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Abstract

Performance comparisons across different computer archi-
tectures cannot usually separate the architectural contribu-

tion from various implementation and technology contribu-

tions to performance. This paper compares an example im-

plementation from the RISC and CISC architectural schools
(a MIPS M/2000 and a Digital VAX 8700) on nine of the ten

SPEC benchmarks. The organizational similarity of these
machines provides an opportunity to examine the purely

architect ural advantages of RISC. The RISC approach of-

fers, compared with VAX, many fewer cycles per instruc-

tion but somewhat more instructions per program. Using
results from a software monitor on the MIPS machine and a

hardware monitor on the VAX, this paper shows that the re-
sulting advantage in cgcles per program ranges from slightly

under a factor of 2 to almost a factor of 4, with a geometric
mean of 2,7. It also demonstrates the correlation between

cycles per instruction and relative instruction count. Vari-
ous reasons for this correlation, and for the consistent net

advantage of RISC, are discussed.

1 Introduction

The last decade has seen the emergence and rapid success
of Reduced Instruction Set Computer, or RISC, archit ec-

tures. Following early work by Cray [32, 27] and Cocke
[6, 7] and an implementation at IBM [25], university re-
searchers, especially at Berkeley [23] and Stanford [16] devel-
oped design principles, built processors, and founded com-

panies. Today the success of RISC architectures from SUN
(the Berkeley-inspired SPARC design), MIPS (the Stanford-

inspired MIPS design), and traditional semiconductor com-
panies (Motorola, Intel) is evident; big computer companies

like IBM, Hewlett Packard, and Digit al have also embraced
the concept.

The RISC approach promises many advantages over
Complex Instruction Set Computer, or CISC, architectures,
including superior performance, design simplicity, rapid de-
velopment time, and others [19, 22]. Studying all of these
factors at once is beyond the scope of this paper, which will
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look only at performance, and in fact only at performance

from the architectural perspective. That is, we will try to
control for all influences on performance other than archi-
tecture. We will do this by studying two machines, one from

each architectural school, that are strikingly similar in hard-

ware organization, albeit quite different in technology and

cost. We will show that these differences are not due to

architecture.

Our fundamental frame of reference will be the now-
familiar expression of performance as a product of the num-

ber of instructions executed, the average number of machine

cycles needed to execute one instruction, and the cycle time:

tame in9truction9 cycles ~ time. x.
program program instruction cycle

We (along with many others) have found this formulation to
be a powerful tool for analyzing, comparing, and projecting

processor performance.
The three terms are functions of various aspects of a

system design. The number of instructions executed is a

function (for a fixed algorithm and source program) of the

compiler and the target architecture, and is usually inde-
pendent of the detailed hardware implementation and the

technology. The machine’s basic cycle time, however, is a
function most strongly of the underlying technology (gate

speed, RAM speed, and so on), and also of the hardware
structure or microarchitecture of the machine, particularly
the d@ee of pipelining. The cycle time may also be affected

by the instruction-set architecture.

The middle term—average number of cycles per exe-
cuted instruction, or CPI—has the most complex determi-

nants. The instruction-set architecture is a primary one: in
a complex architecture like the VAX, there are individual
instructions (such as character-string-moves) whose execu-
tion requires hundreds of cycles; a RISC would accomplish
the same function with (say) hundreds of instructions each

taking only one or two cycles. Another important deter-
minant is the hardware organization, especially the degree
of pipelining and the structure of the cache-memory sub-
system. Finally, the compiler can affect this factor too,
through its choice of certain instruction sequences over oth-

ers, through the general quality of its code optimization,

and (for some architectures) through its ability to schedule
instructions to avoid stalls.

The essence of the RISC performance objective is this:
compared with the CISC approach exemplified by VAX,

instruction-set architectures should facilitate implementa-
tions that achieve a gross reduction in cycles per instruction
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Figure 1: Simplified illustration of the two instruction pipelines. A new instruction (microinstruction on the VAX) can start
every cycle. The VAX decode cycle is omitted when a microroutine is more than one microinstruction long [4].

and pcwsibly some improvement in cycle time while allow-
ing an increase in the number of instructions executed. The

goal is a substantial net improvement in execution time.
The qualitative evidence that this goal has been achieved

is by now nearly overwhelming. What is lacking, t bough, is

a careful architectural analysis, and that is what we intend
to provide in this paper. We will need to make two assump-

tions for our study: first, that the compilers are of equivalent

quality; and second, that cycle time is not a function of ar-
chitecture. We are not entirely happy with the compiler

assumption, particularly since it is quite imprecise and diffi-

cult tc, measure, but we did use the best available compilers

for each machine.

Our cycle time assumption is valid for technologies and
design approaches in which the cycle time is determined by
such architecture-neutral things as the time to get through
an integer ALU and the time to read the first-level cache. If,

on the at her hand, some VAX-specific function, such as in-

struction decoding or control-store sequencing, limits cycle
time, then the necessary adjustment to our results is a sim-
ple multiplication. In any event, we are not addressing the

cycle time question here. In essence we are looking at this

architectural question: what performance advantage does a

RISC have over a VAX with the same cycle time and sim-
ilar hardware organization, given good compilers for each

machine?
The next section of this paper discusses in more detail

our two machines, the measurement met hods used for each,

and the benchmarks that were run. Section 3 presents the
basic results from our measurements, including instruction
counts and average cycles per instruction for each machine.

