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ABSTRACT 
As high-speed networks have proliferated across the globe, their 
topologies have become sparser due to the increased capacity of 
communication media and cost considerations.  Reliability has 
been a traditional goal within network design optimization of 
sparse networks.  This paper proposes a genetic approach that 
uses network resilience as a design criterion in order to ensure the 
integrity of network services in the event of component failures. 
Network resilience measures have been previously overlooked as 
a network design objective in an optimization framework because 
of their computational complexity – requiring estimation by 
simulation. This paper analyzes the effect of noise in the 
simulation estimator used to evaluate network resilience on the 
performance of the proposed optimization approach.  

Categories and Subject Descriptors 
C.2.1 [Computer Communication Networks]: Network 
Architecture and Design- Network Topology. 

General Terms 
Algorithms, Design, Reliability, Experimentation.  

Key Words  
Resilience, Network Reliability, Network Survivability, Genetic 
Algorithms, Simulation Optimization.  

1. INTRODUCTION 
This paper addresses the survivability and resiliency of 
telecommunication networks.  Most modern high capacity 
telecommunications networks have relatively sparse topologies 
when compared to the previous generation of copper-based 
networks [3].  The lack of redundancy or multiple paths in a 
network makes it vulnerable to component failures.  Cost-
effective approaches to increase both the survivability and 
reliability of networks against component failures have been given 
significant attention.  The research in this area has been evolved in 
two directions: the design of survivable networks and the design 
of reliable networks. 

In telecommunication networks, survivability is achieved by 
reserving extra paths between nodes so that if a path is completely 
lost due to a link or a node failure, the traffic is restored by 
routing through alternative paths. A network is said to be k-link 
connected if at least k links must be deleted in order to disconnect 
any two nodes of the network.  Similarly, a network is k-node 
connected if at least k nodes must be removed in order to 
disconnect the remaining nodes.  To achieve a k-node or k-link 
connected network topology, there must exist at least k disjoint 
paths between every node pair. 

The definition of network reliability depends on assumptions 
about both individual component failures and the services 
expected from a network.  Given individual component 
reliabilities, a network’s reliability expresses its ability to provide 
a desired service to end-users in terms of a probability.  To 
provide connectivity is the most important service of a network.  
Therefore, most of reliable network design papers use traditional 
connectivity-based reliability measures such as all-terminal 
reliability (the probability that all nodes are connected) and two-
terminal reliability (the probability that two specified nodes are 
connected) [1, 5-8, 11-13, 16]. 

Connectivity-based reliability measures assume that a network is 
not functional if the desired connectivity is lost.  In practice, 
however, a network continues to serve the remaining connected 
components even though one or more nodes have become 
disconnected.  To evaluate the ability of a network to cope with 
catastrophic failures and recover network services while in a 
disconnected state, several network resilience measures have been 
proposed such as the probability that all operative node pairs can 
communicate,  the expected number of node pairs communicating, 
the expected number of operative nodes communicating  [2,4, 
9,10,15,17]. However, unlike connectivity-based reliability 
measures, network resilience measures have not been previously 
used in the literature as network design criteria.  

This paper proposes using a network resilience measure instead of 
a connectivity-based reliability measure for network topology 
evaluation.  The problem studied this paper is generally defined as 
follows: 

A. Problem Parameters 

• Link costs 

• Node and link reliabilities 

B.  Optimization Objective 

• Maximize a network resilience measure  
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C.  Constraints 

• 2-node connectivity  

• Network design cost 

2. MODELING NETWORK RESILIENCE 
MEASURES 
2.1. Notation and Definitions 
The following are the underlying assumptions:  
• Links and nodes can be in either of two states, operational or 

failed, each with known probabilities. 

• Link and node failures are independent.  If a node is in the 
failed state, all links incident to that node are also not 
operational. In terms of the state space, however, these links 
are assumed to be in the operational state. The independence 
assumption is very important for computational tractability. 

• No parallel link exists between nodes. 

• No repair is considered in the model.  

