
Conceptual Partitioning: An Efficient Method for Continuous
Nearest Neighbor Monitoring

Kyriakos Mouratidis† Marios Hadjieleftheriou§ Dimitris Papadias†
† Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

{kyriakos, dimitris}@cs.ust.hk

§ Department of Computer Science
Boston University
Boston, MA, USA
marioh@cs.bu.edu

ABSTRACT
Given a set of objects P and a query point q, a k nearest neighbor
(k-NN) query retrieves the k objects in P that lie closest to q. Even
though the problem is well-studied for static datasets, the
traditional methods do not extend to highly dynamic
environments where multiple continuous queries require real-time
results, and both objects and queries receive frequent location
updates. In this paper we propose conceptual partitioning (CPM),
a comprehensive technique for the efficient monitoring of
continuous NN queries. CPM achieves low running time by
handling location updates only from objects that fall in the
vicinity of some query (and ignoring the rest). It can be used with
multiple, static or moving queries, and it does not make any
assumptions about the object moving patterns. We analyze the
performance of CPM and show that it outperforms the current
state-of-the-art algorithms for all problem settings. Finally, we
extend our framework to aggregate NN (ANN) queries, which
monitor the data objects that minimize the aggregate distance with
respect to a set of query points (e.g., the objects with the
minimum sum of distances to all query points).

1. INTRODUCTION
Early work in spatial databases focused on the point k-NN query
that retrieves the k (≥1) objects from a static dataset that are
closest (according to Euclidean distance) to a static query point.
The existing algorithms (e.g., [H84, RKV95, HS99]) consider that
the data are indexed with a spatial access method and utilize some
pruning bounds to restrict the search space. In addition, several
papers study variations of NN search such as reverse NNs
[SRAA01] and constrained NNs [FSAA01]. Recently, the focus
has shifted towards moving NN queries and/or objects in client-
server architectures. Song and Roussopoulos [SR01] reduce the
number of moving NN queries over static objects by introducing
some redundancy. In particular, when a k-NN query is processed,
the server sends to the client a number m > k of neighbors. The k
nearest neighbors at a new location q' will be among the m objects
of the first query q provided that the distance between q and q' is
within a range determined by k and m. For the same settings
(moving query - static data objects), Zhang et al. [ZZP+03]
propose the concept of location-based queries that return the NN

of q along with its Voronoi cell, i.e., the area around the query
point where the NN set remains the same. The Voronoi cell is
computed on-the-fly using an R-tree on the data objects. Given
clients and data objects that move with linear and known
velocities, time-parameterized [TP03] queries report, in addition
to the current NN set, its validity period and the next change of
the result (that will occur at the end of the validity period). Linear
NN [BJKS02, TP03] queries return all NN sets up to a future
timestamp qt assuming that there are no updates of the velocity
vectors between the current time and qt.
All the above techniques target the efficient processing of a single
snapshot query since they report the NN set at the query time,
possibly with some validity information (e.g., expiry time,
Voronoi cell), or generate future results based on predictive
features (e.g., velocity vectors of queries or data objects). On the
other hand, continuous monitoring: (i) involves multiple long-
running queries (from geographically distributed clients), (ii) is
concerned with both computing and keeping the results up to
date, (iii) usually assumes main-memory processing to cope with
the intensive (object or query) location updates, (iv) attempts to
minimize factors such as the CPU or communication cost (as
opposed to I/O overhead). Continuous monitoring of spatial
queries is becoming increasingly important due to the wide
availability of inexpensive and compact positioning devices, the
evolution of mobile communications and the need for improved
location-based services. Consequently, several techniques
(reviewed in Section 2) have been developed in the last few years
for continuous range and NN queries.
In this paper, we propose the conceptual partitioning monitoring
(CPM) method for NN queries in highly dynamic environments.
The data objects are indexed by a main-memory grid G consisting
of cells with size δ×δ (assuming two-dimensional space). Each
cell c in the grid is associated with the list of objects residing
therein. The running queries are stored along with their current
result in a query table QT. When a query q arrives at the system,
its initial result is computed by the NN search module of CPM.
CPM organizes the cells into (hyper) rectangles based on their
proximity to q. This conceptual partitioning provides a natural
processing order of the cells in G, so that the NN search considers
the minimal set of cells in order to retrieve the NNs of q. We refer
to the set of encountered cells as the influence region of q. The
next task of CPM is to monitor the results of the queries upon the
arrival of object updates. Clearly, only updates affecting the
influence region of a query can potentially invalidate its current
result. To restrict processing to such updates and to efficiently
compute the changes in the results, we maintain book-keeping
information in the object index and the query table. We also show
that it is often possible to compute the new result of an affected
query among the objects that issue updates, without searching in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD 2005, June 14–16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00.

This is the Pre-Published Version

G at all. Finally, we tackle the case that the query points also
move. As we show qualitatively and verify experimentally, CPM
outperforms the existing state-of-the-art methods, usually by more
than an order of magnitude.
Furthermore, CPM provides a general methodology that can be
applied to several types of spatial queries. As a case study we use
aggregate nearest neighbor (ANN) queries. Given a set of query
points Q = {q1,q2,…,qm} and an object p, the aggregate distance
adist(p,Q) is defined as a monotonically increasing function f over
the individual distances dist(p,qi) between p and each point qi∈Q.
Assuming, for example, n users at locations q1, … qn and f=sum,
an ANN query outputs the data object p that minimizes adist(p,Q)
= ∑qi∈Q dist(p,qi), i.e., the sum of distances that the users have to
travel in order to meet at the position of p. Similarly, if f=max, the
ANN query reports the object p that minimizes the maximum
distance that any user has to travel to reach p. In turn, this leads to
the earliest time that all users will arrive at the location of p
(assuming that they move with the same speed). The sum ANN
query has been studied in [PSTM04] for static queries and data
indexed by R-trees. The adaptation of CPM to the continuous
monitoring of ANN queries can handle arbitrary aggregate
functions and preserves the excellent performance of the
algorithm in the presence of frequent updates.
The rest of the paper is organized as follows. Section 2 surveys
related work on continuous monitoring of spatial queries,
focusing mostly on NN search. Section 3 presents the conceptual
partitioning monitoring method. Section 4 provides an analysis of
the space and time requirements of CPM, as well as a qualitative
comparison with existing systems. Section 5 discusses ANN
monitoring, while Section 6 experimentally evaluates CPM.
Finally, Section 7 concludes the paper with directions for future
work.

2. RELATED WORK
The first monitoring method for spatial queries, called Q-index
[PXK+02], assumes static range queries over moving objects. The
queries are indexed by an R-tree and moving objects probe the
index to find the queries that they influence. Q-index avoids the
expensive (due to intensive updates) maintenance of an index on
the objects. In addition, it utilizes the concept of safe regions to
reduce the number of updates. In particular, each object p is
assigned a circular or rectangular region, such that p needs to
issue an update only if it exits this area (otherwise, it does not
influence the result of any query). MQM [CHC04], another range
monitoring method, partitions the workspace into rectangular sub-
domains. Each object in the system is assigned a resident domain,
consisting of adjacent sub-domains. An object is aware only of
the range queries intersecting its resident region, and reports its
location to the server when it crosses the boundary of any of these
queries. The number of sub-domains that form an object’s
resident region depends on how many queries it can store and
process concurrently. When an object exits its resident region, it
requests a new one from the server. To decide the new resident
region, the server uses a binary partitioning tree, which maintains
for each sub-division of the workspace the queries that intersect it.
This method applies only to static ranges.
To deal with moving range queries, Gedik and Liu [GL04]
propose another distributed system, called Mobieyes. Mobieyes
partitions the workspace using a grid and maintains the
monitoring regions of the queries. The monitoring region of a

