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Abstract:

Concurrency features in Progr.mkng Languages are an essential

part of a Computer Scientist’s education. Each set of features

presents ri model for concurrent thinking and a framework for de-

signing concurrent algorithms. A review is given of prc.granuning

language features in support of concurrency, with emphasis on the

important teaching points. Strengths rind weaknesses of alternative

languages as teachhg vehicles me discussed, and suggest ions are

given of appropriate examples and exercises.

1 Introduction.

A course in Programming Languages is a difficult course

to design because of the great breadth of the subject.

Some major questions to be answered in constructing such

a tours e are as follows.

●

●

●

●

●

Which programming paradigms should be emph~.

sized?

How many lrmgu ages should be st udierl, and in wlmt

depth?

Should the emphasis be on language design or lan-

guage implementation?

Should the case stndies be of actual hmgu.ages or of

smrtller languages created for the purpose of teachir~g

n particular paradigm [Ledgard and Marcotty] ?

How much should be said ttbout formal hmgnnges

and translation issues?
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●

●

1990

Shoulrl

rtroun d

the major organization of the course be

a series of case studies [MacLennan] [Peter-

son] or mound a. methodology for classification of lan-

guage features [Dershem and Jipping] [Pratt] [Ten-

nent] ?

To what extent should the study of programming

environments be included?

With these difficulties in mind it is not surprising that a

frill discussion of language features in support of concur-

rency is not often seen in the Programming Languages

course. h fnct, concurrency M a topic is likely to be seen

only once by an undergraduate Computer Science major,

in the Operating Systems course. It may even be that

there is some treatment of languages for concurrency in

that course (see, for example, [Pet erson and Silberschatz,

pp. 393- MN] ). But an effective argument can be made

for the position that such trentment belongs in a course

in Prograrmning Languages.

‘1’he topics which should be considered essential in a given

core course in Computer Science are those (a) which ev-

ery Computer Science major should see, and (b) which are

not cnst onmrily covered in any other but the given course.

It is certainly important for every Computer Science ma-

j or to see concurrency models in programming lartgnages.

Also, since the primttry vehicles used for teaching pro-

gramming to Computer Science majors are the Pascal

and C languages, the student’s ordinary experience does

not include concurrency at the programming language

level. Pascnl has no concurrency primitives, and the Unix

functions forko, exec( ), etc., are not actually C language

primitivm, hut rather they are operating system features

for which rLII interface has been provided in versions of G

supplied for Unix systems. Exposure to such features is

Oftel] provided in the op crating Systems course, but the

IJnix systml calls by themselves do not give a full pic-

ture of th c alternative design issues to be resolved when
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incorporating concurrency feat ures into a language.

2 Review of concurrency fea-

t ures.

The advantage of using a programming language to com-

municate a concept is that the student’s act of internaliz-

ing a semantic mapping from the relevant synt act i c st ruc-

tures to the abstract domains defined by the concept has

far better mnemonic value than the direct study of the do-

mains themselves. That is why students in the first course

in Computer Science learn better if a programming lan-

guage is taught in parallel or required as a prerequisite.

In the same way, concurrency concepts are more easily di-

gest ed in the cent ext of a programming language. Let us

review some of the major concurrency concepts and make

comments as we go concerning which languages might he

suit able for communicant ing those concepts.

2.1 Coroutines and tasks.

The most basic concurrency concept is that of the corou-

t inc. Coroutines are fundamental to the study of concur-

rency because a coroutine carries with it a local context

which progresses from an initial state at coroutine cre-

st ion to a final state at program termination, and that

context is not destroyed when control leaves the corou-

tine. In other words, once a coroutine is activated its

lifetime is independent of that of its caller. However, true

concurrence y is not possible in a language which uses the

coroutine model of a process, because that model depends

on having the coroutines explicitly relinquish cent rol to

each other. There is in fact only one thread of control

which is woven into and out of each corout ine in turn.

