verification with sig(rq). The scheme is summarized in Fig-
ure 4. The reason for choosing formula (2) which requires
R'(r) to be defined for i = a — rq—1 — 1, i > 0, instead
of g(r) = AY~"(r) which requires h'(r) to be defined for
i = a —re—1, © > 1, will become clear when we discuss
implementation optimizations in Section 5.1.

The above procedure is secure against cheating by the
publisher provided it cannot produce h® Te=17!(r,_;) if
re—1 > «. Therefore the inverse function hi(r) for i <0
must be either undefined, or computationally infeasible to
derive. This is why we use an iterative hash function here.
In particular, to ensure that h™'(r) # 7, we just need to

choose a hash function that outputs a different digest length
from the length of r. To avoid cluttering the presentation
of the paper, we will omit this consideration hereafter.

In addition, by picking a hash function h that is also one-
way (see Section 2.1), the user would not be able to reverse-
engineer the intermediate digest A"+~ (r,_1) to deduce
the value of rq—1.

Example: Suppose R = (2000, 3500, 8010, 12100, 25000),
and the range for the entries is (0, 100000). According
to our scheme, the owner inserts two fictitious entries, say
7 and 88888, so R becomes (7, 2000, 3500, 8010, 12100,
25000, 88888). Next, the owner derives g(r) = hY "7 (r) for
each r € R: g(7) = h'00900~7=1(7) = p99992(7) ¢(2000) =
10000020001 9000y = B97999(2000), and so on. Follow-
ing that, a signature is generated for each entry: sig(7) =
s(h(h(0)|g(7)|g(2000))) = s(h(h(0)|h”*** (7)| "™ (2000))),
5ig(2000) = s(h(R%92(7)|h°7°9°(2000)|A°%1%° (3500))), etc.

Now suppose the user submits a query for entries that
are larger than or equal to 10000. Together with the result
(12100, 25000), the publisher returns:

o /,10000-8010-1 (8010} — 1989 (8010),
o g(88888) = h'!''11(88888) for the right delimiter; and
e signatures for the result entries and the right delimiter.

Using these values, the user hashes h'%%(8010) (100000 —
10000) more times to obtain g(8010) = h'??(8010), cal-
culates ¢(12100) and ¢(25000) directly from their values,
then checks the signatures for the result entries and right
delimiter: s~'(sig(12100))?=nh(g(8010)|g(12100)|g(25000)),
571 (sig(25000))?=h(g(12100)|g(25000)|g(88888)),

s (sig(88888))?=h(g(25000)|g(88888)|h(100000)). If all the
signatures matched, the user accepts the result; otherwise
the result is incorrect.

Finally, while the number of hashing operations in calcu-
lating g(r) is linear in the size of the domain (L,U), the
computation cost can still be high for large domains, e.g.
long integers. Section 5.1 will explain how to reduce the
number of hashing operations to logarithmic in the domain
size.

3.2 Completeness Analysis

Theorem: Our proposed scheme can ensure query result
completeness with respect to the threat model in Section 2.2.
Proof sketch: The various cases where the publisher may
attempt to return incomplete results are as follows:

e Case 1: 7q—1 > . Since (o — rq—1 — 1) <0,
ho‘_”*_l(ra_l) is undefined, and it is computation-
ally infeasible for the publisher to find a replacement
to which the user can further hash (U — «) times to
get KU ma=171(p,).

e Case 2: Q = (when, in fact, Ir; € R such that
r; > «. This implies that r, > «a since R is ordered.
In this situation, the publisher is supposed to present
R~ =1 (ry,), which is then hashed (U — «) more times
by the user to derive g(r,) = RY ="~ (r,) for match-
ing with the right delimiter’s sig(rn+1). However, (a—
rn —1) <0, 50 R*" ™! (r,) is undefined or computa-
tionally infeasible to derive.

e Case 3: Q = (ra,..,75) where b < n; in other words,
the terminal of Q is wrong, and one or more of the

largest values in R are omitted. To match sig(rs), the
user requires g(rp41) according to formula (1). To de-
ceive the user into accepting g(rp+1) as the legitimate
right delimiter, the publisher needs to fake the owner’s
signature, or else ensure g(rp+1) tallies with the signa-
ture for the genuine right delimiter even though 7,41 #
rb+1, both of which are computationally infeasible.
Another possibility is for the publisher to pass off the
signed right delimiter g(rn+1) in place of g(ry+1) and
make sure that formula (1) produces the same digest.
However, this would require a collision in the collision-
resistant hash function h.

e Case 4: Q = (ra,..,Ti,7j,..,7n) where (1 + 1) < j;
in other words, the entries in Q are not contiguous
in R and one or more entries between r, and r, are
omitted. This query result causes the user to compare
h(g(ri—1)|g(ri)lg(r;)) against s~ (h(g(ri—1)|g(rs)|g(ri+1)))-
Since R is ordered, (riy1 < r;) and the comparison
succeeds only if there is a collision in the collision-
resistant hash function h (because g is defined in terms
of h in formula (2)).

e Case5: Q= (Ta,..,Ti,7j,Tk, .., ™n) but r; € R; in other
words, the publisher introduces a spurious entry in the
query result. To deceive the user, the publisher would
need a valid signature for r;, which can only be gen-
erated by the owner.

