
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

On the Impact of Objective Function
Transformations on Evolutionary and Black-Box

Algorithms

Tobias Storch

No. CI-193/05

Technical Report ISSN 1433-3325 April 2005

Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/XI
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

On the Impact of Objective Function

Transformations on Evolutionary and Black-Box

Algorithms∗

Tobias Storch

Department of Computer Science II
University of Dortmund

44221 Dortmund, Germany
e-mail: tobias.storch@uni-dortmund.de

Abstract

Different fitness functions describe different problems. Hence, certain
fitness transformations can lead to easier problems although they are still
a model of the considered problem. In this paper, the class of neutral
transformations for a simple rank-based evolutionary algorithm (EA) is
described completely, i.e., the class of functions that transfers easy prob-
lems for this EA in easy ones and difficult problems in difficult ones.
Moreover, the class of neutral transformations for this population-based
EA is equal to the black-box neutral transformations. Hence, it is a proper
superset of the corresponding class for an EA based on fitness-proportional
selection, but it is a proper subset of the class for random search. Fur-
thermore, the minimal and maximal class of neutral transformations is
investigated in detail.

1 Introduction

Evolutionary algorithms (EAs) belong to the broad class of general randomized
search heuristics. Their area of application is as huge as their variety and they
have been applied successfully in numerous situations. EAs are population-
based optimizers. Here, we consider the maximization of objective (fitness)
functions f : S → Z, where S is a discrete search space. In particular often
pseudo-Boolean functions are investigated, where S = {0, 1}n.

Let us survey arbitrary transformations g : Z → Z applied to an objective
function f . If algorithm A optimizes f efficiently, then A will also be efficient on
g◦f for some transformations g. We will specify the definition of efficiency later.

∗This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as a part of
the Collaborative Research Center “Computational Intelligence” (SFB 531).

1

In such a situation, we call g neutral for f with A. But on the other hand some
transformations may turn the algorithm to inefficiency in maximization. This
separation strongly depends on the specific algorithm and the specific function.
We are interested in transformations g which are neutral for all functions f
with respect to A and we call g neutral for A, in this situation. This separation
depends on the specific algorithm only. Such a classification can assist to cate-
gorize a problem as being efficiently optimizable more easily and to generalize
obtained results on a specific function to classes of functions. The last topic
leads directly to considerations concerning robustness aspects of algorithms. If
a function h can be deconstructed into a function f , where A is efficient on, and
a neutral transformation g for A, then A is also efficient in optimizing h = g ◦f .
The investigations of such structural properties lead to a better understanding
of the considered algorithms and its operators.

The probably best-known types of EAs – all incorporating aspects of natural
selection – are genetic algorithms and evolution strategies. For an overview of
common EAs and operators in EAs see e.g., [1]. At first, we consider a simple
steady-state (µ+1) EArank applying uniform selection (which is a rank -based
selection scheme), standard-bit mutation, and elitism for deletion. We will
observe that the class of neutral transformations Trank for the (µ+1) EArank

consists of all truncated strictly increasing functions. This even holds for all
rank-based algorithms, whose main property is that their behavior does not
depend on the specific fitness value. We will give precise definitions later on.

Definition 1. Truncated Strictly Increasing (t.s.i.)
A function g : Z → Z is called truncated strictly increasing if there is z(g) ∈
Z∪ {−∞,∞} such that g(v) < g(v + 1) for all v < z(g) and g(v) = g(v + 1) for
all v ≥ z(g).

A t.s.i. function is strictly increasing up to some value and then constant –
including the strictly increasing and the constant functions as well. In order to
prove rigorously that the class Trank cannot be extended for the (µ+1) EArank

we will present for each not t.s.i. transformation g a class of pseudo-Boolean
functions F , where the (µ+1) EArank is efficient on every f ∈ F . But, only on an
exponentially small fraction of g◦F := {g◦f | f ∈ F} it is not totally inefficient.
Moreover, even every algorithm is inefficient on this class of functions. We will
specify how every algorithm can be investigated in the following paragraph.
Furthermore, for the (µ+1) EAprop which is similar to the (µ+1) EArank but
comes up with fitness-proportional selection we will prove that Tprop ⊂ Trank

holds, where Tprop is the class of neutral transformations for the (µ+1) EAprop.
This will be shown by presenting a particular pair of a function and a t.s.i.
transformation with the proposed properties. We remark that the (µ+1) EArank

and the (µ+1) EAprop are quite successful on a wide range of problems even
with µ = 1 (see e.g., [2] or [9]). A canonical extension of the class of rank-based
algorithms are the not fitness-based algorithms, whose main property is that
their behavior does not depend on the fitness value at all. We will make this
more precise later, too. Hence, we will prove that for every not fitness-based

2

algorithm the class of neutral transformations Tnot fitness contains all increasing
functions, i.e., Trank ⊂ Tnot fitness.

Definition 2. Increasing
A function g : Z → Z is called increasing if for every v holds g(v) ≤ g(v + 1).

Moreover, for the well-known random search algorithm Arandom that is not
fitness-based we will identify the increasing functions as the only neutral trans-
formations. Furthermore, the question arises which transformations are neutral
for every algorithm. We will show that this class Tids consists of all truncated
identities.

Definition 3. Truncated Identity (t.i.)
A function g : Z → Z is called truncated identity if there is z(g) ∈ Z∪{−∞,∞}
such that g(v) = v for all v < z(g) and z(g) ≤ g(v) = g(v + 1) for all v ≥ z(g).

A t.i. is the identity up to some value and then constant – including the iden-
tity and the constant functions as well. For a particular algorithm Aids we will
prove that the class of neutral transformations consists of the t.i. only. Further-
more, for an algorithm Aall we will demonstrate the other extreme. The class of
neutral transformations for this algorithm Tall consists of all transformations.

One characteristic of all EAs and even of all general search heuristics is
that they gather information about the problem instance – the problem it-
self is known in advance – by querying one search point after the other to
a so-called black-box. At time t the next query xt is determined by a so-
called black-box algorithm with knowledge about the whole history. The history
consists of the pairs of previously queried elements and their function values
(x1, v1), . . . , (xt−1, vt−1). If all black-box algorithms are investigated, then we
obtain general lower bounds on the complexity of a problem. In contrast to
considerations of a single EA it is not meaningful to investigate the black-box
complexity for a single function f . In such a scenario there exists always an
efficient black-box algorithm. It just queries an optimal element of f within the
first step. Therefore, classes of functions are considered, where the particular
function f is randomly chosen from. This theoretical framework was introduced
by Droste, Jansen, and Wegener [3]. The evaluation of the black-box typically
requires most resources during an optimization step. Therefore, we neglect all
additional calculations performed by a black-box algorithm or an EA in partic-
ular and identify the number of steps as performance measure only.

Let us estimate the efficiency of a randomized algorithm now. Therefore,
let TA,fn

denote a random variable which describes the number of function
evaluations until the algorithm A first queries an optimal search point of the
pseudo-Boolean function fn : {0, 1}n → Z, n ∈ N. If the expectation of TA,fn for
a sequence of functions f = (f1, . . . , fn, . . .) is upper bounded by a polynomial
in n we call A efficient on f and highly inefficient if it is at least exponentially
lower bounded. Moreover, we call A totally inefficient on f if the probability
that an optimum has been queried is exponential small even after an exponential
number of steps. In this case, a polynomially bounded number of (parallel)
(independent) multistarts of A is still totally inefficient.

3

Whenever we consider transformations g we also have to distinguish whether
the black-box algorithm has access to g or not. Access means that the algorithm
is able to evaluate g(v) for all v ∈ Z. Again, we will first identify the neutral
transformations Tblack for all black-box algorithms with access to the specific
transformation. I.e., if for a class of functions F an efficient black-box algorithm
exists, then there is also an efficient black-box algorithm with access to g ∈ Tblack

for g ◦ F . Surprisingly, it holds Tblack = Trank, where the (µ+1) EArank cannot
access the transformation. Hence, we remark that even Tblack ⊂ Tnot fitness is
no contradiction to the observation that the class of objective functions with
an efficient black-box algorithm is larger than the corresponding class for the
not fitness-based algorithms. Finally, we will demonstrate that for black-box
algorithms their access to the transformation can be essential.