Still, coroutines can be used to good advantage as a mech-

anism for get tings t udents ready for the idea of concurrent

processes. Modula 2 provides a facility for dynamically

creating a coroutine from a parameterless procedure, us-

ing a chunk of heap storage for environment space. The

coroutine is not the procedure, but is created from the

procedure and placed in a process variable. The process

variable is the language’s represent at ion oft he corout ine’s

context. The value stored in the process variable is a

(code pointer, environment pointer) pair. The Modula 2

“TRAllSFER” operation provides for the transfer of coJl-

trol from one “process” to another. Thus the state of the

program as execution begins is with one process active,

called the main process, and when new processes are cre-

ated they are not destroyed until program termination.

A modification of the coroutine concept produces the task

concept. When a task is initiated, it immediately begins

execution in parallel with its caller. (The parallelism may

be real or it maybe simulated by a time- sliced scheduler.

The language typically cannot differentiate bet ween the

two.) PL/I and Ada both incorporate the task concept

but PL/I’s facility is old-fashioned and error-prone.

Although Modula-2 does not have a tasking facility as

such, its coroutines can be made to behave like tasks us-

ing a scheduler. To achieve this, Modula 2 provides a

modified form of coroutine transfer, called “IOTRAIISFER”,

which is a facil.it y for replacing hardware interrupts, and it

also provides a facility for masking interrupts upon entry

to a module. On MS-DOS machines, which allow access

to the timer interrupt, these features allow a time-sliced

scheduler to be used to schedule the invocation of corou-

tines. This is an especially valuable educational tool,

since the code for the interrupt handler and scheduler is

all in Modula 2 and available for the student’s inspection.

Like the Modula 2 process, Ada’s task is a true data type

and all the other structuring principles of the language are

orthogonal to it. This means that one can build arrays

or linked lists of tasks, or a task could be a component of

a record. Ada provides the additional capability to stat-

ically declare a task so that the code which implements

the task is truly identified with one and only one task.

This gives Ada somewhat of an edge in the teaching of

tasks, since a student can be given a sample piece of code

in which the various players in the example application

can be geog-raphically identified.

2.2 Synchronization and Communica-

tion

When the language includes facilities for tasking it should

also inclu d c facilities for synchronizat ion and communi-

cantion bet we en tasks. Whereas corout ines can synchro-

nize their artions via the pattern of ‘(resume” calls, tasks

must be provided with special synchronization prirnit ives.

Also, coroutines can communicate via shared variables

without rnnuing into a “critical region” problem, whereas

tasks must either avoid using shared variables or rely on
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language facilities for identifying critical regions nnd pro-

t ecting the variables involved from simnlt aneous access.

The “semaphore” data type [Dijkstra], or some variant

thereof, is often found in languages that support concur-

rency. Algol 68 has a semaphore drtta type [Tanenbaum,

p. 190], and PL/I has its event variables, which are essen-

tially binary semaphores [Polkwk and Sterling, p. 568].

Modula 2 comes with a library module providing a “sig-

nal” data type. The prototype version of this module

is found in [Wirth, p. 129], but there are many vari&

tions. The signal is not actually a semaphore, since it

serves coroutines, not tasks, but it is easy to modify the

basic signal operations so that when a time-sliced sched-

uler is added the signal behaves like whatever flavor of

semaphore one desires. Ada does not have semaphores as

such, but it is a simple matter to write am Ada package

to implement a semaphore data type.

Although critical region protection is always available by

means of semaphores, the student should be strongly im-

pressed with the fact that relying on semaphores for crit-

ical region protection is akin to relying on goto’s and la-

bels for sequence control. The semaphore is actually a

synchronizat ion feature, not a critical region feature, so

its design does not address the problem directly. If the

standard protocol is used whereby a P() operation begins

the critical region and a V() operation ends the critical

region, there is no way that the language can enforce pro-

t ection; the programmer has that responsibility y. In the

same way that hardware conditional jumps are used to

implement higher level control structures, so are sema-

phore operations the basic tools for constructing higher

level features. Thus semaphores should be viewed as an

implement ation technique rather than a high-level mech-

anism. Devices such M monitors [Brinch Hansen] and

conditional critical regions [Ho are] are important to OIS in

the design of high level concurrency features, Their inl-

plementation is clearer once the lower level concept of a

semaphore is introduced and explained.