The following are the common notation and definitions used for 
network resilience calculations:  

G=(V,E) undirected network with node set V and link set E, 

 n, m number of nodes and links, respectively, 

 (i, j) component (i,j).  For i≠j, component (i,j) is undirected 
link between nodes i and j (( i,j) = (j,i), and component 
(i,i) denotes node i.) 

 x(i,j) state of component (i,j) such that x(i,j) =1 if component 
(i,j) is in the operational state, x(i,j) =0 otherwise, 

 x 0-1 state vector of the network, x={x(i,j): (i, j)∈ E∪V}, 

 S the space of all possible states, 

 p(i,j) reliability of component (i, j)  (p(i,j)= p(j,i)  and p(i,j)=0 
if component (i, j) does not exist in a solution), 

 Φ(x) Φ(x)=1 all operational nodes are connected directly or 
indirectly in state x; otherwise, Φ(x)=0.  

  

The probability of observing a particular network state x is given 
as: 

 ( , ) ( , ) ( , )
( , ) ( )

Pr{ } [1 (2 1)]i j i j i j
i j E V

p x p
∈ ∪

= − + −∏x , (1) 

In this paper, we considered the following network resilience 
measure:  

 { } ( )
S

R P
∈

= Φ∑
x

x x  (2) 

One needs to consider 2m+n network states to exactly calculate R.  
Therefore, an exact method is not computationally feasible.   

3. OPTIMIZATION ALGORITHM 
In this section, a Hybrid Genetic Algorithm (HGA) is proposed to 
solve the problem formulated herein.  The proposed HGA has two 

important features: specialized crossover and local search 
operators that can always generate 2-node connected networks.  
The second feature of the HGA is that it proposes a unique 
approach to deal with stochastic noise in the evaluation of the 
objective function due to simulation while minimizing the effort 
to evaluate candidate solutions.  Parameters and notation used in 
the HGA are given as follows:  

 Cmax Maximum allowable design cost 

 X a solution  

 Xbest the best feasible solution so far 

 xij decision variable for solution X such that xij=1 if a link 
(i,j) is selected in solution X, 0 otherwise. X={xij}  

 C(X) design cost of solution X 

 µ(t) size of the population at the beginning of generation t 

 µmax maximum population size 

 µmin minimum population size 

 θ(t) adaptive penalty factor to penalize infeasible solutions 
at generation t 

 f(X,t) fitness of solution X at generation t 

 R(X) estimated resilience measure for solution X 

 2
( )R Xσ  variance of estimation R(X) 

 P population 

 gmax Stopping criteria, maximum solutions allowed to be 
evaluated 

 U uniform random number between 0 and 1 

3.1. Representation and Initial Solutions 
The HGA uses a node-to-node adjacency matrix representation of 
solutions. In this representation, if link (i,j) is included in solution 
X, then xi,j=1 and xj,i =1;  otherwise,  xi,j=0 and xj,i =0.  

The HGA procedure starts with initial solutions randomly 
generated by the ear decomposition procedure [14] from a 
complete network.   

3.2. Uniform Crossover with an Efficient  
2-Node Connectivity Repair Algorithm 
The crossover operator has two parts:  uniform crossover and a 2-
node connectivity check/repair algorithm.  This uniform crossover 
may produce offspring which are not 2-node connected or not 
even connected.  Therefore, 2-node connectivity of the offspring 
needs to be checked.  The procedure for the connectivity 
check/repair algorithm is given below. 

Step 1: Use uniform crossover to generate offspring Z from 
parents X and Y.  For i=1,…,n and j=i+1,…,n, generate a 
random number U,  set zij=xij if U<0.5,  and zij=yij, 
otherwise. 

Step 2: For each node v=1,…,n, perform the following steps. 

Step 2.1: Remove node v from offspring Z. 
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Step 2.2: Starting from the smallest indexed node in \V v  
performed a depth-first search to determine whether 
all nodes in \V v  can be visited or not.  Let S(v) and 

( )S v  be the sets of the nodes that have been visited 
and not visited, respectively, by the depth-first search. 
If ( )S v = ∅ , then offspring Z is 2-node connected 
with respect to node v and stop.  Otherwise, go to 
Step 2.3.  

Step 2.3: To repair connectivity, a minimum cost link (i,j) from  
parents X or Y such that i∈S(v) and j∈ ( )S v  is added 
to offspring Z. Note that parents X and Y must have a 
link satisfying this condition since they are also 2-
node connected.  