Let us summarize. We will especially show the hierarchy:

Tids ⊆ Tprop ⊂ Trank = Tblack ⊂ Tnot fitness ⊂ Tall

The classes Tids and Tall even represent the two extreme cases of the minimal
and maximal class of transformations. With exception of Tprop the classes of
neutral transformations are specified completely and example algorithms are
presented and analyzed for all investigated classes.

The investigations concerning black-box algorithms help us to define rank-
based and not fitness-based algorithms now. For history (x1, v1), . . . , (xt−1, vt−1)
let rankt(vi) := |{vj | vj ≤ vi, 1 ≤ j ≤ t − 1}| denote the rank of vi at step t.
Let p

(0)
t (x) and p

(1)
t (x) denote the probability that the considered algorithm

creates the element x in step t with the histories (x1, v
(0)
1), . . . , (xt−1, v

(0)
t−1) and

(x1, v
(1)
1), . . . , (xt−1, v

(1)
t−1) respectively. The two histories consist of equal se-

quences of search points but not necessarily of equal sequences of objective
function values.

Definition 4. Rank-Based and Not Fitness-Based
If p

(0)
t (x) = p

(1)
t (x) holds for all t ≥ 1 and for all x, where for all 1 ≤ i ≤ t− 1

it is rankt(v
(0)
i) = rankt(v

(1)
i), then the algorithm is called rank-based.

If p
(0)
t (x) = p

(1)
t (x) holds for all t ≥ 1 and for all x, then the algorithm is called

not fitness-based.

E.g., the (µ+1) EArank is a rank-based algorithm and fitness-based, while
the (µ+1) EAprop is fitness-based only.

We remark that the investigations made here are similar for other discrete
search spaces, for minimization, and for objective functions with the decision
space R.

Throughout the paper let 0i and 1i, i ≥ 0, denote the bitstrings which
consist of i zeros and ones respectively. Moreover, let |x| denote the L1-norm of
x = x1 · · ·xn ∈ {0, 1}n, i.e., |x| :=

∑n
i=1 xi, and let num(x) :=

∑n
i=1 xi2i−1 ∈

{0, . . . , 2n − 1}.
The paper is structured as follows. We begin with the proposed results

for rank-based EAs including not fitness-based EAs and the (µ+1) EArank in

4

particular in Section 2. The results concerning the (µ+1) EAprop are considered
in Section 3. Afterwards, we investigate the Aids and the Aall in Section 4. We
continue with the considerations of black-box algorithms in Section 5 before we
finish with some conclusions in Section 6.

2 Rank-Based EAs

Beside uniform selection also linear-ranking, tournament selection, and trunca-
tion selection are well-known rank-based selection schemes. In Section 2.1 we
will discuss the results concerning t.s.i. transformations on rank-based EAs in
general and in Section 2.2 we will define the (µ+1) EArank in detail and we will
present the results concerning not t.s.i. transformations and the (µ+1) EArank.
Moreover, in Section 2.3 the not fitness-based algorithms including Arandom are
investigated in detail. The extensions concerning the black-box algorithms will
be proven in Section 5.

2.1 T.S.I. Transformations

Let us first investigate objective functions f : S → Z, where S is a discrete
search space. In the following let the Arank be an arbitrary rank-based algorithm
operating on S.

Theorem 5. Let pt,f be the probability that the Arank needs more than t ≥ 1
steps to optimize f : S → Z. If g : Z → Z is t.s.i., then the Arank needs with a
probability of pt,g◦f ≤ pt,f more than t steps to optimize g ◦ f .

Proof. Let Sf ⊂ S and Sg◦f ⊂ S contain all non-optimal elements of S with
respect to f and g ◦ f respectively. Since each optimal element of f is also one
of g ◦ f for sure it holds Sf ⊇ Sg◦f . At step t ≥ 1 the Arank on f has queried
the sequence (st) of search points x1, . . . , xt with probability p(st),f . Hence, pt,f

is the sum of the p(st),f for all sequences (st) of length t which do not contain
an optimal element, i.e., xi ∈ Sf for all 1 ≤ i ≤ t. Each such sequence (st)
is either optimal for the Arank on g ◦ f , i.e., g ◦ f(xi) ∈ S − Sg◦f ⊇ S − Sf

for some 1 ≤ i ≤ t, or the Arank on g ◦ f queries (st) with probability p(st),f ,
too. The last argument holds since the Arank is rank-based and therefore, in this
situation and by definition, the algorithm has generated with equal probabilities
the search point xj on the histories (x1, f(x1)), . . . , (xj−1, f(xj−1)) and (x1, g ◦
f(x1)), . . . , (xj−1, g ◦ f(xj−1)). This holds for every 1 ≤ j ≤ t. We remember
that for xi ∈ Sg◦f , 1 ≤ i ≤ j − 1, it holds rankj(f(xi)) = rankj(g ◦ f(xi)).

The converse is typically incorrect. Therefore, consider an arbitrary function
f , where the investigated algorithm is inefficient on. (E.g., every general search
heuristic is inefficient on Plateau, see Lemma 23 in Section 5.) But the function
g ◦ f , where the t.s.i. transformation g is an arbitrary constant function (e.g.,
g(v) = 0 for all v) will be optimized by every algorithm within the first query
since there exist optimal elements only. We remark that this also holds for
black-box algorithms.

5

2.2 Not T.S.I. Transformations

For a simple and typical rank-based EA, the (µ+1) EArank, we will prove rig-
orously that the class of neutral transformations consists of all t.s.i. functions.
The lower bound was shown in the previous section. For the upper bound it is
sufficient to present for each not t.s.i. transformation a class of functions, where
the EA turns from being efficient to inefficiency. Here, even a turnover to total
inefficiency can be demonstrated. Let us assume without simplifying the setting
that the search space S equals {0, 1}n, i.e., we investigate pseudo-Boolean func-
tions. Moreover, the investigated mutation-based steady-state (µ+1) EArank is
defined as follows (see [7]).

Algorithm 6. (µ+1) EArank

1. Choose µ different individuals xi ∈ {0, 1}n, 1 ≤ i ≤ µ, uniformly
at random. These individuals constitute the population P, i.e., P :=
{x1, . . . , xµ}.

2. Choose an individual x from the population P uniformly at random. Cre-
ate y by flipping each bit in x independently with probability 1/n.

3. If y 6∈ P, i.e., y 6= xi for all 1 ≤ i ≤ µ, then let z ∈ P ∪ {y} be randomly
chosen among those individuals with the worst f -value and let the popu-
lation be P ∪ {y} − {z}, goto 2., and else let the population be P, goto
2.

The population merely consists of different elements which implies that the
structure of the population is not only a multiset, but a set. Hence, only choices
µ ≤ 2n are feasible. In the rest of the paper, let the size of the population µ
be polynomially bounded. Otherwise, even the initialization of the algorithm
implicates inefficiency.

Now, we will demonstrate the possible turnover to total inefficiency of the
(µ+1) EArank, if an arbitrary not t.s.i. transformation is applied.

Theorem 7. If g : Z → Z is not t.s.i., then there exist classes of functions F ,
where the (µ+1) EArank needs for every f ∈ F an expected polynomial number
of steps for optimization (in particular O(µn3)). The (µ+1) EArank needs for
all but an exponential small fraction of functions f ∈ F , i.e., 2−Ω(n), with an
exponential small failure probability an exponential number of steps to optimize
g ◦ f . Every black-box algorithm needs at least an expected exponential number
of steps to optimize g ◦ f , f ∈ F .

Proof. We will present for each function g a class of functions F with the pro-
posed properties. The results concerning black-box algorithms follow directly
by Lemma 23 in Section 5.