query is defined as the union of the grid cells it can potentially
intersect, provided that its center remains within its current cell.
Objects falling in the monitoring region of a query receive
information about the query position and velocity, and notify the
server when they enter or leave the predicted query region. Note
that this way the objects store locally and monitor their spatial
relationship only with queries that they might actually affect
when they move, saving their limited storage and processing
resources. On the other hand, queries issue updates to the server
when they change velocity vector, or when they move out of their
current cell.
Mokbel et al. [MXA04] present SINA, a system that centrally
processes continuous range queries over mobile data. SINA is
based on shared execution and incremental evaluation. Shared
execution is achieved by implementing query evaluation as a
spatial join between the objects and the queries. Incremental
evaluation implies that the query processor computes only the
updates of the previously reported answers, as opposed to re-
evaluating the queries from scratch. The result updates are either
positive or negative. The former category corresponds to objects
entering the range of a query, while the latter one to objects
leaving a range. Both the object and the query indexes are
implemented as disk-resident regular grids. Let UP and Uq be the
set of objects and queries that issue location updates since the
previous evaluation cycle. Processing begins with the hashing
phase that joins UP and Uq in-memory to produce positive
updates. Next, the invalidation phase generates negative updates
for objects in UP that move out of their current cell and queries in
Uq that exit cells that they used to overlap with. Finally,
movement within the same cell is handled in the joining phase;
for each cell that contains objects in UP or intersects queries in
Uq, SINA joins the new objects with the existing queries, and the
new queries with the static objects. The resulting updates are
merged with the updates of the previous phases (potentially
canceling out some of them), and are reported to the client.
All the aforementioned methods focus on range query monitoring,
and their extension to NN queries is either impossible or non-
trivial. Henceforth, we discuss algorithms that target explicitly
NN processing. Koudas et al. [KOTZ04] describe DISC, a
technique for e-approximate k-NN queries over streams of
multidimensional points. The returned kth NN lies at most e
distance units farther from q than the actual kth NN of q. DISC
partitions the space with a regular grid of granularity such that the
maximum distance between any pair of points in a cell is at most
e. To avoid keeping all arriving data in the system, for each cell c
it maintains only K points falling therein and discards the rest. It
is proven that an exact k-NN search in the retained points
corresponds to a valid ek-NN answer over the original dataset
provided that k≤K. DISC indexes the data points with a B-tree
that uses a space-filling curve mechanism to facilitate fast updates
and query processing. The authors show how to adjust the index
to: (i) use the minimum amount of memory in order to guarantee a
given error bound e, or (ii) achieve the best possible accuracy,
given a fixed amount of memory. DISC can process both snapshot
and continuous ek-NN queries.
Yu et al. [YPK05] propose a method, hereafter referred to as
YPK-CNN1, for continuous monitoring of exact k-NN queries.

1 Yu et al. [YPK05] actually propose three methods. YPK-CNN is

shown to be the best in their experimental evaluation.

Objects are assumed to fit in main memory and are indexed with a
regular grid of cells with size δ×δ. YPK-CNN does not process
updates as they arrive, but directly applies the changes to the grid.
Each NN query installed in the system is re-evaluated every T
time units. When a query q is evaluated for the first time, a two-
step NN search technique retrieves its result. The initial step visits
the cells in a square R around the cell cq covering q until k objects
are found. Figure 2.1a, shows an example of a single NN query
where the first candidate NN is p1 with distance d from q; p1 is
not necessarily the actual NN since there may be objects (e.g., p2)
in cells outside R with distance smaller than d. To retrieve such
objects, the second step searches in the cells intersecting the
square SR centered at cq with side length 2⋅d+δ, and determines
the actual k NN set of q therein. In Figure 2.1a, YPK-CNN
processes p1 up to p6 and returns p2 as the actual NN. The
accessed cells appear shaded.

2. d
+
δ

2. d
m

ax
+
δ

(a) NN search (b) Update handling
Figure 2.1: YPK-CNN examples

When re-evaluating an existing query q, YPK-CNN makes use of
its previous result in order to restrict the search space. In
particular, it computes the maximum distance dmax of the current
locations of the previous NNs (i.e., dmax is the distance of the
previous neighbor that moved furthest). The new SR is a square
centered at cq with side length 2⋅dmax+δ. In Figure 2.1b, assume
that the current NN p2 of q moves to location p′2. Then, the
rectangle defined by dmax = dist(p′2,q) is guaranteed to contain at
least one object (i.e., p2). YPK-CNN collects all objects (p1 up to
p10) in the cells intersecting SR and identifies the new NN p1.
Finally, when a query q changes location, it is handled as a new
one (i.e., its NN set is computed from scratch). Yu et al. also
discuss the application of YPK-CNN with a hierarchical grid that
improves performance for highly skewed data.
SEA-CNN [XMA05] focuses exclusively on monitoring the NN
changes, without including a module for the first-time evaluation
of an arriving query q (i.e., it assumes that the initial result is
available). Objects are stored in secondary memory, indexed with
a regular grid. The answer region of a query q is defined as the
circle with center q and radius best_dist, where best_dist is the
distance of the current kth NN. Book-keeping information is stored
in the cells that intersect the answer region of q to indicate this
fact. When updates arrive at the system, depending on which cells
they affect and whether these cells intersect the answer region of
the query, SEA-CNN determines a circular search region SR
around q, and computes the new k NN set of q therein. To
determine the radius r of SR, the algorithm distinguishes the
following cases: (i) If some of the current NNs move within the
answer region or some outer objects enter the answer region,
SEA-CNN sets r=best_dist and processes all objects falling in the

answer region in order to retrieve the new NN set. (ii) If any of
the current NNs moves out of the answer region, processing is
similar to YPK-CNN; i.e., r = dmax (where dmax is the distance of
the previous NN that moved furthest from q), and the NN set is
computed among the objects lying in SR. Assume that in Figure
2.2a the current NN p2 issues an update reporting its new location
p′2. SEA-CNN sets r=dmax=dist(p′2,q), determines the cells
intersecting SR (these cells appear shaded), collects the
corresponding objects (p1 up to p10), and retrieves the new NN p1.
(iii) Finally, if the query q moves to a new location q′, then SEA-
CNN sets r = best_dist+dist(q,q′), and computes the new k NN set
of q by processing all the objects that lie in the circle centered at
q′ with radius r. For instance, in Figure 2.2b the algorithm
considers the objects falling in the shaded cells (i.e., objects from
p1 up to p10 except for p7 and p9) in order to retrieve the new NN
(p5).

q

p1

dmax

p2

p6

p5

p4p3

SR

p'2

p8p7

p10

p9

Answer region
best_dist

q

p1

best_
dist+

dist(q
,q')

p2

p6

p5

p4p3

SR

q'

p8p7

p10

p9

Answer region

best_dist

(a) p2 issues an update (b) q moves to q′
Figure 2.2: SEA-CNN update handling examples

Table 2.1 summarizes the properties of existing methods for
monitoring spatial queries. The processing type refers to whether
mobile objects have some computing capabilities, or the entire
processing cycle takes place in a central server. For instance, Q-
index is classified as a distributed method since the objects decide
whether they exit their safe regions before they issue an update.
On the other hand, SINA follows a centralized paradigm since
each object issues an update whenever it moves, independently of
whether it influences any query or not. In summary, the only
existing techniques applicable to continuous monitoring of exact
k-NN queries are YPK-CNN and SEA-CNN. Similar to these
methods CPM also assumes centralized processing (in main
memory2). We compare CPM against YPK-CNN and SEA-CNN
both qualitatively (in Section 4) and experimentally (in Section
6). In the next section, we present CPM in detail.

Method Query Memory Processing Result
Q-index Range Main Distributed Exact
MQM Range Main Distributed Exact
Mobieyes Range Main Distributed Exact
SINA Range Disk Centralized Exact
DISC NN Main Centralized Approximate
YPK-CNN NN Main Centralized Exact
SEA-CNN NN Disk Centralized Exact

Table 2.1: Properties of monitoring methods

2 Even though SEA-CNN assumes that objects reside in

secondary memory, it can be also used for memory-resident
data.