Step 1.4: After adding link (i,j), set ( ) ( )S v S v j= ∩  and 

( ) ( ) \S v S v j= , and continue the depth-first search 

from starting node j until ( )S v = ∅ . 

Step 2: Return offspring Z 

The connectivity check/repair algorithm above is efficient since 
the connectivity check and repair are performed simultaneously. If 
an offspring violates the connectivity requirements, the repair 
operation requires only few additional steps for repair. 

3.3. Local Search Operators  
The local search operators of the HGA are two types of network 
perturbation heuristics.  The first type of heuristic perturbs a 
solution without changing the number of links.  These operators 
are inspired by the 2-opt and 3-opt exchange heuristics used in the 
traveling salesperson problem as improvement heuristics [14].  
Every 2-node connected network includes at least a cycle.  
Replacing a cycle with another cycle of the same nodes does not 
disturb the 2-node connectivity of a network.  Therefore, a 
perturbed solution does not require a connectivity check.  The 2-
link exchange operator finds a random cycle C in the solution, 
removes two randomly chosen links (a, b) and (c, d) of cycle C 
and replaces them by links (a, c) and (b, d), neither of which was 
in the solution, to obtain a new cycle C'.  Similar to the 2-link 
exchange operator, the 3-link exchange operator transforms a 
cycle C to cycle C' by removing three links, (a, b), (c, d), and (e, 
f), and adding three links (a, d), (b, e), and (c, f). 

The second type of local search operators (add-a-link, remove-a-
link, and 1-link exchange mutation) perturbs a solution at less 
degree.  The add-a-link operator simply adds a non-existing link 
to a solution.  The remove-a-link operator removes a link from a 
solution without violating the connectivity constraint.  To achieve 
this, a random cycle C is found and a link (a, b) between the 
nodes of cycle C (excluding the ones on the cycle) is removed.  In 
the 1-link exchange operator, link (a, b) is removed and another 
link (c, d) between the nodes of cycle C is added.  

3.4. Evaluation of Solutions and Fitness 
Function 
The fitness evaluation of the HGA aims to minimize 
computational effort to evaluate candidate solutions and to 
remedy the sampling error in estimating network resilience by 
simulation.  This error can interfere with the performance of the 

optimization algorithm by wrongfully assessing the fitness of 
solutions. Although the magnitude of the sampling error can be 
reduced by increasing the number of simulation replications at the 
expense of CPU time, it cannot be totally eliminated. 

3.4.1. Implementation of Simulation: 
In this paper, Monte Carlo simulation is used to estimate R(X). 
The simulation approach used herein is very similar to the one 
given [5]. Note that the output of structure function Φ(x) is a 
Bernoulli random variable; therefore, the variance of the estimator 
is given as follows: 

2
( )

( )(1 ( ))
R X

R X R X
K

σ −=  

where K is the number of simulation replications to obtain R(X).  
When a new solution X is produced, first R(X) is estimated by 
using a low number of simulation replications (K1); and then if it 
is feasible with respect to the cost constraint (i.e., C(X) ≤ Cmax), it 
is compared to the best feasible solution so far (Xbest) using the 
test statistics as follows: 

 
2 2

( ) ( )

( ) ( )

best

best

R X R X

R X R Xz
σ σ

−=
+

 (3) 

If  z ≤ zα, then the new solution X is said to be promising and R(X) 
is estimated one more time by using a large number of 
replications (K2). Otherwise, the fitness of solution is calculated 
based on the estimation by K1 replications.  After K2 additional 
replications are performed, the new estimation of R(X) is 
corrected as:  

  1 1 2 2

1 2

( , ) ( , )( ) K R X K K R X KR X
K K

× + ×=
+

 (4) 

with the following variance 

 2
( )

1 2

( )(1 ( ))
R X

R X R X
K K

σ −=
+

 (5) 

where R(X,K) is the estimated network resilience using K 
simulation replications. Then, the promising new solution X is 
compared to Xbest one more time. If necessary, Xbest is updated. 