VERIFICATION OF RELATIONAL QUERY
RESULTS

In this section, we progressly extend the basic approach in
Section 3 for relational queries, i.e., range selection on sorted
attribute, projection, join and range selection on unsorted
attribute, in that order.

4.1 Selection Query

Selection: oc(R) = {r | r € R and C(r)} where R is a
relation sorted on attribute K, C' is a condition A; © ¢, A;
is an attribute of R, and © € {=,#,<,<,>,>}.

To verify completeness of the result of selection operations
in general, it is necessary only to support range selection of
the form o < K < (3, where K is an attribute of R and
«, (B are specified constants. This is because K = « is
equivalent to a < K < a, a < K < requires only a trivial
adjustment in formulating the result Q but does not affect
the verification procedure, and K # « can be mapped to
(L<K<a)U(a< K<U,).

For now, we require the selection to be on the attribute
K that R is sorted on, so that the result tuples occupy a
contiguous range on K, and we can formulate the problem
as follows. We will extend our scheme to support selection
on unsorted attribute in Section 4.4.

Problem Definition: Given a relation R with the schema
[K, A1, Aa, .., AR] such that R = (71,72,..,75) is sorted on
attribute K that has a range of (L,U), and A; are the other
attributes in R. The publisher wishes to prove to the user
that the result Q = (ra,7a+1,.,7) to the query condition
a < K < @ such that 7.K > a and r,. K < § is complete,
i.e., there is no record r; € R that satisfies o < r;. K < (3,
but r; € Q.

s1(sig(r,)?

TN

g(ra—l) g(ra) g(ra+l)
hU—I'g-] K- l(ra>l K) hra_l .K-L-%r.K) h(rd_lA
hash ""*-.,"Merkle
i T e . " Tree
times o
a-1, 1.K-1 *
h (ra»l . K) ...h.(.r.al.l. "A'l')" KX I h(ra._.}..AR.)..:‘:.

T~ //'AR]/'

Recordr,,;: [K A, A, ...

Query: a <K <B.Result: {Ir, 1,,1 1}
Figure 5: Completeness Verification for Select-

Project-Join Query

The scheme presented in Section 3.1 can be extended for
relational queries as shown in Figure 5. Again, the owner
inserts two fictitious records ro and r,+1 so that R becomes
(ro,T1, -, Tny Tnt1). We re-define formula (2) to:

g(r) = K5 e K RS (n K)IMHT (1. A) - (3)

To ensure that r,—1.K < «, the publisher returns an in-
termediate digest ho Ta—1- K1 (ra—1.K), which the user fur-
ther hashes (U —) times to produce hY ~"a—1-K=1 (3, | K),
as before. In addition, the publisher sends back the di-
gest h"e—1-K=L=1(r | K) so the user can compute g(rq—1)
with formula (3), and finally verify with sig(rq) through
formula (1).

Similar to the purpose that AV ~"%~1(r.K) serves,

R E=L=1(r K) is introduced in formula (3) for verifying
that rp4+1.K > (. This is done by getting the publisher to
return an intermediate digest R"0+15"8=1(r,,; K), which
the user then hashes a further (3 — L) times to obtain
h(Tb+1»K*ﬂ*1)+(5*L)(rb+1.K) — plrop1-K-L-1) (rb+1.K).
Again, the security of this verification requires

that hrb“'K*ﬁ*l(rbH.K) for rp11.K < 3 is either unde-
fined or computationally infeasible to derive. Adaptation of
the completeness analysis in Section 3.2 for the range selec-
tion here is straightforward.

The third component in the computation of g(r), MHT(r.A),
is the root digest of the Merkle Hash Tree on the attribute
values of record r, r.A1,..,7.Ar. This digest is needed to
uniquely identify each record r, as K is not necessarily a
primary key of R. To illustrate, suppose Q should contain

three records with the same K value “xyz”, r1 = (xyz, 1),
r2 = (Xyz, 2) and r3 = (xyz, 3). With just g(r) =
WU)R (), g(r) = glra) = gl TF

the publisher omits r2 from the query result, the user would
derive h(g(ro)|g(r1)|g(r3)) which matches

s~ (sig(r1)) = h(g(ro)lg(r1)lg(r2)), and h(g(r1)|g(rs)|g(ra))
which matches s~ (sig(r3)) = h(g(r2)|g(rs)|g(ra)); so the
omission of ro would go undetected.

Authenticity: One interesting consequence of incorporat-
ing MHT(r.A) in formula (3) is that sig(r) now depends on
all the attribute values of r. This means that any attempt at
tampering with the content of r will be detected. Therefore
the latest formulation enables the user to check the query
results for completeness as well as authenticity.

4.2 Selection-Projection Query

Projection: mx a,,. 4,(R) = {[r.K,m.A1,.,7.A)] | r € R}
where A;’s are attributes of relation R, sorted on K.