Section 4 is a discussion of these results and of several types
of explanatory factors, Section 5 then briefly considers vari-

ations on implementation styles for both architectures and

summarizes our basic results, concluding the paper.

2 Apparatus and Methods

2.1 The Machines

We measured Digital’s VAX 8700 (a single processor version

of the: 8800) [4, 11, 30] against MIPS Computer Systems’

MIPS M/2000 [19, 26]. We concede at the outset that these
two machines are very different in technology, size, and cost:

the VAX processor is nine boards full of ECL gate arrays; the
MIPS processor is one board with two custom CMOS chips.

However, there is another VAX, the model 4000/300, whose
processor is organizationally similar to the 8700’s and tech-

nologically similar to the MIPS M/2000 ‘s. The existence of

this VAX demonstrates that the technology difference be-
tween our two measured machhes is not a consequence of
architecture.

But why not compare the two CMOS machines directly?

The main reason is that only the 8700 had the hardware
instrumentation demanded by our measurements [5]. And
in fact, as we will see, the CMOS VAX’s resemblance to the

MIPS engine is somewhat less than the 8700’s.

There are strong organizational similarities between the
VAX 8700 and the MIPS M/2000. Figure 1 is a simpli-

fied representation of the main CPU pipelines in the two
machines. Both illustrations have abstracted away some

half-cycle boundaries that appear in the actual hardware,

but neither misrepresents the fundamental operation of the
pipes. Both machines can issue a new instruction (microin-
struction on the VAX) every cycle.

Figure 1 shows that the pipelines match up quite closely,
with the obvious exception of the VAX instruction decode
stage. But note that we are matching the MIPS instruc-

tion fetch stage with the VAX microinstruction fetch stage.

Indeed, the 8700 micro-engine shares with the MIPS imple-
mentation the following features:

a large set of general purpose registers;

single-cycle three-register instructions;

bypassing of ALU results around the register file and
to the ALU inputs so that a register can be read in

the instruction immediately after the one in which it
is written;

single-cycle load and store instructions that make an
address by adding a displacement to a register;

bypassing of cache read data around the register file
and to the ALU input;

a one-cycle delay slot following a load that can be filled
by any instruction not using the loaded register; and

delayed branches (but the VAX delay is longer—see

Sec~on 4.3 below):

This strong similarity between MIPS instructions and

VAX 8700 microinstruction means that the comparative
performance challenge for this VAX might be viewed as the

problem of mapping VAX instructions into microinstruc-
tion efficiently. As we will discuss in Section 4, efficient

mapping is sometimes easy but more often quite difficult.
Both implementations represent reasonable state-of-the-

art “mid-range” technology. Even though the VAX 8700
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Table 1: Machine Implementation Parameters

VAX 4000/300 MIPS M/2000 VAX 8700

Chip First Silicon 1989 1988 na

System Ship 1990 1989 1986

CPU REX520 R3000 na

Technology Custom CMOS Custom CMOS ECL gate array

Component counts

CPU 140K transistors, 115K transistors approx. 100 gate arrays,

180 Kbits mem 1200 gates each

FPU 134K transistors 105K transistors (included above)

Feature size 1.5 micron 1.2 micron

Die size

CPU 12x12 mm2 7.6x8.7 mmz n/a

FPU 12.7x11 mmz 12.6x12.6 mm2

Cycle time 28 ns. 40 ns. 45 ns.

On-chip cache 2 KB none I
Board cache 128 KB I+D 64 KB I, 64 KB D 64 JBaI+D

TLB 64 entries 64 entries 1024 entries

Page size 512 bytes 4 Kbytes 512 bytes

Memory access time 13 cycles 12 cycles 16 cycles

FP multiply 15 cycles 5 cycles 15 cycles

FP Add 14 cycles 2 cycles 11 cycles

List price $1ooK $80K $492K

Performance

Overall SPECmark 7.9 17.6 5.6

Integer SPECmark 7.7 19.7 5.0

FP SPECmark 8.1 16.3 6.0

uses ECL ~ate-arrav technolo~v. an adaptation of its mi- a slkhtlv wider difference in cvcles Der instruction between

croarchitec~ure has ~een implemented in a-VLSI CMOS chip

[2, 13] that appears in VAX 6000 Model 400 and VAX 4000
Model 300 systems.

Table 1 summarizes the salient implementation char-
acteristics of our two machines together with the VAX

4000/300. The MIPS M/2000 and the VAX 4000/300 are

both implemented in custom CMOS technology, both hav-
ing a one-chip CPU connected to a one-chip FPU, A direct

comparison of these machines would be complicated by the

fact that one has an on-chip cache and the other does not.

The VAX chips use somewhat more transistors, and the

CPU uses additional bits of memory for its on-chip cache
and microcode. Hence the cost of the VAX chips would be
greater than the cost of the MIPS chips, if they used the

same fabrication process. We believe that the lower chip
costs would be a small part of the overall cost of a sys-
tem; system prices, of course, are determined by market
factors and business considerations. Digital’s prices for its

199o workstations employing the VAX and MIPS chips are
close: $12K for the VAXstation 3100/76 (6.6 SPECmarks)
and $15K for the DECstation 5000/200 (18.5 SPECmarks).

