
A compositional Semantics for CHR

Giorgio Delzanno
Dip. di Informatica e Scienze

dell’Informazione
Università di Genova

via Dodecaneso 35, 16146
Genova, Italy

giorgio@disi.unige.it

Maurizio Gabbrielli
Dipartimento di Scienze

dell’Informazione
Università di Bologna

Mura A.Zamboni 7, 40127
Bologna, Italy

gabbri@cs.unibo.it

Maria Chiara Meo
Dipartimento di Scienze
Università di Chieti

Viale Pindaro 42, 65127
Pescara, Italy

cmeo@unich.it

ABSTRACT

Constraint Handling Rules (CHR) are a committed-choice declara-
tive language which has been designed for writing constraint solvers.
A CHR program consists of multi-headed guarded rules which al-
low one to rewrite constraints into simpler ones until a solved form
is reached.

CHR has received a considerable attention, both from the practical
and from the theoretical side. Nevertheless, due the use of multi-
headed clauses, there are several aspects of the CHR semantics
which have not been clarified yet. In particular, no compositional
semantics for CHR has been defined so far.

In this paper we introduce a fix-point semantics which character-
izes the input/output behavior of a CHR program and which is and-
compositional, that is, which allows to retrieve the semantics of a
conjunctive query from the semantics of its components. Such a
semantics can be used as a basis to define incremental and modular
analysis and verification tools.

1. INTRODUCTION
Constraint Handling Rules (CHR) [11, 12] are a committed-choice
declarative language which has been specifically designed for writ-
ing constraint solvers. The first constraint logic languages used
mainly built-in constraint solvers designed by following a “black
box” approach. This made hard to modify, debug, and analyze a
specific solver. Moreover, it was very difficult to adapt an existing
solver to the needs of some specific applications, and this was soon
recognized as a serious limitation since often practical applications
involve application specific constraints.

By using CHR one can easily introduce specific user-defined con-
straints and the related solver into an host language. In fact, a CHR
program consists of (a set of) multi-headed guarded simplification
and propagation rules which are specifically designed to implement
the two most important operations involved in the constraint solv-

ing process: Simplification rules allow to replace constraints by
simpler ones, while preserving their meaning. Propagation rules
are used to add new redundant constraints which do not modify the
meaning of the given constraint and which can be useful for further
reductions. It is worth noting that the presence of multiple heads in
CHR is an essential feature which is needed in order to define rea-
sonably expressive constraint solvers (see the discussion in [12]).
However, such a feature, which differentiates this proposal from
many existing committed choice logic languages, complicates con-
siderably the semantics of CHR, in particular it makes very difficult
to obtain a compositional semantics, as we argue below. This is un-
fortunate, as compositionality is an highly desirable property for a
semantics. In fact, a compositional semantics provides the basis
to define incremental and modular tools for software analysis and
verification, and these features are essential in order to deal with
partially defined components. Moreover, in some cases, modular-
ity allows to reduce the complexity of verification of large systems
by considering separately smaller components.

In this paper we introduce a fix-point semantics for CHR which
characterizes the input/output behavior of a program and which is
and-compositional, that is, which allows to retrieve the semantics
of a conjunctive query from the semantics of its components.

In general, due to the presence of synchronization mechanisms, the
input/ouput semantics is not compositional for committed choice
logic languages and for most concurrent languages in general. In-
deed, the need for more complicate semantic structures based on
traces was recognized very early as a necessary condition to obtain
a compositional model, first for dataflow languages [13] and then in
the case of many other paradigms, including imperative concurrent
languages [8] and concurrent constraint and logic languages [6].

When considering CHR this basic problem is further complicated:
due to the presence of multiple heads the traces consisting of se-
quences of input/ouput pairs, analogous to those used in the above
mentioned works, are not sufficient to obtain a compositional se-
mantics. Intuitively the problem can be stated as follows. A CHR
rule r : A, B ⇔ c | C cannot be used to rewrite a goal A, no
matter how the variables are constrained (that is, for any input con-
straint), because the goal consists of a single atomAwhile the head
of the rule contains two atoms A, B. Therefore, if we considered a
semantics based on input/ouput traces, we would obtain the empty
denotation for the goal A in the program consisting of the rule r
plus some rules defining C. Analogously for the goal B. On the
other hand, the rule r can be used to rewrite the goal A, B. There-
fore, provided that the semantics of C is not empty, the semantics

of A, B is not empty and cannot be derived from the semantics of
A and B, that is, such a semantics is not compositional. It is worth
noting that even restricting to a more simple notion of observable,
such as the results of terminating computations, does not simplify
this problem. In fact, differently from the case of ccp languages,
also the semantic based on these observables (usually called rest-
ing points) is not compositional for CHR.

Our solution to obtain a compositional model is to use an aug-
mented semantics based on traces which includes at each steps two
“assumptions” on the external environment and two “outputs” of
the current process: Similarly to the case of the models for ccp,
the first assumption is made on the constraints appearing in the
guards of the rules, in order to ensure that these are satisfied and
the computation can proceed. The second assumption is specific
to our approach and contains atoms which can appear in the heads
of rules. This allows us to rewrite a goal G by using a rule whose
head H properly contains G: While this is not possible with the
standard CHR semantics, we allow that by assuming that the ex-
ternal environment provides the “difference” H minus G and by
memorizing such an assumption. The first output element is the
constraint produced by the process, as usual. We also memorize at
each step also a second output element, consisting of those atoms
which are not rewritten in the current derivation and which could be
used to satisfy some assumptions (of the second type) when com-
posing sequences representing different computations. Thus our
model is based on sequences of quadruples, rather than of simple
input/output pairs.

Our compositional semantics is obtained by a fixpoint construction
which uses an enhanced transitions system implementing the rules
for assumptions described above. We prove the correctness of the
semantics w.r.t. a notion of observables which characterizes the in-
put/ouput behavior of terminating computations where the original
goal has been completely reduced to built-in constraints. We will
discuss later the extensions needed in order to characterize different
notions of results, such as the “qualified answers” used in [12].

The remaining of this paper is organized as follows. Next section
introduces some preliminaries about CHR and its operational se-
mantics. Section 3 contains the definition of the compositional
semantics, while section 4 presents the compositionality and cor-
rectness results. Section 6 concludes by discussing directions for
future work.

Note for the reviewer: To avoid the reference to a technical report,
for the convenience of the reviewer we include also a technical ap-
pendix containing the proofs of some lemmas used in the paper.
This Appendix however is not meant to be part of the submitted
paper.

2. PRELIMINARIES
In this section we first introduce some preliminary notions and then
define the CHR syntax and operational semantics. Even though we
try to provide a self-contained exposition, some familiarity with
constraint logic languages and first order logic could be useful.

We first need to distinguish the constraints handled by an existing
solver, called built-in (or predefined) constraints, from those de-
fined by the CHR program, user-defined (or CHR) constraints. An
atomic constraint is a first-order predicate (atomic formula). By as-
suming to use two disjoint sorts of predicate symbols we then dis-
tinguish built-in atomic constraints from CHR atomic constraints.

A built-in constraint c is defined by

c ::= a | c ∧ c | ∃xa

where a is an atomic built-in constraint1. For built-in constraints
we assume given a theory CT which describes

On the other hand, according to the usual CHR syntax, we as-
sume that a user-defined constraint is a conjunction of atomic user-
defined constraints. We use c, d to denote built-in constraints, g, h, k
to denote CHR constraints and a, b to denote both built-in and user-
defined constraints (we will call these generically constraints). The
capital versions of these notations will be used to denote multisets
of constraints. Furthermore we denote by U the set of user-defined
constraints and by B the set of built-in constraints.

We will often use “,” rather than ∧ to denote conjunction and we
will often consider a conjunction of atomic constraints as a multiset
of atomic constraints. In particular, we will use this notation based
on multisets in the syntax of CHR. The notation ∃−V φ where V
is a set of variables denotes the existential closure of a formula φ
with the exception of the variables V which remain unquantified.
Fv(φ) denotes the free variables appearing in φ and we denote
by · the concatenation of sequences and by ε the empty sequence.
Furthermore $ denotes the multi-set union, while we consider \ as
an overloaded operator used both for set and multi-set difference
(the meaning depends on the type of the arguments).

We are now ready to define the CHR syntax.

Definition 1. (Syntax) [12] A CHR simplification rule has the
form H ⇔ c | B while a CHR propagation rule has the form
H ⇒ c | B where H is a non-empty multiset of user-defined
constraints, c is a built-in constraint and B is a possibly empty
multi-set of constraints.

A CHR program is a set of CHR simplification and propagation
rules. A CHR goal is a multiset of (both user-defined an built-in)
constraints.

We prefer to use multisets rather than sequences (as in the original
CHR papers) since multisets appear to correspond more precisely
to the nature of CHR rules. We denote byGoals the set of all goals.

We describe now the operational semantics of CHR as provided
by [12] by using a transition system Ts = (Confs ,−→s) (s here
stands for “standard”, as opposed to the semantics we will use
later). Configurations in Confs are triples of the form 〈G, K, d〉
where G are the constraints that remain to be solved, K are the
user-defined constraints that have been accumulated and d are the
built-in constraints that have been simplified2.

1We could consider more generally first order formulas as built-in
constraints, as far as the results presented here are concerned.
2In [12] triples of the form 〈G, K, d〉V were used, where the an-
notation V , which is not changed by the transition rules, is used
to distinguish the variables appearing in the initial goal from the
variables which are introduced by the rules. We can avoid such an
indexing by explicitly referring to the original goal.

An initial configuration has the form

〈G, ∅, ∅〉

and consists of a goal G, an empty user-defined constraint and an
empty built-in constraint.

A final configuration has either the form

〈G, K, {false}〉,

when it is failed, i.e. when it contains an inconsistent built-in con-
straint store represented by the unsatisfiable constraint false, or
has the form

〈G, K, d〉
when it is successfully terminated since there are no applicable
rules.

