
Meta-Data Version And Configuration Management In
Multi-Vendor Environments

 John R Friedrich, II
Meta Integration Technologies, Inc.
949 Sherwood Avenue, Suite 200

Los Altos, California 94022
650-917-7700

friedrich@metaintegration.net

ABSTRACT
Nearly all components that comprise modern information
technology, such as Computer Aided Software Engineering
(CASE) tools, Enterprise Application Integration (EAI) environ-
ments, Extract/Transform/Load (ETL) engines, Warehouses, EII,
and Business Intelligence (BI), contain a great deal of meta-data,
which often drive much of the tool’s functionality. These meta-
data are distributed and duplicated, are often times actively
interacting with the tools as they process data, and are generally
represented in a variety of methodologies. Meta-data exchange
and reuse is now becoming commonplace. This article is based
upon the real challenges found in these complicated meta-data
environments, and identifies the often overlooked distinctions and
importance of meta-data version and configuration management
(CM), including the extensive use of automated meta-data
comparison, mapping comparison, mapping generation and
mapping update functions, which comprise a complete meta-data
CM environment. Also addressed is the reality that most
repositories are not up to the task of true version and
configuration management, and thus true impact and lineage
analysis, as their emphasis has been on the development a single
enterprise architecture and the concept of “a single version of the
truth.”

1. 1. INTRODUCTION
Meta-data management has become a sophisticated endeavor.
Nearly all components that comprise modern information technol-
ogy, such as Computer Aided Software Engineering (CASE)
tools, Enterprise Application Integration (EAI) environments,
Extract/Transform/Load (ETL) engines, Warehouses, EII, and
Business Intelligence (BI), all contain a great deal of meta-data.

Such meta-data often drives much of the tool’s functionality.
Additionally, this meta-data are distributed and duplicated, are
often times actively interacting with the tools as they process
data, and are generally represented in a variety of methodologies.

Harvesting this meta-data is a significant challenge in itself, and
many methods and/or architectures for meta-data capture,
management, analysis and use have been presented in the
literature [10], [11]. Meta-data exchange and reuse is now
becoming commonplace, thanks to initiatives like the Object
Management Group’s Common Warehouse Metamodel1,
especially the XML based XMI2, and extensive work by many of
the current vendors of CASE, ETL and BI tools, as well as meta-
data glue providers, such as Meta Integration Technologies, Inc.
Much can be learned in the process of deploying such meta-data
management environments. In particular, meta-data version and
configuration management becomes essential to the success of
such implementations.

2. CONFIGURATION MANAGEMENT
Configuration management is a standard part of software (SW)
engineering [3]. But what is meant by configuration management
(CM)? As an assembly of references to definitions and subtleties
of configuration management for software, the author has found
no better collection than Brad Appleton’s ACME Project page [1],
[8]. While the emphasis is on software development, not meta-
data, there are a great deal of directly applicable concepts and
valuable analogies to be gleaned. Key points include:

• The need to track multiple versions (states in time) and
statuses (place in a process) of configuration items (discrete
artifacts)

• Managing changes through the software engineering
lifecycle

• Impact analysis due to actual or proposed changes (the SW
lifecycle is generally better understood than the data or meta-
data lifecycle)

1. See the “Data Warehousing, CWM™ and MOF™
Resource Page” at http://www.omg.org/cwm/

2. See the “CORBA®, XML and XMI® Resource Page” at
http://www.omg.org/xml/

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005 June 14-16, 2005, Baltimore, Maryland, USA
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00"

• Understanding and analyzing traceability through the life-
cycle and interfaces/exchanges

• Managing concurrent engineering activities
• Ensure proper distribution, assembly and deployment of

engineering assets

As software engineers, team leads, project managers, and soft-
ware, data and enterprise architects can attest, this is a difficult,
but necessary, set of tasks. Effective software CM requires a CM
repository, a repeatable software CM process, the appropriate
resources and what is referred to so often as “buy-in”, or full
conformance with the processes and full integration with the
environment, by engineers, managers, designers and integrators.

3. CM AND META-DATA
Software CM is so important precisely because it is software that
drives the functioning of the IT infrastructure. Today, nearly
every CASE, ETL, BI and EAI tool has its own repository and
designer for meta-data. Now that this meta-data is used to drive
much of the modern IT infrastructure, just as with software in the
past, similar meta-data CM activities must be adopted in order to
have effective information management, and specifically meta-
data management. In addition, of course, one needs to ensure that
the meta-data specific concerns are addressed and that software
CM processes are appropriately adapted to the meta-data world.