3. CONCEPTUAL PARTITIONING MONITORING
In accordance with real-world scenarios, we assume 2D3 data
objects and queries that change their location frequently and in an
unpredictable manner. An update from object p is a tuple <p.id,
xold, yold, xnew, ynew>, implying that p moves from (xold, yold) to
(xnew, ynew). A central server receives the update stream and
continuously monitors the k NNs of each query q installed in the
system. Similar to existing approaches (e.g., YPK-CNN, SEA-
CNN), we use a grid index since a more complicated data-
structure (e.g., main memory R-tree) would be very expensive to
maintain dynamically. The extent of each cell on every dimension
is δ, so that the cell ci,j at column i and row j (starting from the
low-left corner of the data space) contains all objects with x co-
ordinate in the range [i⋅δ, (i+1)⋅δ) and y co-ordinate in the range
[j⋅δ, (j+1)⋅δ). Conversely, an object with co-ordinates (x,y)
belongs to the cell ci,j, where i= ⎣x/δ⎦ and j= ⎣y/δ⎦. CPM (and
SEA-CNN) can also be applied with the hierarchical grid of
[YPK05].
Section 3.1 describes the NN computation algorithm, which
constitutes the core module of CPM. Then, Sections 3.2 and 3.3
discuss the handling of location updates. Table 3.1 summarizes
the primary symbols and functions we use throughout this section.

Symbol Description
P The set of moving objects
N Number of objects in P
G The grid that indexes P
δ Cell side length
q The query point
cq The cell containing q
n The number of queries installed in the system

dist(p,q) Euclidean distance from object p to query point q
best_NN The best NN list of q
best_dist The distance of the kth NN from q

mindist(c,q) Minimum distance between cell c and query point q
Table 3.1: Frequently used symbols and functions

3.1 The NN computation module of CPM
Given a cell c and a query q, mindist(c,q) is the minimum possible
distance between any object p∈c and q. Let best_NN be the list of
the k best NNs (of q) found so far, and best_dist be the distance of
the kth of them. If mindist(c,q)≥best_dist, we can safely prune c
because it cannot contain any object lying closer to q than any of
the current NNs. Based on this observation, a naive way to
process a NN query q in P, is to sort all cells c∈G according to
mindist(c,q), and visit them in ascending mindist(c,q) order. For
each considered cell, we compute dist(p,q) for the objects p
inside, and update accordingly the best_NN list. The search
terminates when the cell c under consideration has mindist(c,q) ≥
best_dist. Figure 3.1a illustrates this process for a 1-NN query q.
The algorithm visits only the shaded cells and encounters in total
two objects, p1 and p2. Between them, p2 is returned as the result
of the query.
It can be easily shown that the above algorithm processes only the

3 We focus on two-dimensional Euclidean spaces, but the

proposed techniques can be applied to higher dimensionality
and other distance metrics. Furthermore, for ease of
presentation, the examples demonstrate retrieval of a single NN.

cells that intersect the circle centered at q with radius equal to the
distance between q and its kth NN. These cells have to be visited
anyway in order to avoid false misses; therefore, the naïve
algorithm is optimal in terms of the number of processed cells.
Nevertheless, in practice it may be very expensive, since it
requires computing the mindist for all cells and subsequently
sorting them. CPM overcomes this problem and avoids
unnecessary computations by utilizing a conceptual space
partitioning.

q

p1

δ

p2
best_dist

(a) Retrieval of one NN (b) Partitioning into rectangles

Figure 3.1: NN search and conceptual partitioning

Figure 3.1b illustrates the conceptual partitioning of the space
around the cell cq of q. Each rectangle rect is defined by a
direction and a level number. The direction could be U, D, L, or R
(for up, down, left and right) depending on the relative position of
rect with respect to q. The level number indicates the number of
rectangles between rect and cq. Lemma 3.1 regulates the visiting
order among rectangles of the same direction.
Lemma 3.1: For rectangles DIRj and DIRj+1 of the same direction
DIR with level numbers j and j+1, respectively, it holds that
mindist(DIRj+1,q) = mindist(DIRj,q) + δ.
Proof: Without loss of generality, assume that the direction is D.
The minimum distance of q from either rectangle equals the
length of its projection on the top edge of the rectangle. Since the
side length of the cells is δ, it follows that mindist(DIRj+1,q) =
mindist(DIRj,q) + δ.
Based on Lemma 3.1, the NN computation module of CPM visits
cells in ascending mindist(c,q) order, thus, preserving the property
of processing the minimal set of cells. In particular, CPM
initializes an empty heap H and inserts (i) the cell cq with key
mindist(cq,q)=0, and (ii) the level zero rectangles for each
direction DIR, with key mindist(DIR0,q). Then, it starts de-
heaping entries iteratively. If the de-heaped entry is a cell, it
examines the objects inside and updates accordingly the best_NN.
If the de-heaped entry is a rectangle DIRlvl, it inserts into H (i)
each cell c∈DIRlvl with key mindist(c,q) and (ii) the next level
rectangle DIRlvl+1 with key mindist(DIRlvl+1,q) = mindist(DIRlvl,q)
+δ. The algorithm terminates when the next entry in H
(corresponding either to a cell or a rectangle) has key greater than
or equal to best_dist.
Proof of correctness: Let best_NN be the list of NNs returned by
the algorithm, and best_dist be the distance of the kth NN. Clearly,
all cells c inserted at some point into H do not contain any better
NN than the objects in best_NN. This is guaranteed by the sorting
property of the heap and the fact that dist(p,q) ≥ mindist(c,q)
holds ∀p∈c. In order to prove correctness, it suffices to show that
each cell that was not inserted into H cannot contain any object

closer to q than best_dist. This part of the proof is based on the
observation that, at any point, the heap H contains exactly four
rectangle entries, one for each direction. We call these rectangles
boundary boxes. Let the boundary box of direction DIR be DIRlvl.
The algorithm has considered all cells falling into rectangles DIRi
with i<lvl. From Lemma 3.1 it follows that all cells c belonging to
DIRi with i>lvl have mindist(c,q)>mindist(DIRlvl,q). Since
mindist(DIRlvl,q) ≥ best_dist for each boundary box DIRlvl, and
since all the unexplored space falls in some rectangle of some
direction DIR with level greater than lvl, best_NN is the correct
result of q.
In the example of Figure 3.2a, CPM initially inserts into the heap
the cell cq = c4,4 and the rectangles of level zero, i.e., H =
{<c4,4,0>, <U0,0.1>, <L0,0.2>, <R0,0.8>, <D0,0.9>} (the numbers
indicate mindist assuming that δ=1). Then it de-heaps c4,4, which
is empty4 and ignored. The next entry in H is U0. CPM en-heaps
the cells of U0, as well as rectangle U1 and proceeds in the same
way until it de-heaps <c3,3,1>, where it finds the first candidate
NN p1 with best_dist=dist(p1,q)=1.7. Since, the next entry in H
has key less than best_dist, it continues until it de-heaps c2,4 and
discovers the new candidate p2, with best_dist = dist(p2,q) = 1.3.
The algorithm terminates (with p2 as the NN) when the top heap
entry is c5,6 because mindist(c5,6,q) ≥best_dist.

D1

R1

L2
qp2

U2

(a) NN computation (b) Search heap contents
Figure 3.2: A NN computation example

The final point that requires clarification concerns the book-
keeping information and related structures maintained for
efficient search and handling of updates (to be discussed shortly).
CPM keeps (in main memory) a query table QT that stores for
each query, its co-ordinates, the current result, the best_dist, the
visit list, and the search heap H:
● best_dist determines the influence region of q, i.e., the set of
cells that intersect the circle centered at q with radius best_dist.
Only updates affecting these cells can influence the NN result.
● The visit list of q consists of all cells c processed during NN
search, sorted on mindist(c,q). Each cell entry de-heaped from H
is inserted at the end of the list. In our example, the visit list of q
contains the shaded cells in Figure 3.2a.
● The search heap H contains the cell and rectangle entries that
were en-heaped, but not de-heaped during NN search (i.e., their
mindist from q is greater than or equal to best_dist). The contents
of H in our example are the shaded cells in Figure 3.2b, plus the
four boundary boxes U2, D1, L2, and R1.

4 Note that, from now on, we ignore the empty cells in our

examples for the sake of clarity.

