
Efficient On-line Identification of Hot Data for
Flash-Memory Management ∗

Jen-Wei Hsieh
Department of Computer
Science and Information

Engineering
National Taiwan University
Taipei, Taiwan 106, R.O.C.

d90002@csie.ntu.edu.tw

Li-Pin Chang
Department of Computer
Science and Information

Engineering
National Taiwan University
Taipei, Taiwan 106, R.O.C.

d6526009@csie.ntu.edu.tw

Tei-Wei Kuo
Department of Computer
Science and Information

Engineering
Institute of Networking and

Multimedia
National Taiwan University
Taipei, Taiwan 106, R.O.C.

ktw@csie.ntu.edu.tw

ABSTRACT
Hot-data identification for flash-memory storage systems not
only imposes great impacts on flash-memory garbage col-
lection but also strongly affects the performance of flash-
memory access and its life time (due to wear-levelling). In
this research, we propose a highly efficient method for on-
line hot-data identification with limited space requirements.
Different from the past work, multiple independent hash
functions are adopted to reduce the chance of false iden-
tification of hot data and provide predictable and excellent
performance for hot-data identification. We not only pro-
pose an efficient implementation of the proposed framework
but also conduct a series of experiments to verify the perfor-
mance of the proposed method, in which very encouraging
results are presented.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—garbage
collection, secondary storage

Keywords
flash memory, workload locality

1. INTRODUCTION
Flash memory has become an excellent alternative for

the design and implementations of storage systems, espe-
cially for embedded systems. With potentially very lim-
ited computing power from a flash-memory controller or an
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embedded-system microprocessor, it is of paramount impor-
tance to have efficient designs for space management meth-
ods. One critical example method is for hot-data identifica-
tion, in which a given logical block address (LBA) is verified
to see if it contains frequently accessed data (referred to as
hot data). Hot-data identification for flash-memory storage
systems not only imposes great impacts on flash-memory
garbage collection but also strongly affects the performance
of flash-memory access and its life time.

The management of flash memory is carried out by either
software on a host system (as a raw medium) or hardware
circuits/firmware inside its device. In particular, Kawaguchi,
et al. [7] proposed a flash-memory translation layer to pro-
vide a transparent way to access flash memory through the
emulating of a block device. Wu and Zwaenepoel [8] pro-
posed to integrate a virtual memory mechanism with a non-
volatile storage system based on flash memory. Native flash-
memory file systems were designed without imposing any
disk-aware structures on the management of flash memory
[9, 10]. Chang and Kuo focused on performance issues for
flash-memory storage systems by considering an architec-
tural improvement [2], an energy-aware scheduler [11], and
a deterministic garbage collection mechanism [12]. Beside
research efforts from the academics, many implementation
designs and specifications were proposed from the industry,
e.g., [13, 14, 15, 16]. While a number of excellent designs
were proposed in the past years, many of the researchers,
e.g., [2, 4, 7, 8], also pointed out that on-line access pat-
terns would have a strong impact on the performance of
flash-memory storage systems, due to garbage collection ac-
tivities. Locality of data access were first explored by re-
searchers, such as Kawaguchi, et al. [2, 4, 7, 8], where ap-
proaches were proposed to distribute hot data over flash
memory for wear levelling or to improve the performance of
garbage collection and space allocation.

Although researchers have proposed many excellent meth-
ods in the identification of hot and cold data effectively,
many of them either introduce significant memory-space over-
heads (e.g., in the tracking of data access time) or require
considerable computing overheads (e.g., in the emulation
of the LRU method). The objective of this research is
to propose highly-efficient hot-data identification methods
with scalability considerations on precision and memory-
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space overheads. Different from the past implementations,
a multi-hash-function framework is proposed, in which mul-
tiple independent hash functions are adopted to reduce the
chance of false identification of hot data and provide excel-
lent performance for hot-data identification.

The rest of this paper is organized as follows: In Section 2,
the designs of flash-memory storage systems and motivation
of this paper are presented. Section 3 describes our on-line
locality tracking mechanism in detail. We demonstrate ap-
plicability and efficiency of proposed approaches by a series
of simulations in Section 4. Section 5 is the conclusion.

2. SYSTEM DESIGNS AND MOTIVATION
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Figure 1: Various types of flash-memory products

Flash memory is usually accessed by embedded systems
as a raw medium or indirectly through a block-oriented de-
vice. In other words, the management of flash memory is
carried out by either software on a host system (as a raw
medium) or hardware circuits/firmware inside its device, as
shown in Figure 1. Good examples of flash memory include
SmartMediaTM and MemoryStickTM (as shown in Fig-
ure 1.(a)) and CompactF lashTM and Disk On Module (as
shown in Figure 1.(b)).

