
An agent model for fault-tolerant systems

Avelino Francisco Zorzo
Faculty of Informatics – PUCRS

6681, Ipiranga Avenue
90619-900 Porto Alegre, Brazil

zorzo@inf.pucrs.br

Felipe Rech Meneguzzi
HP/PUCRS

6681, Ipiranga Avenue
90619-900 Porto Alegre, Brazil

fmeneguzzi@terra.com.br

ABSTRACT
This paper describes the use of fault tolerance in a multi-

agent system. Such an approach is based on the modeling of
autonomous agents with planning capabilities. These capa-
bilities are used by the agent to recover from faults occurring
in its surrounding environment, e.g. hardware faults, or in
its internal representation thereof, e.g. software faults. The
expected fault-tolerant behavior is tested using fault injec-
tion either in the system described by the agent or in the
environment in which the agent (system) is embedded into.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-

telligence—Intelligent agents; D.4.5 [Software]: Operating
Systems—Fault-tolerance

General Terms
Reliability, Algorithms, Languages

Keywords
CA actions, BDI Model, Planning, Declarative Goals

1. INTRODUCTION
Various techniques have been proposed in order to provide

dependability for distributed systems developed using what
now are standard programming techniques like Object Ori-
entation (OO) [23]. Meanwhile, Agent Oriented Program-
ming (AOP) [13] is being proposed as a new approach to the
development of distributed systems. Its main appeal resides
in it being a powerful tool that models system behavior in
terms of interactions among autonomous entities.
As AOP progresses and new methodologies of agent-based

software are created [7], several authors have already ex-
pressed concerns on the use of fault tolerance in Multi-Agent
Systems (MAS) [11, 14]. While MAS are more flexible than
traditional distributed systems due to its ability to reason

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05, March 13 -17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/0003...$5.00.

about unpredicted situations and more reliable due to the
fact that agents are easily replicated, failures in the system
itself and whatever it controls are still possible. Therefore,
it is important for a MAS to have some kind of mechanism
that allows a group of agents performing some task to try
to bring the system to a stable state in case of a failure, or
otherwise notify the system about catastrophic failures.
Considering techniques of fault-tolerant software design

[3, 17], agents can be easily related to them in that they
provide a transparent interface for the implementation of
multiple variations in the strategies for achieving the same
result, either concurrently, using cooperating agents, or se-
quentially, using agents that assume the role of a previously
faulty agent. Agent-based systems are also closely related to
systems modeled through Coordinated Atomic (CA) actions
[22], as they define a model of problem solving based on the
interaction of cooperating processes.
In this paper we propose a way to implement fault-tolerant

systems using an agent-based approach [15]. In particular
the proposed agent model is described in terms of declarative
goals [20]. Using a declarative goal semantics to drive its rea-
soning process allows an agent to decouple plan formation
and execution from goal achievement [5], which enables the
agent to build plans at runtime [15]. This type of description
is less prone to specification errors since the designer is spec-
ifying what must be accomplished rather than how to do
it. Furthermore, the goal to be accomplished by the system
is also the standard against which fault-tolerant mechanisms
will check the results generated by the agent, making post-
condition verification more straightforward, whereas the agent
planning capability provides a powerful resource that can be
taken advantage of in the event faults are detected by the
agent [5].
Fault-tolerant systems modeled as autonomous agents also

allow the simulation of faults in terms of interactions with
the surrounding environment, which in turn allows the ob-
servation of system behavior under these conditions. We,
therefore, use a fault-injection technique to show how an
agent can tolerate faults introduced in its surrounding envi-
ronment as well as in its internal state.

2. RELATED WORK

2.1 BDI Agents
As computer systems became more complex, abstraction

mechanisms for these systems were developed. One such
mechanism that is becoming increasingly accepted is the
notion of Computer Agents [8], so far as to be proposed

