
Efficient Credit Assignment through Evaluation Function 
Decomposition 

Adrian Agogino Kagan Tumer Risto Miikkulainen 
Computational Sciences Div. Dept. of Computer Science 

NASA Ames Research Center The University of Texas 
Maiistop 269-3 Mailstop 269-4 1 University Station C0500 

Moffett Field, CA 94035 Austin, TX 78712-1 188 
adrian @ email.arc.nasa.gov ktumer@ mail.arc.nasa.gov risto @ cs.utexas.edu 

University of California, SC 
NASA Ames Research Center 

Moffett Field, CA 94035 

ABSTRACT 
Evolutionary methods are powerful tools in discovering so- 
lutions for difficult continuous tasks. When such a solution 
is encoded over multiple genes, a genetic algorithm faces 
the difficult credit assignment problem of evaluating how 
a single gene in a chromosome contributes to the full so- 
lution. Typically a single evaluation function is used for 
the entire chromosome, implicitly giving each gene in the 
chromosome the same evaluation. This method is ineffi- 
cient because a gene will get credit for the contribution of 
all the  other genes as well. Accurately measuring the fit- 
ness of individual genes in such a large search space requires 
many trials. This paper instead proposes turning this single 
complex search problem into a multi-agent search problem, 
where each agent has the simpler task of discovering a suit- 
able gene. Gene-specific evaluation functions can then be 
created that have better theoreticaal properties than a single 
evaluation function over all genes. This method is tested 
in the difficult double-pole balancing problem, showing that 
agents using gene-specific evaluation functions can create a 
successful control policy in 20% fewer trials than the best ex- 
isting genetic. algorithms. The method is extended to  more 
distributed problems, achieving 95% performance gains over 
tradition methods in the multi-rover domain. 

~ ___.___ ~- . ~ ~ . ~~~~~~ 

1. INTRODUCTION 
A critical step in a genetic algorithm’s (GA) discovery pro- 
cess is the fitness evaluation of a chromosome. As an exan- 
ple consider how to evaluate a chromosome used to control 
a planetary rover. This evaluation can be done by measur- 
ing the performance of the rover over a series of trials. For 
example, suppose a chromosome, CI, was used 100 times to 
control the rover, and the rover crashed 50 times. Then a 
chromosome, C2, was used 100 times to  control the rover, 
and the rover crashed 30 times. We can say from these tests 

that chromosome CZ has a higher fitness than chromosome 
C1. However, how can a single gene be evaluated? Suppose 
a gene, GI, was part of 100 d Z f e m r o T o s o m e s  t h Z t F e  
tested, and the rover crashed 50 times. In addition a gene, 
Gz, was part of a new set of 100 different chromosomes that 
were tested, and the rover crashed 30 times. Can we say 
that gene G2 has a higher fitness than GI? Not with the 
same confidence as saying CZ has higher fitness than CI, 
particularly if the chromosome consists of many genes. This 
is because on average, the choice of gene G1 or Gz will likely 
have an impact of on the evaluation where n is the number 
of genes. When there are many genes, there is a significant 
chance that gene G1 was just unlucky and had been tested 
with chromosomes consisting of many highly unfit genes. To 
find out the impact of G1 requires many more evaluations 
than t o  find out the impact of an entire chromosome. The 
difficulty here arises from using rover crashing, which is in- 
herently a function of an entire chromosome, as evaluation 
for a single gene. 

This paper shows that it is often possible to  evaluate genes 
individually by using evaluation functions designed for self- 
organizing multi-agent systems: The task of each agent is t o  
discover a highly fit gene, and these genes are put together 
to  form a chromosome. These agents can be evolved more 
simply than a full genetic algorithm since they are finding 
only a single gene and can often use simple evolutionary 
algorithms without crossover. Whiie each agent makes in- 
dependent choices on how to choose a gene to  best maximize 
its evaluation function, the choices of the genes are strongly 
coupled through the evaluation function. Implicitly, each 
agent’s choice depends the gene choices of the other agents. 

For these gene evaluation functions to  be most effective, a 
system needs to have a certain amount of stability so that 
the fitness of an agent’s choice of gene is unlikely to  be com- 
pletely different from trial to trial. A simple example where 
this is true is a resource summation problem, where each 
gene defines a bit and the goal of the problem is to  have the 
bits sum to a value within a fixed range. At the beginning 
of the evolutionary process, each gene evaluation function 
is not very accurate, since it does not know the bit-choices 
of all the other agents. However, once the bit choices of the 
agents begin to stabilize, the gene evaluation function can 
give a good signal to  the agent for its choice of bit. 