The projection operation can filter out any or all of the
attributes of R, except for K which the user needs in or-
der to test the query result for completeness. Unlike the
scheme in [10], we do not want the publisher to return to
the user any attribute values in the result tuples that should
be filtered out, so as to avoid compromising access control
rules by disclosing sensitive columns. Another reason is that
some of the omitted attribute values could be very large, e.g.
BLOBsS, so sending them to the user would incur space and
transmission overheads unnecessarily.

Our scheme allows unwanted attribute values to be re-
moved at the publisher. Since MHT(r.A) in formula (3)
is defined as the root digest of a Merkle Hash Tree on the
attribute values of record r, the publisher can provide the
digest in place of the actual value for those attributes that
are projected out, so the user can still compute MHT(r.A)
without the actual values.

Another issue to consider here is the handling of dupli-
cates in the result Q. For some queries, the user may want to
retain the duplicates, e.g. for the computation of SUM and
AVG. For other queries, the user may require the publisher
to perform duplicate elimination by specifying the keyword
DISTINCT. In the former case, the MHT(r.A) component in
formula (3) enables the user to uniquely identify each dupli-
cate, so the publisher cannot omit some duplicates without
being detected. In the latter case where duplicates are not
needed, our scheme requires the publisher to present g(r;)
and the signature sig(r;) for each eliminated duplicate r; to
enable all the signatures for Q to be checked.

4.3 Selection-Projection-Join Query

Join: R Mg S where C is a condition of the form A; © A;,
A; and A; are attributes of relations R and S respectively,
and © € {=,#,<,<,>, >}

Our proposed scheme (with g as defined in formula (3))
uses signatures on the key attribute of a relation to gen-
erate proof of the completeness of query results from that
relation. Therefore the scheme may not work for ad-hoc
joins on arbitrary attributes in general. However, primary
key-foreign key joins, an important class of join operations,
can be supported as follows.

Consider R.A; = S.A;, where A; is a foreign key attribute
in R and A; is the corresponding primary key in S. Refer-
ential integrity constraint mandates that every instance in
R.A; must have a matching entry in S.A;. Consequently,
joining with S.A; in itself does not cause any instance in
R.A; to drop out of the query result, so we need only deal
with selection operations on R.A; or S.A;. This can be
achieved by ordering R on A; at the owner’s master data-
base, and constructing signatures for this sort order. After
a join operation, the user checks the completeness of the re-
sult with respect to R.A;, possibly taking into account any
selection conditions on R.A; or S.A;, as with Select-Project

queries.

Another class of joins that can be supported is R.A; <
S.A;, where completeness of the join result can be checked
using the techniques presented earlier:

e Let the first entry in the ordered R partition of the join
result be min(R.A;), and the last entry in the ordered
S partition be max(S.A4;).

e Verify that the R partition contains all » € R satisfy-
ing L < r.A; < max(S.A4;).

e Verify that the S partition contains all s € S satisfying
min(R.4;) < s.4; < U.

4.4 Multipoint Query

In Section 4.1, we have considered range query where the
result tuples occupy a contiguous range on the attribute K
that the relation is sorted on. In the case of a query that
involves selection attribute(s) other than K, e.g. “SELECT
* FROM Emp WHERE Salary < 10000 AND Dept = 17
on the table in Figure 1, the result could comprise multiple
points or ranges on K. We call this a multi-point query.

In general, the result for a multi-point query can be treated
as a range of contiguous tuples on K, some of which satisfy
the query condition while others should be filtered out. Con-
sider a filtered record r; within the result range, e.g. [002,
C, 3500, 2, ..] in the above example.

e Case 1: The access control policy permits the user
to see r;. The publisher server returns the attribute
value(s) that fails the query condition, i.e., “r;.Dept
= 2” in the above example, plus the digests for the
remaining attribute values of ;. This enables the user
to compute g(r;) for matching with the signatures of
Ti—1, T and Tit1-

e Case 2: The access control policy prohibits the user
from seeing 7;, so his query is rewritten to filter out
ri. Here, the publisher server cannot return any of the
actual attributes of r; unlike Case 1. Our solution is to
introduce additional columns to the relation, one col-
umn for each user group in the access control model
to indicate whether individual records in the relation
are visible to that user group.

For example, consider an access model that differen-
tiates between users with security clearance levels of
“secret”, “confidential” and “unclassified”. The owner
would add three binary attributes to the example ta-
ble in Figure 1 to indicate whether each record can be
seen by users with “secret”, “confidential” and “un-
classified” clearances, respectively. Thus, for a fil-
tered record r; that is shielded from a user with only
“confidential” clearance, the publisher could return
“r;.confidential = No”, plus the digests for the other
attributes of ;. The user can then compute g(r;) for
matching with the signatures of r;_1, r; and 7;41.
This solution reveals the total number of records that
fall within the result range on K, but hides the actual
attribute values of the filtered records.

5. OPTIMIZATION

Having introduced our extended scheme for verifying the
completeness of relational query results, we now discuss how

Optimized
g(r) = h(h®(rl0) I .. I h®(rlm))

5 S/]

Bor0) K (rl1) «++ B (rlm)

It !