A flash memory chip is usually partitioned into blocks
of a fixed size, and each block is further partitioned into a
fixed number of pages, where pages are basic write-operation
units. A typical block size and a typical page size are 64KB
and 512B, respectively. Flash memory has several unique
characteristics that introduce challenges for the manage-
ment issues: (1) write-once with bulk erases (2) wear-levelling.
Data over flash memory must be written to free space. That
is, when a page is written (/programmed), the space is no
longer available unless it is erased. Out-place-updating is
usually adopted to avoid erasing operations on every update.
The effective (/latest) copy of data is considered as “live”,
and old versions of the data are invalidated and considered
as “dead”. Note that live and old versions of data might co-
exist over flash memory simultaneously. Pages which store
live data and dead data are called “live pages” and “dead
pages”, respectively. After the processing of a large number
of page writes, the number of free pages on flash memory
would be low. System activities (called garbage collection)
are needed to reclaim dead pages scattered over blocks so
that they could become free pages. As a result, a poten-

tially large amount of live data might be copied to avail-
able space before a to-be-recycled block is erased. Since a
flash-memory block has a limitation on the count of erases,
a worn-out block could suffer from frequent write errors.
“Wear-levelling” activities is thus needed to erase blocks on
flash memory evenly.
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Figure 2: A typical system architecture for flash-memory
storage systems

Layered designs are usually adopted for the implementa-
tions of flash-memory storage systems, regardless of hard-
ware or software implementations of certain layers. The
Memory Technology Device (MTD) driver and the Flash
Translation Layer (FTL) driver are the two major layers
for flash-memory management, as shown in Figure 2. The
MTD driver provides lower-level functionalities of a storage
medium, such as read, write, and erase. Based on these
services, higher-level management algorithms, such as wear-
levelling, garbage collection, and physical/logical address
translation, are implemented in the FTL driver. The ob-
jective of the FTL driver is to provide transparent services
for user applications and file systems to access flash mem-
ory as a block-oriented device. An alternative approach is
to combine the functionalities of an FTL and a file system
to realize a native flash-memory file system, such as JFFS
[9]. Regardless of which approach is taken, how to provide
an efficient FTL implementation is always a challenging and
critical issue for flash-memory storage/file systems.

The implementation of an FTL driver could consist of an
allocator and a cleaner. The allocator is responsible to the
finding of proper pages on flash memory to dispatch writes,
and the cleaner is responsible to the reclaiming of pages
with invalidated data, where space reclaiming is referred to
as garbage collection. One important implementation issue
for flash-memory management is wear-levelling, which is to
evenly distribute the number of erasing for each block (be-
cause of the limitation on the number of erasing for blocks,
e.g., 106). A proper design for the allocator and the cleaner
could not only improve the performance of a flash-memory
storage system but also increase its life time.

3. ON-LINE LOCALITY TRACKING
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Table 1: Notations of the system model parameters
System Model Parameters Notation
Number of Hash Functions K
Size of Counter C

Write Counts for an LBA to Become Hot 2(C−H)

Number of Counters in a Hash Table M
Number of Write References N
Ratio of Hot Data in All Data (< 50%) R

The purpose of this section is to propose a hash-based
hot-data identification mechanism, referred to as a hot-data
identifier for the rest of this paper. The goal is to provide a
highly efficient on-line method for spatial-locality analysis.
The implementation of the hot-data identifier is in the FTL.
Table 1 lists the notations used in the subsequent description
of the proposed mechanism.

3.1 A Multi-Hash-Function Framework
We propose to adopt K independent hash functions to

hash a given LBA into multiple entries of a M -entry hash
table to track the write number of the LBA, where each en-
try is associated with a counter of C bits (Please refer to
Table 1 for the definition of symbols). Whenever a write
is issued to the FTL, the corresponding LBA is hashed si-
multaneously by K given hash functions. Each counter cor-
responding to the K hashed values (in the hash table) is
incremented by one to reflect the fact that the LBA is writ-
ten again. If a counter reaches its maximum value, it is left
unchanged. Note that we do not increase any counter for a
read because there is no invalidation of any page for a read.
For every given number of sectors have been written, called
the “decay period” of the write numbers, the values of all
counters are divided by 2 in terms of a right shifting of their
bits. It is an aging mechanism to exponentially decay the
values of all write numbers as time goes on. Whenever an
LBA is to be verified as a location for hot data, the LBA
is also hashed simultaneously by the K hash functions. We
say that the LBA contains hot data if the H most signifi-
cant bits of every counter of the K hashed values contain a
non-zero bit value.