Note that when this problem is changed to a parity problem, 
then this process is not possible since any change in any bit 
affects the evaluation of all the other bits and the system can 
never converge. However, parity problems (including XOR 
problem) are not representative of most real-world control 
domains which have more in common with the summation 
problem [2]. This paper presents two such problems, where 
even though the effects of each gene are coupled, the multi- 
agent system can effectively produce a set of genes that lead 
to  high evaluation without diverging or falling into local 
minimum. 

Section 2 explains this multi-agent system in more detail, 
showing how it maps to a genome and how genes are gener- 
ated. Section 3 summarizes principles of multi-agent evalu- 
ation functions that can be used to evaluate genes. Sec- 
tion 4 discusses issues with computing these -multi-agent 
evaluation functions in Markov Decision Processes. Sec- 
tion 5 discusses what neural network controller works best 

- - w i t l ~ ~ g - s p g c i f i ~ ~  mahations . depending-on-how -soupled 
the inputs are. Section 6 shows how a multi-agent system 
can be used in domains with highly coupled state variables 
by discovering weights to a radial basis function network 
that solves the difficult double-pole-balancing problem more 
quickly than the best existing genetic algorithms. Then Sec- 
tion 7 shows how a multi-agent system is effective in a do- 
main with more loosely coupled state variables by discover- 
ing a superior multi-layer perceptron used to control a set 
of rovers. 

- ~ .  - 

2. MULTI-AGENT SYSTEM STRUCTURE 
This paper proposes creating high-fitness chromosomes that 
have n genes, using a multi-agent system with n agents. 
Each agent is mapped to a single gene-position and is re- 
sponsible for creating a gene for a single position on the 
chromosome. Each agent stores a population of genes and 
uses a simple evolutionary algorithm to improve the fitness 
of the population over a series of trials, as shown in Figure 
1. 

At the beginning of every trial, each agent chooses a gene 
from its population. All their genes are then concatenated to 
form a chromosome, defining a phenotype such as a neural 
network. The trial is conducted by using this neural net- 
work as the controller €or a Markov Decision Process, until 
the process terminates. Information from the trial is then 
used to evaluate each gene, using evaluation techniques from 
multi-agent systems (Section 3). Each agent then uses its 
evaluation to  modify its population using an evolutionary 
algorithm. 

This paper will use a simple evolutionary algorithm that 
removes the worst performing gene from the population at 
the end of the trial and replaces it with a mutated version of 
the best gene. While more advanced evolutionary methods 
could be used, this method was found to perform well in 
the test domains and allows this paper to focus on evalua- 
tion functions instead of the sophistication of evolutionary 
algorithms. 

3. MULTI-AGENT SYSTEM EVALUATION 
FUNCTIONS 
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F i g u r e  1: Multi-agent S y s t e m  P r o d u c i n g  Chromo- 
somes for  a Control Problem.  At the beginning of 
a tr ia l ,  each agent chooses a gene, which  encodes 
a part of the solution (i.e. the weights  for  a single 
h i d d e n  node of a neura l  network) .  The choice of 
all the agents forms a chromosome represent ing  an 
e n t i r e  solution. T h i s  solut ion (i.e neural network)  
is  then used as a controller. Standard genet ic  algo- 
rithms will evaluate  en t i re  chromosome after trial. 
Agents ins tead  evaluate  only the cont r ibu t ion  of 
t h e i r  gene, leveraging evaluat ion methods used in 
self-organizing multi-agent systems. Gene evalua- 
t i o n  can be m o r e  efficient allowing a solut ion to be 
found i n  fewer trials. 

Finding a fitness evaluation function for a single gene that 
can be used by the agents described in Section 2 is a dif- 
ficult problem. Interestingly, this same credit assignment 
problem is found in multi-agent systems: how to give credit 
to  an individual agent’s action when the multi-agent task 
depends on the actions of all the agents. This section will 
outline a solution to  this problem coming from the theory 
of collectives [15], in the specific context of the multi-agent 
system in Section 2. 

Mathematically, the goal of a genetic algorithm is to max- 
imize a global fitness evaluation function G(z) ,  which is a 
function of a chromosome z. This chromosome is broken 
down into n genes: 

2 = (21, t 2 ,  ...) 2,) . (1) 

Maximizing G ( t )  is also the goal of the multi-agent system. 
However each agent will not try t o  maximize G ( z )  directly. 
Instead, each agents maximizes its gene evaluation function 
gz(z) ,  where i is the index specifying the agent. Note that 
while g,(z) is used to  evaluate a single gene it is still a func- 
tion of all the genes. This property couples the gene agents, 
enabling a global solution. 