4. META-DATA SCOPE
For the purposes of this paper, the meta-data considered here shall
be limited to that which is directly used by IT infrastructure
components or descriptive meta-data directly related to the same.
E.g., included are data models, XML schemas/DTDs, Object-
Class Diagrams, object interface specifications, ETL schemas and
mappings, dimensions, joins, CASE models, ETL and BI
process/lifecycle meta-data, and finally meta-data related directly
to the organizational standards for these same elements.
Excluded in the scope of the article are generally any meta-data
elements that are not forward or reverse engineers from the
CASE, ETL, BI, tools, except as necessary for mapping, version
and configuration management. Some refer to this as “technical
meta-data” [5].
 Let us begin with a data flow example, extended from a
generalization of the meta-data environments referred to above.
Generally, one can view various meta-data that drive specific IT
infrastructure components in reference to the data movement or

Data
Sources

Data
Sources

Applications
Applications

ERP
Solution

Data
Warehouse

Data Mart
Data Mart

Data Mart

Business
Intelligence
Reporting

OLAP
CubesOLAP

Cubes

ETL

ETL
OLAP
Cubes

Staging

Data
FeedsData

Feeds

Data
Specs

Data
Schemas Mappings

Process
Metadata

ETL
Repository EAI

Repository

Data
Specs

Data
Specs

Data
Specs

Data
Schemas

Mappings

Cubes,
Joins, etc.

Message
Schema XML

Schema

CASE
Design

Software

CASE
Repository

Process &
Code

Models Data
Models

Figure 1. Meta-Data Drives Modern IT Infrastructure.

Table 1. Data Flows and Related Meta-Data.

Data Meta-Data

Operational Data Sources (ODS)

Data stores Database specifications, DDL and
CASE models (e.g., RDBMS, logical
E-R, OODBMS, etc.)

Application software and
ERP

Interface specifications, interface
definition languages, and CASE
models

Other Data sources Message structure/models and
specifications

Extract, Transform and Load (ETL)

Data Movement and
Transform Engine

Source and target data schema,
transformation rules, ETL process
specifications, and ETL Repository

Data Warehouse (DW)

Staging and warehouse
databases

RDBMS schema, models, CASE
models, DDL, and staging to
warehouse transforms (e.g., SQL)

Business Intelligence and Reporting (BI)

Data marts, cubes, views,
portals, etc.

RDBMS schema, models, CASE
models, BI Repository, view and
dimension specifications, aliases, BI
transforms, portal interface specifica-
tions and models, WSDL, etc.

Standardization

Generally none

Logical and conceptual schema,
database models, CASE models,
standards process management meta-
data (e.g., steward), data dictionary,
mappings to rest of meta-data, etc.

flow that they represent, as in Figure 1. This figure depicts many
example data flows for a typical information management
environment. Each portion of the data flow has its associated
metadata, as detailed in Table 1.

Now, for clarity, let us look at one aspect of the data flows and
related meta-data that drives the ETL and BI infrastructure. A
simplified diagram is provided in Figure 2. The data flow is a
straightforward extract from source RDBMSs using an ETL tool
that loads into a warehouse (with an intermediary staging DB). A
BI tool then reads and/or extracts data from the warehouse into
marts and cubes, and provides reports.

In order to represent this data flow in a meta-data management
environment, meta-data in the form of data schemas/models is
“stitched” together across tools. For example, models of the
source RDBMS data structures or design CASE models are
extracted, as are the source schemas from the ETL tool. Neither
“knows about” each other until they are stitched together in the
meta-data management environment. Additionally, extracts for
the ETL tool will provide meta-data describing transformation
mappings and ETL process information to the target schemas (the
staging DB). These target schemas are then stitched to the staging
data models and those to the warehouse data models. Finally, the
warehouse models are stitched to the reference data schemas from
the BI tool and additional mappings are provided by that tool to
the dimensions, joins and views.

