
Guest Editorial:
Special Issue on Models and Methodologies
for Co-Design of Embedded Systems

This special issue is based on innovative ideas presented and discussed during the first ACM/IEEE
Conference on Formal Methods and Models for Co-Design (MEMOCODE) held at Mont Saint Michel
in France during the summer of 2003. Selected papers from the conference were invited for this
special issue together with an open call for papers soliciting novel contributions on the topics of
this conference. Rigorous reviews of 12 submissions led to the selection of four papers for this
special issue. In this editorial statement, we outline the premise and the context of this special
issue, and give a short introduction to the theme under consideration and briefly introduce the
papers selected. We also thank the authors who submitted their contributions to this special issue,
and all the reviewers without whose dedication and hard work toward ensuring the quality of the
selections, editing this special issue would have been impossible.

Shortening time to market demands for complex electronic equipments, together
with an ever increasing dependence on tightly coupled hardware–software
systems for their operations, dynamically shifting boundaries between the
hardware and software, heightening requirements for performance and QoS
guarantees, reliable operation, and accommodation of various consumer fac-
ing applications have led researchers and systems design companies to invent
innovative system design flows and techniques.

High-level modeling of hardware and embedded hardware–software systems,
formal analysis techniques for hardware–software partitioning, formal tech-
niques for system verification, and abstraction-based techniques for reducing
complexity of such analyses are but a few examples of such innovations brought
forth during the past decades. An often cited issue confronting system designers
and companies today is the exponentially rising system complexities resulting
from Moore’s law and the resulting widening productivity gap in the face of
various constraints.

The techniques and tools for circumventing these problems are not nec-
essarily based on traditional system design flows which included hardware
design followed by software development, but on a codevelopment flow, that
can be immensely expedited by formal modeling techniques and formal design
methodologies. Formal models of computation allow designers to work with
concrete and analyzable mathematical concepts. These also help predict perfor-
mance trade-offs, enable verifiability, and facilitate other functions in the design
flow.

While investigating these flows, tools, methodologies, and models, we talked
to various researchers from hardware industry, consumer electronics systems
industry, as well as researchers innovating in the field of embedded software
design and software engineering. It became quite apparent that embedded soft-
ware engineering researchers speak a very different language, while often being
confronted with very similar issues.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005, Pages 225–227.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1067915.1067916&domain=pdf&date_stamp=2005-05-01


226 • Guest Editorial

This situation is not surprising, because today’s mission critical software
systems are often concurrent, event driven, and certainly exploit the shift in
boundaries of hardware and software. In certain fields of formal modeling and
methodology such as in the theory of formal verification, researchers from hard-
ware design as well as from software design fields have identified commonal-
ities in the recent past, have attended the same conferences, and spoken the
same language such as temporal logic, model checking, and automata theoretic
methods and so on.

Our mission in building the new ACM/IEEE forum on formal methods and
models for codesign has been to go beyond this limited interaction between the
two fields which are both in need of innovations in design flow, methodology,
and tools that would allow them to cope with the increasing design complexity
and to effectively exploit the trends in hardware–software systems. Formal
verification is but one issue confronting the two communities; there are many
more interesting interactions that can help the two communities immensely.

The MEMOCODE conference is going to have its third meeting in July 2005.
However, due to the rigor of the review process, this special issue dedicated
to the first incarnation of this forum is coming out now. Nevertheless, we feel
that this special issue will do its part in drawing attention to the commonalities
between the two apparently distinct fields of research and, at the same time, will
expose the readers to the four very interesting research work reported in the
four papers we selected, that are summarized below. But before we summarize
them, it might be timely to say a few words about the current activities in
formal models and methodology areas.

Numerous programming languages, tools, and frameworks have been pro-
posed in the past to design, simulate, and validate heterogeneous systems
within an abstract and rigorously defined mathematical model. Recently, atten-
tion has shifted to modeling frameworks based on variants of general-purpose
programming languages, in response to the growing industry demand for use
of higher levels of abstraction in the system design process. Meanwhile, the
installed base of existing IP (intellectual property) adds further requirements
for the adaptation of existing equipments with new services within complex
integrated architectures, calling for appropriate methodological approaches.

Whereas abstract mathematical frameworks are ways to unambiguously
model the essence of hardware and software systems, help understand design,
implement trustable correctness proofs, effectively predict performances, and
other metrics; general-purpose languages facilitate programming, reuse, and
gain from the popularity of languages such as C or C++. Still, important gaps
need to be filled and bridges to be built between the theory of modeling and the
practice of programming.

Programming languages shall benefit the rigorousness of models and the ex-
perience of programming practice. This calls for finding a convergence between
both approaches. A focus on formal methods (programming and concurrency
models, analysis and verification techniques) for hardware–software codesign
hence is necessary, because languages with which system designers work are
general-purpose ones, and because the only way provably correct systems can
be constructed are by technology transfer of research in formal methods.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.



Guest Editorial • 227

The first paper in this issue is by Cachera David and Morin-Allory Katell,
and the paper is focused on formal verification techniques for safety properties
using polyhedral models, which allows them to handle parameterized systems.
The design flow, which forms the basis of the application of their technique,
comprises a series of semiautomatic rewriting-based transformations from al-
gorithmic system descriptions toward hardware or software implementations,
and exploits the knowledge of the transformation steps in verifying the low-
level control properties.

The second paper by Chouali Samir, Julliand Jacques, Masson Pierre Alain,
and Bellegarde Françoise is a bit differently focused yet also addresses the for-
mal verification problem. They propose an efficient model checking based veri-
fication of systems under fairness assumptions by partitioning the reachability
graph and verifying by parts, which does not necessarily always work, as can
be guessed easily. Therefore, they provide a characterization of properties for
which such verification by partition is a sound and complete procedure. This is
very useful for formal verification of hardware and software systems with large
state space, if the property under verification satisfies their characterization.

The third paper, by William B. Gardner, is a departure from formal verifica-
tion into the arena of programming and specification languages for effectively
constructing executable system specification without departing too much from
the known territory of general-purpose programming languages. He provides
the implementation of a language based on communicating sequential pro-
cesses (CSP), where CSP-like syntax is mixed with C++ to provide a way to
model the concurrency and reactive aspects of a system (using CSP), and to
encode behaviors in vanilla C++, thereby constructing executable concurrent
reactive models of systems. Although the author does not extend this presen-
tation toward a full-fledged system design language in the spirit of SystemC or
SpecC, it can find a very interesting application in rapid system modeling and
simulation.

The fourth and last paper is an interesting application of the model checking
technique from formal verification to achieve more than just design verifica-
tion. This paper, by Roberto Ziller and Klaus Schneider, attacks the problem of
synthesizing a supervisor that can constrain the behavior of a system for con-
trollability and coaccessibility, and their approach is a novel one via techniques
borrowed from model checking, and shows how innovations in model checking
can be transferred to the supervisor synthesis problem in control systems.

As outlined in the beginning of this editorial, our aim is to cross-pollinate
methodologies and techniques from two distinct communities in order to solve
system design problems, and certainly there are many distinct techniques
and research issues that are not represented in this space constrained special
issue. We hope that this special issue is just a sampler, and that the future
bears much more innovations through the intended cross-coupling of two
communities and through building bridges.

Sandeep K. Shukla and Jean-Pierre Talpin
(Guest editors)

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 2, May 2005.