Given a program P , the transition relation −→s⊆ Conf × Conf
is the least relation satisfying the rules in Table 1 (for the sake
of simplicity, we omit indexing the relation with the name of the
program). The Solve transition allows to update the constraint
store by taking into account a built-in constraint contained in the
goal. Without loss of generality, we will assume that Fv(d′) ⊆
Fv(c) ∪ Fv(d). The Introduce transition is used to move a user-
defined constraint from the goal to the CHR constraint store, where
it can be handled by applying CHR rules. The transitions Simplify
and Propagate allow to rewrite user-defined constraints (which are
in the CHR constraint store) by using rules from the program. As
usual, in order to avoid variable names clashes, both these transi-
tions assume that clauses from the program are renamed apart, that
is assume that all variables appearing in a program clause are fresh
ones. Both the Simplify and Propagate transitions are applicable
when the current store (d) is strong enough to entail the guard of
the rule (c), once the parameter passing has been performed (this
is expressed by the equation H = H ′). Note that, due to the exis-
tential quantification over the variables x appearing inH , in such a
parameter passing the information flow is from the actual parame-
ter (in H ′) to the formal parameters (H), that is, it is required that
the constraintsH ′ which have to be rewritten are an instance of the
head H . When applied, both these transitions add the body B of
the rule to the current goal and the equation H = H ′, expressing
the parameter passing mechanism, to the built-in constraint store.
The difference between Simplify and Propagate is in the fact that
while the former transition removes the constraintsH ′ which have
been rewritten from the CHR constraint store, this is not the case
for the latter.

Given a goal G, the operational semantics that we consider ob-
serves the final stores of computations terminating with an empty
goal and an empty user-defined constraint. We call these observ-
ables success answers slightly deviating from the terminology of
[12] (a goal which has a success answer is called a data-sufficient
goal in [12]).

Definition 2. (Success answers) Let P be a program and let G
be a goal. The set SAP (G) of success answers for the query G in
the program P is defined as follows

SAP (G) = {〈∃−Fv(G)d〉 | 〈G, ∅, ∅〉 −→∗
s 〈∅, ∅, d〉 .−→P }.

In [12] it is considered also the following different notion of an-
swer, obtained by computations terminating with a user-defined
constraint which does not need to be empty.

Definition 3. (Qualified answers) Let P be a program and let G
be a goal. The set QAP (G) of qualified answers for the query G
in the program P is defined as follows

QAP (G) = {〈∃−Fv(G)K∧d〉 | 〈G, ∅, ∅〉 −→∗
s 〈∅, K, d〉 .−→P }.

We discuss in Section 6 the extensions needed to characterize also
qualified answers. Note that both previous notions of observables
characterize an input/output behavior, since the input constraint is
implicitly considered in the goal.

In the remaining of this paper we will consider only simplification
rules since propagation rules can be mimicked by simplification
rules, as far as the results contained in this paper are concerned.

Note that in presence of propagation rules the “naive” operational
semantics that we consider in this paper introduces redundant in-
finite computations: Since propagation rules do not remove user
defined constraints (see rule Propagate in Table 1), when a propa-
gate rule is applied it introduce an infinite computation (obtained
by subsequent applications of the same rule). Note however that
this does not imply that in presence of an active propagation rule
the semantics that we consider are empty. In fact, the application of
a simplification rule after a propagation rule can cause the termina-
tion of the computation, by removing the atoms which are needed
by the head of the propagation rule. It is also possible to define a
more refined operational semantics (see [1]) which avoid these infi-
nite computations by allowing to apply at most once a propagation
rule to the same constraints. We discuss in Section 5 the modifi-
cations needed in our construction to take into account this more
refined semantics.

3. A COMPOSITIONAL TRACE SEMAN-
TICS

Given a program P , we say that a semantics SP is and-compositio-
nal if SP (A, B) = C(SP (A),SP (B)) for a suitable composition
operator C which does not depend on the program P . As men-
tioned in the introduction, due to the presence of multiple heads in
CHR, the semantics which associate to a program P the function
SAP is not and-compositional, since goals which have the same
input/ouput behavior can behave differently when composed with
other goals. Consider for example the program P consisting of the
single rule

g, h ⇔ true|c.

(where c is a built-in constraint). According to Definition 3 we have
that SAP (g) = SAP (k) = ∅, while

SAP (g, h) = {〈∃−Fv(g,h)c〉} .= ∅ = SAP (k, h).

An analogous example can be made to show that also the semantics
QA is not and-compositional.

The problem exemplified above is different from the classic prob-
lem of concurrent languages where the interaction of non-determi-
nism and synchronization makes the input/output observables non-
compositional. For this reason, considering simply sequences of
(input-output) built-in constraints is not sufficient to obtain a com-
positional semantics for CHR. We have to use some additional in-
formation which allow us to describe the behavior of goals in any
possible and-composition without, of course, considering explicitly
all the possible and-compositions.

Solve CT |= c ∧ d ↔ d′ and c is a built-in constraint
〈(c, G), K, d〉 −→s 〈G, K, d′〉

Introduce h is a user-defined constraint
〈(h, G), K, d〉 −→s 〈G, (h, K), d〉

Simplify H ⇔ c | B ∈ P x = V ar(H) CT |= d → ∃x((H = H ′) ∧ c)
〈G, H ′ ∧K, d〉 −→s 〈B ∧G, K, H = H ′ ∧ d〉

Propagate H ⇒ c | B ∈ P x = V ar(H) CT |= d → ∃x((H = H ′ ∧ c))
〈G, H ′ ∧K, d〉 −→s 〈B ∧G, H ′ ∧K, H = H ′ ∧ d〉

Table 1: The standard transition system for CHR

The basic idea of our approach is to collect in the semantics also the
“missing” parts of heads which are needed in order to proceed with
the computation. For example, when considering the program P
above, we should be able to state that the goal g produces the con-
straint c, provided that the external environment (i.e. a conjunctive
goal) contains the user-defined constraint h. In other words, h is an
assumption which is made in the semantics describing the compu-
tation of g. When composing (by using a suitable notion of compo-
sition) such a semantics with that one of a goal which contains hwe
can verify that the “assumption” h is satisfied and therefore obtain
the correct semantics for g, h. In order to model correctly the inter-
action of different processes we have to use sequences, analogously
to what happens with other concurrent paradigms.

This idea is developed by defining a new transition system which
implements this mechanism based on assumptions for dealing with
the missing parts of heads. The new transition system allows one
to generate the sequences appearing in the compositional model by
using a standard fix-point construction. As a first step in our con-
struction we modify the notion of configuration used before: Since
we do not need to distinguish user-defined constraints which ap-
pear in the goal from the user-defined constraints which have been
already considered for reduction, we merge the first and the second
components of previous triples. Thus we do not need anymore In-
troduce rules. On the other hand, we need the information on the
new assumptions, which is added as a label of the transitions.

Thus we define a transition system T = (Conf ,−→P) where con-
figurations in Conf are pairs: the first component is a multi-set of
indexed atoms (the goal) and the second one is a built-in constraint
(the store). Indexes are associated to atoms in order to denote the
point in the derivation where they have been introduced. More pre-
cisely, atoms in the original goals are labeled by 0, while atoms
introduced at the i − th derivation step are labeled by i. Given a
program P , the transition relation −→P⊆ Conf × Conf × ℘(U)
is the least relation satisfying the rules in Table 2 (where ℘(A)
denotes the set consisting of all the subsets of A(. Note that we
consider only Solve and Simplify rules, as the other rules as previ-
ously mentioned are redundant in this context. Solve’ is the same
rule as before, while the Simplify’ rule is modified to consider as-
sumptions: When reducing a goal G by using a rule having head
H , the set of assumptions K = H \ G (with H .= K) is used
to label the transition (\ here denotes multiset difference). Indexes
allow us to distinguish identical occurrences of atoms which have
been introduced in different derivation steps. We will use the no-

tation Gmax=i to indicate that i is the maximal label occurring in
the (non-atomic) goal G and Gi to indicate that all the atoms in G
are labeled by i. When indexes are not needed we will simply omit
them. As before, we assume that program rules to be used in the
new simplify rule use fresh variables to avoid names captures.

The semantics domain of our compositional semantics is based on
sequences which represent derivations obtained by the transition
system in Table 2. More precisely, we first consider “concrete”
sequences consisting of tuples of the form 〈G, c, K, G′, d〉: Such
a tuple represents exactly a derivation step 〈G, c〉 −→K 〈G′, d〉.
The sequences we consider are terminated by tuples of the form
〈G, c, ∅, G, c〉, which represent a terminating step (see the precise
definition below). Since a sequence represents a derivation, we
assume that the “output” goal G′ at step i is equal to the “input”
goal G at step i + 1, that is, we assume that if

. . . 〈Gi, ci, Ki, G
′
i, di〉〈Gi+1, ci+1, Ki+1, G

′
i+1, di+1〉 . . .

appears in a sequence, then G′
i = Gi+1 holds.

On the other hand, the input store ci+1 can be different from the
output store di produced at previous step, since we need to perform
all the possible assumptions on the constraint ci+1 produced by the
external environment in order to obtain a compositional semantics.
However, we assume that if

. . . 〈Gi, ci, Ki, G
′
i, di〉〈Gi+1, ci+1, Ki+1, G

′
i+1, di+1〉 . . .

appears in a sequence then CT |= ci+1 → di holds: This means
that the assumption made on the external environment cannot be
weaker than the constraint store produced at the previous step. This
reflects the monotonic nature of computations, where information
can be added to the constraint store and cannot be deleted from it.
Finally note that assumptions on user-defined constraints (labelK)
are made only for the atoms which are needed to “complete” the
current goal in order to apply a clause. In other words, no assump-
tion can be made in order to apply clauses whose heads do not share
any predicate with the current goal.

The set of the above described “concrete” sequences, which repre-
sent derivation steps performed by using the new transition system,
is denoted by Seq.

¿From these concrete sequences we extract some more abstract
sequences which are the objects of our semantic domain: From
each tuple 〈G, c, K, G′, d〉 in a sequence δ ∈ Seq we extract a

Solve’ CT |= c ∧ d ↔ d′

〈c ∧Gmax=i, d〉 −→∅ 〈Gmax=i, d′〉

Simplify’ cl = H ↔ c | B ∈ P x = Fv(H) Gmax=i .= ∅ CT |= d → ∃x((H = (Gmax=i, K)) ∧ c)
〈Gmax=i ∧A, d〉 −→K 〈Bi+1 ∧A, d ∧ (H = (G, K))〉

Table 2: The transition system for the compositional semantics

tuple of the form 〈c, K, H, d〉 where we consider as before the in-
put and output store (c and d, respectively) and the assumptions
(K), while we do not consider anymore the output goal G′. Fur-
thermore, we restrict the input goal G to that part H consisting
of all those user-defined constraints which will not be rewritten in
the (derivation represented by the) sequence δ. Intuitively H con-
tains those atoms which are available for satisfying assumptions
of other goals, when composing two different sequences (repre-
senting two derivations of different goals). We also assume that
if 〈ci, Ki, Hi, di〉〈ci+1, Ki+1, Hi+1, di+1〉 is in a sequence then
Hi ⊆ Hi+1 holds, since these atoms which will not be rewritten
in the derivation can only augment. We then define formally the
semantic domain as follows.