3.1 Factoredness and Learnability 
For the multi-agent system to achieve high values of the 
global evaluation function G ,  the gene evaluation functions 
need to have two proparties, called factoredness  and learn- 
abi l i ty  [13]. First the gene evaluation functions of each 
agent should be factored with respect to G ,  intuitively mean- 
ing that when an agent choses a gene that improves its 
gene evaluation hnction, this choice zlso improves the globa! 
evaluation function (Le. G and g i  are aligned). Also when 
an agent choses a gene that reduces G, it should also reduce 
g i .  Formally an evaluation function g1 is factored when: 

where z-i and z:, contain the genes not chosen by agent i. 
In game theory language, the Nash equilibria of a factored 
system are local maxima of G [13, lo]. In addition to  this 
desirable equilibrium behavior, factored systems also auto- 
matically provide appropriate off-equilibrium incentives to 
the agents. 

In addition to being factored, the agents’ gene evaluation 
functions should be highly learnable, intuitively meaning 
that  they should be sensitive to  the agent’s own choice of 
gene and insensitive to the choices of other agents. For a 
given chromosome z ,  the higher the learnability, the more 
Si(.) depends on the gene choice of agent i, i.e., the better 
the associated signal-to-noise ratio for agent i. 

When the same global evaluation G is used for all the gene 
evaluations, each gene evaluation is by definition factored. 
This use of the global evaluation is common in many multi- 
agent systems [13]. In addition most genetic algorithms ei- 
ther explicitly or implicitly use this global evaluation to  eval- 
uate genes. However in a large system, an agent will have a 
difficult time discerning the effects of its choice of gene 011 

G. As a consequence, each agent i has difficulty achieving 
high gr (i.e. G has low learnability). 

- - ~~~~ 

3.2 Difference Evaluation Functions 
It is desirable for an agent’s gene evaluation function to be 
factored and to have high learnability. Factoredness assures 
that  an agent will try to  produce genes that maximize the 
fitness of the chromosome. Having a highly learnable eval- 
uation function will reduce the number of trials that  are 
needed for an agent to achieve this high level of fitness. One 
evaluation function that is factored, yet still highly learn- 
able (unlike G) is the difference evaluation function, defined 
as follows: 

D ~ ( z )  = G(z) - G ( z - ~  + ci) , (2) 

where z-i contains all the genes chosen by agents other than 
agent i. The gene zz chosen by agent i is replaced with the 
fixed constant ci. Such difference evaluation functions are 
factored no matter what the choice of ci because the sec- 
ond term does not depend on agent i’s choice of a gene [13, 
141. Furthermore, they usually have far better learnabil- 
ity than does G ( z )  because the second term of Di removes 
a lot of the effect of other agents (i.e., noise) from agent 
i’s evaluation function. This evaluation function has proven 
effective in many multi-agent system domains including net- 
work routing, job scheduling and control [15, 131. Because 
it is effective, this paper will focus on using the difference 
evaluation,Di, as the gene evaluation gi. 

While this paper focuses on finding chromosomes that en- 
codes neural networks a s  an example, a multi-agent system 
using the difference gene evaluation can be used to find al- 
most any type of chromosome tnat is separaceci into genes. 
However, in many domains where the functionality is less 
distributed among the genes, D, can be difficult to  evaluate 
and great care has to  be given to approximate D, in such 
away t h A  it, retains its high learnability. Section 4 discusses 
the issues with computing D-i, when the chromosome de- 
scribes a controller used in a Markov Decision Process where 
there can be stronger coupling between genes. Addressing 
these issues are needed to apply D, to  such domains as pole 
balancing. 

4. DIFFERENCE EVALUATION FOR MDPS 
A Markov Decision Process (MDP) represents an important 
class of control problems, where a decision maker bases its 
x t i o n  on its current state without a need to know its pre- 

robot navigation and rover control all can be represented as 
MDPs. In this paper the decision maker in the domain is 
called an MDP-agent (not to be confused with an agent in 
the multi-agent system that selects genes) and uses a neu- 
ral network to  map states into actions. A neural network is 
used as genetic algorithms combined with neural networks 
have been shown be effective in finding solutions to continu- 
ous control tasks, such as pole balancing, robot navigation, 
rocket control and rover control [12, 9, 5, 3, 41. 

