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ABSTRACT 
The development of Estimation of Distribution Algorithms 
(EDAs) has largely been driven by using more and more complex 
statistical models to approximate the structure of search space. 
However, there are still problems that are difficult for EDAs even 
with models capable of capturing high order dependences. In this 
paper, we show that diversity maintenance plays an important role 
in the performance of EDAs. A continuous EDA based on the 
Cholesky decomposition is tested on some well-known difficult 
benchmark problems to demonstrate how different diversity 
maintenance approaches could be applied to substantially improve 
its performance. 

Categories and Subject Descriptors 
G.1.6 [Numerical Analysis]: Optimization –Global Optimization. 

General Terms 
Algorithms, Performance, Experimentation 

Keywords 
EDAs, Continuous Optimization, Clustering 

1. INTRODUCTION 
Estimation of Distribution Algorithms (EDAs)[8, 11] refer to a 
class of novel Evolutionary Algorithms (EAs) based on 
probabilistic modeling instead of classical genetic operators such 
as crossover or mutation. The fundamental mechanism is to 
conduct searching by sampling new individuals from a probability 
distribution, which is estimated based on some selected promising 
individuals in the current population. The major advantage of 
EDAs is that they can explicitly learn the dependences among 
variables of the problem to be solved and use this structural 
information to efficiently generate new individuals. It has been 
shown in previous work that EDAs can outperform traditional 
EAs on a number of difficult benchmark problems. 

Despite of the successful applications of EDAs, an important issue 
remains: what makes a problem difficult for EDAs and how to 
solve it? Since EDAs conduct searching based on the structural 
information learned during evolution, in general, there are two 
factors that may influence their performance. The first one is 
whether EDAs are capable of learning the structure of a problem. 
In continuous spaces, which are the focus of this paper, most 
EDAs assume that selected individuals can be reasonably 
approximated by a multivariate Gaussian distribution[3, 7]. 
However, it is clear that in many cases, for example multimodal 
landscapes, good individuals are likely to be distant from each 
other and may not be efficiently represented by one Gaussian 
distribution. As a result, EDAs may either have to search 
inefficiently due to the large variances of the Gaussian 
distribution or stochastically drift towards one optimum and get 
stuck there. The second factor is whether the global structure of a 
problem actually leads to the global optimum. Even in some 
unimodal problems, the global structure may be quite different 
from the local structure around the global optimum, which means 
that EDAs utilizing this misleading information may converge to a 
non-optimal solution.  

Recently, there have been some attempts to improve the 
performance of EDAs in the above situations by using various 
clustering techniques[3, 9]. The basic idea is to, in each 
generation, assign selected individuals to a number of clusters 
first and then apply an EDA on each cluster separately. Although 
the structure of selected individuals may be too complex to be 
estimated by one Gaussian distribution, the structure of 
individuals in each cluster may be much easier to estimate. By 
using this clustering method, the assumption of one Gaussian 
distribution can be relaxed to a combination of Gaussian 
distributions. However, this does not necessarily mean that EDAs 
with clustering can always achieve satisfactory performance. For 
example, it has been reported that these EDAs still face much 
difficulty in the Rosenbrock function, which is unimodal and 
features a narrow valley towards the global optimum. There are 
some other issues about the current way of using clustering. For 
example, in order for clustering techniques to be successful, 
individuals must present some kind of clustering pattern and this 
pattern should reflect the underlying structure of the problem (i.e., 
the multimodality of landscape). However, in some situations, 
selected individuals may present misleading information. 

In the first part of our work, we focus on the analysis of the 
Rosenbrock function and why it is difficult for EDAs. 
Furthermore, we show how a simple diversity maintenance 
method can significantly help EDAs find the global optimum. In 
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the next part, we propose a novel three-step-method of combining 
clustering and EDAs. Instead of applying clustering in each 
generation from the very beginning of evolution, an EA with 
diversity maintenance technique is employed to conduct rough 
searching to locate the basins of optima. A clustering technique is 
then applied on the final population to cluster selected 
individuals. Finally, an EDA is run on each subset of individuals 
to conduct fine searching until the optimum is found. 