8 + 6, B+...+9,B"

Conceptual
g(r) = h’(r)

d=U-r-1=

Figure 6: Optimized g(r)

the scheme can be implemented efficiently. For clarity, we
focus on the Greater-Than predicate here, though the tech-
niques apply to relational queries too.

5.1 Reduction in Hashing Operations

First, we note that g(r) = hY~""!(r) is very expensive
to compute. For example, for a four-byte integer field, g(r)
entails 232 hashes in the worst case, which requires almost
60 hours at 50 psec per hash! To reduce the processing
overhead, we observe that in general any number 6 € [0,U —
L) can be represented by a polynomial:

§ = 8o+81.B+82.B%+ ..+ 6,mn.B™

with number base B > 1 and m > [logg(U — L)]. For
example, B = 2 yields the binary representation, and B =
10 gives the decimal representation. If 0 < 6, < B, V0 <
i < m, we say the polynomial is the canonical representation
for §.

This observation can be exploited to optimize the deriva-
tion of g(r), as depicted in Figure 6: The owner replaces
RY="71(r) in formula (2) with h%0(r|0) | h%1(r[1) | ..
| hotm (r|m), where 6, = U —r—1. After executing a query,
the publisher returns m + 1 intermediate digests h:° (r]0),
R°e1(r(1), .., h%¢m (r|m) where d.; are the coefficients in
the polynomial representation for 0 = a —rq,—1 — 1. Let
dc,i be the coefficients in the canonical representation for
0. = U — «; the user then hashes héevo(r|0) a further 4.
times, h%>1(r|1) another 8. times, and so on, to produce
R0 (7]0), ht1 (r[1), .., A% (r|m). As it is possible to have
some §; = 0, h7(.) must be defined for j = 0.

To illustrate, suppose 6 = U —rq—1 —1 = 5555,
be = U—a = 142x10+3x10°+4x 10 so, e = & —
0e = a—Ta_1—1 = 44+3x10+2x10%+1x10%. The pub-
lisher returns the digests h*(rq—1|0), h3(ra—1|1), h*(1a—1]2),
h*(ra—1|3). Upon receiving them, the user further hashes
h*(r4—1|0) once to produce h®(rq—1]0), h*(ra—1]1) twice to
produce h’(r,—1|1), etc. With that, the user computes:

g(ra—1) = (R’ (ra-1|0) | h®(ra—1[1) |
h*(ra-1]2) | h®(ra-1/3))

and from there confirms that r,_1 < o as before.

There is a complication, though. Suppose the query con-
dition is such that 6. = U —a = 2828. The publisher now
gets ¢ = a—1rq—1 —1 = 2727, and the above procedure
produces h'®(ra_1]0), h*(ra—1]1), h'®(ra—1|2), h*(ra—1|3),
corresponding to the non-canonical representation
5555 = 15+4x10+15x102+4x103. In general, this compli-
cation arises if 3 0 < ¢ < m such that §;,; < dc;. To enable

the user to succeed with the verification, the owner would
have to produce digests corresponding to the non-canonical
representations too. Unfortunately, there are up to 2™ non-
canonical representations in the worst case. Clearly, this
overhead is unacceptable.

To limit the number of non-canonical representations that
must be supported, we observe that while the user knows
only the value of ., the publisher has access to both é: and
0c. Thus the publisher can return digests corresponding
to certain preferred non-canonical representations for d. in
order to influence the representation for §, that the user
derives. Referring to our running example, if the publisher
returns digests corresponding to the representation . = 7+
12 x 10 4+ 6 x 10% 4+ 2 x 10® instead, the user would derive
final digests corresponding to 5555 = 15+ 14 x 10+ 14 x
10% 4+ 4 x 10°.

Definition: For any § > 0, a representation § = do +
01.B+ 82.B*> + ..+ 6,,.B™ is walid if 6;,; > 0,0 < i < m.

Definition: Given §; > 0, let its canonical representation
be d; = 6io+6:,1.B4612.B>+..+8;m.B™, 0< 6 < B.
We define m preferred non-canonical representations:

((dt,0+ B)
+ (51 +B—1).B+..
+ (0+; + B—1).B*
+ (64,41 — 1).B**

is — + 04,i02. B2 4 .
¢ + 8¢m.B™ for 0 <i<m
(6t,0 + B) + (6,571 — 1).B
+04,0.B% + .
\ + 8¢,m.B™ fori =20

Note that some of the m representations may not be valid.
For example, for the canonical representation §; = 3+ 2 X
B+0x B?2+3x B?’7 1§, is not valid because 02 — 1 <0.

Lemma: For any 0 < é. < §; with canonical representation
8¢ = 6c0+0e1.B+6c2.B>+ ..+ dem.B™, 0 < 6 < B,
there exists a valid representation imaz 0t, imaz is the largest
i where §;0+ ..+ 6t,i.Bi < beo+..+ 6071-.Bi holds, such that
8. = ‘'maz§, —§. has a valid representation de = de0 +
8e1.B +8c2.B® + .. 4 em.B™ with Se; > 0.