The VAX 8700 and the MIPS M/2000 have distractingly

similar cycle times. This similarity we regard merely as a
coincidence; it is the machines’ organizational similarity that

we rely on to justify our side-by-side comparison, not their

cycle times.

The MIPS machine has a few advantages: it has a sep-
arate instruction cache, slightly faster main memory, and
considerably faster floating point. We will argue in Sec-
tion 4 that the difference in floating-point performance has

an architectural basis. The M/2000 allows some overlap

of floating-point instructions [19], whereas the VAXes have
very minimal overlap. These factors should all contribute to

the MIPS system and the VAX sys~em.

2.2 The Benchmarks

We use the SPEC Release 1 benchmarks for our analysis

[31]. SPEC is a non-profit corporation whose members in-
clude major workstation and computer companies such as
Digital, HP, IBM, MIPS, Silicon Graphics, Sun, and oth-

ers. SPEC was founded to develop a standard set of bench-

marks that are application based. The first release has been

available since Ott ober 1989. Ten benchmarks were selected

from a large number of prospective candidates. Each rep-
resents a real application or a significant kernel extracted
from an application, runs for an extended length of time,

and pnts a reasonable load on most modern systems. These
benchmarks are much more meaningful measures of CPU

performance than “toy” benchmarks (Towers of Hanoi, Puz-
zle, Dhr ystone, Whet stone, etc. ) that have sometimes been
used. All SPEC benchmarks are portable, and the only pro-
gram changes allowed are SP EC-approved changes for port a-

bility. They all produce substantially the same answers on

all systems tested. Results are expressed in terms of the
SPECratio or performance relative to the VAX-11/780 for

each benchmark. The geometric mean of all ten ratios is

called SPECmark.

The SPEC Release 1 suite consists of four integer bench-
marks (gee, espresso, eqntott, and li) written in C, and six

floating-point benchmarks (spice, doduc, naea7, matrix300,
fpppp, and tomcatv) written in Fortran. For details on these

programs, see [31]. Even though spice was meant to be a
floating-point benchmark, the circuit being simulated results

in a fairly low use of floating-point operations, and should
therefore be viewed as a mixed integer and floating-point

312



benchmark

spice2g6

mat rix300

nasa7

fpppp

tomcatv

doduc
espresso

eqntot t

li”
gee. mean

Table 2: RISC fa~~~
inst rue. RISC

ratio MU% VAX ratio factor

2.48 1.80 8.02 4.44 1.79

2.37

2.10

3.88

2.86

2.65
1.70

1.08

3.06 13.81 4.51

3.01 14.95 4.97

1.45 15.16 10.45
2.13 17.45 8.18

1.67 13.16 7.85

1.06 5.40 5.09
1.25 4.38 3.51

1.90

2.37

2.70
2.86

2.96

2.99

3.25

1.62 1.10 6.53 5.97 I 3.69

2.17 I 1.71 9.87 5.77 I 2.66

benchmark [281.
We were’ n& able to measure gcc on our instrumented

VAX 8700, so all of our results are for the nine other bench-
marks only. Also, our run of espresso used just one of the

four input circuits (bca). We used the most upto-date ver-

sions of compilers that were available to us in mid-1990 on

both architectures: VAX Fortran V5.O-1 and VAX C V3.l;
MIPS F77 v2.O (v2.1O for matrix300) and CC v2.o. While
we have seen some small differences in later versions of the

compilers, only in the case of matrix300 on MIPS did the
difference warrant repeating our measurement.

2.3 The Monitors

A hardware monitor designed specially for the VAX 8700
was used to measure the SPEC benchmarks in detail. This

monitor, described in [5], uses the micro-PC histogram tech-
nique int reduced in [14]: a real-time count is kept for each

microinstruction, and in every cycle the microinstruction

then in execution in the ALU has its count incremented.
A microcode machine such as the VAX 8700 can reveal a
great deal of its detailed behavior in this way; classification

of the microaddresses into appropriate groups allows many
things to be measured. Since the monitor provides counts
of all cycles and of all instructions, CPI can be calculated
directly.

Two tools were used on MIPS M/2000 system to pro-
duce execution profiles of the SPEC benchmarks: Pixie and

Pixstats [21]. Pixie reads an executable program, partitions

it into basic blocks, and writes an equivalent program con-

taining additional code that counts the execution of each

basic block. When this Pixie-generated program is run, it
generates a file containing the basic block counts. Then
Pixstats analyzes the program execution and produces a re-

port on opcode frequencies and various other things. CPI
is calculated by dividing the CPU time in cycles from an
u ninst rument ed run by Pixstats’ report of the instruction
count (which excludes NOPS).