3.4.2. Calculation of Fitness: 
After evaluating resilience for new solutions generated, the fitness 
of each solution in the population is calculated.  Since the 
crossover and mutation operators always generate 2-node 
connected topologies, infeasibility can only be due to the cost 
constraint.  The fitness of a solution X at generation t is calculated 
as follows: 

 max
max

max

max{0, ( ) }( , ) ( ) ( ) C X Cf X t R X R t
C

θ
 −= −  
 

 (6) 

where Rmax is the maximum resilience observed so  far in the 
search and θ(t) is an adaptive penalty factor for infeasible 
solutions at generation t.  θ(t) is updated before calculating fitness 
values as follows: 

 
2 ( 1)

( )
.5 ( 1)

t r
t

t r
θ ρ

θ
θ ρ

− ≥
=  − <

 (7) 
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Table 1. Cartesian Coordinates for the test problems 
 Nodes 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
x 26 38 93 74 86 60 26 44 54 52 57 13 32 93 7 33 54 49 99 50 
y 5 86 64 8 61 10 70 70 71 36 28 68 9 56 42 52 13 3 56 27 
p .95 .95 .98 .95 .85 .95 .95 .95 .95 .9 .95 .95 .9 .85 .9 .85 .95 .95 .98 .95 

 

where r is the percent of the infeasible solutions in the population 
and  ρ is a infeasibility threshold parameter. At the beginning, the 
adaptive penalty factor is set to one ( (1) 1θ = ); and if the percent 
of infeasible solutions in the population is more than ρ percent, 
the penalty factor is increased by twofold, and otherwise, it is 
decreased by twofold.   

3.5. Overall HGA  
The important features of HGA are as follows.  

• The population size is dynamic and randomly determined 
between µmin and µmax in each generation.   

• Each solution participates to crossover with another solution 
which is randomly selected using the 2 tournament selection. 

• Each parent solution is perturbed by applying one of the local 
search operators. The local search operator that will be 
applied to a solution is randomly and uniformly selected. For 
some network topologies, some of the local search operators 
may not be applicable (e.g., no link can be deleted if a 
solution consists of a single cycle of all nodes) and 
perturbations are not successful. In this case, the random 
selection process continues until a successful perturbation is 
achieved.   

• Whenever a new solution is produced by a crossover or the 
local search operators, it is compared to the existing solutions 
in the population.  If no identical solution exists, the new 
solution is added to the population. Otherwise, it is 
discarded.  

The pseudo code for the overall procedure HGA is given as 
follows: 

Step 1: Set t=1, min max( ) 1, ( ) [ , ]t t UINTθ µ µ µ= =  

Step 2: Generate µ(t) random solutions 

Step 3:  Crossover: For each solution X ∈ P, randomly select 
another Y solution using tournament selection and 
crossover X and Y to generate new solution Z, evaluate and 
add solution to P if it is not identical to a solution in P, and 
update Xbest if possible.  

Step 4: Local Search: For each solution X ∈ P, randomly and 
uniformly choose a local search operator, apply the 
operator to solution X to generate a new solution Z. 
Evaluate and add solution Z to P if it is not identical to a 
solution in P, and update update Xbest if possible.  

Step 5:  Set t=t+1 and update ( )tθ  

Step 6:  Calculate the fitness of solutions and sort the population 
according to the fitness. 

Step 7: Set min max( ) [ , ]t UINTµ µ µ= , keep the first ( )tµ  solutions 
for crossover and remove the others from the population. 

Step 8:  Stop if more than gmax solutions are evaluated, and 
evaluate Xbest with a very high number of simulation 
replications. Otherwise, go to step 3. 

4. COMPUTATIONAL EXPERIMENTS 
AND DISCUSSIONS 
Two test problems, a small problem with 10 nodes and a larger 
problem with 20 nodes, are used in the computational 
experiments.  The Cartesian coordinates and reliabilities of the 
nodes for both problems are given in Table 1.  The 10-node 
problem simply uses the first 10 nodes of the 20-node problem. 
The reliability of each link is 0.90.  The cost of each link is equal 
to $10 per unit Euclidian distance between its corresponding 
nodes in addition to a $100 fixed cost.  All runs were performed 
on PC with 2.6GHz CPU and 1.5 GB memory running on the 
LINUX operating system. 

4.1. 10-Node Problem 
The 10-node problem was primarily used to test the algorithmic 
features of the HGA and to investigate the effect of the simulation 
parameters on the performance of the algorithm.  To test its 
algorithmic features, four different versions of the HGA were 
considered as follows:  

A: The HGA described in the previous section,  
B: The HGA with duplicate solutions allowed in the 

population,  
C: The HGA without the local search operators 2 and 3-link 

exchange. However, the other mutation operators are 
included.   