We will distinguish three cases. The first case considers the situation that
there exists at least one integer which is transformed to a larger value than its
successor (Case 1). Afterwards, we just have to investigate functions, where
g(v) ≤ g(v + 1) holds for all v ∈ Z and furthermore, for at least one integer

6

v holds g(v) < g(v + 1) (otherwise, g would be t.s.i. with z(g) = −∞). We
distinguish two further cases – for technical reasons only. One case considers
the situation that there are enough integers (what enough means will be specified
later) which are transformed to the same non-optimal value (Case 2). To be
more precise, for some `2 large enough there are at least `2 − 1 < ∞ integers
v1 < · · · < v`2−1, where g(vi) = g(vi+1), 1 ≤ i < `2 − 1, holds and at least
one more integer v`2 > v`2−1, where g(v`2−1) < g(v`2) holds. If this is not
the case, then there are at least two integers v`3−1 < v`3 transformed to the
same non-optimal value g(v`3−1) = g(v`3) and since we are not in the second
case and there are infinite many integers smaller than v`3−1 there exist at least
`3 − 2 < ∞ more integers v1 < · · · < v`3−2 < v`3−1, where g(vi) < g(vi+1),
1 ≤ i < `3 − 1, holds. I.e., there are enough integers (what enough means will
be specified later) transformed to different values (Case 3).

Case 1. There is an integer v, where g(v) > g(v+1) holds. Then, we investigate
the class of functions F1 that consists of all functions f1,a : {0, 1}n → Z, where
for a ∈ {0, 1}n

f1,a(x) :=

{
v if x = a

v + 1 otherwise
.

Each function contains one non-optimal element only. Hence, it is even not
probable to find this element instead of an optimal one. After applying the
transformation the algorithm has to search for the needle in the haystack.

The expected number of steps of the (µ+1) EArank on f1,a is bounded by
O(1). If µ = 1 and the initial element is even the single non-optimal element a,
then with a probability of

∑n
i=1

(
n
i

)
1/ni(1−1/n)n−i = 1− (1−1/n)n ≥ 1−1/e

an optimum is created since an arbitrary mutation changing at least one bit has
to be performed to generate an optimum. If µ ≥ 2, then at the latest the second
element of the initialization is an optimum.

Let us consider the class of functions g◦F1 now. Therefore, let h : {0, 1}n →
Z be the constant function h(x) := g(v + 1) for all x ∈ {0, 1}n. We will investi-
gate the (µ+1) EArank on h, where an optimum of h is created within the first
step. Moreover, let pt(x), t ≥ 1, denote the probability that the (µ+1) EArank

on h creates the element x in step t and let Q denote the set of elements which
have a probability of at least 2−n/3 to be generated at least once within the first
b2n/3c steps of the (µ+1) EArank. It holds |Q| ≤ d22n/3e. Therefore, we assume
|Q| ≥ d22n/3e+1 which leads to a contradiction since (d22n/3e+1)2−n/3 > b2n/3c
and the (µ+1) EArank has created at most b2n/3c different elements for the first
time within the first b2n/3c steps. Hence, at least as long as the optimum of
g ◦f1,a, f1,a ∈ F1, was not created the next query is chosen with equal probabil-
ity for the (µ+1) EArank on h and g ◦ f1,a. The probability that the optimum is
created within the first b2n/3c steps is bounded by 2−n/3 for all functions g◦f1,a,
where a 6∈ Q. Moreover, Q represents only an exponential small fraction of all
investigated functions since |Q|/|F1| ≤ d22n/3e/2n = 2−Ω(n).

Case 2. There exist at least n integers v0 < · · · < vn−1, where g(vi) = g(vi+1),
0 ≤ i < n−1, holds and at least one further integer vn > vn−1, where g(vn−1) <

7

g(vn) holds. Then, we investigate the class of functions F2 which consists of all
functions f2,a : {0, 1}n → Z, where for a ∈ {0, 1}n

f2,a(x) := vn−H(x,a) .

Let H(x, a) denote the Hamming distance of x and a. The fitness increases with
a decrease of the Hamming distance up to the optimum. This makes it easy for
the (µ+1) EArank to optimize the function. After applying the transformation
the algorithm has to search for the needle in the haystack.

The expected number of steps of the (µ+1) EArank on f2,a ∈ F2 is bounded
by O(µn log n). The function f2,a has the same properties than the well-known
function OneMax, OneMax(x) := |x|. A proof that the expected number of
steps of the (µ+1) EArank, where µ = 1, on OneMax equals Θ(n log n) can
be found in [2]. Let x denote an element with the current largest function
value vn−H(x,a). For all non-optimal elements x (has a probability of 1/µ to be
selected for mutation) at least H(x, a) special 1-bit mutations (has a probability
of H(x, a)/n(1−1/n)n−1 ≥ H(x, a)/(en) to be performed) increase the function
value. Moreover, at the beginning the largest function value is at least v0.
Hence, we can bound the expected number of steps of the (µ+1) EArank by∑n

i=1 eµn/i = O(µn log n) to optimize f2,a.
Let us consider the class of functions g ◦ F2 now. This class of functions is

similar to the one in the first case. Moreover, the same arguments lead to the
proposed result.

Before we investigate the completing case we will analyze the behavior of
the (µ+1) EArank on plateaus first. Therefore, let SPa : {0, 1}n → Z, where
(SP stands for SmallPlateau)

SPa(x) :=


2 if x = pn

1 if x = pi, 0 ≤ i < n, and pi 6= pn

0 otherwise

for a = a1 · · · an ∈ {0, 1}n with pi = a1 · · · ai0n−i, 0 ≤ i ≤ n, and let LPε,a :
{0, 1}n → Z, where (LP stands for LargePlateau)

LPε,a(x) :=


2 if x = a

1 if x ∈ {1n−dεney | y ∈ {0, 1}dεne} − {a}
0 otherwise

for a constant 0 < ε ≤ 1 and a ∈ {1n−dεney | y ∈ {0, 1}dεne}.
A (connected) subset of elements which all have the same function value is

called a plateau. A sequence s0, . . . , sr, r ≥ 0, of elements is called a path (of
constant fitness) if the Hamming distance of si and si+1 is (at most) one for
0 ≤ i < r (and the elements constitute a plateau).

Lemma 8. Let the population consist of at least one element with fitness 1 and
let a be chosen arbitrarily. The expected number of steps until the (µ+1) EArank

8

on SPa creates the optimum is upper bounded by O(µn2) if µ > n and by O(µn3)
if µ ≤ n. For LPε,a and the (µ+1) EArank the expected number of steps is upper
bounded by O(µ2εn).

Proof. In order to simplify the notation we first define the (1+1) EA? to be the
(µ+1) EArank, where µ = 1, but it accepts elements with the same fitness for
sure (and not with probability 1/2 only if the offspring is not a duplicate). The
(1+1) EA? is well-studied by, e.g., [2], [4], [5], or [9].

Let us first investigate the (µ+1) EArank on SPa. As long as the optimum is
not generated or it exists an element outside the plateau (which is also a path)
there is at least one element in the population (has a probability of 1/µ to be
selected for mutation) with the following property. At least one special 1-bit
mutation (has a probability of 1/n(1 − 1/n)n−1 ≥ 1/(en) to be performed) of
this individual creates either the optimum or at least a plateau element which
is not contained in the population. Moreover, such an offspring replaces an
element outside the plateau. Hence, the expected number of steps for such an
event is upper bounded by eµn. Since the length of the path is at most n and
at the beginning there exists at least one plateau element in the population
within an expected number of at most n · eµn = O(µn2) steps either the whole
population consists of different plateau elements or the optimum is created. The
optimum is generated for sure if µ > n. For this case, the first part of the result
follows.

In the following let µ ≤ n. We reinterpret how the descendant population
is determined. This will help us to simplify the argumentation but it does not
modify the behavior of the algorithm. If a plateau element is created we assume
that this element stays in the population for sure and a duplicate if one exists is
deleted or an individual of the parent population chosen uniformly at random
otherwise. We remark that if an element with function value 0 is created, then
such an offspring will directly be removed and if the optimum is generated we
have successfully finished.