Figure 3.(a) shows the increment of the counters that cor-
respond to the hashed values of K hash functions for a given
LBA, where there are four given independent hash functions,
and each counter is of four bits. Figure 3.(b) shows the
hot-data identification of an LBA, where only the first two
most significant bits of each counter is considered to verify
whether the LBA corresponds to hot data. The rationale
behind the adopting of K independent hash functions is to
reduce the chance for the false identification of hot data.
Because hashing tends to randomly maps a large address
space into a small one, it is possible to falsely identify a
given LBA as a location for hot data. With multiple hash
functions adopted in the proposed framework, the chance
of false identification might be reduced. In addition to this
idea, the adopting of multiple independent hash functions
also helps in the reducing of the hash table space, as indi-
cated by Bloom [1].

3.2 Implementation Strategies
The purpose of this section is to further improve the pro-

posed framework in false identification by revising the pol-
icy for counter increasing. Instead of enlarging the hash
table to improve false identification, we propose to increase
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Figure 3: The counter updating and the hot-data identifi-
cation of an LBA, where C = 4, K = 4, and H = 2.

only counters of the K hashed values that have the mini-
mum value to improve false identification (Please refer to
Table 1 for the definition of symbols). The rationale behind
the counter-increment policy is as follows: The reason for
false identification is because counters of the K hash val-
ues of a non-hot LBA are increased by non-hot data writes,
due to hashing collision. If an LBA is for hot data, then
the policy in the increasing of small counters for its writes
would still let all of the K counters corresponding to the
LBA go over 2(C−H) (because other writes would make up
the loss in counter increasing). However, if an LBA is for
non-hot data, then the policy would reduce the chance of
false identification because a less number of counters will
be falsely increased due to collision. We shall show in the
experiments how much performance improvement could be
obtained, compared to the basic framework proposed in Sec-
tion 3.1.

The revised policy in counter increasing would introduce
extra time complexity in the hot-data verification of each
LBA because of the locating of counters with the minimum
value. The revised policy would certainly increase the imple-
mentation difficulty of the algorithm with a certain degree,
regardless of whether this algorithm is implemented in soft-
ware, firmware, or even hardware.

4. PERFORMANCE EVALUATION

4.1 Experiment Setup and Performance Met-
rics

This section is meant to evaluate the performance of the
proposed multi-hash-function framework in terms of false
hot-data identification. Since the performance of the pro-
posed multi-hash-function framework might depend on the
hash table size, a naive extension of the multi-hash-function
framework (referred to as the direct address method) was
adopted for comparison, in which a hash table of a virtu-
ally unlimited size was adopted. Under the direct address

840



method, every LBA had a unique entry in the hash table
such that there was no false hot-data identification, due to
hash collision. The runtime requirements in running the
proposed multi-hash-function framework were measured and
compared with a two-level LRU list method [2], where one
list was to save the LBA’s of candidates for hot data, and
another list was to save the LBA’s of pages being identified
for hot data.

The proposed multi-hash-function framework, the direct
address method, and the two-level LRU list method were
evaluated over an Intel Pentium4 2.40GHz platform with
248MB RAM. The hot-data-LBA and candidate-LBA lists
of the two-level LRU list method could have up to 512
and 1024 nodes, respectively. Two hash functions were
adopted for the proposed multi-hash-function framework1.
Each counter for a hash-table entry was of 4-bits, and the
number of hash-table entries ranged from 2048 to 10240.
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Figure 4: The locality in data access (decaying period: 5117
writes, hot-data threshold on the number of writes to an
LBA: 4)

The trace of data access for performance evaluation was
collected over a mobile PC with a 20GB hard disk, 384MB
RAM, and an Intel Pentium-III 800MHz processor. The op-
erating system was Windows XP, and the hard disk was for-
matted as NTFS. In order to emulate a 512MB flash memory
storage system, whose only LBAs within a range of 512MB
in the trace was extracted. The hot ratio R of the workload
was set as 20%. Since N ≤ M/(1−R), the number of writes
for each decay was set as 5117 for a 4096-entry hash table2

(Please refer to Table 1 for the definition of symbols). The
same number of writes for each decay was adopted for other
hash-table sizes for comparisons. Figure 4 shows the ratio
of hot data to all data with respect to the number of writes
that had been executed. The figure was derived based on
the direct address method (because there was no false hot-
data identification, due to hash collision). As shown in the
figure, the ratio of hot data to all data varied between 10%
and 30%, and the ratio remained around 20% most of time.
Note that the ratio dropped to a very low number at the end
of the trace. We would address the impacts on the proposed

1There are many excellent hash functions being proposed
in the literature [5], among which we adopt the division
method (h(x) = x mod M) and the multiplication method
(h(x) = bM(xA mod 1)c, for 0 < A < 1) in our experiments.
2This formula is informally derived for the expectation that
the number of hash table entries could at least accommodate
all those LBAs which correspond to non-hot data within
every N write requests.

framework later.