D: The HGA without crossover. This version reduces to a 
hill-climbing algorithm.  

Each case was run with 20 random number seeds using the 
parameters: Cmax=$5,000, α=0.05, µmin=50, µmax=75, ρ=0.50, 
K1=2000, K2=25,000, and gmax=10,000.  At the termination, the 
objective function of the best feasible solution was estimated by 
additional runs to complete 106 simulation replications for each 
case.  Figure 1 shows a box-plot of results.  The best results were 
obtained by version A.  In case D where the crossover was 
disabled, the performance of the algorithm was the worse. This 
case also illustrates difficulty of using other heuristic approaches 
based on only local search operators to solve problems similar to 
one studied herein.  As seen in Figure 1 the performance of the 
HGA without duplicate solutions in the population was better than 
the one with duplicate solutions.  More importantly, the HGA 
without duplicate solutions was very robust with a low variation 
over replications.  Not allowing same solutions in the population 
provided a better exploration of the search space.  In addition, 
very expensive simulation time was not wasted to evaluate same 
solutions again and again.  
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Figure 1. Box plot of the solutions for the 10-node problem. 

The objective function of the problem defined in paper includes 
noise due to the simulation approach used to evaluate candidate 
solutions.  This noise can interfere with the performance of the 
search by wrongfully assessing the fitness of solutions.  Although 
the magnitude of the noise can be reduced by increasing the 
number of simulation replications at the expense of CPU time, it 
cannot be totally eliminated.  A full factorial experimental study 
was carried out to investigate the effect of the simulation 
parameters of the HGA, α, K1 , K2, and ρ, on final solution quality. 
Note that although ρ is not directly related to simulation; however, 
the implementation of the simulation depends on the feasibility of 
solutions.  Therefore, the interaction of ρ with the other simulation 
parameters is of interest.  The low and high level of the 
parameters (factors) used in the experiment are given as follows: 
α=(0.50,0.05), K1=(1000, 8000), K2=(25000,100000), and 
ρ=(0.25, 0.50).  Twenty random replications were performed for 
each of the 16 experimental points. The results were compared 
using the ANOVA approach.  The results showed that α  is a 
significant parameter effecting solution quality with a p-value of 
0.011.  The performance of the HGA with α=0.05 was superior to 
the one with α=0.50.  The other parameters K1, K2, and ρ were not 
significant factors with p-values of 0.625, 0.148, and 0.605.  For 
α=0.50, the variance of the simulation estimator is not considered 
when a new feasible solution is compared to the best feasible 
solution so far, that is the comparison is based on only the means.  
Therefore, the probability of rejecting a new solution which is 
actually better than the best feasible solution so far is high.  On 
the other hand, α=0.05 provides a cushion in this comparison, and 
it can be tested whether a new feasible solution is statistically 
worse than the best feasible solution with a 95% confidence.  
Therefore, the probability of rejecting a true new best feasible 
solution is low.  

The results above do not suggest that the noise in the objective 
function has an effect on the solution quality.  Note that parameter 
α used to control the effect of noise was a significant factor.  
Additional tests were carried out to investigate the relationship 
between  α and other simulation parameter as follows. First, α 
was dropped from the ANOVA model as a factor, and an 
ANOVA test was run for cases with α=0.5 only.  As the result of 
this test, K2 turned out to be a very significant factor with a p-
value of 0.005. Second, an ANOVA test was performed for cases 
with α=.05 only.  Interestingly, as the result of this test, K1 turned 

to be most influential factor with a p-value of 0.163.  Third, K2 
was also dropped from the model as a factor, an ANOVA test was 
run for cases with α=.05 and K2=100000.  As the result of this last 
test, K1 turned to be a very significant parameter with a p-value of 
almost zero.  From these there experiments, the following 
intuitive arguments could be made: (i) When the variance of the 
estimation is not included in the comparisons, it is important to 
evaluate the best feasible solution rigorously. This reduces 
estimation variance, and in turn decreasing the probability of 
making a false assessment of the best feasible solution. (ii)  When 
the probability of making a false statement about the best feasible 
solution is reduced by using α=.05, however, a rigorous 
evaluation of the best feasible solution is not as significant as a 
rigorous evaluation of the population.  