Definition 4. (Sequences) The semantic domain D containing
all the possible sequences is defined as the set

D = {〈c1, K1, H1, d1〉 . . . 〈cn, ∅, Hn, cn〉 |
for each j, 1 ≤ j ≤ n and for each i, 1 ≤ i ≤ n− 1,
Hj andKi are multisets of CHR indexed constraints,
cj , di are built-in constraints and CT |= di → ci,
Hi ⊆ Hi+1 and CT |= ci+1 → di holds }.

In order to define our semantics we need two more notions. First,
we define an abstraction operator α which extracts from the con-
crete sequences in Seq (representing exactly derivation steps) the
sequences used in our semantic domain.

Definition 5. Let δ = 〈G1, c1, K1, G2, d1〉 . . . 〈Gn, cn, ∅, Gn, cn〉
be a sequence of derivation steps where we assume that atoms are
indexed as previously specified. We say that an indexed atomAj is
stable in δ ifAj appears inGi and inGi+1, for each 1 ≤ i ≤ n−1.
The abstraction operator α : Seq → D is then defined inductively
as

α(ε) = ε
α(〈G, c, K, G′, d〉 · δ′) = 〈c, K, H, d〉 · α(δ′)

where H is the multiset consisting of all the indexed atoms in G
which are stable in 〈G, c, K, G′, d〉 · δ′.

Then we need the notion of “compatibility” of a tuple w.r.t. a se-
quence. To this aim we first provide some further notation: Given
a sequence of derivation steps

δ = 〈G1, c1, K1, G2, d1〉〈G2, c2, K2, G3, d2〉 . . . 〈Gn, cn, ∅, Gn, cn〉

we denote by length(δ) and by instore(δ) the length of the deriva-
tion δ and the first input store c1, respectively. Moreover using t as
a shorthand for the tuple 〈G1, c1, K1, G2, d1〉 we define

Vloc(t) = Fv(G2, d1) \ Fv(G1, c1, K1),

Ving(δ) = Fv(G1),

Vass(δ) =
Sn−1

i=1 Fv(Ki),

Vstable(δ) = Fv(Gn),

Vconstr(δ) =
Sn−1

i=1 Fv(di) \ Fv(ci) and

Vloc(δ) =
Sn−1

i=1 Fv(Gi+1, di) \ Fv(Gi, ci, Ki).

We then define a compatibility as follows.

Definition 6. Let t = 〈G1, c1, K1, G2, d1〉 a tuple representing
a derivation step for the goal G1 and let

δ = 〈G2, c2, K2, G3, d2〉 . . . 〈Gn, cn, ∅, Gn, cn〉

be a sequence of derivation steps for G2. We say that t is compati-
ble with δ if the following hold:

1. CT |= instore(δ) → d1,

2. Vloc(δ) ∩ Fv(t) = ∅,

3. for i ∈ [2, n], Vloc(t)∩Fv(ci) ⊆
Si−1

j=1 Fv(dj)∪Vstable(δ)
and

4. Vloc(t) ∩ Vass(δ) = ∅.

Note that if t is compatible with δ then, by using the notation above,
t · δ is a sequence of derivation steps for G1. We can now define
the compositional semantics.

Definition 7. (Compositional semantics) LetP be a program and
let G be a goal. The compositional semantics of G in the program
P , SP : Goals → ℘(D), is defined as

SP (G) = α(S ′P (G))

where α is the pointwise extension to sets of the operator given in
Definition 5 and S ′P : Goals → ℘(Seq) is defined as follows:

S ′P (G) = {〈G, c, K, G′, d〉 · δ ∈ Seq |
CT .|= c ↔ false, 〈G, c〉 −→K 〈G′, d〉
and δ ∈ SP (G′) for some δ such that
〈G, c, K, G′, d〉 is compatible with δ}

∪
{〈G, c, ∅, G, c〉 ∈ Seq}.

Formally S ′P (G) is defined as the least fixed-point of the corre-
sponding operator Φ ∈ (Goals → ℘(Seq)) → Goals → ℘(Seq)
defined by

Φ(I)(G) = {〈G, c, K, G′, d〉 · δ ∈ Seq |
CT .|= c ↔ false, 〈G, c〉 −→K 〈G′, d〉
and δ ∈ I(G′) for some δ such that
〈G, c, K, G′, d〉 is compatible with δ}

∪
{〈G, c, ∅, G, c〉 ∈ Seq}.

In the above definition, I : Goals → ℘(Seq) stands for a generic
interpretation assigning to a goal a set of sequences, and the order-
ing on the set of interpretations Goals → ℘(Seq) is that of (point-
wise extended) set-inclusion. It is straightforward to check that Φ
is continuous (on a CPO), thus standard results ensure that the fix-
point can be calculated by 3n≥0φ

n(⊥), where φ0 is the identity
map and for n > 0, φn = φ ◦ φn−1 (see for example [9]).

4. COMPOSITIONALITYANDCORRECT-
NESS

In this section we prove that the semantics defined above is and-
compositional and correct w.r.t. the observables SAP .

In order to prove the compositionality result we first need to define
how two sequences describing a computation of A and B, respec-
tively, can be composed in order to obtain a computation of A, B.
Such a composition is defined by the (semantic) operator ‖ which
performs an interleaving of the actions described by the two se-
quences and then eliminates the assumptions which are satisfied in
the resulting sequence. For technical reasons, rather than modify-
ing the existing sequences, the elimination of satisfied assumptions
is performed on new sequences which are generated by a closure
operator η defined as follows.

Definition 8. LetW be a multiset of indexed atoms and let σ be
a sequence in D of the form

〈c1, K1, H1, d1〉 . . . 〈cn, Kn, Hn, dn〉.

We denote by σ \W the sequence

〈c1, K1, H1 \W, d1〉 . . . 〈cn, Kn, Hn \W, dn〉

where the multisets differenceHi \W considers indexes.

The operator η : ℘(D) → ℘(D) is defined as follows. Given
S ∈ ℘(D), η(S) is the least set satisfying the following conditions:

1. S ⊆ η(S);

2. if σ′ · 〈c, K, H, d〉 · σ′′ ∈ S then (σ′ · 〈c, K \ K′, H, d〉 ·
σ′′) \W ∈ η(S)

where K′ = {A1, . . . , An} ⊆ K is a multiset such that there
exists a multiset (of indexed atoms) W = {Bj1

1 , . . . , Bjn
n } ⊆ H

such that CT |= c ∧Bi ↔ c ∧Ai, for each i ∈ [1, n].

A few explanations are in order. The operator η is an upper clo-
sure operator3 which saturates a set of sequences S by adding new
3S ⊆ η(S) holds by definition, and it is easy to see that η(η(S)) =
η(S) holds and that S ⊆ S′ implies η(S) ⊆ η(S′).

sequences where redundant assumptions can be removed: an as-
sumptions a (inKi) can be removed if aj appears as a stable atom
(in Hi). Once a stable atom is “consumed” for satisfying an as-
sumption it is removed from (the sets of stable atoms of) all the tu-
ples appearing in the sequence, to avoid multiple uses of the same
atom. Note that stable atoms are considered without the index in
the condition CT |= c ∧ Bi ↔ c ∧ Ai, while they are consid-
ered as indexed atoms in the removal operation Hi \ W . The
reason for this slight complication is explained by the following
example. Assume that we have the set S consisting of the only se-
quence 〈c, ∅, {a1}, d〉〈c′, {a}, {a1, a2}, d′〉. Such a sequence in-
dicates that at the second step we have an assumption a, while both
at the first and at the second step we have produced a stable atom a,
which has been indexed by 1 and 2, respectively. In order to satisfy
the assumption a we can use either a1 or a2. However, depend-
ing on what indexed atom we use, we obtain two different sim-
plified sequences in η(S), namely 〈c, ∅, ∅, d〉〈c′, ∅, {a2}, d′〉 and
〈c, ∅, {a1}, d〉〈c′, ∅, {a1}, d′〉, which describes correctly the two
different situations.

Before defining the composition operator ‖ on sequences we need
a notation for the sequences in D analogous to that one introduced
for sequences of derivation steps:
Let σ = 〈c1, K1, H1, d1〉〈c2, K2, H2, d2〉 · · · 〈cn, ∅, Hn, dn〉 ∈
D be a sequence for the goal G. We define

Ving(σ) = Fv(G) (the free variables of the goal G),

Vass(σ) =
Sn−1

i=1 Fv(Ki) (the variables in the assumptions of
σ),

Vstable(σ) = Fv(Hn) =
Sn

i=1 Fv(Hi) (the variables in the
stable multisets of σ),

Vconstr(σ) =
Sn−1

i=1 Fv(di) \ Fv(ci) (the variables in the out-
put constraints of σ which are not in the corresponding input
constraints),

Vloc(σ) = (Vconstr(σ) ∪ Vstable(σ)) \ (Vass(σ) ∪ Ving(σ)).

We can now define the composition operator ‖ on sequences. To
simplify the notation we denote by ‖ both the operator acting on
sequences and that one acting on sets of sequences.

Definition 9. The operator ‖: D × D → ℘(D) is defined in-
ductively as follows. Assume that σ1 = 〈c1, K1, H1, d1〉 · σ′1 and
σ2 = 〈c2, K2, H2, d2〉 ·σ′2 are sequences for the goalsG1 andG2,
respectively. If

(Vloc(σ1)∪Fv(G1))∩(Vloc(σ2)∪Fv(G2)) = Fv(G1)∩Fv(G2)

then σ1 ‖ σ2 is defined by cases as follows:

1. If both σ1 and σ2 have length 1 and have the same store, say
σ1 = 〈c, ∅, H1, c〉 and σ2 = 〈c, ∅, H2, c〉, then

σ1 ‖ σ2 = {〈c, ∅, H1 $H2, c〉}.

2. If σ2 has length 1 and σ1 has length > 1 then

σ1 ‖ σ2 = {〈c1, K1, H1 $H2, d1〉 · σ |
σ ∈ σ′1 ‖ σ2 and
CT |= instore(σ) → d1}.

The symmetric case is analogous and therefore omitted.