The content of this paper is structured as follows. The framework 
of EDAs is given in the next Section. Section 3 introduces two 
benchmark problems to be tested. Experimental results are 
presented in Section 4 and Section 5 concludes our work and 
points out some directions for further work. 

2. THE FRAMEWORK OF EDAs 
The general framework of EDAs is given in Table 1, although 
they may differ from each other in a number of details. In EDAs, 
the most important part is how to estimate the probability 
distribution θsel of selected individuals.  

 

Table 1. The Framework of EDAs. 

 

 

 

 

 

 

 

 

 

Since it is usually difficult to directly sample from a multivariate 
probability distribution, some EDAs utilize conditional 
factorization in which a multivariate probability distribution is 
represented by the product of a set of univariate conditional 
probability distributions:  
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However, it may still not be convenient to calculate a conditional 
probability distribution involving M parents when M is large. For 
example, in binary spaces, the number of individuals needed to 
conduct reliable estimation will increase exponentially as M goes 
up. There is a similar issue in continuous spaces for certain 
probabilistic models such as histograms in which the number of 
bins and the number of individuals required will also quickly 
become extremely large as dimensionality increases. As a result, 
an upper limit k of the number of parents is usually set, which 
assumes that the problem to be solved only has limited order of 
dependences. Since conditional factorizations can be represented 
by acyclic graphs, a searching method is needed to find a new 
graph that can approximate the original probability distribution as 
well as possible with the constraint of the maximum number of 
parents. A commonly used score metric is the Kullback-Leibler 
cross-entropy measure [6] specifying the distance between two 
probability distributions (to be minimized): 
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However, if the order of dependences in the problem is beyond k, 
EDAs may not work well because they cannot capture all 
necessary dependences. Also, finding a factorization can be a 
time-consuming process and usually the resulting graph is a sub-
optimal solution[2].  

In this paper, we will use a simple EDA, which is based on a 
multivariate Gaussian distribution and does not need to calculate 
conditional probability distributions. Suppose that selected 
individuals follow an N-D Gaussian (µ, ∑). There are N 
parameters specifying the mean vector µ and N⋅(N+1)/2 
parameters specifying the covariance matrix ∑, which can be 
conveniently estimated from the current selected population using 
their maximum likelihood estimates. By using a Cholesky 
decomposition, it is easy to find an N-by-N lower triangular 
matrix S subject to the condition of ∑=SST[12]. New individuals 
can be sampled from this Gaussian by:  

                                     ZSX ⋅+= µ                              Eq. 3 

where Z is an N-by-P matrix with each element independently 
drawn from a Gaussian distribution G (0,1) and P is the number of 
new individuals[14]. It has been shown that this class of EDAs 
performed very well compared to more sophisticated EDAs [13]. 

3. TEST PROBLEMS 
3.1 The Rosenbrock Function 
The n-dimensional Rosenbrock function is given by: 
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This function is a minimization problem with a single global 
optimum at [1]n. It has shown to be very difficult for many EAs 
and EDAs. An in-depth analysis of the landscape structure is 
given below to reveal some important information that determines 
the performance of EDAs. 

This function can be regarded as the sum of two sub-functions: 
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It is well known see that fRosen1 has numerous global optima in the 
bottom of a deep valley, which can be represented by: 
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Note that since X is bounded in [-5, 5] in each dimension, the 
value of α should normally be between -1 and 1 because otherwise 
other elements in the array can easily exceed the boundary. 
Function fRosen2 is a simple bowl-shaped landscape with [1]n as its 
global optimum, which is also one of the optima of fRosen1 and thus 
the global optimum of the Rosenbrock function. Since there is no 
dependence, it can be easily solved by either EAs or EDAs. 

Initialize and evaluate the population P 

  While stopping criteria not met 

         Select some individuals Psel from P 

    Estimate the density function θsel 
    Create P’ by sampling from θsel 
    Evaluate individuals in P’ 

    Combine P and P’ to create the new P 

    End While 
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Figure 1. The distributions of fitness values in the 10D fRosen. 

It is easy to see that fRosen1 decides the global landscape structure 
due to the large factor 100. Furthermore, in some preliminary 
experiments, we found that the EDA could often converge to the 
origin, which is a global optimum of fRosen1.  