Proof: Since the coefficients of the canonical representa-
tions satisfy 0 < §;; < B and 0 < §.,; < B, we must have:

00 <bci=(0t+B)—dc

< 2B for i =0,
00<bci= (0 +B—1)—0cy;

<2B—1 for1<i<imas,
00 <0de;=(0t;i —1) —dcys

<B-1 for i = imax + 1,

©0<e;i=20;—6ci<B for imaez +1 <i<m
Therefore J. is a valid representation with 0 < d.; < 2B.

The lemma allows the system to support only the canon-
ical representation for d;, plus m preferred non-canonical
representations iét, 0 < 7 < m as defined above. We thus
arrive at the following implementation scheme.

Signature Construction by Owner (Figure 7): During
creation and update of the sorted list R = (70, 71, .., Tn, Tn+1)
(recall 7o and 7,41 are fictitious entries), the owner derives
the signature for each new entry r; as follows:

e Starting with the m non-canonical representations 15,

Sig(ri) = S(h(g(ri-l) l g(ri) l g(ri+1))) and the canonical representation d: = d¢,0 + 6¢,1.8 +

61,2.B2 + .4 6t,m.B™ for 6 = U —r; — 1, the owner
/ T \ computes a digest for each valid non-canonical repre-
sentation:
g(riy) g(r,) g(ri,y)

I h(s,) = h Bot0 10 | .. poem rilm
h(h@) | .-.) (8t) = h(h™0(ril0) | .. | K% (ri[m)

h('6e) = (R0 (r:]0) |

Merkle / \ h&, 1+B-1 (T"L | 1) | B |

Hash Tree-") Rt (1) |
) St g+1— ;
h(OSI) vee h(JSt) oo h(m»18t) poti+1—1 (T’i |.7 + 1) |
e T B (i +2) | |
h(h®"*P(r0) I.. | K (r.lm)) hoem (rilm))

0=U-r-1=6,+9,B+..+3 .B"

For an invalid representation 6; where 8; ;41 —1 < 0,
h%t+171 is undefined, so we drop it from the compu-
Figure 7: Signature Construction tation of the digest:

h(761) = h(h*0" P (ri]0) |

|:| : Sent by publisher to user RO B (1) | |
6=U-r-1;6,=a-r-1;6,=U—-a ROt TB=L (] 5) |
- ho0a+2 (rglj 4+ 2) | ..
s (fsiglr)]) = heer,,) 1) 1 865,002 e

B (i)

/ T \ e Next, a Merkle Hash Tree (MHT) is built over the

g(rdl) g(r,) a(r,,,) m non-canonical representations for §;. The root di-
Merkle gest of the MHT is concatenated with the digest of
Mok \ “.__ Digests for unused the canonical representation, then hashed to produce

> representations for &, a digest for g(ri).

h(%s) e Similarly, g(r:—1) and g(ri+1) are derived for the left
L5 and right neighbors, respectively.

\ e The signature of r; is now generated using formula (1).

BB 10) o Hon(r, Im)
Completeness Verification between Publisher and

gaShT TgaSh User (Figure 8, in which the items in italized, bold font
Intermediate ti;ﬁes ti?x?es are transmitted by the publisher to the user): To verify the
dioest \>| hoeo(r. 10) houn(r, \m) | result Q = (ra,Tat1,..,7n) for query condition r > «, the
1gests a1 i ~a-l user checks the signature sig(r;) for each r; € Q, which in
(a) Verifyingr,, < o turn requires g(r;) for a—1 < i < n+1. To compute g(ro—1)

& (see Figure 8(a)):
s'l() =h(g(r,) | g(r) | g(r;,1))? e The publisher utilizes its knowledge of U, o and 741
to compute the canonical representations for 6 = U—

/ T \ Ta—1—1land . = U — a.
o If 6,5 > 6.1 Vi,

g(ri.y) g(r) g(ri,y) e
. — A, is equated with the canonical representation

/ \ Root digest of for 6,.

<_
h(llat) MHT .On lnon' — Return the root digest of the MHT over the non-
canonica ical tations of d.
5 Sum canonical represen ¢
h(h*(r;|0) | .. I h™"(r;lm)) representations ‘
T of § otherwise,
t)

— Starting from the; largest ¢ where d¢,0+..4+06¢,:.B* <
r; 0c,0 + .. + d¢,5.B* holds, increment imaz until the
(b) Verifying Result Entry r; non-canonical representation *me*d; is valid. A

is equated with tmaz §, - A valid ™ §, must exist

Figure 8: Completeness Verification because §¢ > de.