Reporting / Business
Intelligence

Data WarehouseETLSource Systems

M
e
t
a
D
a
t
a

CM

Computer Aided
Software

Engineering

Extract Transform
and Load

Development

Business
Intelligence Design

and Reporting

Data
Sources

Data
Sources

Data
Sources

Applications
Applications

Data
Warehouse

Data Mart

BI
Reporting

ETL
OLAP Cube

Staging

ETL
Repository

EAI
Repository

ETL
Engine

Computer Aided
Software

Engineering
BI DesignETL

Design
CASE

Repository

CASE
Design

Forward/Reverse
Engineering

CASE
Design

CASE
Repository

Forward/Reverse
Engineering

Source
Data

Schemas

Mapping
s

Lifecycle
Metadata

Data
Schemas

Mapping
s

Cubes,
Joins, etc.

Process
& Code
Models

Data
Models

Target
Data

Schemas

Staging
Data

Models

DW Data
Models

Stitching

Stitching
Stitching

Figure 2. ET, DW and BI Data Flow Related Meta-Data.

After going through this process, it is possible to answer some
very powerful questions. Two obvious questions include:

• Given a change to the meaning of an element in the source
system data schema, what is the impact on reporting using
the BI tool (and every step in between)?

• Given that a report field is thought to be incorrect, what is
the data flow lineage of systems and transformations that
lead to that field’s value? Or the Sarbanes-Oxley question:
How do I certify that this financial report is indeed accurate,
i.e., where did this data come from?

Additionally, some more sophisticated, call them meta-data
business intelligence, questions include:

• What transformations are reproduced, perhaps, redundantly
in the ETL and BI solution? How? Are they consistent?
Should they be?

• What DW data is unused by BI queries? What source
system data?

Remember these questions as they will be used to determine much
of the specialized requirements for version and configuration

management of meta-data. Now, let us follow through the analo-
gies with software engineering CM. These topics will include:

• Multiple Versions and Multiple Configurations
• Managing changes through the meta-data management

lifecycle
• Impact analysis
• Lineage Analysis
• Understanding and analyzing traceability through the life-

cycle
• Managing concurrent engineering activities
• Ensure proper distribution, assembly and deployment of

engineering assets.

5. MULTIPLE VERSIONS AND
MULTIPLE CONFIGURATIONS
As a software CM concept, a configuration is a set of versions of
source and object modules, most likely associated with a build of
the system. The meta-data example above considered one
configuration only. In reality, there are several dimensions of
possible versions to consider, and thus a multitude of
configurations. These dimensions include:

• Multiple deployed versions of each of the source systems,
ETL schemas and transformations, warehouse and staging
(distributed warehouse), and BI reports and design

• Multiple design, developmental, beta, etc., versions of all of
the above

• Multiple version of standards and/or reference models,
standard code sets, code set mappings, look-up and reference
tables, etc.

• Multiple versions of data migration transformations for new
versions of data systems (i.e., data migration for the accounts
receivable source system from version 4.1 to 4.2).

• Other more subtle ones which are not within the scope of this
paper.

5.1 MANAGING CHANGES THROUGH
THE META-DATA MANAGEMENT
LIFECYCLE
Much of the well-defined methods used for software CM can be
applied directly, such as ensuring that configuration items are
versioned, version history is maintained, configurations of
versions are identified and maintained, proper milestones for
versioning of meta-data are defined, etc. An example of such a
meta-data management process is provided in Figure 3.

5.2 IMPACT ANALYSIS
Impact analysis in the meta-data world is analogous, but not
identical, to the software engineering parallel. In the case of meta-
data, impacts generally fall into one of the following categories:

• A change in data or interface specification, type, or meaning
• A change of schema or relationships among data elements

and interfaces
• A change of transformation, validation or generation rules.

Impacts can then cascade for any of the following reasons:

• Data-flow impacts down-stream
• Additional data inputs required for the change to be

successful (lineage impacts)

• Standards impacted by change.

Each of these changes creates another version of the mapping in
the meta-data management environment.
Note, however, that the software CM approaches are not
sufficient (do not address) the issue of mappings (e.g., the

stitching between the CASE tool models and the source ETL
schema). In order to answer any of the questions identified in that
last section the meta-data CM environment must be able to
identify the version of each of the mappings among the meta-data,
not just simply what versions exist of the schemas and
transformations themselves.