3. If both σ1 and σ2 have length > 1 then σ1 ‖ σ2 =

{〈c1, K1, H1 $H2, d1〉 · σ ∈ D | σ ∈ (σ′1 ‖ σ2)
and CT |= instore(σ) → d1}

∪
{〈c2, K2, H1 $H2, d2〉 · σ ∈ D | σ ∈ (σ1 ‖ σ′2)
and CT |= instore(σ) → d2}

Finally the composition of sets of sequences ‖: ℘(D) × ℘(D) →
℘(D) is defined by S1 ‖ S2 =

{σ ∈ D | there exist σ1 ∈ S1 and σ2 ∈ S2 such that
σ = 〈c1, K1, H1, d1〉 · · · 〈cn, ∅, Hn, cn〉 ∈ η(σ1 ‖ σ2),
(Vloc(σ1) ∪ Vloc(σ2)) ∩ Vass(σ) = ∅ and for i ∈ [1, n]
(Vloc(σ1) ∪ Vloc(σ2)) ∩ Fv(ci) ⊆Si−1

j=1 Fv(dj) ∪
Si

j=1 Fv(Hj)}.

Using this notion of composition of sequences we can show that
the semantics SP is compositional. Before proving the composi-
tionality theorem we need some technical lemmas whose proof is
included in the appendix.

LEMMA 1. Let G be a goal, δ ∈ S ′P (G) and let σ = α(δ).
Then Vr(δ) = Vr(σ) holds, where
r ∈ { ing, ass, stable, constr, loc }.

LEMMA 2. Let P be a program, G1 and G2 be two goals and
assume that δ ∈ S ′P (G1, G2). Then there exists δ1 ∈ S ′P (G1) and
δ2 ∈ S ′P (G2), such that α(δ) ∈ η(α(δ1) ‖ α(δ2)).

LEMMA 3. Let P be a program, let G1 and G2 be two goals
and assume that δ1 ∈ S ′P (G1) and δ2 ∈ S ′P (G2) are two se-
quences such that the following hold:

1. α(δ1) ‖ α(δ2) is defined,

2. σ = 〈c1, K1, W1, d1〉 · · · 〈cn, ∅, Wn, cn〉 ∈ η(α(δ1) ‖ α(δ2)),

3. (Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Vass(σ) = ∅,

4. for i ∈ [1, n], (Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆Si−1
j=1 Fv(dj) ∪

Si
j=1 Fv(Wj).

Then there exists δ ∈ S ′P (G1, G2) such that Vloc(δ) ⊆ Vloc(δ1) ∪
Vloc(δ2) and σ = α(δ).

By using the above results we can prove the following theorem.

THEOREM 1 (COMPOSITIONALITY). LetP be a program and
let G1 and G2 be two goals. Then

SP (G1, G2) = SP (G1) ‖ SP (G2).

ProofWe prove the two inclusions separately.

(SP (G1, G2) ⊆ SP (G1)) ‖ SP (G2)).] Let σ ∈ SP (G1, G2).
By definition of SP , there exists δ ∈ S ′P (G1, G2) such that σ =

α(δ). By Lemma 2 there exist δ1 ∈ S ′P (G1) and δ2 ∈ S ′P (G2)
such that σ ∈ η(α(δ1) ‖ α(δ2)) and for i = 1, 2, Vloc(δi) ⊆
Vloc(α(δ)).
Let δ = 〈(G1, G2), c1, K1, B2, d1〉 · · · 〈Bn, cn, ∅, Bn, cn〉 and
let σ = 〈c1, K1, W1, d1〉 · · · 〈cn, ∅, Wn, cn〉, where Wn = Bn.
Then in order to prove the thesis we have only to show that

(Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Vass(σ) = ∅ and, for i ∈ [1, n],
(Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆Si−1

j=1 Fv(dj) ∪
Si

j=1 Fv(Wj).

First observe that by Lemma 1 and by hypothesis, we have that
Vass(σ) = Vass(δ) and for i = 1, 2,

Vloc(α(δi)) = Vloc(δi) ⊆ Vloc(δ). (1)

Then by the previous results and by the properties of the derivations

(Vloc(α(δ1))∪Vloc(α(δ2)))∩Vass(σ) ⊆ Vloc(δ)∩Vass(σ) = ∅.

Moreover for i ∈ [1, n],

(Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆
Vloc(δ) ∩ Fv(ci) ⊆

Si−1
j=1 Fv(dj) ∪ Vstable(δ)

hold. Now, observe that if x ∈ Vloc(δ)∩Fv(ci)∩Vstable(δ), then
x ∈

Si
j=1 Fv(Bj) ∩ Vstable(δ) and then x ∈

Si
j=1 Fv(Wj) and

this completes the proof of the first inclusion.

(SP (G1, G2) ⊇ SP (G1) ‖ SP (G2)). Let σ ∈ SP (G1) ‖
SP (G2). By definition of SP and of ‖ there exist δ1 ∈ S ′P (G1)
and δ2 ∈ S ′P (G2), such that σ1 = α(δ1), σ2 = α(δ2), σ1 ‖ σ2

is defined, σ = 〈c1, K1, H1, d1〉 · · · 〈cn, ∅, Hn, cn〉 ∈ η(σ1 ‖
σ2), (Vloc(σ1) ∪ Vloc(σ2)) ∩ Vass(σ) = ∅ and for i ∈ [1, n],
(Vloc(σ1)∪Vloc(σ2))∩Fv(ci) ⊆

Si−1
j=1 Fv(dj)∪

Si
j=1 Fv(Hj).

The proof is then straightforward by using Lemma 3.

4.1 Correctness
In order to show the correctness of the semantics SP w.r.t. the (in-
put/output) observables SAP , we first introduce a different char-
acterization of SAP obtained by using the new transition system
defined in Table 2.

Definition 10. Let P be a program and let G be a goal and let
−→ be (the least relation) defined by the rules in Table 2. We define

SA′
P (G) = {∃−Fv(G)c | 〈G, ∅〉 −→∗

P 〈∅, c〉 .−→P }.

The correspondence of SA′ with the original notion SA is stated
by the following proposition, whose proof is immediate.

PROPOSITION 1. LetP be a program and letG be a goal. Then

SAP (G) = SA′
P (G).

The observables SA′
P , and therefore SAP , describing answers of

successful computations can be obtained from S by considering
suitable sequences, namely those sequences which do not perform
assumptions neither on CHR constraints nor on built-in constraints.
The first condition means that the second components of tuples
must be empty, while the second one means that the assumed con-
straint at step i must be equal to the produced constraint of steps
i-1. We call “connected” those sequences which satisfy these re-
quirements:

Definition 11. (Connected sequences) Assume that

σ = 〈c1, K1, H1, d1〉 . . . 〈cn, Kn, Hn, cn〉

is a sequence in D. We say that σ is connected ifKj = ∅ for each
j, 1 ≤ j ≤ n and di = ci+1, for each i, 1 ≤ i ≤ n− 1.

The proof of the following result derives from the definition of
connected sequence and an easy inductive argument. Given a se-
quence σ = 〈c1, K1, H1, d1〉 . . . 〈cn, Kn, Hn, dn〉, we denote by
store(σ) the built-in constraint dn, by result(σ) the constraint
dn ∧Hn and by lastg(σ) the goalHn.

PROPOSITION 2. LetP be a program and letG be a goal. Then
SA′

P (G) =

{∃−Fv(G)c | there exists σ ∈ SP (G) such that instore(σ) = ∅,
σ is connected, lastg(σ) = ∅ and c = store(σ)}.

The following corollary is immediate from Proposition 1.

COROLLARY 1 (CORRECTNESS). Let P be a program and
let G be a goal. Then SAP (G) =

{∃−Fv(G)c | there exists σ ∈ SP (G) such that instore(σ) = ∅,
σ is connected, lastg(σ) = ∅ and c = store(σ)}.

5. A MORE REFINED SEMANTICS
As previously mentioned, the operational semantics that we have
considered in this paper is somehow naive: In fact, since propa-
gation rules do not remove user defined constraints (see rule Prop-
agate in Table 1), when a propagate rule is applied it introduces
an additional infinite computation (obtained by subsequent appli-
cations of the same rule). Of course, as previously mentioned, the
terminating computations are not affected, as the application of a
simplification rule after a propagation rule can cause the termina-
tion of the computation.

In [1] it has been defined a more refined operational semantics
which avoid these infinite computations by allowing to apply at
most once a propagation rule to the same constraint. Essentially
the idea is to memorize in a “token store”, to be added to the global
state, some “tokens” containing the information about which propa-
gation rules can be applied to a given set of user-defined constraints.
Each “token” consists of a propagation rule name and of the set of
candidate constraints for that rule. A propagation rule can then be
applied only if the store contains the appropriate token.

We could take into account this refined operational semantics by
using a slight extension of our semantic construction. More pre-
cisely, we first consider “concrete” sequences consisting of tuples
of the form 〈G, c, T, K, G′, T ′, d〉, where T and T ′ are token stores
as defined in [1]. Such a tuple represents exactly a derivation step
〈G, c, T 〉 −→K 〈G′, d, T ′〉, according to the operational seman-
tics in [1]. The sequences we consider are terminated by tuples of
the form 〈G, c, T, ∅, G, c, T 〉, which represent a terminating step.
Since a sequence represents a derivation, we assume that the “out-
put” goal G′ and token store T ′ at step i is equal to the “input”
goal G and to the token store T at step i + 1, respectively. From
these concrete sequences we extract the same abstract sequences
which are the objects of our semantic domain: From each tuple

〈G, c, T, K, G′, d, T ′〉 in a concrete sequence δ we extract a tu-
ple of the form 〈c, K, H, d〉 where we consider as before the input
and output store (c and d, respectively) and the assumptions (K),
while we do not consider anymore the output goalG′ and the token
stores T and T ′. The abstraction operator which extracts from the
concrete sequences the sequences used in the semantic domain is
a simple extension to that one given in Definition 5. In order to
obtain a compositionality result we then define how two sequences
describing a computation of A and B according to this refined op-
erational semantics, respectively, can be composed in order to ob-
tain a computation of A, B. Such a composition is defined by a
(semantic) operator, which performs an interleaving of the actions
described by the two sequences. This new operator is similar to
that one defined in Definition 9 even though the technicalities are
different.

Recently a more refined semantics has been defined in [10] in or-
der to describe precisely the operational semantics implicitly used
by (Prolog) implementations of CHR. Although this refined opera-
tional semantics is still non-deterministic, the order in which transi-
tions are applied and the order in which occurrences are visited are
decided. This semantics is therefore substantially different from
the one we consider and apparently it is difficult to give a composi-
tional characterization for it.