3 Results

3.1 Instructions and CPI

Table 2 shows that the chief architecturally-directed perfor-
mance gord of the RISC approach has been achieved for the
MIPS design (given the compilers). It shows that for all of
the SPEC benchmarks, average CPI on the MIPS M/2000
is much less than on the VAX 8700. The number of instruc-
tions, on the other hand, has increased, but not nearly as

much. The instruction ratio in the table is just the ratio of
MIPS instruction executions to VAX instruction executions,
and is always greater than 1, ranging from a little over 1 to

nearly 4, with a geometric mean of 2.17. The CPI ratio is

average VAX CPI divided by average MIPS CPI (we define
it this way to make both ratios be greater than 1). It is

never lower than 3, goes as high as 10.45, and has a geo-
metric mean over the nine programs of 5.77. The combined

effect of the two ratios—the net effect on performance—is
what we call the RISC factor: it is the ratio of the num-

ber of cycles per program on the VAX to the corresponding

number on the MIPS. It is also obviously just the CPI ratio
divided by the instruction ratio. This factor ranges from
just under 2 to just under 4, with a geometric mean of 2.66.

In Table 2 and subsequent tables we rank the benchmarks

in order of increasing RISC factor.
Let us look first at CPI, Both architectures display a wide

spread of values, spanning a range of about 3:1 for MIPS

and 4:1 for VAX. The heavy floating-point benchmarks have
quite large CPI on the VAX, due to the floating-point hard-

ware (Table 1); spice stands out because it actually does
very lit tle floating point (Table 3, below). It would be quite

misleading to use the geometric means of CPI as “typical”
figures without reference to the specific nine programs they

represent.
Despite the wide variance of instruction and CPI ratios,

the RISC factor spans a range of just under 2:1. The three

highest RISC factors are attached to the three integer bench-
marks, which have the three lowest instruction ratios but

only mean-valued CPI ratios. The three lowest RISC fac-

tors, on the other hand, come from benchmarks that have

three of the four lowest CPI ratios but mean-valued instruc-

tion ratios. In the middle of Table 2 lie the three benchmarks

with the highest valnes of both ratios. The correlation be-

tween instruction and CPI ratios is a central result of this
paper, and will be discussed further below.

3.2 Operation counts

Table 3 shows the execution frequency of floating-point in-
structions on the two architectures. The MIPS frequency

is always lower than VAX because the MIPS architec-
ture requires load and store instructions where the VAX

uses operand specifiers, whose execution is charged to the

floating-point instructions in which they appear. The RISC

factor is clearly not a function of the floating-point percent-

age on either machine. Except for doduc, the raw number
of floating-point instructions is essentially the same between

the two architectures, as indeed it ought to be if the two For-
tran compilers do an equally good job. The extra MIPS in-
structions in doduc suggest that the MIPS compiler missed
some optimization that the VAX compiler found.

Table 3 also reports the number of loads and stores per
instruction together with the raw count of each operation

on MIPS relative to VAX.

VAX almost always does more memory references; the

exception is stores in fpppp. One explanation for the ex-
tra references is the smrdler number of general registers and

the lack of floating-point registers on the VAX, a point we
will discuss in Section 4. As a rule the floating-point bench-

marks do more loads and stores than the integer ones—both

machines have 32-b:t data paths and so need two memory

references for a double-precision operand. There is a wide
range of loads and stores per instruction, and nothing in
the table is correlated with RISC factor. Only in li is a
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floating-point operations 32-bit loads 32-bit stores
per instruction MIPS count per instruction MIP S count per mstructlon MIP S count RISC

benchmark MIPS VAX (VAX=l) VAX (VAX=l) MIPS VAX (VAX=l) factor

spice2g6 .034 .083 1.02 .09 0.94 .25 .04 0.14 .65 1.79

mat rix300 .156 .370 1.00 .31 1.44 .52 .16 0.40 .93 1.90
nasa7 .216 .440 1.03 .34 1.59 .45 .13 0.52 .53 2.37
fpppp .228 .879 1.01 .43 2,04 .81 .11 0,36 1.24 2.70
tomcatv .267 .724 1.05 .40 1.82 .63 .12 0.62 .56 2.86
doduc .240 .525 1.21 .28 1<03 .72 .09 0.37 .64 2.96
espresso .000 .000 0.00 .18 0.52 .58 .02 0,14 .24 2.99
eqntott .000 .000 0.00 ,16 0,32 .55 ,01 0.07 .13 3.25
li .000 .000 0.00 .22 0.85 .42 .12 0.51 .38 3.69

benchmark

spice2g6

mat rix300
nasa7
fpppp

tomcatv
doduc

espresso
eqnt ot t
li

D-str

miss ratio 70
MIPS VA

26.9 9.1

12.7 10.8
12.3 8.7
0.2 2.4

!5.7 .5.4
0.9 2.7

0.7 4.0
3.3 4.0

0.6 1.8

Table 4
m cache read m

per instruction

IPS VAX

.0250 .0856

.0400 .1550

.0424 .1390

.0007 .0496

.0228 .0982

.0026 .0275

.0012 .0208

.0055 .0128

.0013 .0158

simificant Dercentaxe of the VAX references attributable to
re~ister sa~ing and restoring in the procedure linkage in-

structions (48 percent of all loads and stores).

3.3 Cache behavior

Table 4 reports the cache behavior of the nine benchmarks

on the two machines. The VAX results come from the hard-

ware monitor, which is attached not only to the micro-PC

but also to the memory bus [5]; the MIPS results come from
cache simulations [20]. All three of the caches (mixed In-
structions and Data on the VAX, separate on MIPS) are

64 KBytes, direct-mapped, and write-through (except the
MIPS I-cache), with 64-byte blocks. SPEC benchmark
cache performance in other configurations has been inves-
tigated by Pnevmatikatos and Hill [24].