Identify Mapped (Impacted)
Packages

Impacted POC’s Update
PackagesMake Changes in CASE Tool

Identify
Impacted Items

and Reverse
Engineer
Changed
Version

Retrieve Latest
Version DW

Schema

Make Changes
in CASE Tool

Import New
Version

New DW
Schema Design

Completed

Migrate Version
from Prior DW
Schema Design

Post in CASE
Tool Repository

Export Source /
Target models

and Transforms

Import into ETL
Designer

Export schema
and transforms

from ETL
Designer

Import New
Versions

Store in ETL
Repository

Export complete
Model from
CASE Tool

New ETL
Design

Completed

Migrate Version
from Prior ETL

Design

Generate New
DW Schema or

Extensions

Schema or
Transformation

Change
Required

Run Query to
Identify

Impacted DW
Products

Extract Schema
from DW Tool

Compare
Models

Map/Stitch
Model

Retrieve Latest
Impacted
Schema

Run Query to
Identify Other

Tools’ Impacted
Products

Navigate to
Impacted
Schema

Figure 3. Sample Meta-Data ETL Version Control Process for Meta-Data CM.
To better understand this meta-data specific requirement, consider
the configurable items, versions of those and specific file formats
required for managing the meta-data for an RDBMS to Informa-
tica ETL [9] to an ERwin [4] designed warehouse DB data flow.
In this example there are multiple versions of a source system
RDBMS and of the Warehouse (as changes have created new
versions). These configurations then require multiple versions of
both of the source and target schemas in Informatica, and many of
the permutations of sources and targets represented as versions of
the ETL mappings and transforms in Informatica. In turn, the
existence of multiple source and target versions then requires an
equivalent number of versions of the mappings from the RDBMS
schemas in the ERwin to the Informatica source schemas, and the
same for the target side.

Successful meta-data impact analysis also requires a meta-data
comparison facility, much like those in existing CASE tools, and
a mapping or transformation comparison capability, unique to the
meta-data management environment. Analogous with the
software engineering “diff” type tools, this meta-data comparison
tool would provide a report of the differences between two
models, for example. Unique to the meta-data view, a mapping
comparison facility would provide a report on the differences
between two mappings, and thus the impacts to the downstream
meta-data and mappings.
Finally, just as in ETL or BI tools, it is important to automate, to
as great a degree as possible, the generation of the mappings
(stitching, standards mapping, etc.) that are not directly reverse
engineered from a tool. Here, the meta-data comparison tool’s
output could be used by a meta-data mapping tool to generate

mappings, again based upon some make-file or wizard type rules
and specifications. In most cases, the stitching would be nearly
automatic as the data names, structures, definitions and types are
generally the same across tools that are referring to the same data
(e.g., the target schema in the ETL tool and the data warehouse
RDBMS model).

5.3 LINEAGE ANALYSIS
The Sarbanes-Oxley question in the earlier section represents a
type of analysis requirement, often times referred to as lineage
analysis. Lineage analysis requires that one can navigate “back-
ward” in terms of the data flow in order to determine all the data
sources, transforms, interfaces and relationships that were used to
create a data element or report field toward the end of the data
stream. These can be divided into the following types of analysis:

• Based upon the current operational configuration
• Based upon a configuration of historically operational

systems
• Based upon proposed or developmental configuration.

As one may conclude from this list, it is often necessary to
perform lineage analysis on historical and proposed
configurations of versions of the meta-data and mappings
(including stitched mappings). In this way, lineage analysis, in a
similar fashion to impact analysis, requires a sophisticated version
and configuration management environment.

5.4 UNDERSTANDING AND ANALYZING
TRACEABILITY THROUGH THE LIFE-
CYCLE
Here the word lifecycle refers to the meta-data management
lifecycle, analogous to the software engineering lifecycle. In this
way, not only is it important to be able to identify operational
configurations of versions of the meta-data, it is also necessary to
track the version history, i.e., what versions lead to other versions.
A good version nomenclature (numbering) system is critical.
Valuable also is the ability to notate version history relationships
among the versions.
Not so analogous to the software engineering CM principles is the
need to provide traceability and automated generation of versions
of mappings, whether stitching, transforms or standardization
relationships. A very common reason for the need for a new
version is the change to a data type or data schema. This change
will “cascade” down the data stream, impacting many mappings
among meta-data elements. Each of these changes creates
another version of the mapping in the meta-data management
environment. In order to be manageable, these mappings must be
created in as automated a fashion as possible. A wizard like, or
make-file like, mapping regenerator or migrator could provide
such functionality, creating a new version of each of the mappings
based upon the information contained within the previous
mapping, a set meta-data comparison rules, and the make-file or
wizard based specifications.