60

2005 ACM Symposium on Applied Computing

as an alternative to the Turing Machine as an abstraction
for the notion of computation [19].
In the context of multi-agent systems research, one of

most widely known and studied models of deliberative agents
uses Beliefs, Desires and Intentions (BDI) as abstractions
for the description of a system’s behaviour. This model was
originated by a philosophical model of human practical rea-
soning [4], later formalized [6] and improved towards a more
complete computational theory [9, 21].
The selection of a course of action an agent will take in

order to satisfy its objectives, i.e. given an environment and
a set of objectives, determine whether the agent is capable
of satisfying its objectives through some sequence of actions,
is one of the most important processes of the BDI model.
A number of BDI agent implementations, in particular

those based on PRS [9], adopt a procedural semantics to
agent goals in order to drive agent reasoning, rather than
declarative goals [20]. The usage of procedural goals in these
systems was motivated by a desire to achieve practical run-
time performance in these systems, as reasoning about pro-
cedural goal is quicker than for declarative goals.
Declarative goals are, nevertheless, an important compo-

nent of intelligent agent systems as it allows an agent to
reason about the goals themselves [20]. An agent that has
information regarding what it is trying to accomplish is able
to determine which of its goals can be achieved, which ones
are impossible, and infer the relationship among them [20].
Moreover, declarative goals allow for the decoupling of plan
execution and goal achievement [5], which in turn enable an
agent to search for alternate plans in order to fulfill a goal
that could not be achieved due to the failure of an attempted
plan [15, 18].

2.2 Fault-tolerant mechanisms
System programmers usually write programs under the

optimistic assumption that, after realizing a set of tests,
nothing will go wrong when a system is deployed. When
something that had not been foreseen happens the system
will fail in an unexpected way. This is not acceptable in
many situations, e.g. in safety-critical systems. To im-
prove reliability, it is important that this type of situation
is treated appropriately.
During the past years several mechanisms were proposed

in order to provide fault-tolerant behavior to software com-
ponents, e.g. Recovery Block [17], NV programming [3], CA
Action [22]. Although these mechanisms have been used in
the past years, approaches to determine whether their be-
havior is suitable for dealing with environment or system
faults is not clear. This may cause problems when design-
ing a system that uses these mechanisms. Therefore it is
important to define a new way of testing such mechanisms.

2.3 Fault Injection
Fault Injection (FI) is a testing technique based on the

deliberate introduction and/or simulation of faults into a
system and the observation thereof in order to verify system
behavior under these circumstances [12]. FI testing involves
subjecting the target system to faults supported by its fault-
model and observe how the system reacts under these condi-
tions. Such process is considered an important tool within
the development of fault-tolerant systems as its resulting
data can be used in the determination of various depend-
ability measures, such as error detection coverage and the

efficiency of a given set of fault-tolerant mechanisms [2].
This strategy can be applied at different phases within

the development of a given system. In Simulation-Based
FI, a system is evaluated at its conceptual and design stages
prior to the actual implementation, and thus requires an
accurate specification of the target system and its failure
modes. Once a prototype is built it can be tested using
Prototype-Based FI. This is accomplished either at software
level and hardware level or both and consists of subject-
ing the prototype to emulated faults in order to observe its
behavior. After a concrete system is deployed, actual oper-
ational data can be analyzed using Measurement-Based FI,
which provides statistical data regarding field-observed error
conditions [12].

Data Analyzer

Data CollectorMonitor

Controller

Library

Fault Injection System

Workload

Target System

Library
Fault

Fault Injector Generator
Workload

Figure 1: Typical components of an FI environment.

A possible architecture for FI environment is composed
of the Target System and a Fault Injector, Fault Library,
Workload Generator, Workload Library, Controller, Moni-
tor, Data Collector and Data Analyzer (Figure 1) [12]. In
such an environment, the Fault Injector injects faults into
the Target System while it is processing input from the
Workload Generator. The Target System’s behavior is tracked
by the Monitor while relevant data is gathered by the Data
Collector and later examined by the Data Analyzer. The
interaction among these components is coordinated by the
Controller. Such an environment can be used as a reference
point in the construction of new FI tools (Section 4).