In addition, each cell c of the grid is associated with (i) the list of
data objects within its extents, and (ii) the list of queries whose
influence region contains c. For example, cell c3,3 contains q in its
influence list, while c5,6 does not. The structures of the query
table and the object grid are shown in Figure 3.3.

(a) Query table (b) Object grid
Figure 3.3: Query table and object grid structures

Figure 3.4 presents the full functionality of the CPM NN
computation including the maintenance of the data structures. The
influence lists of the encountered cells are updated in line 11,
while, in line 12, each processed cell is inserted into the visit list
of q. Line 18 stores the new best_dist value in the query table.
Upon termination, the heap H is also stored in QT. The algorithm
is optimal in the sense that it processes the minimal set of cells for
retrieving the NN set of q. As opposed to the naïve algorithm
discussed in the beginning of the section, the only redundant
mindist computations concern the cells that were en-heaped but
not de-heaped (i.e., the shaded cells in Figure 3.2b). As shown in
Section 4.1, the number of such cells and rectangles is small.
Furthermore, as discussed next, CPM utilizes these computations
for the efficient handling of updates.

NN Computation (G, q)
// Input= G: the grid indexing P
// q: the query
1. best_dist = ∞; best_NN = NULL;
2. Insert a new entry for q into the query table
3. Initialize an empty heap H
4. Insert <cq, 0> into H
5. For each direction DIR insert <DIR0, mindist(DIR0,q)> into H
6. Initialize an empty list visit_list
7. Repeat
8. Get the next entry of H
9. If it is a cell entry <c, mindist(c,q)>
10. For each object p∈c, update best_NN & best_dist if necessary
11. Insert an entry for q into the influence list of c
12. Insert <c, mindist(c,q)> at the end of visit_list
13. Else // it is a rectangle entry <DIRlvl, mindist(DIRlvl,q)>
14. For each cell c in DIRlvl
15. Insert <c, mindist(c,q)> into H
16. Insert <DIRlvl+1, mindist(DIRlvl,q)+δ> into H
17. Until the next entry has key ≥ best_dist or H is empty
18. Update the influence region information of q to <q, best_dist>

Figure 3.4: The NN computation module of CPM

3.2 Handling a single object update
Assume, for simplicity, that a single update from p∈P arrives at a
time. The first step is to delete p from its old cell cold. CPM scans
the influence list of cold and identifies the queries that contain p in
their best_NN set. Specifically, for each query q (in the influence
list of cold), if p∈q.best_NN and dist(p,q) ≤ best_dist, then the k

NN set of q remains the same, but the order of the NNs can
potentially change. Therefore, CPM updates the order in
q.best_NN to reflect the new dist(p,q). On the other hand, if
p∈q.best_NN and dist(p,q) > best_dist (i.e., p is a NN that has
moved farther from q than best_dist), there may exist objects (not
in q.best_NN) that lie closer to q than p; thus, q is marked as
affected to indicate this fact and ignored for now. Next, CPM
inserts p into its new cell cnew, and scans the influence list of cnew.
For each entry q therein, if q has been marked as affected it
ignores it. Otherwise, if dist(p,q) < q.best_dist, it evicts the
current kth NN from the result, inserts p into q.best_NN, and
updates q.best_dist. The last step re-computes the NN set of every
query q that is marked as affected.
Figure 3.5a illustrates update handling, assuming that object p4
moves to position p'4. CPM first deletes p4 from the object list of
c5,6, which has an empty influence list and, hence, the deletion
does not affect any result. Next, it inserts p4 into its new cell c5,3,
whose influence list contains an entry for q. Since dist(p'4,q) >
best_dist, update handling terminates without any change in the
result. Assume that, later on, object p2 moves to a new position
p'2, as shown in Figure 3.5b. Since the old cell c2,4 contains q in
its influence list, CPM checks the query table entry for q and
detects that p2 = best_NN. Query q is marked as affected because
dist(p'2,q) > best_dist. The insertion of p2 into its new cell c0,6
does not trigger any additional processing (because the influence
list of c0,6 is empty). Finally, CPM invokes the NN re-
computation module to find the new NN (p'4) of the affected
query q.

q

p1

p2

p4
p3

c2,4 c3,3

c2,6 c5,6

p'4

Influence region

c5,3

best_dist

q

p1

p2

p3

c2,4
c3,3

c2,6

p'4

New influence region

c5,3

p'2
c0,6

best_dist

(a) p4 issues an update (b) p2 issues an update
Figure 3.5: Update examples

Figure 3.6 illustrates the re-computation module that retrieves the
new NN set of the affected queries. The algorithm is based on the
same principles as the NN search module of CPM (Figure 3.4),
but re-uses the information stored in the query table to reduce the
running time. In particular, it starts processing sequentially the
cells stored in the visit list of q, and then it continues with the
entries of the search heap H. Note that all the cells in the visit list
have mindist less than (or equal to) the entries of H. It follows that
the NN re-computation algorithm considers cells c in ascending
mindist(c,q) order, which guarantees the correctness of the result,
as well as the minimality of the set of processed cells. The
benefits of NN re-computation over computation from scratch are:
(i) it utilizes the previously computed mindist values, and (ii) it
significantly reduces the number of heap operations
(insertions/deletions). Recall that the cost of each heap operation
is logarithmic to the heap size, while the “get next” operation on
the visit list (in line 3 of Figure 3.6) is O(1).

NN Re-Computation (G, q)
// Input= G: the grid indexing P, q: the affected query
1. best_dist = ∞; best_NN = NULL;
2. Repeat
3. Get the next element <c, mindist(c,q)> of visit_list
4. For each object p∈c, update best_NN & best_dist if necessary
5. Insert an entry for q into the influence list of c
6. Until the next element has key ≥ best_dist or visit_list is empty
7. If the first entry in H has key < best_dist
8. (Same as lines 7-17 of Figure 3.4)
9. Set influence region information of q to <q, best_dist>

Figure 3.6: The NN re-computation module of CPM

3.3 Handling multiple updates
So far we have dealt with processing a single update. However, in
the general case, there is a set UP of object updates that arrive
during the time interval between two consecutive update handling
cycles. Processing incrementally each update in UP, as discussed
in Section 3.2, guarantees correctness of the result. However, this
can be improved upon. Consider the example of Figure 3.7a,
where UP contains location updates for p2 and p3. If p2 is
processed first, q will be marked as affected (p2 is the current NN
and moves farther than best_dist), triggering the NN re-
computation module. This, however, is unnecessary because
object p3 moves closer to q than the previous best_dist, and we
could simply replace the outgoing NN p2 with the incoming p3.

q

p1

p2

p4
p3

c2,4
c3,3

c2,6 c5,6

Influence region

p'2

p'3
best_dist

q

p1

p4

c3,3

c5,6

New influence region

p'3

best_dist

c3,5

(a) p2 and p3 issue updates (b) p3 becomes the NN of q
Figure 3.7: An update handling example

In general, let O be the set of outgoing NNs (i.e., NNs that move
farther from q than best_dist) and I be the set of incoming objects
(i.e., objects other than the current NNs that move closer to q than
best_dist). The circle with center q and radius best_dist contains
objects I ∪ best_NN – O. If |I|≥|O| (where |I| and |O| are the
cardinalities of I and O, respectively), this circle includes at least
k objects. Therefore, we can form the new NN set from the k best
objects in I ∪ best_NN – O without invoking re-computation. We
embed this enhancement in the CPM algorithm as follows. Before
processing UP, we record the current best_dist of q. During update
handling, we maintain the in_list of the k best incoming objects
(we do not need more than the k best incomers in any case). At
the end of the procedure, if in_list contains more than |O| objects,
we merge the NNs in best_NN – O with in_list, and keep the best
k among them to form the new result of q. We resort to NN re-
computation only if in_list contains fewer than |O| objects.
Figure 3.8 shows the complete update handling module of CPM.
An important remark is that if |I|≥|O|, the influence region of q
shrinks. Consequently, line 22 deletes q from the influence lists of

the cells that no longer belong to it. Note that, at any time, the
visit list contains a superset of the cells in the influence region of
q. Therefore, we can simply scan the cells c in the visit list with
mindist(c,q) between the new and the old value of best_dist, and
delete q from their influence lists. The new influence region of q
in our example is shown in Figure 3.7b. After update handling,
the visit list contains a superset of the cells in the influence region
(i.e., the visit list still includes the shaded cells in Figure 3.7a).