The following analysis is similar to the one of Witt [8] for a similar situation
but a different algorithm. Therefore, we recall the definition of family trees. A
family tree Tt(x) of an individual x at time t > 1 contains Tt−1(x) (a directed
and labeled tree) and the edge (v, w) if w is the result of a mutation of the
individual v ∈ Tt−1(x). The tree T1(x) contains the root x only. Thus, the
individuals of the first investigated (typically initial) population constitute the
roots of the family trees. Since the (µ+1) EArank describes an infinite stochastic
process the growing process of the family trees is infinite as well (at least for
one individual of the first investigated population). At some time t ≥ 1 we
call a route from the root x to the node y in a family tree Tt(x) dead if y has
been deleted by time t and alive otherwise. Hence, there exists at least one
route which is alive in at least one family tree. Let us consider such a route
x1, . . . , xk+1 of length k ≥ 0 which does not reach the optimum. There are
plateau elements only on this route. The (µ+1) EArank defines a distribution
over all family trees at each time t and therefore, the distribution over such
routes as well. Furthermore, we investigate the corresponding distribution of

9

the (1+1) EA? beginning with x0. By induction it follows that both distribu-
tions on the elements of such a route are the same. Therefore, we remember
that if a specific individual (respectively a node in a family tree) is selected,
then the mutation operators and the acceptance behaviors are the same for the
(µ+1) EArank and the (1+1) EA?. This holds especially since the behavior of
the mutation operator and the acceptance is independent of the current time
and the other individuals. Here, we have to remember that all investigated in-
dividuals have the same function value and that we have reinterpreted how the
descendant population is determined. We observe that in such a situation, the
behavior is even the same if the optimum is created.

Let us now prove that the expected number of steps until a route which is
alive reaches length k ≥ 0 is upper bounded by 2eµk or the optimum is created.
In the second case, nothing has to be shown. In the first case, in order to
lengthen such a route and to keep it alive it is sufficient to select the individual
on the route with maximal distance to the root (has a probability of 1/µ).
Afterwards, this individual has to create an arbitrary element on the plateau
(has a probability of at least (1− 1/n)n ≥ 1/(2e) since a 0-bit mutation creates
a duplicate) or the optimum. Moreover, the parent has to be deleted prior to its
offspring (has a probability of 1 in the particular investigated situation, where
a duplicate is created – otherwise it equals 1/2). Hence, the expected number
of steps to increase the length of a route is upper bounded by 2eµ.

Jansen and Wegener [5] have especially proven that the (1+1) EA? needs
an expected number of at most O(n3) steps to create the optimum of SPa for
every a and starting with an arbitrary element on the path. An application of
Markov’s inequality (see e.g., [6]) shows that within cn3 steps for a large enough
constant c > 0 with a probability of at least 1/2 the optimum is created by the
(1+1) EA?. Hence, within an expected number of at most 2eµcn3 steps the
(µ+1) EArank creates the optimum. In the case of a failure we can repeat the
argumentation. The expected number of such repetitions is bounded by 2. This
upper bounds the expected number of steps of the (µ+1) EArank, where µ ≤ n,
on SPa by 4eµcn3 = O(µn3) in total.

Let us now investigate the (µ+1) EArank on LPε,a, where at the beginning
exists at least one plateau element in the population. We can apply the same
proof technique as for SPa. Within an expected number of at most eµ2n steps
either the optimum is created and the (µ+1) EArank has successfully finished
or the whole population consists of plateau elements only. Therefore, at most
µ−1 special 1-bit mutations of plateau elements with the following property are
sufficient. For this element exists at least one plateau element with Hamming
distance one which is not contained in the population. Moreover, the distribu-
tion of the elements on a route in a family tree is again the same than for the
(1+1) EA?. Furthermore, the expected number of steps to increase the length
of a route is also upper bounded by 2eµ. Garnier, Kallel, and Schoenauer [4]
have especially proven that the (1+1) EA? needs an expected number of at most
O(2εn) steps to create the optimum of LPε,a for every a and starting with an
arbitrary element on the plateau. With the same arguments as for SPa this
upper bounds the expected number of steps of the (µ+1) EArank on LPε,a by

10

eµ2n +O(µ2εn) = O(µ2εn) since ε is a positive constant.
Altogether, we have shown the proposed result.

We are now able to prove the completing case.
Case 3. There exist at least n integers v1 < · · · < vn, where g(vi) < g(vi+1), 1 ≤
i < n, at least one integer vn+1 > vn, where g(vn) = g(vn+1), and at least one
more integer vn+2 > vn+1, where g(vn+1) < g(vn+2) holds. Then, we investigate
the class of functions F3 that consists of all functions f3,a : {0, 1}n → Z, where

f3,a(x) :=


vn+2 if x = pn

vn+1 if x = pi, 0 ≤ i < n, and pi 6= pn

vn if x ∈ T

v|x| otherwise

for a = a1 · · · an ∈ {1n−dn/20ey | y ∈ {0, 1}dn/20e} with pi := a1 · · · ai0n−i, 0 ≤
i ≤ n, and T := {1n−dn/20ey | y ∈ {0, 1}dn/20e} − {p0, . . . , pn} (Trap). The
sequence p0, . . . , pn−1 describes a path of constant fitness, where some elements
can be equal. A sequence s0, . . . , sr is called a path if the Hamming distance
of si, 0 ≤ i < r, and si+1 is (at most) one. The beginning of the path will be
created probably and quickly by the (µ+1) EArank. Afterwards, such an element
will not be replaced by an element of the plateau T . A (connected) subset of
elements which all have the same function value is called a plateau. The path
guides the (µ+1) EArank through the plateau and furthermore, the optimum
will be created quickly. The probability to create an element of T prior to an
pi, 0 ≤ i ≤ n, is so small that the expected optimization time in these cases
does not effect the expected number of steps in total strongly. After applying
the transformation the algorithm has to search for the needle in the haystack
T ∪{pi | 1 ≤ i ≤ n−1, pi 6= pn} which is now smaller than in the previous cases,
but still of exponential size.

The expected number of steps of the (µ+1) EArank on f3,a ∈ F3 is bounded
by O(µn3). The following holds for n large enough. At first, let us neglect
the possibility to create an element of T . Within 2eµn2 steps an element of
the path pi, 0 ≤ i ≤ n, is first generated with a probability of at least 1 −
2−n/4. Moreover, even the expected number of steps for this event is bounded
by O(µn2). This holds similar to the second case since after at most n special 1-
bit mutations of an individual with the largest function value an element of the
path is generated. The probability for such an event is lower bounded by 1/(eµn)
and the expected number of steps results directly. An application of Chernoff
bounds (see e.g., [6]) shows that within 2eµn2 steps with a probability of at
most 2−n/4 less than n special 1-bit mutations are performed. Generating the
population by choosing each element independently and uniformly at random
leads with an exponential small probability to a different initial population
than creating it by the investigated strategy. This holds since we can upper
bound the probability that the selection of µ out of 2n elements results in the
choice of a duplicate by

∑µ
t=1 1/(2n − t− 1) ≤ 2−n/2. Moreover, an application

of Chernoff bounds shows that the probability to create initially an element

11

with more than d3n/4e ones is again upper bounded by 2−n/16. Hence, the
probability that at least one of the initially chosen elements consists of more
than d3n/4e ones is upper bounded by 2−n/2 + µ2−n/16 ≤ 2−n/17. Apart from
elements of T ∪{pi | d3n/4e+1 ≤ i ≤ n}, afterwards, only elements with at most
d3n/4e ones are accepted in the population. Hence, at least dn/6e bits have to
change to create an element of T . The probability to create within 2eµn2 steps
an element of T can be bounded by 2eµn2/nn/6 ≤ 2−n. Moreover, we can
upper bound the probability to create an element of T prior to an element pi,
d3n/4e + 1 ≤ i ≤ n, by 2−n/4 + 2−n/17 + 2−n ≤ 2−n/18 in total. We recall
that an element of T never replaces an element of the path and especially the
optimum has a larger function value than every element of T . In this situation,
we can bound the expected number of steps by O(µ2n/20) until an element
pi, 0 ≤ i ≤ n, is created as Lemma 8 shows. Hence, we can upper bound
the expected number of steps until an element pi, 0 ≤ i ≤ n, is generated by
(1− 2−n/18)O(µn2)+ 2−n/18 max{O(µn2),O(µ2n/20)} = O(µn2) in total. If an
element pi 6= pn, 0 ≤ i < n, is created, then the expected number of steps to
create the optimum is bounded by O(µn3) as Lemma 8 demonstrates again. In
summary, this leads to an expected number of O(µn3) steps on f3,a.