6. CONCLUSIONS
In this paper we have introduced a semantics for CHR which is
compositional w.r.t. the and-composition of goals and which is cor-
rect w.r.t “success answers”, a notion of observable which consid-
ers the results of successful computations where all the user-defined
constraints have been rewritten into built-in constraints. We are not
aware of other compositional characterizations of CHR answers
and only [14] addresses compositionality of CHR rules (but only
for a subset of CHR). Our work can be considered as a first step
which can be extended along several different lines.

Firstly, it would be desirable to obtain a compositional character-
ization also for “qualified answers” obtained by considering com-
putations terminating with a user-defined constraint which does not
need to be empty (see Definition 3). This could be done by a slight
extension of our model: The problem here is that, given a tuple
〈G, c, K, G′, d〉, in order to reconstruct correctly the qualified an-
swers we need to know whether the configuration 〈G′, d〉 is termi-
nating or not (that is, if 〈G′, d〉 .→ holds). This could be solved by
introducing some termination modes, at the price of a further com-
plication of the traces used in our semantics. Also, as previously
mentioned, we are currently extending our semantics in order do
describe the more refined operational semantics given in [1].

A second possible extension is the investigation of the full abstrac-
tion issue. For obvious reasons it would be desirable to introduce in
the semantics the minimum amount of information needed to obtain
compositionality, while preserving correctness. In other terms, one
would like to obtain a results of this kind: SP (G) = SP (G′) if and
only if, for any H , SAP (G, H) = SAP (G′, H) (our Corollary 1
only ensures that the “only if” part holds). Such a full abstraction
result could be difficult to achieve, however techniques similar to
those used in [6, 3] for analogous results in the context of ccp could
be considered

It would be interesting also to study further notions of composi-
tionality, for example that one which considers union of program
rules rather than conjunctions of goals, analogously to what has

been done in [7]. However, due to the presence of synchronization,
the simple model based on clauses defined in [7] cannot be used for
CHR.

As mentioned in the introduction, the main interest related to a
compositional semantics in the possibility to provide a basis to
define compositional analysis and verification tools. In our case,
it would be interesting to investigate to what extent the composi-
tional proof systems à laHoare defined in [2, 4] for (timed) ccp lan-
guages, based on resting points and trace semantics, can be adapted
to the case of CHR.

Acknowledgments We thank Michael Maher for having initially
suggested the problem of compositionality for CHR semantics.

7. REFERENCES
[1] S. Abdennadher. Operational semantics and confluence of

constraint propagation rules. In G. Smolka. editor, Proc.
Third Int’l Conf. on Principles and Practice of Constraint
Programming (CP 97), Lecture Notes in Computer Science
1330. Springer-Verlag, 1997.

[2] F.S. de Boer, M. Gabbrielli, E. Marchiori and C. Palamidessi.
Proving Concurrent Constraint Programs Correct.
Transactions on Programming Languages and Systems
(TOPLAS), 19(5): 685-725. ACM Press, 1997.

[3] F.S. de Boer, M. Gabbrielli, and M.C. Meo. Semantics and
expressive power of a timed concurrent constraint language.
In G. Smolka. editor, Proc. Third Int’l Conf. on Principles
and Practice of Constraint Programming (CP 97), Lecture
Notes in Computer Science. Springer-Verlag, 1997.

[4] F.S. de Boer, M. Gabbrielli and M.C. Meo. Proving
correctness of Timed Concurrent Constraint Programs. ACM
Transactions on Computational Logic. To appear.

[5] F.S. de Boer, J.N. Kok, C. Palamidessi, and J.J.M.M. Rutten.
The failure of failures in a paradigm for asynchronous
communication. In J.C.M. Baeten and J.F. Groote, editors,
Proceedings of CONCUR’91, vol. 527 of LNCS, pages
111–126. Springer-Verlag, 1991.

[6] F.S. de Boer and C. Palamidessi. A Fully Abstract Model for
Concurrent Constraint Programming. In S. Abramsky and
T.S.E. Maibaum, editors, Proc. of TAPSOFT/CAAP, vol. 493
of LNCS, pages 296–319. Springer-Verlag, 1991.

[7] A. Bossi, M. Gabbrielli, G. Levi, and M. C. Meo. A
Compositional Semantics for Logic Programs. Theoretical
Computer Science 122(1-2): 3–47, 1994.

[8] S. Brookes. A fully abstract semantics of a shared variable
parallel language. In Proc. Eighth IEEE Symposium on Logic
In Computer Science. IEEE Computer Society Press, 1993.

[9] B.A. Davey and H.A. Priestley. Introduction to Lattices and
Order. Cambridge University Press, 1990.

[10] Gregory J. Duck, Maria Garcia de la Banda, Peter J. Stuckey.
The Refined Operational Semantics of Constraint Handling
Rules. in Proc. of the 20th International Conference on
Logic Programming, (ICLP’04), 2004.

[11] T. Früwirth. Introducing simplification rules. TR
ECRC-LP-63, ECRC Munich. October 1991.

[12] T. Früwirth. Theory and practice of Constraint Handling
Rules. Journal of Logic Programming, 1994:19, 20:1-679.

[13] B. Jonsson. A model and a proof system for asynchronous
processes. In Proc. of the 4th ACM Symp. on Principles of
Distributed Computing, pages 49–58. ACM Press, 1985.

[14] M. Maher. Propagation Completeness of Reactive
Constraints. In Proc. International Conference on Logic
Programming (ICLP), 148 - 162, 2002.

[15] V.A. Saraswat and M. Rinard. Concurrent constraint
programming. In Proc. of POPL, pages 232–245. ACM
Press, 1990.

[16] V.A. Saraswat, M. Rinard, and P. Panangaden. Semantics
foundations of Concurrent Constraint Programming. In Proc.
of POPL. ACM Press, 1991.

APPENDIX
In this appendix we provide the proofs of some lemmas used in the
paper. The appendix is included only for the convenience of the
reviewers and it is not meant to be part of the paper.

LEMMA 4. (Lemma 1) Let G be a goal, δ ∈ S ′P (G) and let
σ = α(δ). Then

Vr(δ) = Vr(σ), where r ∈ { ing, ass, stable, constr, loc }.

Proof If r ∈ { ing, ass, stable, constr } then the proof is straight-
forward by definition of α and of Vr . Then we have only to prove
that Vloc(δ) = Vloc(σ).
The proof is by induction on n = lenght(δ).

n = 1) In this case δ = 〈G, c, ∅, G, c〉, σ = 〈c, ∅, G, c〉, and there-
fore, by definition Vloc(δ) = Vloc(σ) = ∅.

n ≥ 1) Let δ = 〈G1, c1, K1, G2, d1〉〈G2, c2, K2, G3, d3〉 · · ·
〈Gn, cn, ∅, Gn, cn〉, where G = G1.
By definition of S ′P (G), there exists δ′ ∈ S ′P (G2) such that
t = 〈G1, c1, K1, G2, d1〉 is compatible with δ′ and δ = t · δ′.
By inductive hypothesis, we have that Vloc(δ

′) = Vloc(σ
′),

where σ′ = α(δ′).
Moreover, by definition of α, σ = 〈c1, K1, H1, d1〉 · σ′,
where H1 is the multiset consisting of all the atoms in G1

which are stable in δ.
By definition of Vloc and by inductive hypothesis

Vloc(δ) =
n−1[

i=1

Fv(Gi+1, di) \ Fv(Gi, ci, Ki)

= Vloc(δ
′) ∪ (Fv(G2, d1) \ Fv(G1, c1, K1))

= Vloc(σ
′) ∪ (Fv(G2, d1) \ Fv(G1, c1, K1)).(2)

Moreover, since Vstable(σ) = Vstable(σ
′) and by definition

of Vloc, we have that

Vloc(σ
′) = (Vconstr(σ

′)∪Vstable(σ))\(Vass(σ
′)∪Fv(G2)).

Therefore by (2), by properties of ∪ and since Fv(G2) ∩
Fv(G1, c1, K1) ⊆ Fv(G2) ∩ Fv(G1), we have that

Vloc(δ) =

((Vconstr(σ
′) ∪ Vstable(σ)) \ (Vass(σ

′) ∪ Fv(G2))) ∪
(Fv(G2) \ Fv(G1)) ∪ (Fv(d1) \ Fv(G1, c1, K1)). (3)

By properties of ∪, we have that

((Vconstr(σ
′) ∪ Vstable(σ)) \ (Vass(σ

′) ∪ Fv(G2)))

∪ (Fv(G2) \ Fv(G1)) =

((Vconstr(σ
′) ∪ Vstable(σ)) \

(Vass(σ
′) ∪ (Fv(G2) ∩ Fv(G1))))

∪ (Fv(G2) \ Fv(G1)). (4)

Now let x ∈ Fv(G1) \ Fv(G2). Then by definition x ∈
Fv(t), since t is compatible with δ′ and by point 2) of def-
inition of compatibility, we have that x .∈ Vloc(δ

′). Then
following holds.
• Assume that x ∈ Vconstr(σ

′) = Vconstr(δ
′). Then since

x .∈ Vloc(δ
′) and since x .∈ Fv(G2), we have that there

exists i ∈ [2, n−1] such that x ∈ Fv(Ki) and therefore
x ∈ Vass(δ

′) = Vass(σ
′).

• x .∈ Vstable(σ) = Vstable(σ
′) = Vstable(δ

′) since x .∈
Fv(G2) and x .∈ Vloc(δ

′).
By the previous results and by (3) and (4), we have that

Vloc(δ) =

((Vconstr(σ
′) ∪ Vstable(σ)) \ (Vass(σ

′) ∪ Fv(G1))) ∪
(Fv(G2) \ Fv(G1)) ∪ (Fv(d1) \ Fv(G1, c1, K1)). (5)

Now, let x ∈ Fv(K1) ∩ (Vconstr(σ
′) ∪ Vstable(σ)). If x .∈

Fv(G1) then by definition of derivation step, we have that
x .∈ Fv(G2). Then, by using an argument similar to the
previous one, we have that Vass(σ

′). Then, by (5),

Vloc(δ) =

((Vconstr(σ
′) ∪ Vstable(σ)) \ (Vass(σ) ∪ Fv(G1))) ∪

(Fv(G2) \ Fv(G1)) ∪ (Fv(d1) \ Fv(G1, c1, K1)). (6)

Now let x ∈ (Fv(d1) \ Fv(c1)) ∩ Vass(σ
′). Since by point

4) of definition of compatibility Vloc(t) ∩ Vass(σ
′) = ∅, we

have that x ∈ Fv(G1, K1). Then

Fv(d1) \ Fv(G1, c1, K1) =
(Fv(d1) \ Fv(c1)) \ Fv(G1, K1) =
(Fv(d1) \ Fv(c1)) \ (Fv(G1, K1) ∪ Vass(σ

′)) =
(Fv(d1) \ Fv(c1)) \ (Fv(G1) ∪ Vass(σ)).