There is a relationship between the RISC factor and
the D-stream miss ratio, particularly on the VAX: roughly
speaking, higher miss ratios are attached to lower RISC fac-

tors, In particular, the three benchmarks with the highest

miss ratios on both machines also have the three lowest RISC
factors. These three also have three of the four highest rela-
tive counts of misses on MIPS. The compelling explanation

for the low RISC factors is of course the fact that a cache
miss of fixed delay degrades the performance of a 1ow-CPI
RISC machine more than it does a high-CPI VAX.

The I-stream is much less important than the D-stream
for almost all benchmarks on both machines. Particularly
in the MIPS M/2000, with its separate I-cache, the I-stream
cache behavior is excellent. The VAX implementation, with
its shared cache, experiences many more I-stream misses,
but the effect is still small: the program with the highest

percentage of cycles lost to I-stream stall is Ii, which loses
only 4 percent. The next-highest I-stream stall figure is 1,8

~ache behavi
ses

MIPS count

*

.61

.64

.06

.66

.25

.10

.46

.13

Dercent.

I-stream cac

per instruction

Ps VAX

.0001 .0089

.0000

.0000

.0024

.0000

.0031

.0002

.0000

.0002

.0055

.0035

.0588

.0040

.0336

.0026

.0021

.0103

e misses

kfIP S count

+

.00

,00
.16

,00

.24

.13

.00

.03 ~

RISC
factor

1.79

1.90
2.37

2.70
2.86

2.96

2.99
3.25

3.69

One mieht assume that the MIPS D-stream miss ratio

would be consistently lower than the VAX one, given the
separate D-cache. But Table 4 shows that the MIPS num-
ber is actually worse on four benchmarks and close on a fifth.
While detailed cache behavior is often quite inscrutable,

there is an intuitive explanation for this. VAX loads out-

number MIPS loads in large part because VAX has fewer

registers, and so the “extra” loads are often references to

data that the MIPS comptier keeps in registers. If the com-
piler’s judgement is good, then these loads ought to be more
likely to hit in the VAX cache than the rest of the loads. This
effect would be strongest when the VAX I-stream is not a

major factor in cache performance, and in fact Table 4 shows
that for the most part small VAX I-stream miss rates come
from programs in which the MIPS D-stream miss ratio is
above or close to the VAX’s (the exception is espresso).

4 Discussion

Figure 2 illustrates the relationship between the instruction
ratio and the CPI ratio. As we pointed out earlier, the
RISC factor itself has lower variance than either of its con-

stituents; this is illustrated in the figure by the tendency of
the points to cluster around a single line of constant relative

performance, namely the line MIPS = 2,66 x VAX. The
correlation has a simple and natural explanation: given rea-
sonable compilers, higher VAX CPI should correspond to a

higher relative instruction count on MIPS. In this section we
will explore the correlation of the ratios, consider why RISC
has a significant net advantage, and look at explanations for

what variance there is in RISC factor.
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Figure 2: Instruction ratio versus CPI ratio. Lines of constant RISC factor are shown.

4.1 Exploring the extremes

A number of factors are at work in Figure 2. Some help

explain the tradeoff between MIPS instructions and VAX
CPI, while others help explain the consistent net advantage

of MIPS. There are even a few factors that favor VAX. Be-
fore considering carefully these various factors we will take a

closer look at two of the SPEC benchmarks, fpppp and eqn-
tott. Benchmark fpppp has the highest CPI ratio and the

highest instruction ratio of any of the benchmarks; eqntott
is just the reverse. Neither one, however, has the highest or

lowest CPI on either machine, and neither has the highest
or lowest RISC factor.

Benchmark fpppp has extraordinary instruction and CPI
ratios: the MIPS instruction count is nearly 4 times the

VAX count, and the 8700’s average CPI is over 10 times
the M/2000’s ! Our measurements show that this program

has the highest number of operand specifiers per VAX in-
st ruction of any benchmark (Figure 3, below), the highest

number of loads per instruction in both architectures (Table
3), and the highest frequency of floating-point operations on

VAX (Table 3). Because the number of loads is similar, and

the number of floating-point operations nearly identical on

the two architectures, it is reasonable to imagine a corre-
spondence between a VAX floating-point instruction and a

sequence of MIPS instructions.
Suppose the operands are in memory on both architec-

tures. Then the VAX will load its double-precision operands
with operand-specifier microcode, whose cycles of execution

are charged to the floating-point instruction. The MIPS
machine will instead do two single-cycle 32-bit load instruc-

tions per double-precision operand, followed by a floating-
point instruction that operates on registers. Any necessary

address calculations that can be done in operand specifiers
would further increase the MIPS instruction count and the
VAX CPI. If the result needs to go to memory, the VAX
will again use a multiple-cycle operand specifier microrou-

tine and charge the cycles to the floating-point instruction.

‘The MIPS machine will do two single-cycle stor~s, possibly
surrounded by address arithmetic instructions. Compared
with the other benchmarks, fpppp will see these effects more

strongly because of its large number of loads and high den-

sity of (double-precision) operand specifiers. The result is
an unusually high instruction ratio and CPI ratio.