Let us consider the class of functions g ◦ F3 now. The function g ◦ f3,a,
f3,a ∈ F3, is similar to f3,a but there is one essential exception. All elements T ∪
{pi | 0 ≤ i < n, pi 6= pn} have the same non-optimal function value. Therefore,
g ◦ F3 is similar to g ◦ F1, but the size of its plateau is 2dn/20e only. Hence, a
similar analysis as for g ◦ F1 shows that with exception of an exponential small
fraction of g ◦ F3 the (µ+1) EArank needs with a failure probability of at most
2−n/60 more than b2n/60c steps to optimize g ◦ f3,a.

2.3 Not Fitness-Based EAs

Let us again investigate functions with an arbitrary discrete search space first.
In the following let the Anot fitness be an arbitrary not fitness-based algorithm
operating on S.

Theorem 9. Let pt,f be the probability that the Anot fitness needs more than
t ≥ 1 steps to optimize f : S → Z. If g : Z → Z is increasing, then it needs with
a probability of pt,g◦f ≤ pt,f more than t steps to optimize g ◦ f .

Proof. The proof is similar to the one of Theorem 5. We have to remember that
an optimal element for f is surely one for g ◦ f . Moreover, for every t ≥ 1 it
holds, if the Anot fitness on f queries a sequence of elements (st) with probability
p(st),f , then with probability p(st),f the Anot fitness on g◦f queries (st), too. This
holds for all sequences (st).

For a simple and well-known not fitness-based algorithm, the random search,
we will mention similar to the previous section and also for search space {0, 1}n

that the class of neutral transformations consists of all increasing functions.
The considered algorithm Arandom queries in each step a search point chosen
independently and uniformly at random.

12

Theorem 10. If g : Z → Z is not increasing, then there exist classes of
functions F , where the Arandom needs for every f ∈ F an expected number
of 1/(1 − 2−n) = O(1) steps for optimization. The Arandom needs for every
function f ∈ F with an exponentially small failure probability, i.e., 2−Ω(n), at
least an exponential number of steps to optimize g◦f . Every black-box algorithm
needs at least an expected number of (2n + 1)/2 steps to optimize g ◦ f , f ∈ F .

Proof. The result concerning black-box algorithms follows directly by Lemma 23
in Section 5.

There exists at least one integer v, where g(v) > g(v + 1) holds, otherwise g
would be increasing. Similar as in Theorem 7, we consider the class of functions
F containing all functions fa : {0, 1}n → Z, where

fa(x) :=

{
v if x = a

v + 1 otherwise

for a ∈ {0, 1}n.
For each fa ∈ F , the probability that the Arandom creates an optimal element

of fa equals 1− 2−n in each step.
For each fa ∈ F , the probability equals 2−n in each step that the Arandom

generates the optimum of g ◦ fa. Hence, within b2n/2c steps the probability
equals b2n/2c2−n ≤ 2−n/2 that the optimal element was created.

3 Not Rank-Based EAs

Beside fitness-proportional selection which is also called roulette wheel selection,
Boltzmann selection and stochastic universal sampling are well-known not rank-
based selection schemes.

We consider in particular the following simple (µ+1) EAprop which is similar
to the (µ+1) EArank but comes up with fitness-proportional selection.

Algorithm 11. (µ+1) EAprop

1. Choose µ different individuals xi ∈ {0, 1}n, 1 ≤ i ≤ µ, uniformly
at random. These individuals constitute the population P, i.e., P :=
{x1, . . . , xµ}.

2. Choose the individual x from the population P with a probability of
f(x)/

∑
x′∈P f(x′). Create y by flipping each bit in x independently with

probability 1/n.

3. If y 6∈ P, i.e., y 6= xi for all 1 ≤ i ≤ µ, then let z ∈ P ∪ {y} be randomly
chosen among those individuals with the worst f -value and let the popu-
lation be P ∪ {y} − {z}, goto 2., and else let the population be P, goto
2.

13

Obviously, the algorithm operates on functions with positive function values
only. Therefore, we investigate objective functions f : {0, 1}n → Z>0. We
remark that the (µ+1) EAprop and the (µ+1) EArank are the same for µ = 1.

Let us first investigate the (µ+1) EAprop and not t.s.i. functions g. The same
example functions f with similar proofs than for the (µ+1) EArank in Theorem 7
show that g is not neutral for the (µ+1) EAprop on f . Hence, the (µ+1) EAprop

reaches the same situations as the (µ+1) EArank with similar probabilities and
within a similar number of steps. In order to show this, the main observation is
that the (µ+1) EAprop and the (µ+1) EArank behave equivalently on plateaus.
Moreover, the probability to select an element with largest function value for
mutation is lower bounded by 1/µ for the (µ+1) EAprop. As proposed, we will
prove that a t.s.i. transformation g is not neutral for a particular function f
with (µ+1) EAprop. We will develop such a function f .

3.1 First Results

The first function does not satisfy all the proposed properties, but we make
observations that help us to identify functions later, where all the desired prop-
erties hold.

Let us consider the function PP : {0, 1}n → Z>0, where (PP stands for
PathPeak):

PP(x) :=



3n2 + 2n + i if x = 0n−i1n =: pi and
i = n− dn/3e or i = n

3n2 + n + i if x = 0n−i1i =: pi, 0 ≤ i < n,
and i 6= n− dn/3e

3n2 + n− |x| otherwise

Hence, we observe that the decision space consists of the values {3n2, . . . , 3n2 +
3n} at most and it is 3n2 + 3n < 3(n + 1)2. The function is similar to the one
defined by Storch [7]. The element pn−dn/3e is called a peak since an element
with at least the same function value has a large Hamming distance. Here, the
distance is linear in n. Moreover, for a path s0, . . . , sr, r ≥ 0, and a population P
we call the element smax{i | si∈P} the element with largest index. The beginning
of the path will be created probably and quickly by the (µ+1) EAprop. If the
population contains at least two (different) elements and none is optimal, then
a 1-bit mutation of the individual with largest index will create an element with
an even larger index. Moreover, such an element will also be accepted in the
population. This holds since in particular the probability to select the element
with largest index for mutation is high. However, let g be defined as follows:

g(v) :=


v if v < 0
v + 2n2

if 3n2 ≤ v ≤ 3n2 + 2n, n ≥ 0
v + 2n2+n if 3n2 + 2n < v < 3(n + 1)2, n ≥ 0

14

The transformation g is well-defined and t.s.i. since it holds g(3n2) = 3n2 +
2(n−1)2+(n−1) < 3n2 + 1 + 2n2

= g(3n2 + 1) for all n ≥ 1. For all other values of
v this property is obvious. After applying this transformation the function value
of the peak (and the optimum) is increased enormously. Hence, the probability
not to select the peak for mutation is extremely small, if this individual is
contained in the population, but not the optimum. Moreover, the probability
to create the optimum by a mutation of the peak is extremely small, too.

Theorem 12. The expected number of steps until the (µ+1) EAprop, where
µ ≥ 2, has optimized PP is upper bounded by O(µn2).

Proof. The proof is similar to the one in [7]. After an expected number of
O(µn2) steps an element pi, i > n − dn/3e, is included in the population.
Therefore, at most 2n − dn/3e special 1-bit mutations of an element with the
largest function value creates such an element. Hence, the probability for such
a mutation is bounded by 1/(eµn) since the probability to select an element
with the largest function value is at least 1/µ and the probability for a special
1-bit mutation equals 1/n(1 − 1/n)n−1 ≥ 1/(en). Afterwards, a special 1-bit
mutation of the individual with largest index creates an element with an even
larger index which will be accepted in the population. This element has either
also the largest function value (if pn−dn/3e is not contained in the population)
or the second-largest function value (if pn−dn/3e is contained in the population).
The probability to select the desired individual is lower bounded by 1/(2µ). This
holds since for the considered cases the second-largest function value is at least
3n2 + 2n− dn/3e+ 1 while the largest function value equals 3n2 + 3n− dn/3e.
Hence, the expected number of steps for these at most dn/3e successes is upper
bounded by O(µn2) and therefore, the expected number of steps in total as
well.