Update Handling (G, QT, UP)
// Input= G: the grid, QT: query table, UP: set of updates in P
1. For each query q in QT
2. Set q.out_count=0; // Counter of outgoing NNs
3. Initialize a sorted list q.in_list of size k
4. For each update <p.id,xold,yold,xnew,ynew>∈UP
5. Delete p from its old cell cold
6. For each query q in the influence list of cold
7. If p∈q.best_NN
8. If dist(p,q) ≤ q.best_dist // p remains in the NN set
9. Update the order in q.best_NN
10. Else // p is an outgoing NN
11. Evict p from q.best_NN
12. q.out_count = q.out_count +1;
13. Insert p into its new cell cnew
14. For each query q in the influence list of cnew
15. If dist(p,q)≤q.best_dist and p∉q.best_NN // p is an incomer
16. Update q.in_list with p
17. For each query q in QT
18. If q.in_list contains at least q.out_count objects
19. candidate_list = q.in_list ∪ q.best_NN ;
20. q.best_NN = the best k objects in candidate_list
21. Update q.best_dist, Set inf. region of q to <q, p.best_dist>
22. Delete q from inf. lists of cells no longer in its inf. region
23. Else // Not enough incoming objects
24. NN Re-Computation (G, q);

Figure 3.8: The update handling module of CPM

In addition to data objects, queries may also be dynamic; i.e.,
some are terminated, new ones arrive at the system, while others
move. When a query is terminated, we delete its entry from QT
and remove it from the influence lists of the cells in its influence
region. For new arrivals, we execute the NN computation
algorithm of Figure 3.4. When an existing query q moves, we
treat the update as a termination of the old query, and an insertion
of a new one, posed at its new location. Queries that receive
updates are ignored when handling object updates in order to
avoid waste of computations for obsolete queries. Figure 3.9
presents the complete CPM algorithm, covering all update types.

NN Monitoring (G, QT)
// Input= G: the grid indexing P, QT: query table
1. In every processing cycle do
2. Uq = set of query updates
3. UP = set of updates in P
4. Invoke Update Handling (G, QT, UP) ignoring queries in Uq
5. For each query q in Uq
6. If q is a terminated or a moving query
7. Delete q from QT and from inf. lists of cells in its inf. region
8. If q is a new or a moving query
9. NN Computation (G, q);
10. Inform client for updated results

Figure 3.9: The CPM algorithm

In general, the nearest neighbors of q are concentrated in a small

area of the workspace and the influence region of q contains few
cells. Therefore, the influence list overhead, and the search
heap/visit list sizes are expected to be small. However, in case that
the physical memory of the system is exhausted, we can directly
discard the search heap and the visit list of q to free space. Even
without this information, CPM can continue monitoring q; the
difference is that we have to invoke the NN computation
algorithm from scratch (instead of NN re-computation) in line 24
of the update handling module of Figure 3.8.

4. PERFORMANCE ANALYSIS
Section 4.1 analyzes the performance of CPM in terms of space
requirements and running time. Section 4.2 compares CPM with
the existing algorithms for continuous NN monitoring.

4.1 Analysis of CPM
In order to study the performance of CPM and analyze the effect
of the cell size δ, we assume that the objects (queries) are
uniformly distributed5 in a unit square workspace. First, we
provide formulae for the space/time overhead with respect to: (i)
the number of cells Cinf in the influence region of a k-NN query q,
(ii) the number Oinf of objects in the influence region, and (iii) the
total number CSH of cells stored either in the visit list or in the
search heap of q. Then, we estimate the values of these
parameters as functions of δ, and conclude with observations
about the expected performance of CPM in practice.
For simplicity, we assume that the minimum unit of memory can
store a (real or integer) number. The amount of memory required
for an object is sobj=3 for its id and two co-ordinates. Similarly,
each heap/visit list entry consumes setr=3 memory units for the
cell (rectangle) column/row and mindist. The first component of
the space overhead is the size of the grid index. The grid contains
N objects, consuming sobj⋅N=3⋅N space, plus the auxiliary
influence lists of the cells. For each query q, we insert its id into
the influence lists of Cinf cells. Assuming n concurrent k-NN
queries, the grid index has total size SpaceG = 3⋅N + n⋅Cinf. The
query table contains one entry for each query q. The memory
dedicated for an entry is sobj + 2⋅k + setr⋅(CSH+4); sobj=3 is required
for the id and co-ordinates of q, while 2⋅k space is used for the
object ids of the k NNs and their distances from q. The
setr⋅(CSH+4)=3⋅(CSH+4) component corresponds to the storage
overhead of the visit list and the search heap H; these two
structures combined contain CSH cells plus four rectangle entries.
It follows that the size of the query table is SpaceQT =
n⋅(15+2⋅k+3⋅CSH). In total, the memory requirements of CPM are
SpaceCPM = SpaceG + SpaceQT = 3⋅N + n⋅(15+2⋅k+3⋅CSH+Cinf)
memory units.
In order to estimate the running time per processing cycle, we
assume that N⋅fobj objects and n⋅fqry queries issue location updates
following random displacement vectors. The total cost is TimeCPM
= N⋅fobj⋅Timeind + n⋅fqry⋅Timemq + n⋅(1-fqry)⋅Timesq, where Timeind is
the index update time for a single object, Timemq is the time
required for the NN computation of a moving query, and Timesq is
the time required for updating the NNs of a static query. The

5 Although, admittedly, the uniformity assumption does not hold

in practice, similar to previous work [YPK05], we use it to
obtain general observations about the effect of the problem
parameters.

object lists of the cells are implemented as hash tables so that the
deletion of an object from its old cell and the insertion into its
new one takes expected Timeind=2. For each moving query we
have to invoke the NN computation algorithm of Figure 3.4 with
cost Timemq = CSH⋅logCSH + Oinf⋅logk + 2⋅Cinf. The first factor is
due to the heap operations. The number of entries in H throughout
the NN search procedure is upper-bounded by CSH+4 ≈ CSH.
Since insertion and deletion is logarithmic to the size of the heap,
the overall time spent on heap operations is CSH⋅logCSH. The
algorithm processes Oinf objects, taking Oinf⋅logk time
cumulatively; each object is probed against the best_NN list to
update the result, taking logk time with a red-black tree
implementation of best_NN. Removing or inserting q from/into
the influence list of a cell takes constant expected time (the lists
are implemented as hash-tables). Therefore, updating the
influence lists of all cells falling in the old and the new influence
region costs 2⋅Cinf. For estimating Timesq, observe that at any time
instant, the objects are distributed uniformly in the workspace.
This implies that the circle with radius best_dist always contains k
objects, or equivalently, there are as many incoming objects as
outgoing NNs. Let there be |O| outgoing NNs. In the worst case,
all the remaining k-|O| NNs move. Re-ordering the remaining
NNs and inserting the |I|=|O| incomers into best_NN takes Timesq
= k⋅logk. Summing over all queries and the index update time, the
computational overhead of a processing cycle is TimeCPM =
2⋅N⋅fobj + n⋅fqry⋅(CSH⋅logCSH + Oinf⋅logk + 2⋅Cinf) + n⋅(1-fqry)⋅k⋅logk.
It remains to estimate the numbers Cinf (Oinf) of influencing cells
(objects) and cells CSH in the visited list and heap of a random
query q. Let Θq be the circle centered at q with radius equal to
best_dist. For uniform data, the ratio of the area of Θq to the area
of the workspace equals k/N so that best_dist= k/π⋅N . The
influence region of q consists of cells intersecting Θq. The number
of these cells is roughly Cinf = π⋅⎡best_dist/δ⎤2, and the
corresponding objects are Oinf = Cinf⋅N⋅δ 2 (each cell contains N⋅δ 2
objects on average). As δ decreases, Cinf increases, the shape of
the influence region better approximates Θq, and Oinf approaches k
(which is its minimum value). On the other hand, a large δ leads
to a small number of cells which, however, contain a large
number of objects. Figure 4.1 illustrates the effect of δ on Cinf and
Oinf, assuming a 1-NN query q. The shaded cells correspond to the
influence region of q, which in Figure 4.1a contains Cinf=39 cells
and Oinf=1 objects. For a larger value of δ, in Figure 4.1b, Cinf=8
and Oinf=8. To estimate CSH, assume for simplicity that q is
located at the center of its cell cq. The boundary boxes are of the
same level in each direction. It follows that CSH is the number of
cells that intersect the circumscribed square of Θq. Thus, CSH can
be approximated by 4⋅⎡best_dist/δ⎤2. Similar to Cinf, CSH decreases
as δ increases, e.g., in Figure 4.1a, CSH=49, while in Figure 4.1b,
CSH=9.
In summary, the space consumed by the influence lists of the cells
and the query table, is inversely proportional to δ 2. Similarly,
both the size of the influence lists and the size of the query table
are linear to n and k. Concerning the computational cost of CPM,
index update time is linear to N and fobj. The result maintenance
task takes linear time with respect to n, and is expected to grow as
fqry increases. The time of NN computation for a new or a moving
query depends strongly on the cell size; a small value for δ incurs
high overhead due to heap operations, while a large value implies
a high number Oinf of processed objects.