5.5 MANAGING CONCURRENT
ENGINEERING ACTIVITIES
The analogy with software engineering CM is very strong for
currency control of meta-data design and engineering. The meta-
data CM environment will interact with the design tools:

• CASE for RDBMS’s, messages and software interfaces
• The ETL designer and/or repository
• The DW designer or CASE tools
• The BI designer and/or repository.

In the software engineering analogy, the source code is
completely maintained within the CM tool. This is not always the
case for meta-data, as the meta-data that may be extracted from a
particular tool (ETL, BI, DW builder, etc.) could easily be less
than what is necessary to re-create the functionality of the tool.
Thus, concurrency issues must also be managed, and in fact
should be managed, in the ETL/BI/DW/CASE design tool
wherever possible. Multiple versions in the ETL repository may
exist before a new version is placed in the enterprise meta-data
management environment. Again, this consideration also impacts
the meta-data CM process, as the example back in figure 3
demonstrates, ensuring that the appropriate milestones are defined
for new versions to be placed in the enterprise meta-data
management environment.

5.6 ENSURE PROPER DISTRIBUTION,
ASSEMBLY AND DEPLOYMENT/REUSE
OF ENGINEERING ASSETS
In the software engineering analogy, make files and other
specifications allow for the direct and automated generation of an
operational configuration of the software. I.e., the source code is
compiled into object code and is then assembled with other
libraries and components to create a functioning system.
Unfortunately, while CWM and the efforts of
ETL/BI/DW/CASE/Repository vendors have made meta-data
movement and reuse more effective, this is not equivalent to
having source code generate object code. Instead, these tools
refer to forward-engineering.
It is important to note this very strong distinction between the
version and configuration management of software and that of
meta-data. Meta-data, is very likely to be forward-engineered
into, that reused by, many different data management tools.
However, this type of reuse is often the result of meta-data trans-
lation or migration, oftentimes across different methodologies
(e.g., UML and Relational). A common example would be:
1. Develop the data warehouse schema in ERwin
2. Forward engineer that into an RDBMS
3. Migrate the model to an ETL design tool, say Informatica

Designer, as a target schema
4. Forward engineer that same model into the ETL engine
5. Migrate the updated ETL target model to the BI design tool,

say BO Designer [2]
6. Forward engineer into a reporting tool, such as Crystal

Reports [2].

In other words, meta-data reuse is a critical way in which meta-
data is leveraged. It is also an example of why meta-data
management is so critical to the enterprise, as its quality may
impact many different systems.
This view of meta-data as a reusable asset also means that impact
analysis is not simply an answer. I.e., it is not simply a report that
is used as a reference to make changes from. Instead it is an
integral part of the CM process to actually migrate the changes to
the appropriate tool. Again, using the data warehouse example,

changes to the design of the operational data store in a CASE tool
are moved to the ETL source schema and forward engineered.
These changes are also migrated to the standard reference
model(s) and this same information can be migrated to the target
side of the ETL tool as well as the BI designer., i.e., wherever the
data flow takes one. In order to manage this meta-data properly,
these steps all must be captured as versions of meta-data for the
given tools, including the related development, testing,
deployment and operational configurations of those versions. In
practice, this level of CM makes extensive use of the automated
meta-data comparison, mapping comparison, mapping generation
and mapping update functions, which comprise a complete meta-
data CM environment.