Then by (6),

Vloc(δ) =

((Vconstr(σ) ∪ Vstable(σ)) \ (Vass(σ) ∪ Fv(G1)))

∪(Fv(G2) \ Fv(G1)). (7)

Finally observe that if x ∈ Fv(G2) \ Fv(G1), then by def-
inition of derivation step, x ∈ Vloc(t) and therefore, by def-
inition of compatibility, x .∈ Vass(σ) and by point 3) of def-
inition of compatibility, x ∈ Vconstr(σ) ∪ Vstable(σ). Then
by (7), by the previous result and by definition of Vloc,

Vloc(δ) =
((Vconstr(σ) ∪ Vstable(σ)) \ (Vass(σ) ∪ Fv(G1))) =
Vloc(σ)

and then the thesis holds.

In the following, given a sequence γ, where γ ∈ Seq ∪ D, we will
denote by Inc(γ) the set of input constraints of γ. Moreover, we
will denote by Ass(γ) and Stable(γ) the multiset of assumptions
of γ and the multiset of atoms in the last goal of γ respectively.
Finally, given a sequence of derivation steps

δ = 〈B1, c1, K1, B2, d1〉 . . . 〈Bn, cn, ∅, Bn, cn〉

and a goalW , we denote by δ ⊕W the sequence

〈(B1, W), c1, K1, (B2, W), d1〉 . . . 〈(Bn, W), cn, ∅, (Bn, W), cn〉

and by δ :W the sequence

〈B1 \W, c1, K1, B2 \W, d1〉 . . . 〈Bn \W, cn, ∅, Bn \W, cn〉.

LEMMA 5. Let P be a program and let H and G be two goals
such that there exists a derivation step s = 〈(H, G), c1〉 −→K1

〈(H ′, G′, B), d1〉, where H = (H ′, H ′′), G = (G′, G′′) and
H ′′ .= ∅. Assume that there exists δ ∈ S ′P (H, G) such that
δ = t · δ′, where t = 〈(H, G), c1, K1, (H

′, G′, B), d1〉, δ′ ∈
S ′P (H ′, G′, B) and t is compatible with δ′. Moreover assume that
there exists δ′1 ∈ S ′P (H ′, B) and δ′2 ∈ S ′P (G′), such that

• α(δ′) ∈ η(α(δ′1) ‖ α(δ′2)),
• for i = 1, 2, Vloc(δ

′
i) ⊆ Vloc(δ

′),
• Inc(δ′1) ⊆ Inc(δ′),
• Ass(δ′1) ⊆ Ass(δ′) $ Stable(δ′2) and

Ass(δ′2) ⊆ Ass(δ′) $ Stable(δ′1).

Then δ1 = t′ · δ′1 ∈ S ′P (H), where t′ = 〈H, c1, K1, (H
′, B), d1〉,

δ2 = δ′2 ⊕G′′ ∈ S ′P (G) and α(δ1) ‖ α(δ2) is defined.

Proof First we prove that t′ ·δ′1 ∈ S ′P (H). By definition of S ′P and
by construction, we have only to prove that t′ is compatible with
δ′1.

1. By hypothesis Inc(δ′1) ⊆ Inc(δ′) and therefore

CT |= instore(δ′1) → instore(δ′).

Moreover since t is compatible with δ′, we have that CT |=
instore(δ′) → c1 and then the thesis.

2. By hypothesis Vloc(δ
′
1) ⊆ Vloc(δ

′) and by construction
Fv(t′) ⊆ Fv(t).
Then Vloc(δ

′
1) ∩ Fv(t′) ⊆ Vloc(δ

′) ∩ Fv(t) = ∅, where the
last equality follows since t is compatible with δ′.

3. Assume that
δ′1 = 〈(H ′, B), e1, M1, H2, f1〉 · · · 〈Hl, el, ∅, Hl, el〉
δ′2 = 〈G′, r1, N1, G

′
2, s1〉 · · · 〈G′

m, rm, ∅, G′
m, rm〉

δ′ = 〈(H ′, G′, B), c2, K2, R3, d2〉 · · · 〈Rn, cn, ∅, Rn, cn〉,

where el = rm = cn. We have to prove that for i ∈ [1, l],
Vloc(t

′) ∩ Fv(ei) ⊆
Si−1

j=1 Fv(fj) ∪ Fv(d1) ∪ Vstable(δ
′
1).

Let x ∈ Vloc(t
′) ∩ Fv(ei), where i ∈ [1, l].

By definition of ‖, there exists h ∈ [2, n] such that ei = ch.
Therefore, since Vloc(t

′) = Vloc(t) and t is compatible with
δ′, we have that

x ∈
h−1[

j=1

Fv(dj) ∪ Vstable(δ
′). (8)

Moreover, since x ∈ Vloc(t
′) and by hypothesis Vloc(δ

′
2) ⊆

Vloc(δ
′)

x .∈ Fv(G) ∩ Vloc(δ
′) ⊇ Fv(G′) ∩ Vloc(δ

′
2). (9)

Now observe that given a derivation δ̃, we have that

VStable(δ̃) ⊆ Ving(δ̃) ∪ Vloc(δ̃). (10)

Therefore
Vstable(δ

′) ⊆
(by definition of ‖ and since by hypothesis
α(δ′) ∈ η(α(δ′1) ‖ α(δ′2)))

Vstable(δ
′
1) ∪ Vstable(δ

′
2) ⊆

(by (10))
Vstable(δ

′
1) ∪ Fv(G′) ∪ Vloc(δ

′
2).

Then by (8) and (9), we have that

x ∈
h−1[

j=1

Fv(dj) ∪ Vstable(δ
′
1).

Then to prove the thesis, we have to prove that
if x ∈

Sh−1
j=1 Fv(dj) ∪ Vstable(δ

′
1) then

x ∈
Si−1

j=1 Fv(fj) ∪ Fv(d1) ∪ Vstable(δ
′
1).

Let us to assume that x ∈
Sh−1

j=2 Fv(dj) and let k the least
index j ∈ [2, h− 1] such that x ∈ Fv(dj).
If dk is an output constraint of δ′1, i.e. there exists j ∈ [1, i−1]
such that dk = fj , the proof is terminated.
Now assume that dk is an output constraint of δ′2, i.e. there
existsw ∈ [1, m] such that dk = sw and for each j ∈ [1, w−
1], we have that x .∈ Fv(sj). Since k is the least index j such
that x ∈ Fv(dj) and since t is compatible with δ′, we have
that x .∈ Fv(ck) and therefore x .∈ Fv(rw).
Moreover, since by (9), x .∈ Fv(G′) ∪ Vloc(δ

′
2), we have

that x .∈ Fv(G′
w). Then by definition of derivation step,

since x ∈ Fv(sw) \ (Fv(rw) ∪ Fv(G′
w)), we have that x ∈

Fv(Nw) and therefore x ∈ Vass(δ
′
2). By hypothesis x ∈

Vass(δ
′) ∪ Vstable(δ

′
1). Then since t is compatible with δ′

and x ∈ Vloc(t), we have that x .∈ Vass(δ
′) and therefore

x ∈ Vstable(δ
′
1).

4. We have that
Vloc(t

′) ∩ Vass(δ
′
1) ⊆

(since Vloc(t
′) = Vloc(t) and since by hypothesis

Ass(δ′1) ⊆ Ass(δ′) $ Stable(δ′2))
Vloc(t) ∩ (Vass(δ

′) ∪ VStable(δ
′
2)) ⊆

(by (10))
Vloc(t) ∩ (Vass(δ

′) ∪ Fv(G′) ∪ Vloc(δ
′
2)) ⊆

(since by hypothesis Vloc(δ
′
2) ⊆ Vloc(δ

′))
Vloc(t) ∩ (Vass(δ

′) ∪ Fv(G′) ∪ Vloc(δ
′)) =

(since t is compatible with δ′ and by definition of Vloc)
∅

Now assume that δ′2 ∈ S ′P (G′). Since by hypothesis t is com-
patible with δ′, Vloc(δ

′
2) ⊆ Vloc(δ

′) and Fv(G) ⊆ Fv(t), we
have that Fv(G′′) ∩ Vloc(δ

′
2) = ∅. Then it is easy to check that

δ2 = δ′2 ⊕G′′ ∈ S ′P (G) and then the thesis.

Finally, we prove that α(δ1) ‖ α(δ2) is defined, i.e.

(Vloc(α(δ1)) ∪ Fv(H)) ∩ (Vloc(α(δ2)) ∪ Fv(G)) ⊆
Fv(H) ∩ Fv(G).

Since α(δ′1) ‖ α(δ′2) is defined , we have that

(Vloc(α(δ′1)) ∪ Fv(H ′, B)) ∩ (Vloc(α(δ′2)) ∪ Fv(G′)) ⊆
Fv(H ′, B) ∩ Fv(G′).

By Lemma 1

Vloc(α(δ1)) = Vloc(α(δ′1)) ∪ Vloc(t
′) and

Vloc(α(δ2)) = Vloc(α(δ′2)).

Since t is compatible with δ′ and by Lemma 1, we have that

Fv(t) ∩ Vloc(α(δ′)) = ∅.

Moreover, by hypothesis for i = 1, 2 Vloc(α(δ′i)) ⊆ Vloc(α(δ′))
and by definition of t, we have that Fv(H, G)∪Vloc(t

′) ⊆ Fv(t).
Then

Vloc(α(δ1)) ∩ (Vloc(α(δ2)) ∪ Fv(G)) =
(Vloc(α(δ′1)) ∪ Vloc(t

′)) ∩ (Vloc(α(δ′2)) ∪ Fv(G)) = ∅.

Moreover by the previous observations

Fv(H) ∩ Vloc(α(δ2)) = Fv(H) ∩ Vloc(α(δ′2))
⊆ Fv(H) ∩ Vloc(α(δ′)) = ∅

and then the thesis holds.

LEMMA 6. (Lemma 2) Let P be a program, H and G be two
goals and assume that δ ∈ S ′P (H, G). Then there exists δ1 ∈
S ′P (H) and δ2 ∈ S ′P (G), such that α(δ) ∈ η(α(δ1) ‖ α(δ2)).