If this were the entire story, fpppp’s RISC factor would

be 1.0 and not 2.7, The main explanation is the relative

performance of the floating-point hardware. The MIPS im-
plementation is much faster (see Table 1), and also allows

some instruction overlap. The VAX spends more than half

its CPI in floating-point instruction execution (not count-
ing operand specifiers) and has only trivial instruction over-

lap. Other possible contributing factors are the effect of the
larger number of registers and the faster MIPS branches (see

below); but since the number of loads is close between the
two machines, and the number of branches quite small, we

believe these effects are much smaller than the effect of the
floating-point hardware.

Benchmark eqntott is very different from fpppp. It has

the lowest CPI ratio and the lowest instruction ratio of all

nine benchmarks. In fact the two machines execute almost
the same number of instructions (Table 2). For this pro-

gram, then, we need to find explanations that raise VAX

CPI without simultaneously raising the MIPS instruction
count. VAX operand specifiers once again explain a good
deal. Eqntott has the lowest number of operand specifiers

per VAX instruction of any of the benchmarks (Figure 3),
and also hss a very small number of loads and stores (Ta-

ble 3). So to the extent that we can fairly imagine a VAX

instruction mapping into some sequence of MIPS instruc-
tions, what is happening here is exactly the opposite of
what happened in fpppp. That is, operand specifier pro-

cessing does not correspond to extra MIPS instructions very
often. Also, the frequent use of registers increases VAX CPI

without increasing MIPS instruction count because the 8700
usually uses a separate cycle for each register operand. A

two-register integer add, for example, takes one instruction
on both architectures, but three cycles on the VAX 87OO

versus MIPS’ one. Although the number of loads is small,

VAX does almost twice as many as MIPS, raising the VAX

CPI and providing evidence that this benchmark benefits
from the larger number of registers in MIPS. Finally, both
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Figure 3: The correlation between the number of operand
specifiers per VAX instruction and the instruction ratio

implementations of eqntott branch very frequently, which is
relatively bad for VAX CPI, since simple branches take more

cycles on the VAX 8700.

4.2 Architectural factors with compensat-

ing influence

We will now consider more closely the factors we have en-
countered in looking at fpppp and eqntot t, beginning with

those that have compensating influence on the two architec-
tures: about the same cost in MIPS instructions and VAX

CPI.
VAX operand specifiers: loads and stores. Most VAX

memory references and loads of immediate data are done by
operand sDecifier microcode. Some of these are suite sim-.
pie, loading a single I-stream constant, say, or using the con-
tents of a register to address memory. The MIPS architec-

ture would need to use separate load and store instructions
to accomplish the same function. Some specifiers do vari-

ous kinds of address calculation (indexing, auto-increment,

and so on) that take multiple VAX cycles and would corre-

spond to multiple MIPS instructions. And finally, double-
precision operands are loaded and stored by single (two-

cycle) operand specifiers on VAX, where they would (in the
simple case) take two instructions on MIPS. The average

number of operand specifiers per VAX instruction is in fact
correlated with instruction ratio, as shown in Figure 3.

Fancy VAX instructions: necessary functionality. Some
VAX instructions perform functians more sophisticated than
MIPS can accomplish in a single instruction. Loop control

instructions, for example, increment the loop index, test it

against a limit, and do a conditional branch. When the
same or a similar function is required on MIPS, it will use
multiple instructions. If the VAX microcode and the MIPS

sequence use the same algorithm, we have, again, compen-
sating effects on instruction ratio and CPI ratio.

4.3 Architect ural factors favoring MIPS

A number of factors contribute to the consistent net advan-
tage of the M/2000. Most result in increased VAX CPI, and
two (number of registers and branch displacement size) can
also inflate the VAX instruction count.

Operand specijier decoding. The VAX 8700 (and most

other models) usually takes at least one cycle to process

each operand specifier. When the specifier references mem-

ory, there is a compensating influence on MIPS instruction

count. But for register and literal specifiers, this simply

means more VAX CPI without a matching effect on MIPS.

A three-register integer add, for example, takes four cycles
on the 8700 but just one on the MIPS machine.

Number of registers. The MIPS architecture has 32 (32-

bit wide) general registers and 16 (64-bit wide) floating-

point registers; VAX has 15 (32-bit wide) general registers
that can be used for both integer and floating-point data.

This can obviously lead to more memory references on the
VAX (done either with operand specifiers, or with instruc-

tions, if an operand is to be loaded into a register and re-
used, or a result saved), while having no compensating effect

on MIPS. These extra memory references take cycles to exe-
cute and may cost still more cycles if they miss in the cache

or stall for some other reason.
Floating-point hardware and instruction overlap. The use

of a large and separate set of floating-point registers helps

MIPS, especially in late-1980s CMOS, where the floating-

point unit is not in the same chip aa the CPU. Floating

point operations can be performed without requiring data

to be moved between chips. In a VAX microprocessor im-
plementation such as the 6000/400 or the 4000/300, several

cycles are required to move both source operands from the
CPU into the FPU, and read the results back into the CPU.