3. THE X2BDI AGENT MODEL
Extended Executable BDI or X2BDI is an extension of X-

BDI [15], which is an ELP-based agent model that uses an
external planning function to perform means-ends reason-
ing. The cognitive structure of X2BDI has the traditional
components of BDI agents, i.e. a set of Beliefs, Desires
and Intentions. It also has a set of time axioms inherited
from X-BDI. An X2BDI agent is composed of the same
components as its predecessor plus a propositional planning
function conforming to the formalism described in [15]. An
agent description contains the following elements: i) A set
of actions that essentially specify the abilities possessed by
an agent. An action is comprised of a set of pre-conditions
that states when it is possible for the agent to execute the
action and a set of effects that describe the result of the
execution of that action; ii) A set of desires that specify a
set of possible goals the agent might try to accomplish. A
desire is comprised of a pre-condition that states when that
goal becomes relevant to the agent. It also has a priority

61

value used by the agent to resolve which goals to pursue
when multiple goals become relevant but are not consistent;
iii) A set of initial beliefs used to initialize the knowledge of
the agent in a particular domain.
The set of beliefs is a formalization of facts in ELP, whose

consistency is maintained by means of a program revision
process performed in ELP by the SLX procedure [1]. From
the agent’s point of view, it is assumed that its beliefs are
always consistent. Every desire in an X2BDI agent is con-
ditioned by a conjunction of literals called Body, which
specifies the pre-conditions that must be satisfied in order
for an agent to desire a property. Desires may be speci-
fied to be valid only in a specific moment, or whenever its
pre-conditions are valid. Desires also have a priority value
used in the formation of an order relation among desire sets.
There are two possible types of intentions: Primary Inten-
tions, which refer to the intended properties, and Relative
Intentions, which refer to actions able to bring about these
properties. An agent may not intend something in the past,
that is already true, or is impossible, i.e. there must be at
least one plan available to the agent whose result is a world
state where the intended property is true.
The process of modeling X2BDI agents to solve prob-

lems is very similar to that of modeling STRIPS problems
[10]. The first step is the definition of the problem elements
in terms of first order literals. Properties about objects in
a world are represented as logic predicates applied to terms
representing the objects themselves. For example if we want
to say that an object a is a metal plate, we write metalPlate
(a), and, if want to say that a is rusted we write rusted(a)
. Besides objects and their properties, an agent also must
know the set of operators with which it can interact with the
world. Operators are tuples 〈pre, post〉 where pre denotes a
conjunction of pre-conditions that must be true prior to the
execution of the operator and post denotes a conjunction
of literals that will become true once the operator has been
executed. Once a definition for the problem objects, proper-
ties and world manipulation operators has been reached, the
agent itself is modeled. The information regarding the world
defined in the first step is stored in the agent’s beliefs, while
the agent purpose in the given world is modeled through its
desires, that represent world states that the agent will try
to achieve using the knowledge contained in its beliefs.
The X2BDI reasoning process initiates with the selec-

tion of Eligible Desires, which represent the unsatisfied de-
sires whose pre-conditions have been satisfied. The elements
of this set are not necessarily consistent among themselves.
Candidate Desires are then generated, which represent a set
of Eligible Desires that are both consistent and possible and
will be later adopted as Primary Intentions. In order to sat-
isfy the properties represented by Primary Intentions, the
planning process generates a sequence of temporally ordered
actions that constitute the Relative Intentions.
The process of selecting Candidate Desires seeks to choose

a subset of Eligible Desires that contains only those that are
internally consistent and possible, i.e. desires of properties
P that can be simultaneously satisfied through a sequence
of actions. X2BDI uses an external planning function,
thus separating the planning process previously hard-coded
within X-BDI. A set of Candidate Desires is the subset of
Eligible Desires with the greater priority value, and whose
properties can be satisfied. Satisfiability is verified through
the execution of a propositional planner that processes a

Mapping

Consistency
Maintenance

Perception

Action

Deliberation

Beliefs

Candidate
Desires

Elligible
Desires

Primary
Intentions

Relative
Intentions

Propositional
Planning

Desires

Figure 2: X2BDI overview.

planning problem where the initial state contains the prop-
erties that the agent believes at the time of planning. The P
properties present in the Candidate Desires are used to gen-
erate the set Primary Intentions. Primary Intentions repre-
sent the agent’s commitment to achieving a set of objectives
for which a course of action has been found. Relative In-
tentions correspond to the temporally ordered steps of the
concrete plans generated to satisfy the agent’s Primary In-
tentions. The notion of agent commitment results from the
fact that Relative Intentions must be non-contradictory re-
garding Primary Intentions. The computational effort and
the time required to reconsider the whole set of intentions of
a resource-bounded agent is generally significant regarding
the environment change ratio. Therefore, intention recon-
sideration should not occur constantly, but only when the
world changes in such a way as to threaten the plans an
agent is executing or when an opportunity to satisfy more
important goals is detected. As a consequence, X2BDI uses
a set of reconsideration “triggers” generated when intentions
are selected, and causes the agent to reconsider its course of
action when activated [15].