Proof We construct, by induction on the l = length(δ) two se-
quences δ ↑(G.H)= (δ1, δ2), where

1. for i = 1, 2, Vloc(δi) ⊆ Vloc(δ) and Inc(δi) ⊆ Inc(δ) (and
therefore CT |= instore(δi) → instore(δ)).

2. Ass(δ1) ⊆ Ass(δ) $ Stable(δ2) and Ass(δ2) ⊆ Ass(δ) $
Stable(δ1),

3. δ1 ∈ S ′P (H), δ2 ∈ S ′P (G), α(δ1) ‖ α(δ2) is defined and
4. α(δ) ∈ η(α(δ1) ‖ α(δ2)).

(l = 1) In this case δ = 〈(H, G), c, ∅, (H, G), c〉. We define

δ ↑(H,G)= (〈H, c, ∅, H, c〉, 〈G, c, ∅, G, c〉) = (δ1, δ2),

where δ1 ∈ S ′P (H) and δ2 ∈ S ′P (G). By definition for
i = 1, 2, Vloc(δi) = ∅, Inc(δi) = {c} = Inc(δ) and
Ass(δi) = ∅.
Moreover α(δ1) = 〈c, ∅, H, c〉 and α(δ2) = 〈c, ∅, G, c〉 and
then α(δ1) ‖ α(δ2) is defined. Now the proof is straightfor-
ward by definition of ‖.

(l > 1) Assume that δ ∈ S ′P (H, G). By definition

δ = 〈(H, G), c1, K1, B2, d1〉 · δ′,

where δ′ ∈ S ′P (B2) and t = 〈(H, G), c1, K1, B2, d1〉 is
compatible with δ′. Recall that, by definition, the tuple t rep-
resents a derivation step s = 〈(H, G), c1〉 −→K1 〈B2, d1〉.
Now we distinguish various cases according to the structure
of the derivation step s.
• In the derivation step s, we use the Solve’ rule. In this
case, without loss of generality, we can assume thatH =
(c, H ′), s = 〈(H, G), c1〉 −→∅ 〈(H ′, G), d1〉, CT |=
c1 ∧ c ↔ d1, t = 〈(H, G), c1, ∅, (H ′, G), d1〉 and δ′ ∈
S ′P (H ′, G). Moreover α(δ) = 〈c1, ∅, W, d1〉 · α(δ′),
whereW is the first stable set of α(δ′).
By inductive hypothesis there exist δ′1 ∈ S ′P (H ′) and
δ2 ∈ S ′P (G) such that δ′ ↑(H′,G)= (δ′1, δ2), α(δ′) ∈
η(α(δ′1) ‖ α(δ2)) and therefore there exists σ′ ∈ α(δ′1) ‖
α(δ2) such that α(δ′) ∈ η(σ′). Then, we define

δ ↑(H,G)= (δ1, δ2) where δ1 = 〈H, c1, ∅, H ′, d1〉 · δ′1.

By definition 〈H, c1〉 −→∅ 〈H ′, d1〉,
t′ = 〈H, c1, ∅, H ′, d1〉 represents a derivation step for
H , Fv(d1) ⊆ Fv(H)∪Fv(c1) and therefore Vloc(t

′) =
∅. Then the following holds.
1. Let i ∈ [1, 2]. By the inductive hypothesis, by con-
struction and by the previous observation Vloc(δi) ⊆
Vloc(δ

′) = Vloc(δ) and Inc(δi) ⊆ Inc(δ′)∪{c1} =
Inc(δ).

2. By inductive hypothesis and by construction,
Ass(δ1) = Ass(δ′1) ⊆ Ass(δ′) $ Stable(δ2)

= Ass(δ) $ Stable(δ2) and
Ass(δ2) ⊆ Ass(δ′) $ Stable(δ′1)

= Ass(δ) $ Stable(δ1).

3. By inductive hypothesis δ2 ∈ S ′P (G). Now, we
prove that δ1 ∈ S ′P (H). By construction, we have
only to prove that t′ is compatible with δ′1.

Since Vloc(t
′) = ∅, we have that

Vloc(t
′) ∩ Vass(δ

′
1) = ∅ and

Vloc(t
′) ⊆ Vconstr(t

′ · δ′1) ∪ Vstable(δ
′
1).

Moreover, by inductive hypothesis, since Fv(t′) =
Fv(t) and since t is compatible with δ′, we have that

Vloc(δ
′
1) ∩ Fv(t′) ⊆ Vloc(δ

′) ∩ Fv(t) = ∅.

Then by the previous point 1. and by definition, t′ is
compatible with δ′1 and therefore δ1 ∈ S ′P (H).
Finally observe that by inductive hypothesis, α(δ′1) ‖
α(δ2) is defined. Then since by construction Vloc(δ1) =
Vloc(δ

′
1) and by Lemma 1, we have that

Vloc(α(δ1)) ∩ (Vloc(α(δ2)) ∪ Fv(G)) = ∅.

Moreover by inductive hypothesis and since t is com-
patible with δ′, we have that Vloc(δ2) ∩ Fv(H) ⊆
Vloc(δ

′)∩Fv(H) = ∅ and therefore α(δ1) ‖ α(δ2)
is defined.

4. Now, observe that α(δ1) = 〈c1, ∅, W1, d1〉 · α(δ′1),
whereW1 is the first stable set of α(δ′1). Then, since
σ′ ∈ α(δ′1) ‖ α(δ2) we have that

〈c1, ∅, W1 $W2, d1〉 · σ′ ∈ α(δ1) ‖ α(δ2),

where W2 is the first stable set of α(δ2) and there-
foreW ′ = W1$W2 is the first stable set of σ′. Then
the thesis follows by observing that by the previous
results and by definition of η,
α(δ) ∈ η(〈c1, ∅, W ′, d1〉 ·σ′) ⊆ η(α(δ1) ‖ α(δ2)).

• In the derivation step s, we use the Simplify’ rule and let
us to assume that in the derivation step s atoms deriving
fromH only are rewritten.
In this case, we can assume that H = (H ′, H ′′), H ′′ .=
∅, s = 〈(H, G), c1〉 −→K1 〈(H ′, B, G), d1〉, δ′ ∈
S ′P (H ′, B, G) and t = 〈(H, G), c1, K1, (H

′, B, G), d1〉.
Moreover α(δ) = 〈c1, K1, W, d1〉 · α(δ′), where W is
the first stable set of δ′ restricted to the atoms in (H ′, G).
By inductive hypothesis there exist δ′1 ∈ S ′P (H ′, B)
and δ2 ∈ S ′P (G) such that δ′ ↑((H′,B),G)= (δ′1, δ2),
α(δ′) ∈ η(α(δ′1) ‖ α(δ2)) and therefore there exists
σ′ ∈ α(δ′1) ‖ α(δ2) such that α(δ′) ∈ η(σ′) and α(δ) ∈
η(〈c1, K1, W

′, d1〉 · σ′), whereW ′ is the first stable set
of σ′ restricted to the atoms in (H ′, G). Then, we define

δ ↑(H,G)= (δ1, δ2) where
δ1 = 〈H, c1, K1, (H

′, B), d1〉 · δ′1.

By definition 〈H, c1〉 −→K1 〈(H ′, B), d1〉 and t′ =
〈H, c1, K1, (H

′, B), d1〉 represents a derivation step for
H and Vloc(t

′) = Vloc(t).
Now the following holds.
1. Let i ∈ [1, 2]. By the inductive hypothesis, by con-
struction and by the previous observation Vloc(δi) ⊆
Vloc(δ

′)∪Vloc(t) = Vloc(δ) and Inc(δi) ⊆ Inc(δ′)∪
{c1} = Inc(δ).

2. By inductive hypothesis and by construction,

Ass(δ1) = Ass(δ′1) $ {K1} ⊆
Ass(δ′) $ Stable(δ2) $ {K1} =
Ass(δ) $ Stable(δ2)

and
Ass(δ2) ⊆ Ass(δ′) ∪ Stable(δ′1) ⊆
Ass(δ) ∪ Stable(δ1).

3. The proof follows by Lemma 5.
4. By construction α(δ1) = 〈c1, K1, W1, d1〉 · α(δ′1),
where W1 is the first stable set of α(δ′1) restricted
to the atoms in H ′. Then 〈c1, K1, W1 $ W2, d1〉 ·
σ′ ∈ α(δ1) ‖ α(δ2), where W2 is the first sta-
ble set of α(δ2) and therefore W ′ = W1 $ W2 is
the first stable set of σ′, restricted to the atoms in
(H ′, G). Then the thesis follows by observing that
by the previous results and by definition of η, α(δ) ∈
η(〈c1, K1, W

′, d1〉 · σ′) ⊆ η(α(δ1) ‖ α(δ2)).

• In the derivation step s, we use the Simplify’ rule and let
us to assume that in the derivation step s atoms deriving
both fromH and G are rewritten.
In this case, we can assume thatH = (H ′, H ′′),
G = (G′, G′′) ,H ′′, G′′ .= ∅,
s = 〈(H, G), c1〉 −→K1 〈(H ′, G′, B), d1〉,
δ′ ∈ S ′P (H ′, G′, B) and
t = 〈(H, G), c1, K1, (H

′, G′, B), d1〉. Moreoverα(δ) =
〈c1, K1, W, d1〉 ·α(δ′), whereW is the first stable set of
δ′ restricted to the atoms in (H ′, G′).
By inductive hypothesis there exist δ′1 ∈ S ′P (H ′, B)
and δ′2 ∈ S ′P (G′) such that δ′ ↑((H′,B),G′)= (δ′1, δ

′
2),

α(δ′) ∈ η(α(δ′1) ‖ α(δ′2)) and therefore there exists
σ′ ∈ α(δ′1) ‖ α(δ′2) such that α(δ′) ∈ η(σ′). Then, we
define

δ ↑(H,G)= (δ1, δ2) where
δ1 = 〈H, c1, K1 $ {G′′}, (H ′, B), d1〉 · δ′1 and
δ2 = δ′2 $G′′.