- - vious actions or statesJ3L - The problems of pole balancing, 

At every time step in an MDP control problem, the state of 
the MDP-agent is fed into the input of its neural network, 
and the action of the agent is determined from the output of 
the neural network. After the MDP-agent takes an action it 
receives a reward and moves to a different state. Both the 
reward and the new state are functions of the action and the 
previous state. 

At the beginning of a trial, the MDP-agent starts in a start- 
state and over the course of the trial takes T actions, receives 
T rewards and enter T states. The goal of the system is to 
maximize the sum of rewards received during a trial. Given 
the agent’s start-state, this sum of rewards completely de- 
pends on the neural network it uses. The remainder of this 
section will show how a multi-agent system can be used to  
produce a neural network that performs well in an MDP. 

Since the goal of the MDP is to maximize the sum of rewards 
received during a trial, this sum is used as the global fitness 
evaluation function for the multi-agent system: 

(3) 
t 

where Rt ( z )  is the reward received at time step t ,  and z is the 
chromosome defining the neural network used by the MDP- 
agent. Note that this equation assumes a fixed start-state, 
which enables each reward to be represented as a function 
of a chromosome. Given the global fitness function, the 
difference gene evaluation function is: 

D ~ ( z )  = G(z) - G(z-, + ci) 



This is the function that each agent uses to evaluate the 
gene it chose at the beginning of the trial. 

When there is a closed form mathematical formula repre- 
senting the global evaluation as a function of genes, then 
computing the difference evaluation can the simple. In fact 
computing the difference evaluation is often easier than com- 
puting the global evaluation since many of the terms in the 
global evaluation can cancel out with the substraction. How- 
ever, in most complex domains there is no explicit formula 
for G ( z )  as a function of the chromosome. In these cases 
the global evaluation is typically computed as a function of 
states (e.g. the rover is in a crashed state therefore give it 
low evaluation) or measured directly from the environment. 
With no explicit formula for G ( z ) ,  computing the second 
term of the difference gene evaluation, G(z-, + ci), may be 
difficult. Recall from Section 3 that G-(z-i+ci) returns what 
the global evaluation would be if agent i’s choice of gene 
were changed to an arbitrary gene G. Without knowing the 

_ _ _ _ _ _ _ _ ~ _ ~  € m e & x b € - G ( f a f ~ ~ . g e n e r a &  -comp&ing- G+=, +e,-) 
would necessitate running an entire trial using the chromo- 
some z - ~  + ci. This computation would have to  be done 
for every agent i. While computationally difficult in simu- 
lated environments, the computation of G(2-i + c,) would 
often be completely impractical in real environments. For 
example consider the rover-control domain where a rover is 
controlled by a neural network defined by 100 genes. After 
a single rover test, the rover would have to  be tested 100 
more times just to compute the gene evaluation functions 
for the initial test. 

To overcome the difficulties in computing G(z-, +G), an es- 
timate can be made by determining which rewards received 
during a trial were affected by agent z’s choice of gene. Re- 
call that G(z-,  + c l )  is a sum of rewards: x, & & %  + c~). 
Also the reward for time step t is a function of the action at  
time step t and all the previous actions. Since the actions 
are the output of the neural network, they are functions 
of the chromosome. Therefore a reward R t ( z z l , c l )  can be 
represented as: 

where a t ( z - , , ~ )  is the action taken at time t. Therefore 
if agent i’s choice of gene does not significantly affect any 
action before time t ,  it should not significantly affect any 
reward before time t. Let the level of how much a gene 
affects an action be formally defined as the action sensitivity 
at time t : 

In addition define T, as the first time step in which L,,t(z) is 
greater than a threshold T. For all t < T,, the  choice of z, has 
little influence on the MDP-agent’s moves and therefore the 
MDP-agent’s rewards. The values of Rt(z-*,c,) can then 
be approximated as Rt(z )  for all t < Ti. For time steps 
after T,, the value of Rt(z-,,c,) is unknown. As a first 
approximation, these unknown reward values can be set to  
zero. An agents difference gene evaluation function D,(z)  

can then be computed as follows: 

t t<T, 
(7) 