— Return the digest of the canonical representation
of d;, as well as the digests in the MHT covering
those representations for §; that are not used as
Ay (there are [logam] such digests as explained
in Section 2.1).

e The coefficients in the polynomial representation for
de = a—rq—1—11is then calculated as: de,; = A¢i—
dc,i- The publisher then computes m + 1 intermediate
digests for h°i(rq_1]i), 0 < i < m, and returns them
to the user.

e Upon receiving the digests, the user first determines
the canonical representation for . = U — «, then
hashes each of the h’e:i (ra—1]%) digests dc,; more times
to derive h™ti (1q_1]i).

e Next, the user concatenates them and derives the di-
gest h(A¢). If A, is the canonical representation, h(A¢)
is then combined with the MHT root digest from the
publisher to produce g(re—1). If not, h(A¢) is com-
bined with the MHT digests to derive the root digest,
and then the digest for the canonical representation to
produce g(rq—1).

As shown in Figure 8(b), for each r; where a < ¢ <n+1,
g(r;) is produced by:

e The publisher returns the root digest of the MHT over
the non-canonical representations *d; for 6 = U —
Ty — 1.

e With the query result 7;, the user generates the m +
1 digests k%> (r;]j), and combines them into a single
digest for the canonical representation for d;. This
digest is then concatenated with the root digest of the
MHT from the publisher to produce g(r;).

5.2 Reduction in Signhatures

Another implementation issue to consider is that the over-
heads for transmitting and verifying a signature for each r; €
Q can be very large, especially if the communication band-
width or processing capability of the user is limited. To
lighten this overhead, the publisher can combine the signa-
tures associated with individual entries in the result Q into
one aggregated signature, using the techniques proposed in
[8] or [18]. This optimization also helps the user to cut down
to just one signature verification operation per query result.
The resulting savings in computation can be substantial as
signature verification is around 100 times slower than hash-
ing operation [23], and Q can potentially contain thousands
of entries.

However, signature aggregation must be implemented care-
fully, as explained in [18]. To ensure aggregated signatures
are secure, the aggregation scheme should possess the im-
mutability property, i.e., it is difficult for an unauthorized
party to generate new verifiable aggregated signatures after
amassing enough aggregated signatures from past query re-
sults. To achieve immutability, any of the several practical
aggregation schemes proposed in [18] can be adopted.

6. COST ANALYSIS

Having presented our authentication mechanism, we now
analyze the overheads that it introduces for relational queries
with greater-than selection; extension to range selection is

straightforward. We begin by quantifying the communica-
tion overhead, before looking at the incremental computa-
tion cost. Due to space constraint, we shall focus on the
costs involving the user, who shoulders most of the run-
time authentication load and is likely to be the resource-
constrained party in the system.

The parameters used in the analysis are summarized in
Table 1, while the values for Chasn and Csign are obtained
from [23]. For computation costs, we model only hashing
and signature verification; other operations like concatena-
tion are assumed to be negligible relative to Chasp and Cyign.
(The hashing operations here involve one-way hash functions
like SHA [6], which are much costlier than simple hash func-
tions used in, say, conventional hash index.)

| Parameter | Meaning | Default |
Chash Computation cost of a hash | 50 usec
operation
Cleign Computation cost for verify- 5 msec
ing a signature
Cluser Total computation cost in- —
curred by the user
Maigest Size of a hash/digest (bits) 128
Moign Size of a signature (bits) 1024
Myser Total size of authentication —
information sent to the user
M, Size of a data entry (bytes) -
B 0=00+0.B+..+6,.B™ —
m m =loge(U — L) -

Table 1: Cost Parameters

6.1 Communication from Publisher to User

The authentication information that the publisher trans-
mits to the user includes the following components:

e Digests for computing ¢g(ra—1). The RV™"571(r K)
component in formula (3) requires the m + 1 interme-
diate digests corresponding to the polynomial repre-
sentation for h% (r4_1), [logam] digests in the MHT
covering the representations for 6 = U — 741 — 1 that
are not selected, plus one digest for the canonical rep-
resentation in the worst case (if a non-canonical rep-
resentation ®d; is used). The other two components
in formula (3) require one digest each. The traffic
amounts to [m + 4 + [logam]] X Maigest-

e Digests for computing g(r:), a <14 < n. For each such
ri, the publisher sends the root digest of the MHT over
the non-canonical representations for 6 = U —r; — 1,
the root digest of the MHT over the non-canonical
representations for ; = r; — L — 1, as well as a digest
for MHT(r.A). The traffic for all the result entries
amounts to 3 X (n —a + 1) X Myigest-

e Digest for the right delimiter, g(rn+1); the size is Mgigest-

e The aggregated signature, derived from the individ-
ual signatures for the result entries. The size of this
signature is Msign.

The total traffic to the user is, therefore:
Muyser = [m +4+ 3(n —a+ 1) + Hoggmﬂ
XMdigest + Msign (4)

160+

S 120
o
®
()]
=
% 80-
S
(@]
O
=
8 40-
'_
o+ —F——————
0 512 1024 1536 2048

Record Size (Bytes)

Figure 9: User Traffic Overhead

Figure 9 plots the user traffic overhead, defined as Myser/
ResultSize where ResultSize = |Q| * M,, against the data
entry size M, for various number of result entries |Q|. The
parameters Mgigest and Msign are set to their default val-
ues of 128 bits and 1024 bits, respectively. The figure shows
that the traffic overhead reduces very quickly as |Q| grows
beyond one, as the cost of the aggregated signature is amor-
tized over more result entries. This reduction stabilizes at
around |Q| = 5, at which point the per-entry overhead falls
within 25% for M, > 512 Bytes.