4. FI USING AGENTVIEWER
A tool was initially created to ease the process of modeling

and testing X2BDI agents through a graphical tool that
allows its start up and configuration as well as the remote
interaction with a running agent [15]. This tool is called
AgentViewer (Figure 3). Its main features are: control of
the agent kernel execution, communication with an agent
via sockets and the representation of the world model which
an agent is interacting with.
It is important to point out that, although it may be ar-

gued that modifying sensor data being supplied to the agent
would not represent fault injection per se, we advocate this
modality of input manipulation as being an actual instance
of fault-injection. The main argument against our brand
of fault-injection is that the agent input data being modi-
fied is part of the normal system execution, and as such, it
would not actually represent abnormalities within its lower
level components (at machine instruction level). On the
other hand, the arbitrary manipulation of the predicates
used by the agent in its reasoning process could be the re-
sult of some kind of lower level bit flip, or the manifestation
of a malfunction within sensor hardware. Thus we believe
that, as AgentViewer is a simulation tool rather than being
necessarily the deployment hardware platform, modifying
the predicates over which the agent performs its reasoning
process is a valid form of fault-injection.

62

Relative Intention

Primary Intention

Figure 3: The AgentViewer tool.

In light of the classification presented in Section 2.3, our
tool could be employed in all development phases of a given
agent, thus allowing Simulation-Based, Prototype-Based as
well as Measurement-Based fault injection. Considering the
declarative nature of X-BDI agents, Simulation-Based and
Prototype-Based fault injection would not be easily distin-
guishable as the X-BDI interpreter directly executes agent
specifications. The main difference between an emulated
agent run and its operation in a deployed system lies in
what is connected to the the agent’s sensors.

4.1 World Model
Besides easing the interaction with an X2BDI agent,

AgentViewer is capable of manipulating world model de-
scriptions, which the user can freely manipulate and send to
the agent to observe its behavior. AgentViewer can main-
tain two such descriptions: the world model, and the agent
world view. The agent world view represents the world
model as seen by the agent, and the world model repre-
sents the “real” world. Modifications performed over the
world model represent changes in the actual environment
with which the agent is interacting, whereas modifications
performed over the agent world view only affects the in-
formation that is available to the agent, which can have no
direct connection to the reality whatsoever, thus feeding the
agent with faulty information. It is also possible for the user
to interfere with the actions performed by the agent over the
real world, causing arbitrary failures with regards to the re-
sults expected by the agent. This functionality is controlled
through the World Model window (Figure 3), which repre-
sents valid world properties in different colors.
The agent world view maintained by AgentViewer is in-

ferred at the moment in which it connects to an X2BDI
agent. At this time, the tool loads the last planning problem
created by the agent in its communication with the planning
module. In that problem, the start state represents all the
properties believed by the agent in that deliberation cycle.
In case the tool cannot infer a world model through this file,
the user is responsible for defining a world model.
Once a representation of the agent world view is loaded,

the user can manipulate it, and send it to the remote agent.
These functionalities can be accessed through the following
buttons:

• Send World: Sends the world model to the agent;

• Add Predicate: Adds user specified predicate to the
selected world model, this predicate can either be pos-
itive or negative (indicated by the - symbol, or the
reserved word not). All unspecified predicates are con-
sidered false by default;

• Read Model: Replaces the current world model for a
new one specified in a file containing a user-specified
STRIPS problem;

• Time/Set: Specifies an integer value denoting the cur-
rent moment in time in the world model. Every time
the world model is sent to the agent this value is in-
cremented;

• Besides these buttons, the user can use Context Menus
to delete or negate a selected predicate. When the
program receives the result of an agent’s deliberation
through the Actuator Output window, the user can
use Context Menus in that window to either execute
the actions selected by the agent over AgentViewer’s
world model or cause them to fail, the agent can be
notified of the success or failure of its actions or not.