t>T, 

Figure 2 shows how action sensitivity can be used. In this 
figure only certain genes influence a rover’s action at any 
given state. Therefore genes that do not influence the ac- 
tions of the rover a t  or before that state do not need to  be 
given credit for rewards received a t  that state. This reward 
structure can be used to improve the learnability of gene 
evaluations. Note that the setting of the threshold r moves 
the tradeoff between factoredness and learnability. When 
T is very small, the difference evaluation function is almost 
always factored since it includes all the rewards an agent 
influences by even the smallest amount. However it has low 
learnability since Ti is close to zero making the difference 
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example in 2 if T were set to 0.0005 instead of 0.1 than all 
of the genes would get credit for most of the rewards. In 
contrast, when T is large, the difference evaluation is very 
learnable since many of the rewards are be removed from 
the evaluation, but it can be very far from being factored 
since the agent could have a significant influence over many 
of the removed rewards. For example in 2 if T were set to  
0.9 instead of 0.1 only Gene 2 would get credit for any of 
the rewards even though Genes 1 and 4 had significant con- 
trabutions. In addition to the setting of T, the value of T,, is 
also highly dependent on the type of neural network used. 
This issue is explored in the next section. 

Figure 2: Action Sensitivity. A rover with a policy 
defined by 5 genes moves through different states to 
a reach a goal. Action sensitivities of the final three 
states shown in the table. Only Gene 2 influences 
rover’s action iri state Sa above the threshold r so 
it is the only gene that gets credit for reward R,. 
Genes 1 and 2 influence rover’s action in state SI, 
so both get credit for R b .  Gene 4 influences rover’s 
action in state S, so it gets credit for R,. Since 
the actions taken at states sa and s b  are responsible 
for the rover entering state S,, the reward R, must 
also be propagated back to Gene 1 and 2 for their 
contributions. 

5. NEURAL NETS FOR MDP CONTROL 



I n  the discussion so far, the controller has been assumed to 
be a neural network, but its type has not been specified. 
However, the type of network influences the value of T,, the 
first time step that an agent's choice of gene signiiicantiy 
affects the output of the neural network. The value of T, 
is important because it is used to estimate D,(z). If T, 
tends to be close to the first time step for most agents, then 
the value the second k r m  of r),(z) will be close t o  zero 
and D,(z) will essentially be the global evaluation function. 
While D,(z) would still be factored, none of the learnability 
advantages of gene evaluation functions will be achieved. 
This section compares Multi-Layer Perceptrons and Radial 
Basis Function Networks with respect to their affect on the 
value of T(7).  

5.1 Multi-Layer Perceptron 
Consider a two-layer Multi-Layer Perceptron (MLP) {SI where 
each gene, z,, determines one of the network weights. At 
each time step the current state is fed into the input layer of 

- t h e ~ L ~ ~ i u r r f c n - t h e a g e n t + ~  that state is -taken-- 
from the output layer. For MLPs with sigmoid activation 
functions, the output of the network is: 

(9) 

where & ( s )  is the evaluation for hidden unit i and g ( 2 )  is 
the sigmoid function, -. The action sensitivity for a 
time t is therefore: 

L E 

Note that the action sensitivity will be low either when the 
network is saturated or the activation of the hidden unit is 
low. If the network is saturated, little information is going 
to  be gained from the trial, and some external mechanism 
will have to be applied to get the system out of saturation. 
If the input layer is fully connected to  the hidden layer, the 
output of a hidden unit will rarely be very low, so that  the 
first time an agent's action has significant i m p x t  on the 
output of the network is likely to be very early in the trial. 
Therefore the value of T, is likely to  be close to zero for 
most agents and D,(z) will have nearly as low learnability as 
the global evaluation function. However, in many domains 
such as distributed rover exploration, a loosely connected 
MLP can be used where the action sensitivity of a hidden 
unit is high in only a few states. In these domains the gene 
evaluation function, D,(z), is likely t o  have high learnability 
when used these MLPs. 

5.2 Radial Basis Function Networks 
In domains with highly coupled state variables, such as pole 
balancing, it is difficult to construct and MLP where hidden 
nodes only react to small regions of the state space. In such 
domains radial basis function network (RBFN) can be used 
as an alternative, since they naturally have hidden nodes 
that react to small portions of the state space [2]. Like 
the MLP, the state is fed into the input layer of the RBFN 
and the action is determined by the output of the RBFN. 

Consider a standard RBFN with n bases with fixed width 
d. The output of the RBFN is a linear sum of the basis 
activations: 

'1 

where & ( s )  is the basis function and weight w, is the action 
of agent ?. For RBFNs, the action sensitivity a t  time t is 
simply equal to  &(s t ) ,  the activation of the basis function. 
RBFNs typically use gaussian activation functions of the 
form: 

where c, is the centroid of the basis function. Due to the 
localized nature of this type of activation function, one can 
expect that the value of L,,t will be very low for most states. 
Only states that are close to the centroid will produce signif- 
icant activation. Therefore T, will be equal to  the time step 
that the MDP entered a state that was close to the centroid 

- ~+hayatrY- eases-T,+vihet be&seAte-aeFean&he~alue 
of D,(z) will be significantly more learnable than the global 
evaluation function. This increased learnability arises from 
the rewards that were not influence by agent 7)'s choice of 
gene being removed from D, ( z ) .  