From formula (4), we also observe that the space overhead
incurred by our proposed solution is linear in the result size
(i.e., n —a + 1). This compares favorably with the only
existing scheme by Devanbu et al in [10] that enables veri-
fication of query result completeness; the space overhead of
their scheme grows linearly to the query result, as well as
logarithmically to the underlying database.

6.2 Computation Overhead on the User

The computations performed by the user in authenticat-
ing the query results include:

e Derivation of g(rq—1). This entails hashing the m + 1
intermediate digests corresponding to the selected rep-
resentation for 6 = U —r,—1—1, each of which requires
up to B additional hashes. In the worst case (where
the selected representation is non-canonical), the re-
sulting digest is then combined with the digests in the
MHT over the non-canonical representations, and the
digest for the canonical representation to get the first
component in formula (3), which require [logam] +
1 hashes. Evaluation of formula (3) incurs another
hash. The computation cost amounts to [B(m + 1) +
[logam] + 2] X Chash-

e Derivation of ¢g(r;), a < ¢ < n. For each such r;, the
user first computes the m + 1 digests corresponding to
the canonical representation for §; = U — r; — 1, each
of which requires up to B hashes. Next, combining the
m-+1 digests incurs another hash. This is repeated for
0; = r; — L — 1. Evaluation of formula (3) incurs an-
other hash. The computation for all the result entries
thus amounts to (n—a+1) x [2B(m+ 1) + 3] X Chash.

1254—~—#Rec=1
—+— #Rec=5
—0— #Rec =10

100+

754

50-_H//

25+

User Computation Overhead (ms)

Figure 10: User Computation Overhead

e Derivation of h(g(ri—1)|g(ri)|g(rit1)) for each a < ¢ <
n, amounting to (n — a + 1) X Chash.

e Derivation of aggregated digest, then matching with
the aggregated signature, costing Chasn + Csign.

The total computation cost incurred by the user is:

Cuser = [2(n —a+ 1)(B(m +1) +2) + B(m + 1)
+ “ngm-‘ + 3] X Chash + Csign (5)

Since m = [logs(U — L)] is a tunable parameter, Cuyser
can be minimized by choosing a B (or, equivalently, an m)
value such that y = 2(n —a + 1)(B(m + 1) + 2) + B(m +
1) + [logam] + 3 is minimum. It can be shown that this
occurs at 2 < B < 3 where 5—% = 0. To illustrate, Figure 10
plots B against Clyser for different result sizes (i.e., n —a +
1). Therefore, if computation overhead at the user is the
performance bottleneck in a deployed system, B can be set
to 2 or 3 depending on the actual range [L, U].

With B = 2, m = logp2®? = 32 if the key is an integer,
for example. Using the default values for Chasn and Csign
(obtained from [23]), formula (5) reduces to Cuser = 6.8(n—
a + 1) + 8.7 msec. Thus, Cyser is roughly 15.5 msec, 689
msec and 6.81 sec for result size of 1, 100 and 1000 records,
respectively, which is not significant.

6.3 Database Updates

Having evaluated the overheads for verifying query re-
sults, we now consider the impact of our proposed scheme
on update operations.

To produce completeness proof for query results at run-
time, the owner has to pre-generate signatures on each at-
tribute or group of attributes that are expected to partic-
ipate in the query conditions. This is analogous to creat-
ing B+-trees on those attributes to facilitate efficient query
processing. In fact, our extended scheme (with g as defined
in formula (3)) can be incorporated into the B+-tree, by
storing the signatures for each record along with its pointer
in the leaf node of the B+-tree.

According to formula (1), each record update affects the
signature of the record itself, and its left and right neighbors.

This is conceptually similar to updating a doubly-linked list.
Since a B+-tree node typically contains hundreds of entries,
most of the time the three affected signatures would reside
within the same node, so there is no additional I/O or (page)
locking overhead. In the worst case, the affected signatures
would span only two adjoining leaf nodes. Hence the update
overheads incurred by our scheme are significantly less than
Merkle Hash Tree schemes (e.g. [10], [20]) that need to
propagate every update up to the digest of the root node,
which becomes a locking contention hot-spot. Therefore,
the scheme in this paper is more appropriate for databases
that experience non-negligible update activities.

7. CONCLUSION

In this paper, we present a scheme for authenticating re-
sults generated by untrusted (relational) query processors.
Our scheme enables the query processor to produce proof
that each result is complete (i.e., no qualifying tuples are
omitted) and authentic (i.e., all the result values originated
from the owner). The scheme does not disclose more data
than necessitated by the query conditions, hence it does not
contradict the access control policies on the database. More-
over, the scheme is computationally secure, and introduces
low query processing and update overheads compared to ex-
isting alternatives.