4.2 Experiment Results

The Number of Write Requests So Far (unit: 5117 writes)

R
at

io
 o

f 
F

al
se

 H
o

t-
D

at
a 

Id
en

ti
fi

ca
ti

o
n 

(%
)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0

10

20

30

40

50

60

70

80

90

100
1KB (basic) 1KB (enhanced)

2KB (basic) 2KB (enhanced)

4KB (basic) 8KB (basic)

Figure 5: Ratio of false identification for various hash-table
sizes

Figure 5 shows the ratio of false hot-data identification
for the multi-hash-function framework (denoted as basic in
the figure) and the framework with an enhanced counter
update policy (denoted as enhanced in the figure), com-
pared to the direct address method. Let X be the num-
ber of LBA’s being identified for non-hot data by the di-
rect address method but being identified for hot data by
the (basic/enhanced) multi-hash-function framework for ev-
ery 5117 writes. Y was 5117. The ratio of false hot-data
identification for the (basic/enhanced) multi-hash-function
framework was defined as (X/Y ). As shown in Figure 5, the
enhanced multi-hash-function framework outperformed the
basic multi-hash-function framework. Note that there were
some peaks for lines in Figure 5. It was because the ratio of
hot data to all data varied in Figure 4. Note that when the
ratio of hot data to all data dropped significantly (e.g., when
the number of writes was around (22× 5117 = 112574), the
ratio of false identification increased. However, as the values
of counters in the hash table were decayed, false identifica-
tions of hot data were gradually reduced.
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Figure 6 shows the performance gap achieved by the frame-
work and the direct address method, when the decay period
ranged from twice of the original setup to 1/4 of the original
setup. We should point out that when the decay period was
too large, the chance of false hot-data identification might
increase more than expected because the results of “incor-
rect”counter increments would be accumulated. If we had to
set the decay period as a unreasonably large number, then
we should have a large hash table!

Table 2: CPU cycles per operation (Unit: CPU cycles)
Multi-Hash-Function Two-Level LRU List [2]

Framework
Average Standard Average Standard

Deviation Deviation
Checkup 2431.358 97.98981 4126.353 2328.367
Status-Update 1537.848 45.09809 12301.75 11453.72
Decay 3565 90.7671 N/A N/A

The third part of experiments was to evaluate the run-
time overheads of the (basic) multi-hash-function frame-
work, compared with a two-level LRU list method [2]. RDTSC
(read time-stamp counter), that was an Intel supported in-
struction [6], was used to measure the required CPU cy-
cles. In the experiments, the multi-hash-function framework
adopted a 2KB hash table with 4096 entries. Table 2 shows
the run-time overheads for each operation of the experi-
mented methods, where “Checkup” means the verification
of whether an LBA is for hot data, “Status-Update” means
the updating of the status of an LBA, and “Decay” means
the decaying of all counters. The “Status-Update” opera-
tion of the two-level LRU list method was the insertion of
the LBA into the two lists. The “Status-Update” operation
of the multi-hash-function framework was the increments of
counters. It was shown that the “Checkup” overheads of
the multi-hash-function framework was about 1/2 of that of
the two-level LRU list method. The “Status-Update” over-
heads of the multi-hash-function framework was about 1/8
of that of the two-level LRU list method. We must point out
that the standard deviation of the run-time overheads for
the multi-hash-function framework was much smaller, com-
pared with that for the two-level LRU list method. Beside
the reducing of run-time overheads, the “Decay” overheads
of the multi-hash-function framework was only slightly more
than 2 times of that for the “Status-Update” overheads.

5. CONCLUSIONS AND FUTURE WORKS
Hot data identification has been an important issue in the

performance study for flash-memory storage systems. It not
only imposes great impacts on garbage collection but also
could significantly affect the performance of flash-memory
access and its life time (due to wear-levelling). In this re-
search, we propose a highly efficient method for on-line hot-
data identification with limited space requirements. Differ-
ent from the past implementations, a multi-hash-function
framework is proposed, in which multiple independent hash
functions are adopted to reduce the chance of false identi-
fication of hot data and provide predictable and excellent
performance for hot-data identification. A series of experi-
ments was conducted to verify the performance of the pro-
posed method, it was shown that the proposed framework
with very limited RAM space could perform closely to an
nearly ideal method.

For future research, we shall further extend the proposed

multi-hash-function framework to variable-granularity-based
flash-memory management for large-scale flash-memory stor-
age systems [3]. We shall also point out that the proposed
multi-hash-function framework could be implemented very
intuitively in hardware. We will soon propose a hardware-
software co-design controller and software based on the pro-
posed framework.
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