By definition

〈H, c1〉 −→K1&{G′′} 〈(H ′, B), d1〉,

t′ = 〈H, c1, K1${G′′}, (H ′, B), d1〉 represents a deriva-
tion step forH and Vloc(t

′) = Vloc(t).
Now the following holds.
1. Let i ∈ [1, 2]. The proof that Vloc(δi) ⊆ Vloc(δ) and
Inc(δi) ⊆ Inc(δ) is analogous to the previous one and
hence it is omitted.
2. By inductive hypothesis and by constructionAss(δ1) =
Ass(δ′1) $ {K1} $ {G′′} ⊆ Ass(δ′) $ Stable(δ′2) $
{K1} $ {G′′} = Ass(δ) $ Stable(δ2) and Ass(δ2) =
Ass(δ′2) ⊆ Ass(δ′)∪Stable(δ′1) ⊆ Ass(δ)∪Stable(δ1).
3. The proof follows by Lemma 5.
4. By construction α(δ1) = 〈c1, K1 $ {G′′}, W1, d1〉 ·
α(δ′1), whereW1 is the first stable set of α(δ′1) restricted
to the atoms in H ′. Then 〈c1, K1 $ {G′′}, W1 $W2 $
{G′′}, d1〉 · σ′′ ∈ α(δ1) ‖ α(δ2), where W2 is the first
stable set of α(δ′2) and σ′′ is the sequence obtained from
σ′ by adding {G′′} to each stable set of σ′. By construc-
tionW ′ = W1$W2 is the first stable set of σ′, restricted
to the atoms in (H ′, G′). Then the thesis follows by ob-
serving that by the previous results and by definition of
η, α(δ) ∈ η(〈c1, K1 $ {G′′}, W ′ $ {G′′}, d1〉 · σ′′) ⊆
η(〈c1, K1, W

′, d1〉 · σ′) ⊆ η(α(δ1) ‖ α(δ2)).

LEMMA 7. (Lemma 3) Let P be a program, let H and G be
two goals and assume that δ1 ∈ S ′P (H) and δ2 ∈ S ′P (G) are two
sequences such that the following hold:

1. α(δ1) ‖ α(δ2) is defined,

2. σ = 〈c1, K1, W1, d1〉 · · · 〈cn, ∅, Wn, cn〉 ∈ η(α(δ1) ‖ α(δ2)),
3. (Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Vass(σ) = ∅,
4. for i ∈ [1, n], (Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆Si−1

j=1 Fv(dj) ∪
Si

j=1 Fv(Wj).

Then there exists δ ∈ S ′P (H, G) such that Vloc(δ) ⊆ Vloc(δ1) ∪
Vloc(δ2) and σ = α(δ).

Proof The proof is by induction on the l = length(σ).

(l = 1) In this case δ1 = 〈H, c, ∅, H, c〉, δ2 = 〈G, c, ∅, G, c〉,
α(δ1) = 〈c, ∅, H, c〉, α(δ2) = 〈c, ∅, G, c〉,
σ = 〈c, ∅, (H, G), c〉 and δ = 〈(H, G), c, ∅, (H, G), c〉.

(l > 1) Without loss of generality, we can assume that

δ1 = t′ · δ′1, δ2 = 〈G, e1, J1, G2, f1〉 · δ′2,
σ1 = α(δ1) = 〈c1, L1, N1, d1〉 · α(δ′1) and
σ2 = α(δ2) = 〈e1, J1, M1, f1〉 · σ′2,

where t′ = 〈H, c1, L1, H2, d1〉, δ′1 ∈ S ′P (H2),
σ ∈ η(〈c1, L1, N1 $M1, d1〉 · σ̄) and σ̄ ∈ α(δ′1) ‖ σ2.
By definition of η, there exist the multisets of atoms L′, L̄, L
and the sequence σ′ such that

σ = 〈c1, L1 \ L, ((N1 $M1) \ L̄) \ L′, d1〉 · (σ′ \ L′),

where σ′ ∈ η(σ̄) ⊆ η(α(δ′1) ‖ σ2), K1 = L1 \ L and
W1 = ((N1 $M1) \ L̄) \ L′. Now the following holds
1. α(δ′1) ‖ α(δ2) is defined.
2. σ′ = 〈c2, K2, W2 $ L′, d2〉 · · · 〈cn, ∅, Wn $ L′, cn〉 ∈

η(α(δ′1) ‖ α(δ2)).
3. By definition, by the hypothesis and by Lemma 1, we
have that

(Vloc(α(δ′1)) ∪ Vloc(α(δ2))) ∩ Vass(σ
′) ⊆

(Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Vass(σ) = ∅.

4. For i ∈ [2, n],

(Vloc(α(δ′1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆Si−1
j=2 Fv(dj) ∪

Si
j=2 Fv(Wj $ L′).

To prove this statement observe that by hypothesis and
by Lemma 1, for i ∈ [2, n],

(Vloc(α(δ′1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆
(Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆Si−1

j=1 Fv(dj) ∪
Si

j=1 Fv(Wj).

Then to prove the thesis, we have only to prove that for
i ∈ [2, n], if x ∈ (Vloc(α(δ′1))∪ Vloc(α(δ2)))∩Fv(ci)
then x .∈ Fv(d1) ∪ Fv(W1).

• Let x ∈ Vloc(α(δ′1)). Then since t′ is compatible
with δ′1 andW1 ⊆ H , we have that x .∈ Fv(t′) and
therefore x .∈ Fv(d1, W1).

• Let x ∈ Vloc(α(δ2))∩Fv(ci). By definition of Vloc

and since α(δ1) ‖ α(δ2) is defined, we have that

x .∈ Fv(H) ∪ Fv(G) ∪ Vloc(α(δ1)) (11)

and therefore, since W1 ⊆ H , we have that x .∈
Fv(W1).
Now we prove by contradiction that x .∈ Fv(d1).
Assume that x ∈ Fv(d1). Since by previous result

x . inW1, by point 4. of the hypothesis x .∈ Fv(c1).
Then, since by (11) x .∈ Fv(H) ∪ Vloc(α(δ1)), we
have that x ∈ Fv(L1). Moreover, since by hy-
pothesis Vloc(α(δ2)) ∩ Vass(σ) = ∅, we have that
x .∈ Fv(K1). Then, since K1 = L1 \ L, we have
that x ∈ Fv(L).
Now, observe that, by (11) and since N1 $ M1 ⊆
H$G, we have that x .∈ Fv(L′). Moreover by defi-
nition of η,CT |= c1∧L ↔ c1∧L′. Then since x .∈
Fv(c1), we have that CT |= c1 ↔ false. Then,
by definition of sequence for each i ∈ [2, n], we
have that CT |= ci ↔ false and CT |= di−1 ↔
false. Then by definition of S ′P (H2) and by defi-
nition of ‖, we have that σ1 = 〈c1, ∅, H, c1〉, σ2 =
〈c1, ∅, G, c1〉, length(σ1) = length(σ2) = 1 and
this contradicts the hypothesis that l = length(σ) >
1.

By previous results and by inductive hypothesis, we have that
there exists δ′ ∈ S ′P (H2, G) such that Vloc(δ

′) ⊆ Vloc(δ
′
1)∪

Vloc(δ2) and σ′ = α(δ′). Moreover by definition of η, L′ is a
multiset of atoms which are stable in δ′. Then δ̃ = δ′ : L′ ∈
S ′P (B), where the goal B is obtained from the goal (H2, G)
by deleting the atoms in L′.
Now observe that since t′ = 〈H, c1, L1, H2, d1〉 represents a
derivation step forH , we have that t = 〈(H, G), c1, K1, B, d1〉
represents a derivation step for (H, G). Let us denote by δ the
sequence t · δ̃.
Then, to prove the thesis, we have to prove that Vloc(δ) ⊆
Vloc(δ1)∪Vloc(δ2), t is compatible with δ̃ (and therefore δ ∈
S ′P (H, G)) and σ = α(δ).

(Vloc(δ) ⊆ Vloc(δ1) ∪ Vloc(δ2)). By construction

Vloc(δ) = by construction
Vloc(t) ∪ Vloc(δ̃) = by construction
Vloc(t

′) ∪ Vloc(δ
′) ⊆ by inductive hypothesis

Vloc(t
′) ∪ Vloc(δ

′
1) ∪ Vloc(δ2) = by construction

Vloc(δ1) ∪ Vloc(δ2)

and then the thesis.
(t is compatible with δ̃). The following holds.

1. CT |= instore(δ̃) → d1. The proof is straight-
forward, since by construction either instore(δ̃) =
instore(δ′1) or instore(δ̃) = instore(δ2).

2. Vloc(δ̃)∩Fv(t) = ∅. By construction and by induc-
tive hypothesis

Vloc(t) = Vloc(t
′), Fv(t) ⊆ Fv(t′) ∪ Fv(G) and

Vloc(δ̃) ⊆ Vloc(δ
′
1) ∪ Vloc(δ2). (12)

Since t′ is compatible with δ′1, we have that and
α(δ′1) ‖ α(δ2)

Vloc(δ
′
1) ∩ (Fv(t′) ∪ Fv(G)) = ∅. (13)

By points 3. and 4. of the hypothesis Fv(K1, c1) ∩
Vloc(δ2) = ∅ and by points 1. of the hypothesis
we have that α(δ1) ‖ α(δ2) is defined and therefore
(Fv(H) ∪ Vloc(t

′)) ∩ Vloc(δ2) = ∅. Then by defi-
nition and by (12)

Fv(t) ∩ Vloc(δ2) =

(Fv(c1, H, K1) ∪ Vloc(t
′)) ∩ Vloc(δ2) = ∅. (14)

Then

Vloc(δ̃) ∩ Fv(t) ⊆
(by the last statement in (12))

(Vloc(δ
′
1) ∪ Vloc(δ2)) ∩ Fv(t) ⊆

(by the second statement in (12) and by (13))
Vloc(δ2) ∩ Fv(t) =

(by definition, by the first statement in (12)
and by (14))

∅.

3. for i ∈ [2, n], Vloc(t) ∩ Fv(ci) ⊆
Si−1

j=1 Fv(dj) ∪
Vstable(δ̃). The proof is immediate by construction
and by point 4. of hypothesis.

4. Vloc(t) ∩ Vass(δ̃) = ∅. The proof is immediate by
point 3. of the hypothesis.

(σ = α(δ)). By inductive hypothesis σ′ = α(δ′) and then by
construction σ′ \ L′ = α(δ̃). Then

σ = 〈c1, K1, W1, d1〉 · (σ′ \ L′)
= 〈c1, K1, W1, d1〉 · α(δ̃)
= α(δ)

where the last equality follows by observing that δ = t·δ̃,
where

t = 〈(H, G), c1, K1, B, d1〉

andW1 is the multiset of all the atoms in (H, G), which
are stable in δ.