The reason is that Xglobal is an array converging towards 0 when α 
is between -1 and 1 and even if α is not very close to 0, 
subsequent elements in the array may still quickly converge to 0. 
Furthermore, there is a global tendency that individuals close to 
the origin are likely to be better than those away from the origin 
because as long as each element in an individual is small, there is 
a good chance that fRosen1 will produce a small value too, even if 
Eq. 7 is not satisfied. In other words, the density of good 
individuals around the origin is higher than other areas. 

To demonstrate this point, 10,000 individuals were randomly 
generated within a 10D hyper-cubic area centred at the origin (i.e., 
[-0.5, 0.5] in each dimension). The distribution of fitness values 
of these individuals is plotted in Figure 1 (left) in which the 
majority of the individuals had fitness around 100. The same 
experiment was conducted with sampling centre at the global 
optimum (i.e., [0.5, 1.5] in each dimension). As a contrast, the 
fitness values of individuals shown in Figure 1 (right) were 
significantly worse. 

Based on the above analysis, we can explain why this problem is 
difficult for EDAs. Although EDAs can easily find the global 
optima of fRosen1 and fRosen2 separately, a simple combination of 
these two functions creates much trouble. Due to the existence of 
the major attractor in the origin and the global structure, many 
promising individuals in the early stage of searching will be close 
to the origin and there is a high probability that EDAs will 
converge to it, instead of [1]n, which is the true global optimum of 
fRosen. In other words, the overall structure identified by EDAs is 
different from the local structure around the global optimum and 
thus may mislead EDAs towards a non-optimal solution. 

This issue was previously approached by incorporating clustering 
into EDAs in the hope of maintaining the global population 
diversity[3]. The general idea is to, in each generation, separate 
the population into several sub-populations and conduct 
independent searching in parallel. By doing so, EDAs are 
expected to be able to keep searching and maintaining different 
areas. However, due to the shape of the landscape, even multiple 
Gaussians may not be able to approximate it well enough and 
experimental results are not satisfactory[5]. 

Let’s consider another question: what would happen after EDAs 
converge to the origin? Because fRosen is a unimodal function and 
the global optimum is connected to the origin via a valley, is it 
possible for EDAs to walk down the valley towards the global 
optimum, like other gradient-based algorithms? Even if it is hard 
to prevent an EDA from converging to the origin due to the 
misleading information that it encountered in the early stage of 
evolution, does it have any chance to get out of this trap? In order 
to do so, EDAs must be able to continuously sample individuals 
from the valley towards the global optimum. Since these 
individuals have better fitness than those around the origin, they 
will replace those old individuals and gradually shift the Gaussian 
away from the origin.  

Unfortunately, when EDAs converge towards the origin, the size 
of their current search space may quickly shrink because elements 
in the covariance matrix may be getting close to 0, which is due to 
the similarity of promising individuals. This means that it is 
necessary to explicitly maintain the diversity of the probability 
distribution to prevent the variances from dropping too quickly so 
that EDAs may still have the power to keep searching. 

3.2 The Sumcan2 Function 
In order to demonstrate some issues of the existing way of 
applying clustering in EDAs, a new benchmark problem called 
Sumcan2 is proposed, which is partially based on the Summation 
Cancellation function [1]: 
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Figure 2. The contour of the 2D fSumcan2. 

The contour of the 2D fSumcan2 is plotted in Figure 2. In general, it 
has one global optimum created by fSumcan at [3]n with value 105 
and one local optimum created by fLocal at [–3]n with value 5. The 
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reason for designing this function is to make it very difficult for 
most EAs and EDAs in order to highlight the performance of 
EDAs with clustering. This function is difficult for EAs in that the 
global optimum is the Summation Cancellation function, which 
contains strong dependences among variables and cannot be 
easily solved by algorithms without structure learning. It is also 
difficult for EDAs based on the one Gaussian model because it is 
multimodal and the local optimum is distant from the global 
optimum. Furthermore, fLocal has a relatively flat bell shape while 
fSumcan is like a very sharp spark, which means that random 
sampling is unlikely to generate many individuals close enough to 
the global optimum to have high fitness to be selected, compared 
to individuals around the local optimum. As a result, it is very 
likely that most promising individuals are initially from the basin 
of fLocal and consequently EDAs may be misled away from the 
global optimum and incorrectly converge to the local one.  