For example, in these VAXes the actual floating-point mul-
tiply takes only five cycles inside the FPU compared to the

fifteen cycles required for the entire multiply instruction.
Since VAX uses the same registers for integer and floating

point, significant overlapping of instructions would require
complex register scoreboarding. Thus the configuration of

registers is an architectural difference with significant perfor-

mance consequences when the FPU is not integrated within
the CPU. Having only register destinations for floating-point

instructions is another such difference; because of this it is
much easier to overlap execution of multi-cycle instructions
on MIPS.

Simple jumps and branches. The time for the simplest

taken branch (or unconditional jump) on the VAX 8700 is

five cycles. On MIPS, which has a delayed branch, it is one

cycle if the delay slot is filled, and two otherwise. This differ-
ence is due in large part to the VAX condition codes, which

are set in a late pipeline stage and influence the earliest

pipe stage (instruction decode) when a conditional branch
is done, thereby creating a pipeline bubble. This bubble can-
not be filled by other non-branch instructions because the

condition codes are set by almost every VAX instruction [9].
This in turn means that adding an instruction cache would

not pay unless branch prediction hardware were added too,
The rarer unconditional jumps could profit from an I-cache,

but this was not reason enough to justify one in the 8700,
and so these jumps also take five cycles. MIPS conditional
branches instead use the condition of a register, which is
read in an early pipe stage, and which, of course, is not

changed by instructions inserted between the write of the
register and the branch. Independent of the use of the MIPS
branch-delay slot, which we regard as a separate effect (see
below), the slower branches cost VAX CPI. Different VAXes
may have different implementations of the branch instruc-
tions, of course, but it is difficult to see how any VAX could
achieve the MIPS speed without lots of extra hardware (e.g.,
branch prediction).

Fancy VAX instructions: unnecessary overhead and
wasted generality. Some complex VAX instructions imple-
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ment functionality that is simply not needed, or is too gen-

eral, or both. Perhaps in some of these cases the VAX com-

pilers could use simpler instructions, but where they do not,
we have an effect on VAX CPI with no increase in MIPS

instruction count. The classic example of this is the VAX
procedure call and return instructions. Sometimes the extra

overhead includes memory references, as in the procedure in-
structions, where registers are sometimes saved and restored

needlessly.
Instruction scheduling: jilled delay slots. The MIPS ar-

chitecture allows instructions to be inserted in code positions

that might otherwise be lost to pipeline delays. The instruc-

tion after a conditional branch is always executed and the
instruction after a load can do anything except reference the

loaded register [19]. This ability is not present in the VAX
architecture (although the 8700 microcode uses both delay

slots when it can). Sometimes the branch-delay or load-

delay slot cannot be used, and must be filled by a NOP. But
when the delay slot is filled by a useful instruction, the effect
is a relative decrease in MIPS CPI.

Translation I@ers, The MIPS architecture has a much
larger page size, which means, among other things, that a

MIPS TLB can map much more memory than a VAX TLB
with the same number of entries. (The M/2000’s small TLB

maps one-half the memory of the 8700’s much larger TLB.)
Also, MIPS TLB entries are tagged with a process ID, which

means that the TLB need not be flushed on a process context
switch. The usual arrangement on VAXes is to flush the

process half of the TLB on a context switch.
Bmnch displacement size. Simple conditional branch in-

structions have 8-bit PC displacements in the VAX archi-

tecture, and effectively 18-bit ones in MIPS. When 8 bits is
too few and 18 is enough, a VAX program will use an extra
instruction.

4.4 Architectural factors favoring VAX

There are in fact two architectural features that favor VAX

in this comparison. Neither appears to have a significant
effect in the SPEC benchmarks.

Big I-stream constants. The VAX architecture includes

address dwplacements and absolute addresses of 32 bits, and
immediate data of whatever size the opcode demands. It

is possible to implement the delivery of a 32-bit I-stream

constant so that it is w fast as the delivery of a 16-bit or

8-bit constant. When a big displacement, absolute address,
or large data constant is needed by the program but not

available in a register, the MIPS architecture would use two

instructions in the simple case, versus the VAX’s one-cycle
operand specifier.

Not-taken branches. VAX implementations can easily
make not-taken conditional branches execute in one cycle
(the 8700 does this). The MIPS architecture requires the
execution of one instruction after a conditional branch, and
when that instruction is a NOP, the effective cost of the

branch is two cycles.

4.5 Variance of the RISC factor

No single phenomenon explains the variance of the pro-
grams’ RISC factors around the mean of 2.66, but there are a
couple of suggestive effects. The floating-point benchmarks

do relatively better on the VAX, the integer ones on MIPS.

However, the percentage of floating point (Table 3) seems
not to be relevant: the lowest RISC factor, for example, is

attached to the program (spice) with the smallest amount

of floating point (leaving out the integer benchmarks); the
biggest floating-point percentages go with programs with

mean RISC factor (fpppp and tomcat v). All of the floating-

point benchmarks are written in Fortran and all the integer
ones in C, so in fact we can’t disentangle the contribution

of the compiler difference from the contribution of floating
point, but it seems likely to us that the effect of the compiler

by itself is small.
Both machines’ cache behavior seems loosely correlated

with RISC factor, as is shown in Table 4. The D-stream

cache miss ratio, especially in the VAX, falls as the RISC

factor rises, with a few exceptions in each architecture.
There are some peculiarities of the two programs with

extreme RISC factors. Li has the highest RISC factor, and
stands out from the other benchmarks in several ways:

● it has the lowest (VAX) and second-lowest (MIPS) D-
stream cache miss ratios;

● it spends the greatest percentage of its VAX cycles in

the procedure call and return instructions (28 percent

of W cycles, compared with the second-highest value,
7.5 percent, for espresso); and

● it has by far the highest proportion of address-

unaligned memory references in the VAX, which are

handled by costly microcode traps in the 8700.