6. NOTE ON REPOSITORIES
Even still, the above example is not sufficient in order to truly
answer our MD CM questions. In order to address all of the
above requirements, one must also be able to know what the
deployed configuration in fact was at some point in time, or what
it will be or might be (given a hypothetical or proposed version).
A simple cut might be, “what are the sources for a particular
report summary on a given date, for a given date range, or will be
after deployment of new versions?”
To get at these kinds of answers, version and configuration
management must be a fundamental part of the meta-data
management environment, oftentimes considered the repository.
Unfortunately, most repositories are designed around the concept
of capturing and managing meta-data for what the IT
infrastructure (sometimes even expanded to the Enterprise
Architecture) should look like right now, also oftentimes referred
to as “the single version of the truth.”
Such an approach is appropriate for some very important
requirements, specifically those growing out of the concept of the
common information model [6], Enterprise Architecture [7], and
logical and conceptual data/information/process management.
These are valuable exercises, and it is certainly valid to say that
the first step in MD CM is to reduce the number of configurations
as much as is possible, i.e., standardize and rationalize. However,
when working with the actual systems, CASE tools, ETL,
warehouse, marts, BI tools, etc., one version of the truth at a
conceptual level “relates to” but does not detail what is necessary
for accurate answers to our questions about lineage and impact
analysis across versions and configurations of versions.
Additionally, the mechanisms employed by these repositories in
order to “integrate” meta-data from different tools (CASE, ETL
and BI, for example) are fundamentally different from version
and configuration management concepts. Such repository
environments tend to merge the meta-data items from different
tools together, generally at the time of extraction from a tool,
when they are thought to represent the same data source (e.g., the
CASE tool design of the RDBMS with the ETL source schema of
the same), as opposed to importing a version of what that tool has
as meta-data and then managing the versions, configurations of
versions, and the stitching across tools (see figure 4). As a result,
reconstructing the version history, let alone performing change
impact analysis when only one aspect of what has been merged
together has changed (new version of the ETL, for example), is a
very awkward or nearly impossible task.

In some way, this distinction in purpose is why the word
“repository” or “meta-data repository” has not been used
extensively in this article. Instead, a more utilitarian term “meta-
data management environment” has been chosen, in order to
concentrate on the CM aspects of meta-data management.
Terminology, especially when weighted with marketing, is
always a difficult sea in which to navigate. A “repository” can
(and this article would support the argument that it should) be
constructed with these MD CM capabilities as a fundamental
design concept. A repository can and should be more than what
might be referred to as a “meta-data warehouse.”

7. CONCLUSION
Meta-data version and configuration management is quickly
becoming a critical concern as more meta-data is extracted and
reused by CASE, BI, ETL and warehouse environments. Many of
the basic concepts of software CM may be successfully applied to
meta-data CM. Due to the relationships intrinsic to meta-data
elements, e.g. the stitching of meta-data across tools and meta-
data reuse, there are also a number of meta-data specific CM
concerns that must be addressed. With the growth in meta-data
exchange, the options should only improve in terms of environ-
ments that are capable of the sophisticated type of CM necessary.

REL

REL

XSD TRF REL

ERA

TRF
BO UniverseInformatica PowerCenter

CA AllFusion
ERwin

REL DIMTRF

REL TRF REL
Ascential DataStage Cognos ReportNet

REL DIMTRF

XSD TRF

ERA

TRF BO UniverseInformatica PowerCenter

CA AllFusion
ERwin

DIMTRF

REL TRF
Ascential DataStage Cognos ReportNet

DIMTRF

 Figure 4. Meta-Data Merging versus Meta-Data Stitching

8. REFERENCES
[1] Appleton, Brad. The ACME Project: Assembling

Configuration Management Environments (for Software
Development). website at http://www.
cmcrossroads.com/bradapp/acme/scm-defs.html

[2] Business Objects, http://www.businessobjects.com/
[3] Carnegie Mellon Software Engineering Institute, home page

at http://www.sei.cmu.edu/.
[4] Computer Associates, http://www3.ca.com/.
[5] Do, Hong Hai, Rahm, Erhard. On Metadata Interoperability

in Data Warehouses, Report Nr. 01(2000), UNIVERSITÄT
LEIPZIG, 2000.

[6] Distributed Management Task Force, Inc. (DMTF), Common
Information Model (CIM) Standards at
http://www.dmtf.org/standards/cim/.

[7] Federal Enterprise Architecture at
http://www.feapmo.gov/fea.asp,
the DoD Architecture Framework at http://www.dod.
mil/comptroller/bmmp/pages/arch_arch_home.html, and the
Institute for Enterprise Architecture Developments at
http://www.enterprise-architecture.info/.

[8] Hass, Anne. Configuration Management Principles and
Practice, Addison Wesley Professional, 2003.

[9] Informatica, http://www.informatica.com/.
[10] Inmon, W. H., Claudia Imhoff, Ryan Sousa. The Corporate

Information Factory, 2nd Edition. Wiley. 2000.
[11] Marco, David. Meta Data & Knowledge Management:

Managed Meta Data Environment: A Complete Walk-
Through, Parts 1-8, DM Review, 2004