We remark that the upper bound of O(µn2) expected steps holds also for
the (µ+1) EArank, where µ ≥ 2.

Theorem 13. The probability that the (µ+1) EAprop has optimized g ◦ PP
within 2Ω(n) steps is lower bounded by 1 − O(1/n). The expected number of
steps is lower bounded by 2Ω(n).

Proof. The following holds for n large enough. We can bound the probability to
create the optimum prior to the element pn−dn/3e by 1−O(1/n). Therefore, we
observe that the probability is bounded by 2−Ω(n) to create initially an element
with more than d7n/12e ones as an application of Chernoff bounds shows (see
e.g., [6]). The probability to create by a mutation of an element which consists
of at most d7n/12e ones an individual on the path behind the peak is bounded
by 2−Ω(n) since therefore, at least dn/13e bits have to change. Afterwards, to
the best an element of the path before the peak pn−dn/3e−k, k ≥ 1, generates
the peak or an element behind it. Hence, the probability to create an element
pn−dn/3e+i, i ≥ 1, prior to pn−dn/3e is bounded by O(1/n) since a special k + i-
bit mutation (has a probability of at most

∑n
i=k+1 1/ni(1− 1/n)n−i ≤ 2/nk+1)

15

has to be performed prior to a special k-bit mutation (has a probability of at
least 1/nk(1− 1/n)n−k ≥ 1/(enk)). If pn−dn/3e is contained in the population,
then the failure probability to select this element for mutation is upper bounded
by (µ−1) ·(2n2

+3n2 +2n−1)/(2n2+n +3n2 +3n−dn/3e) = 2−Ω(n). This holds
since the other µ − 1 individuals of the population have a function value of at
most 2n2

+3n2 +2n−1 and even the peak has a function value of 2n2+n +3n2 +
3n − dn/3e. Moreover, the probability is bounded by 2−Ω(n) that a mutation
of the peak generates the optimum which is also the only element which has a
function value of more than 2n2

+ 3n2 + 2n − 1. This holds since therefore, a
special dn/3e-bit mutation is necessary. Hence, the probability either to create
the optimum or to select another element than the peak for mutation is bounded
by 2−Ω(n).

Nevertheless, we are interested in a function, whereon the (µ+1) EAprop is
even totally inefficient and not only highly inefficient.

3.2 Main Results

We will present a function, where the (µ+1) EArank even turns to total in-
efficiency now. Therefore, the previous result will be amplified in the func-
tion similar than it was realized in [7]. Let s0, . . . , sdn/ log nedn/ log ne, where
s0 := 1n−dn/3e0dn/3e, denote a path which consists of elements with at least
n − dn/3e ones and furthermore, the Hamming distance of si, i ≥ 0, and si+j

equals j for 0 ≤ j ≤ dn/ log ne and the Hamming distance is at least dn/ log ne
for j > dn/ log ne. A construction of such a path is presented in [7]. In order to
describe the construction we remember the Gray code. The `-digit Gray code
G`, ` ∈ N, maps the integer x, 0 ≤ x ≤ 2` − 1, bijective to the binary space
{0, 1}`. But in contrast to Binary code the values x and x + 1 have Hamming
distance one in Gray code for all 0 ≤ x < 2` − 1. Similar to Binary code
it holds G`(0) = 0`. Moreover, for an element x ∈ {0, 1}n we call block j,
0 ≤ j ≤ dlog(n/ log n)e + 1, the substring xjdn/ log ne+1 · · ·x(j+1)dn/ log ne and
associate a bit

x(j) :=


x(j+1)dn/ log ne if xjdn/ log ne+1 = · · ·

· · · = x(j+1)dn/ log ne

undefined otherwise

with each such block. The element sidn/ log ne is defined as the unique bitstring,
where x(dlog(n/ log n)e+1) · · ·x(0) = Gdlog(n/ log n)e+2(i), the last n− dn/3e bits of
the string are ones, and the others are zeros. Let ki denote the single position
where Gdlog(n/ log n)e+2(i) and Gdlog(n/ log n)e+2(i+1) differ. Hence, the element
sidn/ log ne+j , 0 < j < dn/ log ne is defined as the unique bitstring, where exactly
the first j bits of block ki in sidn/ log ne are changed. This sequence of elements
has the desired properties.

16

Let us now consider the function PPs : {0, 1}n → Z>0, where (PPs stands
for PathPeaks):

PPs(x) :=



n3 + 2n+ if x = sidn/ log ne

+ (i + 1)dn/ log ne
n3 + 2n+ if x = sidn/ log ne+j ,

+ idn/ log ne+ j 0 < j < dn/ log ne
n3 + n + j if x = 1j0n−j ,

0 ≤ j < n− dn/3e
n3 + n− |x| otherwise

We observe that for n ≥ 5 the decision space contains the values {n3, . . . , n3+n2}
at most and it is n3+n2 < (n+1)3. The elements sidn/ log ne, 0 ≤ i < dn/ log ne,
are peaks and sdn/ log nedn/ log ne is the optimum. In contrast to PP, where the
(µ+1) EAprop reachs an awkward situation once the (µ+1) EAprop reachs such
an awkward situation with overwhelming probability quite often. The other
properties are similar especially if we consider the following transformation:

g(v) :=



v if v < 53

v + 2n3
if n3 ≤ v < n3 + 2n, n ≥ 5

v + 2n3+i·n if n3 + 2n + idn/ log ne ≤ v and
v < n3 + 2n + (i + 1)dn/ log ne,
0 ≤ i ≤ dn/ log ne, n ≥ 5

v + 2n3+n2
if n3 + 2n + (dn/ log ne+ 1)·
·dn/ log ne ≤ v < (n + 1)3, n ≥ 5

Similar investigations as in the previous section show that g is well-defined and
t.s.i.

Theorem 14. The expected number of steps until the (µ+1) EAprop, where
µ ≥ 2, has optimized PPs is upper bounded by O(µn3/ log2 n).

Proof. The proof is similar to the one of Theorem 12. The expected number
of steps to create an arbitrary element of the path si, i ≥ 0, is upper bounded
by O(µn2). Afterwards, a special 1-bit mutation of the individual with largest
index creates an element with an even larger index which will be accepted in
the population. This element has either the largest or the second-largest func-
tion value and the probability to choose the desired individual is lower bounded
by 1/(2µ). Hence, the expected number of steps for such a mutation is upper
bounded by 2eµn. Moreover, at most dn/ log nedn/ log ne times such an oper-
ation has to be performed until the end of the path is reached and therefore,
also the optimum is generated. This leads to an expected number of at most
O(µn3/ log2 n) steps in total.

We remark that the upper bound of O(µn3/ log2 n) expected steps holds
again also for the (µ+1) EArank, where µ ≥ 2.

17

Theorem 15. The probability that the (µ+1) EAprop has optimized g ◦ PPs
within 2Ω(n) steps is lower bounded by 1− 2−Ω(n).