δ

Influence region

best_dist

Cells in H and visit list

q

p1

p2

p6

p5

p4p3
p8

p7

(a) Small δ (b) Large δ
Figure 4.1: The effect of δ on the performance of CPM

4.2 Qualitative comparison with existing methods
Next, we illustrate the superiority of CPM over the existing
methods through some update handling scenarios. YPK-CNN re-
evaluates periodically every query q, even if the object updates
have not affected any cell in its vicinity. This is due to the fact
that it does not include a mechanism for detecting queries
influenced by location updates. Furthermore, in the general case,
YPK-CNN visits more cells than necessary when performing NN
search for moving and new queries. Consider the 1-NN
computation of query q in Figure 4.2a. As discussed in Section 2
(the example is the same as Figure 2.1), YPK-CNN processes 25
cells and six objects (p1 up to p6). Finally, it also incurs redundant
computations for static queries. Assuming that in Figure 4.2b the
current NN p2 moves to location p′2, YPK-CNN processes 49
cells and ten objects (p1 up to p10). Clearly, the unnecessary
computations increase with dist(p′2,q). On the other hand, CPM
(i) only processes queries whose influence region intersects some
updated cell, and (ii) the NN computation and re-computation
modules restrict the search space to the minimum number of cells
around q (i.e., shaded cells in Figure 4.2).

q

p1

p2

p6

p5

p4p3

best_dist

Cells visited by YPK-CNN

Cells visited by CPM
(shaded)

be
st_

di
st

(a) NN search (b) Update handling
Figure 4.2: CPM versus YPK-CNN

SEA-CNN also performs redundant computations in several
cases. First, assume that the only updates are from incoming
objects and/or NNs that move within distance best_dist from q.
For instance, in Figure 4.3a, p6 moves closer to q than best_dist.
SEA-CNN visits all cells intersecting the circle centered at q with
radius r = best_dist and determines the new NN (p'6) among the
processed objects p1, p2 and p'6. On the other hand, CPM directly
compares dist(p'6,q) with best_dist and sets p'6 as the result
without visiting any cells. When k is larger, the computational
waste of SEA-CNN increases because it considers a higher
number of objects, even though there might be few changes in the

result. Another weak point of SEA-CNN concerns handling of
outgoing NNs, which is similar to YPK-CNN. Recall that when p2
moves to p′2, SEA-CNN processes ten objects p1 up to p10 (see
Figure 2.2a), while CPM considers only four objects (see Figure
4.2b). SEA-CNN incurs higher cost than CPM also in the case
that q changes position. In Figure 4.3b, assuming that q moves to
q′, CPM considers only cells intersecting the circle with center at
q′ and radius dist(p5,q′), and retrieves the NN (p5) by processing
only two objects (p4 and p5) in total. SEA-CNN considers 33 cells
and eight objects. A final remark about SEA-CNN is that it does
not handle the case where some of the current NNs go off-line.
On the contrary, CPM trivially deals with this situation by
treating off-line NNs as outgoing ones.

q

p1

p2

p6

p5

p4p3

q'

p8

p10

best_dist

Cells visited by SEA_CNN

Cells visited by CPM

(a) p6 issues an update (b) q moves to q′
Figure 4.3: CPM versus SEA-CNN

Summarizing, the speed of the objects does not affect the running
time of CPM since update handling is restricted to the influence
regions of the queries. On the other hand, the performance of both
YPK-CNN and SEA-CNN (as also observed in [YPK05] and
[XMA05]) degrades with object speed because the search region
for a static query is determined by how far the furthest previous
NN has moved since the last evaluation. For moving queries,
CPM examines the minimum possible number of cells (which is
independent of the query moving distance), whereas the cost of
SEA-CNN increases with the velocity of q.

5. AGGREGATE NNS AND OTHER QUERY TYPES
In this section we extend the CPM algorithm to aggregate NN
queries starting with the sum function. Given a set of query points
Q = {q1,q2,…,qm}, a sum ANN query continuously reports the
data object p that minimizes adist(p,Q) = ∑qi∈Q dist(p,qi). The
basis of our method remains the conceptual partitioning of the
space around the query Q. Since Q now consists of a set of query
points, the partitioning applies to the space around the minimum
bounding rectangle M of Q. Figure 5.1a exemplifies the
partitioning into rectangles in the case of a 1-ANN query Q =
{q1,q2,q3}. We define amindist(c,Q) = ∑qi∈Q mindist(c,qi), which
is a lower bound for the distance adist(p,Q) of any object p∈c.
The definition of amindist(DIRlvl,Q) for a rectangle DIRlvl is
similar. The cell processing order is derived by corollary 5.1,
which is based on the same geometric observations as Lemma 3.1
(and, hence, we omit its proof).
Corollary 5.1 (f=sum): For rectangles DIRj and DIRj+1 of the
same direction DIR with level numbers j and j+1, it holds that
amindist(DIRj+1,Q) = amindist(DIRj,Q) + m⋅δ, where m is the
number of points in Q.
The ANN search module of CPM is essentially the same as the

algorithm in Figure 3.4. The difference is that in the beginning of
the search, we en-heap (in line 4) all cells c intersecting M. The
sorting key is amindist(c,Q) and amindist(DIRlvl,Q) for the en-
heaped cells and rectangles, respectively. When an object p is
processed, we compute adist(p,Q) and update accordingly the list
of best ANNs found so far (i.e., best_NN). The algorithm
terminates when the next entry in H has amindist greater than or
equal to best_dist. In our example, the algorithm terminates with
p2 as the result, after processing all the shaded cells in Figure
5.1b. Similar to Section 3.1, the influence region of Q is the set of
cells c with amindist(c,Q)≤best_dist; only updates affecting these
cells can change the ANN result. Note that the influence region of
a query is no longer a circle, but has an irregular shape (i.e., the
shaded region in Figure 5.1b). Update handling is the same as in
Section 3, the difference being that we use the aggregate distance
function instead of the Euclidean one.

p1

p2
p5

p4p3

q1 M q2
q3

L1

U1

R1

D1

(a) Partitioning into rectangles (b) Influence region
Figure 5.1: ANN monitoring for f=sum