It should be pointed out that this function also poses some 
difficulty for EDAs using clustering techniques in the traditional 
way because at the beginning of evolution, it is very likely that 
those selected individuals are distributed around the local 
optimum and none of them represents the area that contains the 
global optimum. Under this situation, no clustering techniques or 
statistical models could reveal the underlying structure of the 
problem and EDAs are likely to be failed. 

 

 

Figure 3. Sampling on the 2D (top) and 10 D (bottom) fSumcan2. 

To have a better understanding of the situation, 10,000 
individuals were randomly sampled in the search space with 
dimension equal to 2. After evaluation, the top 10% of individuals 
were selected and plotted in Figure 3 (top). Obviously, the 
majority of selected individuals were from the local optimum 
while only very few individuals represented the global optimum. 
No matter what kind of clustering algorithm is in use, it is very 
likely that only one cluster could be identified because those few 
points in the upper-right corner may be regarded as noise or 
outliers. In fact, when the sampling size is not very large, it is also 
possible that there is no individual from the global optimum due 
to some random factors. Note that although this problem has some 
similarity with the Rosenbrock function, there is no path 
connecting the two optima, which means that once EDAs get 
stuck at the local optimum, there is almost no chance to escape. 

Furthermore, this situation could deteriorate as dimensionality 
goes up. The same sampling was conducted on the 10D Sumcan2 
function and the distribution of distance (i.e., measured in terms 
of mean distance in each dimension) between those 10% selected 
individuals and the global optimum is plotted in Figure 3 
(bottom). It is clear that all selected individuals were, on average, 
at least 3 units away from the global optimum in each dimension, 
which confirms that selected individuals are very unlikely to be 
around it. A larger experiment was conducted with 10 times the 
original population size (i.e., 100,000 individuals) and still no 
significant changes could be observed. This means that it is 
important to make sure that selected individuals do have a good 
coverage of the area that contains the global optimum before 
applying any clustering technique. Certainly, it is often impossible 
to check the condition in practice and simply applying clustering 
techniques could be of little help. 

4. EXPERIMENTS 
4.1 Simulations on the Rosenbrock Function 
Experiments on fRosen were conducted with the following 
parameters: dimension=10, maximum number of generation=200, 
truncation selection=top 30% individuals. A few preliminary trials 
were run with population sizes from 200 to 2000. Unsurprisingly, 
this algorithm always got stuck at fitness around 7, which is 
similar to the results reported before[4, 5]. 

Figure 4 shows the evolution of the mean and standard deviation 
of each variable in a single trial with population size= 500. Since 
the global optimum of the 10D fRosen is at [1]10, it may be expected 
that the means of variables should gradually move towards it. In 
Figure 4 (top), during the first few generations, the mean values 
were drifting around the origin because the origin is a major 
attractor based on the overall structure. After around 15 
generations, mean values did start moving towards one, which is 
the correct direction. However, the algorithm quickly got stuck at 
somewhere in the valley between the origin and the global 
optimum after around 10 generations.  

So what stopped this EDA from continuing its trip? The answer is 
in Figure 4 (bottom), which shows the standard deviation of each 
variable. It is clear that the standard deviations dropped very 
quickly and after about 25 generations, they were already around 
10-3. This means that the EDA was only searching an extremely 
limited area, like the tip of a needle. As shown in Figure 4 (top), 
at this stage, the EDA was on its way in the valley and still a bit 
far from the global optimum. 
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Figure 4. Convergence behaviour of the EDA on fRosen without 
diversity maintenance: mean values (top) and standard 

deviations (bottom). 