Proof. The proof is similar to the one of Theorem 13. The probability that an
element of the path si, i ≥ 0, is created within the initialization is exponentially
small. The probability is also exponentially small to create an element si, i ≥ 0,
for the first time by a mutation of an individual which does not equals 1j0n−j ,
0 ≤ j < n − dn/3e. Let si be the element in the population with largest
index and there exists no peak in the population. The probability to create an
element si+j , j ≥ dn/ log ne is exponentially small. This holds since all these
less than dn/ log nedn/ log ne elements have a Hamming distance of at least
dn/ log ne. Therefore, the probability to create an element following the next
but one peak prior to an element on the path between the next and the next
but one peak is exponentially small as well. Hence, the probability to create
the next peak prior to an element behind it on the path is lower bounded by
1−O(1/n). Moreover, the probability either to take a shortcut, i.e., si creates
si+j , j ≥ dn/ log ne or otherwise to jump over all dn/ log ne peaks is bounded
by 2−Ω(n) + O(1/n)dn/ log ne = 2−Ω(n). If a peak is generated as element with
largest index and therefore, also as individual with the largest function value,
the failure probability to select the peak is exponentially small. Furthermore,
the probability to create an individual which function value differs by a factor
of at most 2Ω(n) from the one of the peak is exponentially small as well.

4 Minimal and Maximal Classes

In Section 4.1 we will prove that the t.i. are neutral for every algorithm first
and afterwards, we will present an algorithm Aids, where the class of neutral
transformations consists of all t.i. only. Moreover, in Section 4.2 the other
extreme case will be investigated. We will present an algorithm Aall, where
all transformations are neutral transformations. Both algorithms optimize all
functions within a finite expected number of steps.

4.1 Minimal Class of Neutral Transformations

Let the search space S be a discrete one. In the following let the A be an
arbitrary algorithm operating on S.

Theorem 16. Let pt,f be the probability that the A needs more than t ≥ 1 steps
to optimize f : S → Z. If g : Z → Z is a t.i., then the A needs with a probability
of pt,g◦f ≤ pt,f more than t steps to optimize g ◦ f .

Proof. The proof is similar to the one of Theorem 5. For every t ≥ 1 it holds, if
the A on f has history (st) with probability p(st),f , then with equal probability
p(st),f the A on g ◦ f has history (st). This holds for all histories (st) which do
not contain an optimum with respect to g ◦ f and therefore, especially not with
respect to f .

18

Let us now define the Aids operating on S = {0, 1}n and where the class of
neutral transformations consists of the truncated identities only. Let a : Z → N
be the bijective function, where

a(v) :=

{
2|v| if v ≥ 0
2|v| − 1 if v < 0

.

Algorithm 17. Aids

• Step 1. Query 0n.
• Step 2. to 2n. Query x0, where

num(x0) = a(f(0n))mod (2n − 1) + 1.
• Step t > 2n. Choose xt ∈ {0, 1}n independently and

uniformly at random. Query xt.

If the function value of 0n does not direct to an optimum or the element is
optimal by itself, then the optimization takes at least an exponential number of
steps.

Theorem 18. If g : Z → Z is not a t.i., then there exists a function f , where
the Aids needs at most two steps for optimization. The Aids needs at least 2n +1
steps to optimize g ◦ f .

Proof. There exist at least two integers v and w, where g(v) 6= v < w and
g(v) 6= g(w) holds. We distinguish the two cases that g(v) > g(w) (Case 1) and
g(v) < g(w) (Case 2).
Case 1. We investigate the function f1 : {0, 1}n → Z, where

f1(x) :=


w if x = 0n or

num(x) = a(g(w))mod (2n − 1) + 1
v otherwise

.

The Aids on f1 queries 0n first which is also an optimum.
The Aids on g ◦ f1 queries within the first 2n steps the elements 0n and x0

only, where it is num(x0) = a(g(w))mod (2n − 1) + 1. These are the two single
non-optimal elements.
Case 2. We investigate the function f2 : {0, 1}n → Z, where

f2(x) :=


v if x = 0n or

num(x) = a(g(v))mod (2n − 1) + 1
w otherwise

.

The Aids on f2 queries 0n first and x0 6= 0n second, where it is num(x0) =
a(v) mod (2n − 1) + 1. Since v 6= g(v) it holds for n large enough that also
a(v) mod (2n − 1) + 1 = a(v) + 1 6= a(g(v)) + 1 = a(g(v))mod (2n − 1) + 1.
Therefore, x0 represents an optimum.

The Aids on g ◦ f2 queries within the first 2n steps the elements 0n and
x0 only, where it is num(x0) = a(g(v))mod (2n − 1) + 1. These are again
non-optimal elements.

19

4.2 Maximal Class of Neutral Transformations

Let us define the Aall operating on pseudo-Boolean functions and where all
functions are neutral transformations.

Algorithm 19. Aall

• Choose x0 ∈ {0, 1}n uniformly at random.
• Step 1. to 22n − 1. Query x0.
• Step t ≥ 22n. Choose xt ∈ {0, 1}n independently and

uniformly at random. Query xt.

Theorem 20. If and only if the Aall optimizes f within an expected number of
t < 2n steps, then the Aall optimizes g ◦ f within an expected number of t steps,
where g is an arbitrary transformation.

Proof. We will show that the Aall needs an expected number of t < 2n steps on
the constant functions only. In this case, even the first query is optimal. Then,
the proposed result follows since f is a constant function and each transforma-
tion of a constant function leads to a constant function as well. Therefore, if f
is not the constant function, then there exists at least one element x which is
non-optimal. With probability 2−n the algorithm Aall selects x0 = x initially.
Afterwards, at step 22n an element which does not necessarily equal x0 = x
is queried and to the best this element is optimal. This leads to an expected
number of at least 2−n22n = 2n steps for the Aall on f , if f not a constant
function.

5 Black-Box Algorithms

We investigate functions with an arbitrary discrete search space S. Nevertheless,
we have to define black-box algorithms more precisely first (see [3]).

Algorithm 21. Black-Box Algorithm
Step t ≥ 1. Depending on (x1, f(x1)), . . . , (xt−1, f(xt−1)) determine a proba-
bility distribution on S, choose xt according to this distribution, query xt, and
receive its function value f(xt) from the black box.

A black-box algorithm which determines deterministically/ randomly the
next query is called a deterministic/randomized black-box algorithm. We re-
mark that the class of randomized black-box algorithms includes the class of
deterministic ones. However, for every function with discrete search space S
a black-box algorithm exists which requires an expected number of at most
(|S|+ 1)/2 queries for optimization (see [3]). We will obtain results, where ev-
ery black-box algorithm also needs at least (|S|+ 1)/2 queries for optimization.
Let us consider the class of t.s.i. transformations first.

Theorem 22. Let pt,f be the probability that a black-box algorithm Bf needs
more than t ≥ 1 steps to optimize f : S → Z. If g : Z → Z is t.s.i., then there
exists a black-box algorithm Bg◦f with access to g which needs for every t with
a probability of pt,g◦f ≤ pt,f more than t steps to optimize g ◦ f .

20

Proof. The idea of the theorem and its proof is that Bg◦f can simulate Bf if it
has access to g.

We describe how the black-box algorithm Bg◦f works. It is sufficient to
simulate each step of Bf until an optimum for g ◦ f is queried. We remark
that if Bf reachs an optimum for f , then this is also an optimum for g ◦ f .
We prove by induction on the number t ≥ 1 of steps that each step of Bf

can be simulated properly. Prior to the first step t = 1 the history of Bf

is empty and Bg◦f can simulate the first step of Bf and generate the initial
element x1 ∈ S according to the same probability distribution. For t > 1, let
(x1, g ◦ f(x1)), . . . , (xt−1, g ◦ f(xt−1)) be the history of Bg◦f . Either xt−1 is
optimal for g ◦ f and Bg◦f has successfully finished or since g is injective for all
non-optimal function values we can evaluate f(xi), 1 ≤ i ≤ t−1, from g ◦f(xi).
Afterwards, Bf can be simulated with history (x1, f(x1)), . . . , (xt−1, f(xt−1))
and Bg◦f can choose xt ∈ S according to the same probability distribution as
Bf .

For the proof it was essential that the black-box algorithm has access to
the specific transformation g. Before we investigate black-box algorithms and
not t.s.i. transformations we will demonstrate that the access to the specific
transformation can be essential (at least up to some degree). In the following
we will investigate the search space S = {0, 1}n again. At first, we analyze the
behavior of all black-box algorithms on plateaus and therefore, let Plateaua :
{0, 1}n → Z, where for a ∈ {0, 1}n

Plateaua(x) :=

{
1 if x = a

0 otherwise
.