Through this functionality AgentViewer not only provides
greater flexibility on agent testing, but it also provides a
fault-injection environment for agent testing. In comparison
to the environment described in Section 2.3, AgentViewer
does not implement all of the functionalities contained in the
reference architecture of Figure 1; the Sensor Input window
is analogous to the Workload Generator and Library, while
Fault Injector functionality is provided by the World Model
window and partially by the Actuator Output window as
it allows Agent Actions to be overridden and forced to fail,
such functionality still lacks a Fault Library; Monitoring
and Data Collection functions are provided by the Actuator
Output window.

4.2 Injecting faults
Through the World tab in the World Model window, the

user can arbitrarily change the state of any property of the
agent’s environment. Therefore, he can cause several types
of faults within the world upon which an agent is operating.
Once the agent is aware of these faults, it will try to cope
with it in its deliberative process and bypass some or all of
the resulting errors caused by it. By modifying the world
model the user is injecting faults into the system for the
agent to deal with.
The user can also modify the information that is sent to

the agent’s sensors while not modifying the actual world
through the Agent tab. By feeding faulty information about
the world state, the user causes the agent to make decisions
based on false assumptions, thus injecting faults into the
agent itself. Using this approach, one can test the agent’s
ability to degrade gracefully or cope with the resulting er-
rors, while trying not to cause a system failure.
The possibility of injecting faults in the agent provided by

the AgentViewer tool makes its fault injection different from
[22]. In that work faults were injected through a fault inter-
face into the environment with which the control program
interacted, therefore only environment faults were possible
whereas faults in the control software could not be injected.
Furthermore, only the faults defined in the interface could be

63

Predicate Meaning (denotes that)
failed (X) component X failed
empty(X) component X is empty
plate (P) P is a sheet metal plate
robot(R) R is a Robot within the cell
arm(A,R) A is an arm of Robot R
table (T) T is a feeding table
press (P) P is a metal plate press

depositBelt (D) D is a deposit belt
loaded(X,P) component X is loaded with plate P
done(P) a plate P has been processed

Table 1: Predicates and corresponding meaning.

injected. In our approach, which can be used to design and
verify any similar application, the system verifier can inject
faults either in the environment, by adding new predicates
in the world model, or in the control system, by adding new
predicates to the agent world view.

5. A PRODUCTION CELL CASE-STUDY
In order to check the ability of an X2BDI agent to func-

tion in the event of faults, we have modeled a production
cell in which faults in its components are possible. In [22] a
design for a production cell is composed of a Deposit Belt,
two Presses for the processing of sheet metal plates, a Robot
with two perpendicular arms intended to move components
within the cell and a table where components are placed
(Figure 4). Plates entering the cell are placed in the table
and moved by one of the robot’s arms to a press where it is
processed. Once a plate has been processed, it is moved by
the robot into the deposit belt, where it is moved off the cell.
Any component within the cell can fail at any time. These
components are modeled with the following predicates:

loadDepositBelt
(Robot, Arm, DepositBelt, Plate)

(Robot, Arm, Press, Plate)
loadPress/unloadPress

(Robot, Arm, Press, Plate)
loadPress/unloadPress

unloadTable
(Robot, Arm, Table, Plate) usePress

(Press, Plate)

usePress
(Press, Plate)

Figure 4: A fault-tolerant Production Cell.

The interaction among the components are modeled as
STRIPS operators that are analogous to CA actions (for a
more thorough description of CA actions, see [22]). The
operators defined in this domain are the following:

• unloadTable(R, A, T, P), with pre-conditions plate (P),
robot(R), arm(A,R), empty(A), table (T), loaded(T, P), −
failed(A), −failed(R) and −failed(T), and effects empty(T
), −loaded(T, P), −empty(A) and loaded(A, P), represents
the unloading of plate P from table T by the arm A of
robot R;

• loadPress(R, A, Pr, P), with pre-conditions plate (P),
robot(R), arm(A, R), loaded(A, P), press (Pr), empty(Pr), −
failed(A), −failed(R) and −failed(Pr), and effects −loaded
(A, P), empty(A), loaded(Pr, P) and −empty(Pr), repre-
sents the loading of plate P in press Pr by arm A of
robot R;

• unloadPress(R, A, Pr, P), with pre-conditions plate (P),
robot(R), arm(A, R), empty(A), press (Pr), loaded(Pr, P),
−failed(A), −failed(R) and −failed(Pr), and effects loaded
(A, P), −empty(A), −loaded(Pr, P) and empty(P), repre-
sents the unloading of plate P from press Pr by arm A
of robot R;

• usePress(Pr, P), with pre-conditions plate (P), press (Pr),
loaded(Pr, P) and −failed(Pr), and effect done(P), rep-
resents the use of press Pr on plate P;

• loadDepositBelt(R, A, D, P), with pre-conditions plate
(P), robot(R), arm(A, R), loaded(A, P), depositBelt (D),
empty(D), −failed(A), −failed(R) and −failed(D), and ef-
fects −loaded(A, P), empty(A), loaded(D, P) and −empty
(D), represents the loading of plate P in the deposit
belt D by arm A of robot R.