6. DOUBLE POLE BALANCING 
This paper shows results for two very different domains: 
double pole balancing and rover exploration. In the first 
domain the state variables are highly coupled: the value of 
a single state variable has little meaning out of the context of 
the other state variable. Despite the coupled s ta te  variable, 
this section shows how gene-specific evaluations are effective 
when used with RBFNs. This method is then compared 
against the best known evolutionary and genetic algorithms 
that have been previously applied to this problem. 

6.1 Problem Description 
In this problem there is a cart that can move along one axis 
(Figure 3). Two poles of different lengths are attached to  the 
cart, and can pivot at the attachment point. The controller 
can apply a positive or negative force to the cart. The goal 
of the controller is to  keep the two poles from falling while 
keeping the position of the cart within fixed bounds. The 
state space consists of six values: the position and velocity 
of the cart, and the angles and angular velocities of the two 
poles. At each time step a reward of 1 is received. The trial 
ends when either the angle of either pole or the cart position 
goes outside of bounds. Note that these state variables are 
highly coupled. For instance knowing the velocity of the 
cart has little value if it is not known if the pole is falling to 
the left or to the right. 

The learning algorithms were evaluated based on the number 
of trials that needed to  be completed before a solution could 
be found that balanced the poles for 50,000 time steps In 
this particular problem, the length of one of the poles was 
one meter and the other was one tenth of a meter. The time 
resolution was 20 milliseconds. For all five algorithms, the 
same code base was used t o  simulate the pole. 

'Experimental results show that if the poles can be balanced 
for 50,000 time steps they can be balanced indefinitely. Re- 
sults for any value above 10,000 time steps are similar. 



F i g u r e  3: The Double P o l e  Balancing Problem. A 
-~ car- . two-pokes-can-move-with- one degree of 

freedom and each pole can rotate w i t h  one degree 
of freedom. Since the poles have different lengths, 
t h e y  respond differently t o  a force on the card and 
both poles can be balanced indefinitely. 

The controller was an RBFN with six input units and one 
output unit. The basis functions were added dynamically to 
cover the input space. When a state was entered where the 
activation of all of the bases was less than 0.1, a new ba- 
sis was added, centered in that state. In a typical problem 
several hundred basis functions were created. At every time 
step the six values of the state space were fed into the RBFN 
and its output determined the force applied t o  the cart. The 
controller RBFN was encoded by a chromosome produced 
by a multi-agent system. In one set of experiments the dif- 
ference evaluation function, D,, was used by the agents to  
evaluate their choice of gene. The action sensitivity T used 
in computing D, was set to  0.1. In a second set of experi- 
ments the global fitness evaluation was used by the agents 
to evaluate their choice of gene. 

Based on the evaluation function, the agents made their 
choice of gene using a very simple evolutionary algorithm, 
based on a population of ten weights. Each agent starts 
with a random population based on identical distributions, 
but through time each population converges to  a different 
distribution. At the beginning of a trial, a n  agent would 
select the most fit weight 90% of the time and a random 
weight 10% of the time. At the end of the trial, it would 
evaluate its choice of weight based on its gene evaluation 
function. It would then remove the worst performing weight 
from its population and replace it with a mutated copy of 
the best performing weight. The mutation was done using 
the Cauchy Distribution (with scale parameter equal to 0.3). 
With time each population tends to  slowly converge to  a set 
of similar genes. This convergence allows self-organization 
t o  take place: while the agents make diverse choices of genes 
in early trials, they can later begin to  refine their choices 
based on the choices of the other agents. 

Algorithm 1 Average Trials I Deviation in Mean 
SANE 1 12,600 

3,800 

RBFN (G) 4,025 
RBFN (0,) 2,815 

KT 1 3,578 ’ 

Table 1: Effectiveness of Gene-evaluations i n  D o u b l e  
Pole  Balanc ing  Problem.  The multi-agent sys tem 
evolving RBFN controllers and using D, for gene 
evaluat ions finds a solut ion i n  20% fewer  t r ia l s  than 
best previously exis t ing algorithm. All differences 
from RBFN (D2) are statistically significant assum- 
ing  unreported variances  are similar ( p  < 0.005). 