When f=min, an ANN query Q retrieves the object(s) in P with
the smallest distance(s) from any point in Q. The ANN search
considers cells and rectangles in ascending amindist order. For a
cell c, amindist(c,Q) = minqi∈Q mindist(c,qi), while for a rectangle
DIRlvl, amindist(c,DIRlvl) = minqi∈Q mindist(DIRlvl,qi). Corollary
5.2 dictates the cell processing order.
Corollary 5.2 (f=min or f=max): For rectangles DIRj and DIRj+1
of the same direction DIR with level numbers j and j+1, it holds
that amindist(DIRj+1,Q) = amindist(DIRj,Q) + δ.
The ANN search and update handling modules of CPM are
similar to the sum case. Furthermore, for the min function, we can
improve the O(m) time required to compute amindist(DIR0,Q) to
O(1). The MBR M of Q contains by definition one point of Q on
each edge. Therefore, computing amindist(DIR0,Q) for each
direction DIR reduces to calculating the minimum distance
between rectangle DIR0 and the closest edge of M. For example,
amindist(D0,Q) equals to the distance between the top edge of D0
and the bottom edge of M. An interesting observation about the
min aggregate function is that the influence region of Q contains
cells that intersect at least one of the circles centered at some qi
with radius best_dist. Figure 5.2a shows an example where Q =
{q1,q2,q3} and f=min. The result of the query is p2, and the
influence region of Q appears shaded.
When f=max, CPM monitors the object(s) of P that have the
lowest maximum distance(s) from points in Q. For each cell c,
amindist(c,Q) = maxqi∈Q mindist(c,qi), while for each boundary
box DIRlvl, amindist(DIRlvl,Q) = maxqi∈Q mindist(DIRlvl,qi).
Corollary 5.2 holds also in the case of max, whereas computing
amindist(DIR0,Q) for each direction DIR can be performed in

O(1) time: amindist(DIR0,Q) equals the minimum distance
between DIR0 and the opposite edge of M. In Figure 5.2b we
illustrate the case where Q = {q1,q2,q3} and f=max. The result of
the query is object p4, and the corresponding influence region
consists of the shaded cells.

p1

p2
p5

p4p3

q1
M

q2
q3

L1

U1

R1

D1

p1

p2

p4

q1 M q2
q3

L1

U1

R0

D1

best_dist

(a) f=min (b) f=max
Figure 5.2: ANN monitoring for f=min and f=max

Finally, CPM can easily handle constrained variations of NN (and
ANN) search that retrieve the NNs of a query point in a user-
specified area of the data space. Ferhatosmanoglu et al. [FSAA01]
propose algorithms for static datasets indexed by R-trees. The
adaptation of CPM to this problem inserts into the search heap
only cells and conceptual rectangles that intersect the constraint
region. Assume, for instance, that in Figure 5.3 we want to
monitor the NN to the northeast of q. CPM en-heaps only the
cells c4,4, c4,5, c5,4, c5,5 and rectangles U0, R0, U1, R1. Inside c5,5,
object p3 is identified as the NN. Note that object p1 (the
unconstrained NN) is not encountered at all since its cell is not
visited, whereas p2 is processed but not reported.

Figure 5.3: Monitoring of a constrained NN query

6. EXPERIMENTAL EVALUATION
In this section we evaluate the performance of CPM and compare
it with YPK-CNN and SEA-CNN. In accordance with the
experimental study of [XMA05], our datasets are created with the
spatiotemporal generator of [B02]. The input of the generator is
the road map of Oldenburg (a city in Germany). The output is a
set of objects (e.g., cars, pedestrians) moving on this network,
where each object is represented by its location at successive
timestamps. An object appears on a network node, completes the
shortest path to a random destination, and then disappears. We use
the default velocity values of the generator for slow, medium, and

fast object speeds. Objects with slow speed cover a distance that
equals 1/250 of the sum of the workspace extents per timestamp.
Medium and fast speeds correspond to distances that are 5 and 25
times larger, respectively. The NN queries are generated
similarly, i.e., they are objects moving on the same network, but
they stay in the system throughout the simulation. The queries are
evaluated at every timestamp and the simulation length is 100
timestamps. In the implementation of SEA-CNN, we use the NN
search algorithm of YPK-CNN to compute the initial results of
the queries, or to retrieve the new NN sets when some of the
current NNs disappear. Table 5.1 summarizes the parameters
under investigation, along with their ranges and default values. In
each experiment we vary a single parameter, while setting the
remaining ones to their default values. For all simulations we use
a Pentium 2.4 GHz CPU with 1 GByte memory.

Parameter Default Range
Object population (N) 100K 10, 50,100,150,200 (K)
Number of queries (n) 5K 1,2,5,7,10 (K)
Number of NNs (k) 16 1,4,16,64,256
Object/Query speed medium slow, medium, fast
Object agility (fobj) 50% 10,20,30,40,50 (%)
Query agility (fqry) 30% 10,20,30,40,50 (%)

Table 6.1: System parameters (ranges and default values)

Initially, we generate 5K queries and 100K objects, according to
the default parameters of Table 6.1. We process the queries with
each monitoring algorithm, and measure the overall running time
by varying the grid granularity. Figure 6.1 illustrates the results
for grid sizes ranging between 32×32 and 1024×1024. CPM
clearly outperforms both competitors for all grid sizes. SEA-CNN
is worse than YPK-CNN because it incurs unnecessary
computations for moving queries, as explained in Section 4.2. A
128×128 grid (i.e., δ = 1/128) constitutes a good tradeoff between
the CPU time and the space requirements for all methods6.
Therefore, we perform the remaining experiments using δ =
1/128.

CPM SEA-CNNYPK-CNN

32 64 128 256 512 10242 2 2 2 2 2

Number of cells in G

0
100
200
300
400
500
600
700
800
900

1000 CPU time

Figure 6.1: CPU time versus grid granularity

Next we examine scalability issues. Figure 6.2a measures the
effect of the object population N on the running time. The
generator is tuned so that the average object population during the
simulation equals the desired value N. Similarly, Figure 6.2b
illustrates the CPU overhead as a function of the number n of
queries in the system. The cost of all algorithms increases linearly

6 The space overhead is 2.854 MBytes, 3.074 MBytes, and 3.314

MBytes for YPK-CNN, SEA-CNN and CPM, respectively.

to both N and n. However, YPK-CNN and SEA-CNN are much
more sensitive than CPM to these parameters, confirming the
scalability of our approach.

CPM SEA-CNNYPK-CNN
CPU time

Number of objects

0

200

400

600

800

1000

1200

10K 50K 100K 150K 200K

CPU time

Number of queries

0

200

400

600

800

1000

1200

1K 2K 5K 7K 10K

(a) Effect of N (b) Effect of n
Figure 6.2: CPU time versus N and n

Figure 6.3a shows the CPU time as a function of the number k of
NNs (using the default values for the remaining parameters).
Figure 6.3b plots (in logarithmic scale) the number of cell
accesses per query per timestamp. A cell visit corresponds to a
complete scan over the object list in the cell. Note that a cell may
be accessed multiple times within a cycle, if it is involved in the
processing of multiple queries. For CPM, cell accesses occur
during the NN computation algorithm (for moving queries), and
during NN re-computation (for stationary queries, when there are
more outgoing NNs than incomers). YPK-CNN re-evaluates the
queries in every timestamp, and therefore induces cell visits for
each query in every processing cycle. SEA-CNN accesses cells
whenever some update affects the answer region of a query and/or
when the query moves. CPM significantly outperforms its
competitors because: (i) it does not search the grid if the update
information suffices to maintain the results, and (ii) even if the
updates necessitate computation from scratch or re-computation
of the NN sets, CPM processes the minimal number of cells. An
interesting observation is that for k=1 and k=4, CPM accesses less
than one cell per query on the average. This happens because
queries of case (ii) have a small cost (i.e., 1-2 cell visits), which is
counter-balanced by queries of case (i) that do not incur any
visits.

CPM SEA-CNNYPK-CNN
CPU time

0

500

1000

1500

2000

2500

1 4 16 64 256

Number of NNs

Cell accesses

Number of NNs
0.1

1

10

1 4 16 64 256

102

103

(a) CPU time (b) Cell accesses
Figure 6.3: Performance versus k

Figure 6.4a illustrates the CPU time with respect to the object
speed. The performance of CPM is practically unaffected by the
speed of objects. On the contrary, both YPK-CNN and SEA-CNN
degenerate when objects move fast, as anticipated in Section 4.2.
Figure 6.4b depicts the effect of the query speed on the running
time of the algorithms. The cost of CPM and YPK-CNN is
independent of the query velocity, since both techniques compute
the results of the moving queries from scratch. On the other hand,
SEA-CNN is negatively affected because, as discussed in Section

4.2, the search region grows when the queries move far from their
previous position, increasing the number of computations.