Within this problem, agent goals are very simple: the
processing of any given plate P as soon as it enters the cell
followed by its loading in the deposit belt once done. This
is modeled by the following desires:

des (f z i , done (P) , Tf , [0 . 8]) i f b e l (f z i , p l a t e (P))
des (f z i , l oaded (d e p o s i tB e l t ,P) , Tf , [0 . 9])

i f b e l (f z i , done (P))

The placement of a new metal plate over the loading ta-
ble is represented by the inclusion in the agents beliefs of
the properties plate (plate1) and loaded(table , plate1). Such
modification will trigger the agent’s deliberation process.
Within this process, the pre-condition of the desire to achieve
done(P) is evaluated as true, turning such desire into an eligi-
ble one. In order to satisfy this desire, the agent’s planning
algorithm generates the following plan:

un loadTab le (robot , arm1 , t ab l e , p l a t e 1) .
l o a dP r e s s (robot , arm1 , p r e s s1 , p l a t e 1) .
u s eP r e s s (p r e s s1 , p l a t e 1) .

This plan proves, therefore, the possibility to satisfy the
previously selected eligible desire, thus, it becomes a can-
didate desire. Such desire will then originate primary and
relative intentions, leading the agent to execute the speci-
fied actions. During the process of executing the actions,
it is possible for a fault to take place in one of the com-
ponents, for instance, press number one (press1), which is
denoted by the belief on property failed (press1). In this
case, the action loadPress(robot,arm1,press1, plate1) becomes
impossible due to one of its pre-conditions now being false.
Once the agent notices such fault, it will have to re-plan
its course of actions. Supposing that the agent has already
executed the action unloadTable(robot,arm1,table , plate1), the
new plan generated by the agent is:

l o a dP r e s s (robot , arm1 , p r e s s2 , p l a t e 1) .
u s eP r e s s (p r e s s2 , p l a t e 1) .

As the agent was capable of generating a new plan to
satisfy the initial desire, it remains a candidate desire, while
the agent only had to modify its relative intentions in order

64

to reflect its commitment to a different course of action. In
this new course of action the agent will use press number two
(press2) instead of number one to process the metal plate. If
in the same situation the failed component were arm number
one (arm1), denoted by the belief in the property failed (arm1
) the achievement of the desire to process the metal plate
becomes impossible, considering that the plate will be stuck
in the defective arm. Many other combinations of faults in
various cell components were tested, in which the agent’s
ability to try corrective actions was possible and where the
fault prevented the agent to achieve its goals.

6. CONCLUSION
This paper has presented a new approach to inject faults

in a system modeled using some type of fault-tolerant mech-
anism. This approach has been applied to a tool that allows
to model a system as an agent that has the responsibility
to plan the set of actions that have to be executed. This
set of actions can, through the tools interface, effectively be
executed and the results are reflected in the environment in
which the agent is embedded to.
Using this tool, we could model several different types of

faults, either environment faults or system faults, and inject
these faults into the agent, which represents the system, or in
the world view, which represents the environment. Through-
out the fault injection we could visualize the behavior the
system would have with the different types of fault-tolerant
mechanisms used. For example, the re-planning performed
by the agent is actually a form of forward error recovery; or
n-version programming could be implemented using agent
replication or using diverse plans to achieve the same solu-
tion (using a graph-based planner several different solution
extractions are possible, i.e. several different plans).
Fault-tolerant systems modeled as autonomous agents al-

low the simulation of faults in terms of its interaction with
its surrounding environment, which in turn allows the ob-
servation of system behavior under these conditions. This
approach to system design might be an enabling technology
for dependability testing. Throughout the use of fault injec-
tion, we could also detect situations where the agent had not
been modeled properly and catastrophic failures happened.
Although this paper has shown the utility of using our ap-

proach to verify systems that use any type of fault-tolerant
mechanism, we still have to apply this approach to real ap-
plications. The examples we have used so far are based on
simulators, and some issues were not addressed, for exam-
ple real time. Another addition currently being considered
for the planning module is the usage of a constraint-based
planning and anytime algorithms to augment the agent re-
sponsiveness in time-critical applications [16].
Acknowledgment: This work was partially financed by

CNPq/Brazil and HP Brazil R&D.