The results averaged over for 400 runs are shown in Table 
1. The RBFN using a global evaluation function performs 
almost as well as the two existing high performance algo- 

rithrns-FS? and2?ELLu!J4 .---m iS~_tnhsqxckd 
since these algorithms have some features in common. Sim- 
ilar to ESP, the multi-agent system evolves separate “sub- 
populations.” It is also related to the speciation in NEAT, 
since each agent evolves specialized populations. 

However, the results for using D, are significantly better 
than for G. This increased performance can be expected 
since the Di for an agent eliminates the reward values that 
the agent could not possibly influence, therefore giving it 
a cleaner signal. When G is used, each basis function gets 
credit for every single reward received during a trial. Even 
if a basis function does not influence a single action in a 
trial, using G will give it credit for all the rewards when 
it should receive credit for none. In addition even when a 
basis function does influence an action it should not receive 
credit for rewards that happened before it had any influence. 
This poor credit assignment of G adds noise to  the system, 
making it difficult to  discern how a well a particular gene 
choice is performing. The use of Di eliminates all of the 
rewards that  a gene choice could not influence, reducing the 
noise in the evaluation, allowing the system to converge in 
a fewer number of trials. 

7. ROVER EXPLORATION PROBLEM 
This section shows how gene-specific evaluations are also 
effective in the rover exploration problem, a domain where 
the state variables on not nearly as coupled as in the double- 
pole balancing problem. Simple canonical evolutionary algo- 
rithms are used to highlight the importance of the evaluation 
function and to show that genes can be evaluated separately 
without suffering from convergence to local minima. 

7.1 Problem Description 
This section summarizes the distributed rover exploration 
problem described in detail in [I]. In this problem, a set 
of ten rovers explores a finite two dimensional world, try- 
ing to observe interesting rocks distributed throughout the 
domain. The global evaluation function for a trial is given 
by: 

6.2 Results 



where V, is the value of rock i, L, is the location of rock 
i and L,,t is the location of rover 77 at  time t ,  and S(z,y) 
is the euclidean distance'. To maximize the global evalua- 
tion, rovers shouid tend t o  3aviga.k i.owar-(is rocks with high 
values, but they should also avoid congestion, since having 
multiple rovers observe the rock will not increase the global 
evaluation. 

Each rover has eight input sensors divided up into four quad- 
rants. In each quadrant there is one sensor detecting other 
rovers in that  quadrant and one sensor detecting rocks in 
that quadrant. Each rover is controlled through a two di- 
mensional number determining the direction and magnitude 
in which the rover will move during the current time step. 
The set of rovers are controlled with a single one hundred 
hidden-node multi-layer-perceptron with eighty inputs and 
twenty outputs, corresponding to the inputs and outputs 
of the ten rovers. This network is loosely connected, with 
the two outputs for each rover being only dependent on the 

e ight  inputs for the rover (the network has 10% the number 
of connections as a fully connected network). A gene de- 
termines the weights between the layers of the eight inputs, 
ten hidden units and two outputs corresponding to a rover. 
Here the output of the neural network is a linear combi- 
nation of gene choices. However, the gene choices are still 
coupled since in general the global evaluation will not be a 
linear combination of the gene choices. 

The performance of five different evolutionary and GA meth- 
ods was tested in this domain. In all of the methods, a trial 
starts with the best member of a population (of size ten) 
being chosen with 90% probability and a random member 
being chosen with 10% probability. This member of the p o p  
dat ion is then evaluated during the trial. Weight mutation 
is performed by adding a value sampled from the Cauchy 
Distribution (with scale parameter equal to  0.3). Specifics 
of the methods are as follows: 

1. EC : Traditional evolutionary computation without 
crossover using the global evaluation. At the end of the 
trial, the  worst member of the population is replaced 
with a mutated version of the best member. 

2. GA: Traditional evolutionary computation with point 
crossover using the global evaluation. At the end of the 
trial the worst member of the population is replaced 
with a combination of mutated versions of the best 
member and second best member of the population. 

3. G Agents: A ten-agent multi-agent system where 
each agent is responsible for choosing a gene based on 
the global evaluation. Each agent makes its choice of 
gene using a n  evolutionary algorithm without crossover. 

4. D Agents: A ten-agent multi-agent system where 
each agent is responsible for choosing a gene based 
on the difference evaluataon Each agent makes its 
choice of gene using an evolutionary algorithm with- 
out crossover. 