 

Recall that in Eq. 3, Z is a matrix containing random numbers 
drawn from G (µ, δ2) with  µ=0 and δ=1. So, a simple way to 
maintain diversity is to use δ>1. The experimental results with 
population size=200 and δ=1.5 are plotted in Figure 5 from which 
it is clear that the performance of the EDA was dramatically 
improved. Figure 5 (top) shows (i.e., in a single trial) that the 
mean vector, after drifting around the origin for some generations, 
continuously moved towards the global optimum until the EDA 
successfully converged there. Figure 5 (middle) shows that the 
standard deviation values were orders of magnitude higher than 
before in the early stage and started quickly dropping after 140 
generations when the mean vector was already very close to the 
global optimum, conducting fine local search. Figure 5 (bottom) 
shows the result averaged over 10 independent trials from which 
we can see that after 40,000 function evaluations, the best 
individuals found were often very close to 10-6 and still had the 
tendency to improve further. This result is comparable or better 
than most results previously reported without any additional 
computational cost. Certainly, keeping the diversity usually means 
sacrificing convergence speed for reliability. So, there is a tradeoff 
that needs to be taken into account when choosing the value of δ. 

 

 

 

Figure 5. Convergence behaviour of the EDA on fRosen with 
diversity maintenance: mean values (top), standard deviations 

(middle) and fitness values vs. generation (bottom). 

4.2 Simulations on the Sumcan2 Function 
In order to demonstrate the difficulty of this problem, some 
experiments were first conducted on the 10D fSumcan2 with the 
standard EDA (population size=500, number of generations = 50). 
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Although the global optimum is at [3]10, the EDA always quickly 
converged to [-3]10 and got stuck at the local optimum. A single 
trial is picked up and the evolution of the mean values is plotted 
in Figure 6. 

This means that without explicit diversity maintenance, the EDA 
is very likely to be misled by high quality local optima with 
relatively large basins. Since the EDA is assumed to be able to 
maintain only one Gaussian during evolution, it seems that 
clustering is a straightforward method to improve its performance. 
Traditionally, clustering is applied in each generation (Table 2). 
However, as shown in Section 3.2, it would be inappropriate to 
apply clustering techniques from the beginning of evolution in 
this case due to the high risk that the global optimum may not be 
included in the area to be clustered. 

In order to address this issue, a new clustering scheme is proposed 
in which an EA with diversity maintenance ability is run first for 
some generations and some clustering technique is then applied 
on selected individuals from the final population. Finally, EDAs 
continue the searching by running on each cluster separately 
(Table 2). The basic idea is to use this EA to do some rough 
searching first. Although it may not be able to find individuals of 
very high quality, it may still gradually cluster individuals in 
promising areas. As a result, it is more likely that the global 
optimum is within one of the clusters of individuals than in the 
traditional framework.  

 

Figure 6. Convergence behaviour of the EDA on fSumcan2. 

 

Table 2. Two schemes for EDAs with clustering. 

Traditional Framework New Framework 

• In each generation, 
cluster selected 
indiviuduals into k 
clusters. 

• Estimate the probability 
distriubtion Pi (i=1,...,k) 
of each cluster of 
individuals. 

• Create a new population 
by sampling from each Pi 
seperately. 

• Conduct searching by 
an EA with diversity 
maintenance ability. 

• Cluster selected 
individuals from the 
final population into 
k clusters. 

• Run the EDA k times 
using different 
clusters as the initial 
population. 

A simple (µ+λ) ES (Evolution Strategy)[15] was used to conduct 
the rough searching in which new individuals are generated 
though Gaussian mutation with fixed diagonal covariance matrix. 
Unlike traditional ESs, in this ES, newly generated individuals 
could only replace their corresponding parents provided that they 
have better fitness values, which is very similar to the idea of 
deterministic crowding [10]. 

In the first step of the experiments, the parameters of the ES were 
chosen as: population size=1000, standard deviation=0.5, number 
of generations=200. After 2x105 fitness evaluations, top 30% 
individuals were selected to be clustered. The distribution of those 
300 individuals is plotted in Figure 7 in which each vertical line 
represents a certain axis (dimension) and each individual is 
represented by a single curved line crossing all vertical lines 
whose intersection with each vertical line is determined by its 
value at the corresponding dimension. By doing so, the clustering 
patterns of data in high dimensional spaces could be intuitively 
observed. It is easy to see that, after the preliminary searching by 
the ES, individuals did present some clear clustering patterns, 
which reflected the underlying problem structure.  

Next, since there were clearly two clusters as shown in Figure 7, 
the k-mean algorithm (k=2) was used to do clustering. Figure 8 
shows the box whisker plots of those 300 selected individuals 
grouped into two clusters. Since the median values of cluster 1 
were close to [3]10 and the median values of cluster 2 were close 
to [-3]10, we can see that these two clusters of individuals roughly 
corresponded to those two optima.  