7. REFERENCES
[1] Alferes, J. J., and Pereira, L. M. Reasoning with

Logic Programming. Springer Verlag, 1996.
[2] Arlat, J. From experimental assessment of

fault-tolerant systems to dependability benchmarking.
In IPDPS 2002 (2002), IEEE CS Press, pp. 135–136.

[3] Avižienis, A. A. Software Fault Tolerance. Wiley,
1995, ch. The Methodology of N-Version
Programming, pp. 23–46.

[4] Bratman, M. E. Intention, Plans and Practical
Reason. Harvard Press, Cambridge, MA, 1987.

[5] Coddington, A. M., and Luck, M. A
motivation-based planning and execution framework.
International Journal on Artificial Intelligence Tools.
10, 1 (2004), 5–25.

[6] Cohen, P. R., and Levesque, H. J. Intention is
choice with commitment. Artificial Intelligence 42, 2-3
(1990), 213–261.

[7] Dastani, M., Hulstĳn, J., and Meyer, J.-J. C.
Issues in multiagent system development. In AAMAS
(2004), ACM Press.

[8] der Hoek, W. V., and Wooldridge, M. Towards a
logic of rational agency. Logic Journal of the IGPL 11,
2 (March 2003), 133–157.

[9] D’Inverno, M., Luck, M., Georgeff, M., Kinny,
D., and Wooldridge, M. The dMARS architecture:
A specification of the distributed multi-agent
reasoning system. Autonomous Agents and
Multi-Agent Systems 9, 1-2 (2004), 5–53.

[10] Fikes, R., and Nilsson, N. STRIPS: A new
approach to the application of theorem proving to
problem solving. Artificial Intelligence 2, 3-4 (1971),
189–208.

[11] Guessoum, Z., Briot, J. P., Charpentier, S.,
Marin, O., and Sens, P. A fault-tolerant
multi-agent framework. In AAMAS (2002), ACM
Press, pp. 672–673.

[12] Hsueh, M.-C., Tsai, T. K., and Iyer, R. K. Fault
injection techniques and tools. IEEE Computer 30, 4
(1997), 75–82.

[13] Jennings, N. R. On agent-based software engineering.
Artificial Intelligence 117, 2 (2000), 277–296.

[14] Kumar, S., and Cohen, P. R. Towards a
fault-tolerant multi-agent system architecture. In
AGENTS (2000), ACM Press, pp. 459–466.

[15] Meneguzzi, F. R., Zorzo, A. F., and Móra, M.
D. C. Propositional planning in BDI agents. In SAC
(2004), pp. 58–63.

[16] Nareyek, A. Beyond the plan-length criterion. In
LNAI, vol. 2148. Springer Verlag, 2001, pp. 55–78.

[17] Randell, B. System structure for software fault
tolerance. IEEE Trans. on Software Engineering 1, 2
(1975), 220–232.

[18] Schut, M., and Wooldridge, M. The control of
reasoning in resource-bounded agents. The Knowledge
Engineering Review 16, 3 (2001).

[19] Wegner, P. Why interaction is more powerful than
algorithms. Comms. ACM 40, 5 (1997), 80–91.

[20] Winikoff, M., Padgham, L., Harland, J., and
Thangarajah, J. Declarative & Procedural Goals in
Intelligent Agent Systems. In KR (2002).

[21] Wooldridge, M. Reasoning about Rational Agents.
The MIT Press, 2000.

[22] Xu, J., et al. Rigorous development of an embedded
fault-tolerant system based on coordinated atomic
actions. IEEE Trans. on Computers 51, 2 (2002),
164–179.

[23] Zorzo, A. F., and Stroud, R. J. A distributed
object-oriented framework for dependable multiparty
interactions. In OOPSLA (1999), ACM Press,
pp. 435–446.

65