4.2. 20-Node Problem 
The parameters of HGA in all runs were as follows: µmin=50, 
µmax=75, α=0.05, and gmax=15,000, and for simulation, K1=2000 
and K2=50,000. Unlike network reliability measures, a network 
resilience measure has not been previously used in the literature as 
a design objective.  Therefore, we could not test the proposed 
optimization algorithm against previous results from the literature.  
To measure the quality of the solutions found by the HGA, they 
are compared to solutions found by a hill–climbing algorithm 
using the local search operators of the HGA and the same penalty 
function. Table 2 lists a summary of the results found in 10 
replications. As seen in the table, solutions found by the HGA are 
far superior to the ones found by the hill-climbing approach.  As 
discussed in the case of the 10-node problem, the results for the 
20-node problem showed that GA, evolutionary approaches based 
on recombination of solutions is very useful for the class of 
network problems with a constraint similar to 2-node 
connectivity.  In column (6), the percent of solutions that were 
evaluated using K2=50,000 replications are given.  This number is 
also averaged over all of the replications.  This measure is an 
indicator of the effectiveness of the proposed implementation of 
simulation in this paper.  As seen in the table, only a small 
fraction of solutions were actually evaluated by using 50,000 
simulation replications.  For example when Cmax=6,000, more 
than 99.6 percent of total solutions were evaluated by using only 
2,000 simulation replications.  This significantly reduced the CPU 
time. However, as networks get denser, the effectiveness of the 
proposed approach is also reduced. 

We also compared solutions found using the resilience measure 
used in this paper with solutions found using all-terminal 
reliability.  For the all-terminal reliability case, the HGA used all-
terminal reliability as the objective, and the rest of the algorithm 
and the parameters were the same.  Figure 2 illustrates the best 
solutions found for Cmax=9000 using network resilience and all-
terminal reliability.  The main difference between these two 
solutions is that in the former, the nodes with a low reliability 
such as 5, 14, and 10 have smaller numbers of incident links than 
in the latter.  In other words, the failure of these low reliability 
nodes will have less effect on the connectivity of the other nodes. 
In the all-terminal reliability case, this is not the case. Therefore, a 
network resilience measure should be used if network nodes are 
subject to failure since the all-terminal reliability measure does 
not consider node failures.  
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Table 2. Results for the 20-node problem 
 (1) (2) (3) (4) (5) (6) 

Cmax 

R(X) 
The best 

solution in 10 
rep. 

( )R Xσ for 
the best 
solution Range 

Avg.  
CPU 

seconds  

Percent of 
rigorous 

evaluations 

R(X) 
The best 

solution of the 
hill-climbing   

6000 0.28751 0.00045 0.07706 399 0.39 0.15114 

6500 0.48567 0.00049 0.07224 415 0.58 0.26441 

7000 0.58542 0.00049 0.12249 451 0.96 0.39219 

7500 0.68904 0.00046 0.08301 474 1.27 0.48250 

8000 0.74761 0.00043 0.05868 505 1.62 0.51218 

8500 0.79641 0.00040 0.03276 552 2.21 0.60093 

9000 0.83749 0.00036 0.03627 554 2.15 0.67190 

9500 0.88736 0.00031 0.03787 558 2.08 0.69814 

10000 0.92009 0.00027 0.03299 575 2.25 0.72817 

10500 0.92707 0.00027 0.01510 610 2.66 0.74057 
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Figure 2.  Solutions found for Cmax=9000 using network 
resilience and all-terminal reliability as the design objectives. 
 

5. CONCLUSIONS 
This paper presented a GA based algorithm that can be used to 
design 2-node connected networks taking a network resilience 
measure into account.  Although network reliability measures 
have been frequently used in the literature as network design 
criteria, network resilience measures represent a viable alternative 
approach.  The network resilience measure used in this work is 
more comprehensive than traditional network reliability measures 
since it incorporates node failures.  The proposed algorithm, the 
HGA, has been proven to be effective. Using specialized local 
search operators and a very basic adaptive penalty function, good 
feasible solutions were found even for very constrained problem 
instances.  The HGA also used the variance of the estimator while 
comparing solutions to minimize the negative effect of noise in 
the objective function evaluation due to simulation.  
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