The effectiveness of clustering is shown by the Silhouette plot and 
the slice plot of the first two dimensions in Figure 9. The 
Silhouette plot shows the distance among points in their own 
cluster compared to the distance to points in other clusters. As 
shown in Figure 9 (top), the Silhouette values of all points were 
more than 0.9 showing that points (individuals) in those two 
clusters were well separated from each other. Furthermore, in 
Figure 9 (bottom), there were clearly two clusters of individuals 
corresponding to the local optimum and global optimum 
respectively (See Figure 3 for comparison), which provided a 
good starting position for EDAs to do further searching. The slice 
plots of other pairs of dimensions also had this kind of pattern. 

 

Figure 7. The clustering pattern of selected individuals in the 
final population of the ES. 
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Figure 8. Distribution of individuals: Cluster 1 (left) and 
Cluster 2 (right). 

 

 

Figure 9. The effectiveness of clustering: Silhouette plot (top) 
and 2D slice plot (bottom). 

 

Figure 10. Convergence behaviour of the EDA on fSumcan2 with 
cluster 2 as the initial population. 

 

 
Figure 11. Convergence behaviour of the EDA on fSumcan2 with 

cluster 1 as the initial population: mean values (top) and 
fitness vs. generation (bottom). 
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Finally, the EDA was run twice with each time using a different 
cluster of individuals as the starting point and the results in a 
single trial are plotted in Figures 10 & 11 respectively. Figure 10 
shows that when using cluster 2 as the starting point, the EDA got 
stuck at the local optimum at [-3]10 again. As a contrast, the EDA 
using cluster 1 as the starting point quickly converged to [3]10 and 
found the global optimum with value 105. 

In the above experiments, we demonstrated how a difficult 
multimodal problem was solved with the help of a clustering 
algorithm and an ES, which prepared individuals in a good format 
before undertaking clustering. This approach is different from 
previous work in that those selected individuals are generated by 
another algorithm and only need to be clustered once. This is 
particular useful when randomly generated individuals are less 
likely to reveal the important structure of the problem to be solved 
due to the small basin size of the global optimum and/or the 
existence of a number of good local optima with large basins.  

Another potential issue of the traditional method is that although 
EDAs work on each cluster of individuals separately, newly 
generated individuals are combined together and some are 
selected to undertake further clustering. Due to the lack of explicit 
diversity maintenance mechanism, clusters corresponding to good 
local optima with large basins may grab more and more 
individuals from small clusters because the number of individuals 
generated is usually in proportion to the size of the cluster/average 
fitness of individuals and good individuals are more likely from 
those currently promising clusters.  

There are some practical issues that need consideration in the 
proposed approach. For example, the type of EA used to do rough 
searching and its parameters may have some influence on the 
distribution of individuals in the final population, which directly 
decides the performance of clustering algorithms. Although the 
performance of the ES was satisfactory and relatively robust in our 
experiments, this may not always be true in other situations. It 
may also make sense to design EAs that are not intended to find 
individuals that are as good as possible but to identify and 
maintain promising areas, which may contain the global optimum. 

5. CONCLUSION 
This paper is dedicated to an in-depth analysis of the structure of 
two continuous problems in order to understand what makes them 
difficult for EDAs based on the one Gaussian model. Through a 
set of experiments, we explored the evolution process of an EDA 
to have a deep insight into how its performance was influenced by 
the properties of each problem. We pointed out that diversity 
maintenance plays a key role in the success of EDAs. It has shown 
that, by keeping the variances of variables from quickly dropping 
to zero, the performance of the EDA on the Rosenbrock function 
was dramatically improved. In order to handle multimodal 
problems, clustering was incorporated into EDAs and a novel 
three-step-scheme containing EAs, clustering algorithms and 
EDAs was proposed, which may overcome some difficulty faced 
by traditional methods. Note that although experiments were 
conducted with an EDA based on Cholesky decomposition, these 
ideas could easily be transferred into other EDAs. Certainly there 
are also some issues with these proposed methods that must be 
carefully investigated before they can be successfully applied in 
other problems, which will be pursued in the future. 
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