The class of functions Plateau consists of all Plateaua.

Lemma 23. Every black-box algorithm needs at least an expected number of
(2n + 1)/2 queries to optimize f ∈ Plateau.

This was proven by Droste, Jansen, and Wegener [3].
We remark that the proposed results concerning black-box algorithms in

Theorem 7 and Theorem 10 follow directly from the investigations made here.
Hence, let Pointera : {0, 1}n → Z, where for a ∈ {0, 1}n

Pointera(x) :=

{
2n+1 if x = a

num(a) otherwise
.

The class of functions Pointer consists of all Pointera. Moreover, let Gt.s.i.

be the class of all t.s.i. transformations.

Theorem 24. There exists a (deterministic) black-box algorithm BPointer which
needs for every f ∈ Pointer at most two queries for optimization. Every
(randomized) black-box algorithm without access to g ∈ Gt.s.i. needs at least an
expected number of (2n + 1)/2 queries to optimize g ◦ f , f ∈ Pointer.

21

Proof. A black-box algorithm BPointer can query 0n first. Either the element
0n is optimal or the algorithm with history (0n,num(a)) can compute and query
the optimum a.

Let gi(v) : Z → Z be the t.s.i. function, where

gi(v) :=

{
v − 2n if v < 0
v + i if v ≥ 0

for −(2n − 1) ≤ i ≤ 2n − 1. In the following, we will consider these trans-
formations only. Hence, independent of gi, −(2n − 1) ≤ i ≤ 2n − 1, the ele-
ment a stays the single optimum for gi ◦ Pointera and all other elements have
the same non-optimal function value. This holds for all a. Moreover, we ob-
serve that for every 0 ≤ w ≤ 2n − 1 there exists a t.s.i. transformation, where
gw−num(a) ◦ Pointera(x) = w, x ∈ {0, 1}n − {a} holds. Hence, the class of in-
vestigated functions Gt.s.i. ◦ Pointer := {g ◦ Pointer | g ∈ Gt.s.i.} especially
contains all functions fa,b : {0, 1}n → Z, where

fa,b(x) :=

{
max if x = a

num(b) otherwise

for a, b ∈ {0, 1}n. Let F ⊆ Gt.s.i. ◦Pointer consist of all these fa,b. We are in a
similar situation as for Plateau in Lemma 23. Since each randomized black-box
algorithm can be interpreted as a probability distribution over deterministic ones
(see [3]) we can apply Yao’s Minimax Principle (see e.g., [6]). For this particular
situation, it states that the expected number of steps of each randomized black-
box algorithm on fa,b ∈ F is lower bounded by the minimal average number
of steps – according to an arbitrary distribution on F – with respect to every
deterministic black-box algorithm. We choose fa,b ∈ F uniformly at random and
observe that, if an arbitrary non-optimal element is queried, then every element
not queried before is optimal with the same probability. This is equivalent to
Plateau and therefore, by Lemma 23, every black-box algorithm needs an
expected number of at least (2n +1)/2 steps to optimize fa,b ∈ F and moreover,
especially with respect to Gt.s.i. ◦Pointer.

Finally, we investigate black-box algorithms on not t.s.i. transformations.

Theorem 25. If g : Z → Z is not t.s.i., then there exist classes of functions
F , where a (deterministic) black-box algorithm BF exists which needs at most
a linear number of queries to optimize f for every f ∈ F (in particular n + 1).
Every (randomized) black-box algorithm (with access to g) needs at least an
expected number of (2n + 1)/2 queries to optimize g ◦ f , f ∈ F .

Proof. We will distinguish two cases. The first case considers the situation that
there exists at least one integer which is transformed to a larger value than its
successor (Case 1). The second case considers the situation that there is at
least one integer which is transformed to the same non-optimal value than its
successor (Case 2).

22

Case 1. There is an integer v, where g(v) > g(v + 1) holds. Then, equivalent
to the corresponding case in the proof of Theorem 7 we consider the class of
functions F1 which consists of all functions f1,a : {0, 1}n → Z, where for a ∈
{0, 1}n

f1,a(x) :=

{
v if x = a

v + 1 otherwise
.

A black-box algorithm BF1 can query 0n and 1n. The function value of at least
one of these two elements is optimal.

The class of functions g ◦ F1 is similar to Plateau since g(v + 1) < g(v).
Therefore, by Lemma 23, every black-box algorithm needs at least an expected
number of (2n + 1)/2 steps to optimize g ◦ f1,a, f1,a ∈ F1.
Case 2. There exists an integer v where g(v) = g(v +1) and at least one further
integer w > v + 1 where g(v + 1) < g(w) holds. Then, we investigate the class
of functions F2 which consists of all functions f2,a : {0, 1}n → Z, where

f2,a(x) :=


w if x = a

v + 1 if x = pi, 0 ≤ i ≤ n, and x 6= a

v otherwise

for a = a1 · · · an ∈ {0, 1}n with pi := a1 · · · ai0n−i, 0 ≤ i ≤ n. The sequence of
elements p0, . . . , pn describes a path.

A black-box algorithm BF2 can identify pi, 1 ≤ i ≤ n, within one query, if
pi−1 is contained in its history. The individual pi can be determined by querying
a1 · · · ai−110n−i =: p′i−1 which differs with pi−1 in position i only. If the function
value of p′i−1 is at least as large as the function value of pi−1, i.e., it is v + 1
or w, then pi is p′i−1. Otherwise, i.e., the function value is v, the element pi

is pi−1. Moreover, BF2 queries p0 = 0n at first. Hence, within at most n + 1
queries the optimum pn is created.

For the class of functions g◦F2 we are in the same situation as in the previous
case since g(v) = g(v + 1) < g(w).

6 Conclusion

We have proven rigorously that the class of neutral transformations for a simple
rank-based EA consists of all truncated strictly increasing functions. This also
holds for black-box algorithms with access to the transformation. This class of
neutral transformations is even a subset for all rank-based algorithms. For all
not fitness-based algorithms the class of neutral transformations contains at least
the increasing functions, while for a simple fitness-based EA it was proven that
its class of neutral transformations even does not contain all truncated strictly
increasing functions. We have presented an algorithm whose class of neutral
transformations is completely described by the functions that are neutral for
all algorithms, the truncated identities. And we have presented an algorithm
whose class of neutral transformations even consists of all transformations.

23

Acknowledgements

This research was supported by a Grant from the G.I.F., the German-Israeli
Foundation for Scientific Research and Development. The author thanks Stefan
Droste and Ingo Wegener for their help while preparing this paper.

References

[1] T. Bäck, D. Fogel, and Z. Michalewicz. Handbook of Evolutionary Compu-
tation. Institute of Physics Publishing and Oxford University Press, New
York, 1997.

[2] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) evolu-
tionary algorithm. Theoretical Computer Science, 276:51–81, 2002.

[3] S. Droste, T. Jansen, and I. Wegener. Upper and lower bounds for ran-
domized search heuristics in black-box optimization. Theory of Computing
Systems, 2005. Accepted for publication.

[4] J. Garnier, L. Kallel, and M. Schoenauer. Rigorous hitting times for binary
mutations. Evolutionary Computation, 7:173–203, 1999.

[5] T. Jansen and I. Wegener. Evolutionary algorithms – how to cope with
plateaus of constant fitness and when to reject strings with the same fitness.
IEEE Transactions on Evolutionary Computation, 5:589–599, 2001.

[6] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge Univer-
sity Press, Cambridge, 1995.

[7] T. Storch. On the choice of the population size. In Genetic and Evolutionary
Computation Conference – GECCO 2004, LNCS 3102, pages 748–760, 2004.

[8] C. Witt. An analysis of the (µ+1) EA on simple pseudo-boolean functions. In
Genetic and Evolutionary Computation Conference – GECCO 2004, LNCS
3102, pages 761–773, 2004.

[9] C. Witt. Worst-case and average-case approximations by simple randomized
search heuristics. In Symposium on Theoretical Aspects of Computer Science
– STACS 2005, LNCS 3404, pages 44–56, 2005.

24