We are currently extending this work in a number of ways.
One extension is to support multi-dimensional indices, to
avoid having to generate a set of signatures for every in-
teresting sort order on a table. We are also looking into
generalizing the proposed scheme for non-relational struc-
tures, e.g. directed acyclic graphs. Another extension is to
implement the scheme in an open-source database system.

8. ACKNOWLEDGEMENTS

We would like to thank Robert H. Deng, H.V. Jagadish,
Wang-Chiew Tan and the reviewers for their helpful sugges-
tions.

9. REFERENCES

[1] DriveCrypt Secure Hard Disk Encryption.
http://www.drivecrypt.com.

[2] E4M Disk Encryption. http://www.e4m.net.

[3] Encrypting File System (EFS) for Windows 2000.
http://www.microsoft.com/windows2000/techinfo/howit
works/security /encrypt.asp.

[4] PGPdisk. http://www.pgpi.org/products/pgpdisk/.

[5] Proposed Federal Information Processing Standard for
Digital Signature Standard (DSS). Federal Register,
56(169):42980-42982, 1991.

[6] Secure Hashing Algorithm. National Institute of Science
and Technology. FIPS 180-2, 2001.

[7] R. Anderson, R. Needham, and A. Shamir. The
Steganographic File System. In Information Hiding, 2nd
International Workshop, D. Aucsmith, Ed., Portland,
Oregon, USA, April 1998.

[8] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate
and Verifiably Encrypted Signatures from Bilinear Maps.
In Proceedings of Advances in Cryptology —
EUROCRYPT’03, E. Biham, Ed., LNCS, Springer-Verlag,
2003.

[9] S. Chokani. Trusted Products Evaluation. Communications
of the ACM, 35(7):64-76, 1992.

[10] P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine.
Authentic Data Publication over the Internet. In 1/th IFIP
11.3 Working Conference in Database Security, pages
102-112, 2000.

[11] R. Huebsch, J. Hellerstein, N. Lanham, B. Loo, S. Shenker,
and I. Stoica. Querying the Internet with PIER. In
Proceedings of the 29th International Conference on Very
Large Databases, pages 321-332, 2003.

[12] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh,
H. Woo, B. Lindsay, and J. Naughton. Middle-Tier
Database Caching for E-Business. In Proceedings of the
2002 ACM SIGMOD International Conference on
Management of Data, pages 600611, 2002.

[13] D. Ma, R. Deng, and H. Pang. Authenticating Query
Results From Untrusted Servers Over Open Networks. In
Submitted for Publication, 2004.

[14] D. Margulius. Apps on the Edge. InfoWorld, 24(21), May
2002. http://www.infoworld.com/article/02/05/23/
020527feedgetci-1.html.

[15] R. Merkle. A Certified Digital Signature. In Proceedings of
Advances in Cryptology-Crypto ’89, Lecture Notes in
Computer Science, volume 0435, pages 218238, 1999.

[16] G. Miklau and D. Suciu. Controlling Access to Published
Data Using Cryptography. In Proceedings of the 29th
International Conference on Very Large Data Bases, pages
898-909, 2003.

[17] E. Mykletun, M. Narasimha, and G. Tsudik.
Authentication and Integrity in Outsourced Databases. In
Proceedings of the Network and Distributed System
Security Symposium, February 2004.

[18] E. Mykletun, M. Narasimha, and G. Tsudik. Signature
Bouquets: Immutability for Aggregated/Condensed
Signatures. In Proceedings of the European Symposium on
Research in Computer Security, September 2004.

[19] B. Neuman and T. Tso. Kerberos: An Authentication
Service for Computer Networks. IEEE Communications
Magazine, 32(9):33-38, 1994.

[20] H. Pang and K. Tan. Authenticating Query Results in
Edge Computing. In IEEE International Conference on
Data Engineering, pages 560-571, March 2004.

[21] H. Pang, K. Tan, and X. Zhou. StegFS: A Steganographic
File System. In Proceedings of the 19th International
Conference on Data Engineering, pages 657668,
Bangalore, India, March 2003.

[22] R. Rivest. RFC 1321: The MD5 Message-Digest
Algorithm. Internet Activities Board, 1992.

[23] R. Rivest and A. Shamir. PayWord and MicroMint: Two
Simple Micropayment Schemes. In
http://theory.les.mit.edu/ rivest/RivestShamir-mpay.pdf
(This version is dated 2001). An earlier version appears in
Security Protocols, Lecture Notes in Computer Science,
LNCS 1189, pp. 69-87, 2001.

[24] R. Rivest, A. Shamir, and L. Adleman. A Method for
Obtaining Digital Signatures and Public-Key
Cryptosystems. Communications of the ACM,
21(2):120-126, 1978.

[25] R. Sandhu and P. Samarati. Access Control: Principles and
Practice. IEEE Communications Magazine, 32(9):40—48,
1994.

[26] S. Saroiu, K. Gummadi, R. Dunn, S. Gribble, and H. Levy.
An Analysis of Internet Content Delivery Systems. In
Proceedings of the 5th Symposium on Operating Systems
Design and Implementation, pages 315-327, 2002.