5. D A g e n t s  HC: Same as D Agents, but employs 
strict monotonic hill-climbing to make its choice of 

'When the distance become close, b ( z , y )  is  set to a constant 
t o  avoid singularities 

gene. This method is used to  test if agents choosing 
their genes through evolutionary methods can over- 
come local minimum that cause monotonic hill-climbers 
iro pel bi III p o i  iy. 

7.2 Results 
Results averaged over 200 runs show that the three methods 
-sing the globa! evalmiion hnction all perform about. t,he 
same (see Figure 4). Traditional GAS with crossover, tradi- 
tional GAS without crossover and agent based GAS using G, 
all evolve very slowly. This result can be expected since the 
global evaluation does a poor job in assigning credit t o  the 
individual genes causing all evolutionary algorithms to suf- 
fer. Even though each gene is contributing to only a small 
portion of the global evaluation, it is receiving full credit for 
the evaluation. If a gene has high fitness it may be given 
a low evaluation if the other genes in the system have low 
fitness. This is true even if the other genes have only slightly 
lower fitness on average since the impact the single gene is 

ation, they evolve very quickly. Their evaluation function 
provides a clean signal indicating how effective an agent's 
choice of gene is. 
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Figure  4: Explora t ion  Rover P r o b l e m .  All methods 
using global  evaluat ion p e r f o r m  the same. The use 
of  the difference evaluat ion to evaluate individual  
genes per forms substantially better. Further, pop 
d a t i o n  based methods can break out of local min- 
i m a  that s imple  hill-climbers cannot. Therefore ,  the 
popula t ion  based method us ing  the difference eval- 
ua t ion  per forms 95% better (over  r a n d o m )  than the 
others i n  this taks. Difference is  s ta t is t ical ly  signif- 
icant  w i t h  p < 0.001 (e r ror  bars present but smaller 
than symbols). 

While each agent is choosing genes for one part of the chro- 
mosome, agents using factored evaluation functions still per- 
form global search. They all attempt to maximize an eval- 
uation that is a function of all the genes. In addition when 
they use evolutionary algorithms with populations they can 
break out of local minima and can find globally high perfor- 
mance solutions. This conclusion is confirmed when compar- 
ing their performance to that of the monotonic hill climbers. 
The hill climbing agents cannot climb out of local minima 
and Figure 4 shows that their performance is significantly 



worse than for agents using evolutionary algorithms with 
the same evaluation function. 

8. DISCUSSION AND FUTURE WORK 
Many single-agent problems that can be solved by genetic al- 
gorithms, can also be solved by a multi-agent system, where 
each agent focuses on the simpler problem of producing a 
single gene. Instead of utilizing recombination to search for 
a good chromosome, the multi-agent approach has a large 
advantage in that each agent can use its own evaluation func- 
tion to evaluate a single gene independently. Even though 
each agent begins identically, through their gene evaluation 
functions they self-organize to produce a set of compatible 
genes that combine to form a global solution. 

This paper shows how evaluation functions known to be ef- 
fective in multi-agent problems can be used to evaluate genes 
as well. In the difficult double-polebalancing problem hav- 
ing highly coupled s ta te  variables. the multi-agentsystem 
can produce a solution using 20% fewer trials than the best 
previously existing method. The multi-agent approach per- 
forms even better in domains with loosely coupled state vari- 
ables achieving a performance gain of 95% (as compared to  
random rovers) over standard genetic and evolutionary al- 
gorithms when using gene-specific difference evaluations. 

The results show that a multi-agent system can discover 
superior solution, especially for control problems in contin- 
uous domains. Even though each agent is extremely simple, 
the multi-agent system collectively converges on a complex 
global solution. However, the multi-agent system can be 
improved in several ways. For instance, in the experiments, 
each agent used a very simple evolutionary algorithm to 
choose a gene. Almost any evolutionary algorithm could be 
used instead, including genetic algorithms with crossover. 
Also the gene evaluation function, D, could be estimated 
more accurately. In this paper many of the rewards in the 
second term of D, are set to zero because their values are un- 
known. With better estimation, the learnability of D, could 
be improved even in domains with highly coupled variables 
where MLPs are used as controllers. In addition to improved 
fitness estimation, state estimations would allow this multi- 
agent solution to  be extended to  POMDPs, where some of 
the  state variables used to  estimate the evaluations are not 
observable. These extension would allow this multi-agent 
approach to be used in a much wider class of domains, even 
including ones where the chromosome itself is physically dis- 
tributed across the domain. 
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