Spice has the lowest RISC factor, and its own peculiarities.

Saavedra-Barrera has observed that the particular input cir-

cuit used in the SPEC version causes spice to spend an un-

usually large amount of time in one small integer routine
[28]. We have already seen that spice has the highest D-
stream miss ratios, with the MIPS value being quite high

(26.9 percent). It also has the lowest number of loads per
instruction on MIPS, so that the high miss ratio hurts less
than it otherwise might.

5 Conclusion

We now speculate briefly on future implementation direc-

tions for each architecture, and then summarize the paper.

5.1 Futures

CPI is a function of a computer’s architecture, but also of
its hardware implementation, of course. The VAX 8700 de-

signers strove to minimize cycle time at the possible expense
of cycles per instruction, using a straightforward pipelined

microengine. It is possible to reduce VAX CPI further by

adding gates (and complexity and cost ). High-end VAX
implementations such as the models 8600 [8, 10] and 9000
[15, 12] attempt to do just that. The model 9000, in par-
ticular, uses a large amount of logic (roughly one million
gate-array gates for the system [1]) to achieve the lowest

CPI of any VAX, as shown in Figure 4.

The CPI improvement is the highest for the floating-
point benchmarks. The VAX 9000 attempts to issue simple
(but multi-specifier) VAX instructions at the rate of one per

cycle, and includes the necessary register scoreboarding and
other hardware features to allow substantial floating-point

instruction overlap. The result is a demonstration that a

large number of gates can yield a VAX implementation with
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Figure 4: CPI on two VAX implementations

cycles per program comparable to a simple RISC implemen-
t ation. It seems likely, however, that such an implement a-

tion would not be able to achieve the cycle time that a RISC

design could, in the same technology. As gate densities in-

crease, it is conceivable that some future single-chip CMOS
VAX implementation might achieve CPI numbers that are

close to the VAX 9000’s.
Just as VAX CPI can be improved by the gate-intensive

approach of the model 9000 design, so RISC CPI can be
improved by superscalar or superpipelined designs [18, 29].

The IBM RISC System/6000 [17], for example, has a peak
issue rate of four instructions per cycle.

So while VAX may “catch up” to current single-
instruction-issue RISC performance, RISC designs will push

on with earlier adoption of advanced implementation tech-
niques, achieving still higher performance. The VAX archi-
tecturrd disadvantage might thus be viewed as a time lag of
some number of years.

5.2 Summary and caveats

In this paper we have attempted to isolate architecture from
implementation in our examination of organizationally sim-

ilar RISC and CISC engines. The RISC, the MIPS M/2000,
has significantly higher architecturally-determined perfor-

mance than the CISC, the Digital VAX 8700, on the SPEC
benchmarks. We observed a wide variability in both instruc-
tion ratio and CPI ratio, but found that these two ratios are
correlated. As the following table shows, the span of the net
performance advant age—what we called the RISC jactor--
is significantly narrower than the span of either ratio:

I min I gee. mean I max

VAX CPI 5.4 9.9 17.4
MIPS CPI

CPI ratio (VAX/MIPS)
Inst. ratio (MIPS/VAX)
RISC factor

1.1 1<7
3.5 5.8
1.1 2.2
1.8 2.7

3.1

10.4
3.9
3.7

VAX

h

VAX
8700 9000

li gee. mean

Three caveats go along with our results. First, we can-
not easily disentangle the influence of the compiler from the

influence of the architecture. Thus, strictly speaking, our re-

sults do not compare the VAX and MIPS architectures per

se, but rather the combination of architecture with com-
piler. We have assumed that the compiler quality (in terms

of generated code speed) is the “same” for both, while at the
same time demonstrating occasional instances of quality dif-
ferences. So contrary to our assumption, it may very well be
that compiler differences, not architecture, are responsible

for some of the performance differences we measured.
Second, we measured a rather small number of pro-

grams. Measurements that attempt to characterize ma-
chines broadly should be based on much more data. It would

be desirable, too, to have a wider variety of programming
languages and applications represented in the set.

Finally, we have looked in this paper at application-level
processor performance only. At the system level, other ar-

chitectural factors may affect relative performance. Ander-
son et az. [3] have recently studied some operating system

primitives and found that the performance of these primi-

tives on RISCS, as compared to VAX, has not scaled with

application program performance. And of course the I/o
system will determine the performance of some programs,
quite independent of processor architecture.

But while our quantitative results may change somewhat

as compilers evolve, as more programs are measured, and as
operating-system effects are included, we believe that the

fundamental finding will stand up: from the architectural
point of view (that is, neglecting cycle time), RISC as ex-
emplified by MIPS offers a significant processor performance
advantage over a VAX of comparable hardware organization.
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We examined a number of architectural factors that help

explain the variance of the ratios, and the overalJ advantage
of MIPS.
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