CPM SEA-CNNYPK-CNN
CPU time

0

100
200
300
400
500

600
700
800
900

Slow Medium Fast

Object speed

CPU time

Query speed

0
100
200
300
400
500
600
700
800
900

1000

Slow Medium Fast

(a) Effect of object speed (b) Effect of query speed
Figure 6.4: CPU time versus object and query speed

Figure 6.5a compares the performance of CPM, YPK-CNN and
SEA-CNN versus the percentage of objects that move within a
timestamp (i.e., the object agility fobj). As expected (see Section
4.1), the running time of CPM scales linearly with the object
agility, due to the increasing index update cost. In order to
quantify the effect of the query agility fqry (i.e., the probability
that a query moves within a timestamp), we vary fqry from 10% to
50% and keep the remaining parameters fixed to their default
values. As shown in Figure 6.5b, the CPU time of CPM increases
linearly with fqry because NN computations (for moving queries)
are more expensive than result maintenance for static queries.
Note that YPK-CNN is rather insensitive to the query agility
because the incremental maintenance of the NN set (for stationary
queries) has similar cost to the two-step NN computation (for
moving queries).

CPM SEA-CNNYPK-CNN
CPU time

Object agility

0

100

200

300

400

500

600

700

10% 20% 30% 40% 50%

CPU time

Query agility

0

100

200

300

400

500

600

700

10% 20% 30% 40% 50%

(a) Effect of object agility (fobj) (b) Effect of query agility (fqry)
Figure 6.5: CPU time versus object and query agility

In the remaining two experiments, we compare individually the
NN computation and result maintenance modules of the
alternative methods. First, we monitor 5K constantly moving
queries (i.e., queries that issue location updates in every
timestamp), while varying the object population N. The query
results are computed from scratch at every processing cycle;
therefore, we can study the efficiency of the NN computation
modules. SEA-CNN is omitted (since it does not include an
explicit mechanism for obtaining the initial NN set). As shown in
Figure 6.6a, CPM outperforms YPK-CNN and the performance
gap increases with N. Finally, we process 5K static queries (i.e.,
fqry=0%), while varying the object population N. This way we
eliminate the NN computations from scratch (apart from the
initial query evaluation) and measure the pure result maintenance
cost. As shown in Figure 6.6b, the behavior of YPK-CNN and
SEA-CNN is similar, while CPM induces considerably fewer
computations.

CPM SEA-CNNYPK-CNN
CPU time

Number of obejcts

0

20

40

60

80

100

120

140

160

10K 50K 100K 150K 200K

CPU time

Number of obejcts

0

200

400

600

800

1000

1200

10K 50K 100K 150K 200K

(a) Constantly moving queries (b) Static queries
Figure 6.6: CPU time for constantly moving and static queries

7. CONCLUSIONS
This paper investigates the problem of monitoring continuous NN
queries over moving objects. The task of the query processor is to
constantly report the results of all queries, as location updates
stream by from both the objects and the queries. Our contribution
is an efficient processing method, referred to as the conceptual
partitioning monitoring (CPM) algorithm. CPM is based on a
conceptual partitioning of the space around each query q, in order
to restrict the NN retrieval and the result maintenance
computations to objects that lie in the vicinity of q. The core of
CPM is its NN computation module, which retrieves the first-time
results of incoming queries, and the new results of existing
queries that change location. This module produces and stores
book-keeping information to facilitate fast update handling.
Keeping the NN set of a query q up-to-date is performed by
processing on-line the object updates as they arrive. If the new
NN set of a query can be determined solely by the previous result
and the set of updates, then access to the object grid G is avoided.
Otherwise, CPM invokes the NN re-computation module, which
uses the book-keeping information stored in the system to reduce
the running time (compared to NN computation from scratch).
CPM is a generally applicable technique, since it does not require
any knowledge about the object or query moving patterns (e.g.,
velocity vectors), and can concurrently process multiple (static or
moving) queries. We analyze its performance and compare it with
the existing state-of-the-art methods. As demonstrated by a
qualitative analysis and by an extensive experimental study, CPM
outperforms its competitors.
Finally, to support the generality of the proposed methodology,
CPM is applied to aggregate NN monitoring, where a query
consists of a set of points and the optimization goal depends on an
aggregate function (such as sum, min and max). In the future, we
intend to explore the problem of continuous monitoring for
variations of NN search, such as reverse NNs. A preliminary
approach on this topic considers one-dimensional streams and
aggregate reverse NN [KMS02]. It would be interesting to
develop alternative approaches for the continuous monitoring of
multiple (conventional) reverse NN queries in spaces of higher
dimensionality.

ACKNOWLEDGEMENTS
This work was supported by grant HKUST 6180/03E from Hong
Kong RGC. The authors would like to thank Kevin Di Filippo for
proof-reading the paper.

REFERENCES
[B02] Brinkhoff, T. A Framework for Generating Network-

based Moving Objects. GeoInformatica, (6)2: 153-
180, 2002.

[BJKS02] Benetis, R., Jensen, C., Karciauskas, G., Saltenis, S.
Nearest Neighbor and Reverse Nearest Neighbor
Queries for Moving Objects. IDEAS, 2002.

[CHC04] Cai, Y., Hua, K., Cao, G. Processing Range-
Monitoring Queries on Heterogeneous Mobile
Objects. MDM, 2004.

[FSAA01] Ferhatosmanoglu, H., Stanoi, I., Agrawal, D.,
Abbadi, A. Constrained Nearest Neighbor Queries.
SSTD, 2001.

[GL04] Gedik, B., Liu, L. MobiEyes: Distributed Processing
of Continuously Moving Queries on Moving Objects
in a Mobile System. EDBT, 2004.

[H84] Henrich, A. A Distance Scan Algorithm for Spatial
Access Structures. ACM GIS, 1984.

[HS99] Hjaltason, G., Samet, H. Distance Browsing in
Spatial Databases. ACM TODS, 24(2): 265-318,
1999.

[KMS02] Korn, F., Muthukrishnan, S. Srivastava, D. Reverse
Nearest Neighbor Aggregates Over Data Streams.
VLDB, 2002.

[KOTZ04] Koudas, N., Ooi, B., Tan, K., Zhang, R.
Approximate NN queries on Streams with
Guaranteed Error/performance Bounds. VLDB, 2004.

[MXA04] Mokbel, M., Xiong, X., Aref, W. SINA: Scalable
Incremental Processing of Continuous Queries in
Spatio-temporal Databases. SIGMOD, 2004.

[PSTM04] Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.
Group Nearest Neighbor Queries. ICDE, 2004.

[PXK+02] Prabhakar, S., Xia, Y., Kalashnikov, D., Aref, W.,
Hambrusch, S. Query Indexing and Velocity
Constrained Indexing: Scalable Techniques for
Continuous Queries on Moving Objects. IEEE
Transactions on Computers, 51(10): 1124-1140,
2002.

[RKV95] Roussopoulos, N., Kelly, S., Vincent, F. Nearest
Neighbor Queries. SIGMOD, 1995.

[SR01] Song, Z., Roussopoulos, N. K-Nearest Neighbor
Search for Moving Query Point. SSTD, 2001.

[SRAA01] Stanoi, I., Riedewald, M., Agrawal, D., Abbadi, A.
Discovery of Influence Sets in Frequently Updated
Databases. VLDB, 2001.

[TP03] Tao, Y., Papadias, D. Spatial Queries in Dynamic
Environments. ACM TODS, 28(2): 101-139, 2003.

[XMA05] Xiong, X., Mokbel, M., Aref, W. SEA-CNN:
Scalable Processing of Continuous K-Nearest
Neighbor Queries in Spatio-temporal Databases.
ICDE, 2005.

[YPK05] Yu, X., Pu, K., Koudas, N. Monitoring K-Nearest
Neighbor Queries Over Moving Objects. ICDE,
2005.

[ZZP+03] Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.
Location-based Spatial Queries. SIGMOD, 2003.