The extreme position taken by languages such as

Snlalltalk, namely that shared memory should be avoided

as much as possible and that task communication should

normally be accomplished via message passing, is akin to

Wirth’s position that the accessing of subscripted v=i-

ables should always be accompanied by a range check.

The security thus obtained is paid for by a dramatic in-

crease in overhead, Facilities like mesmge possing and

remote procedure cdl are indeed more secure means of

communicrd ion, but they require all the usual stack nlain-

tennnce of procedure calls and parameter passing, as well

as the maintenance of buffers to simulate the needed com-

munication channel. Students need to be made aware

that this design choice is simply another example of the

tradeoff between security and execution time efficiency.

The Ada rendezvous has tryst al-clear semantics and is a

very powerful facil.i t y for task synchronizat ion and com-

munication. Its main problem is that it requires that

two tasks be synchronized in order to communicant e. The

rendezvous dictates that there be a “calling task” and a

‘[called task” and the two must participate in the ren-

dezvous together. The two control flows merge. To the

calling task, the rendezvous 10oks much like a procedure

call. To the cnlled task, a rendezvous t&es place when

control flows into a local scope defined by an ‘(accept”

statement. When the called task exits the accept state-

ment the two flows of control split back into the original

two tasks. To achieve true asynchronous commnnicat ion

there must be an intermediary task to buffer the trans-

ferred information.

3 The

Relationship between Concur-

rency and ADT’s.

Tasks add n new dimension to the teaching of the con-

cept of the abstract data type (ADT). For example, an

ADT which provides storage allocation and deallocation

primitives might come with a garbage collection task that

runs in pamllel with the clients of the ADT. The garbage

collection task is viewed M a ‘{hidden” part of the ADT,

initiated during the execution of the package’s (or nlod-

nle’s) startup code; its code can be examined (or written)

by the students for their edification. Even in a language

like Modula 2, which does not have sophisticated task

communication facilities, the interface between tasks may

be defined and presented to the client module ns a set of

procedures. The ugly details of coding needed to manage

communicant ion of information, critical regions, and syn-

C.hronizatioll can be hidden in the implementation nlod-

ule.
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4 Classroom Examples ancl As-

signments.

It can be somewhat of a challenge to come up with well

motivsd ed examples of concurrent programs to present

in class. The bounded buffer problem [Peterson and Sil-

berschat z, page 345] makes a good first example. Other

classic problems like the readers/writ ers problems and

the dining philosophers are int cresting and relevant in

the context of an Operating Systems course, but the is-

sues they address (deadlock, starvation, Bernstein’s Con-

ditions) are not the central teaching points in a Program-

ming Languages class.

To get the basic idea of concurrency across, a set of ran-

dom walkers (each represented on the screen by a single

character unique to that particular walker) can be made

to tour across the screen, taking care not to run into each

other. One shared variable is needed here, a data struc-

ture to model the screen. A list of screen positions cur-

rently occupied by all of the walkers is one option, or

a t we-dimensional boolean array. Every reference to the

screen data structure and every screen read or write oper-

ation must be enclosed in a critical region, but the walkers

are completely autonomous otherwise. Since the walkers

all use the same logic, one can strongly push the point

that there is a single task type and all walkers are simply

instances of that type.

If a good windows library is available, the students can

be asked to program some simple interactions between

tasks represent ed as windows on the screen. For example,

task one generates random numb ers, displays them in its

window, and passes them on to task two, which sorts them

by fours then displays and passes the sorted 4-triples to

task three. Task three merges the 4-triples to get sorted

8-tnplesj displays the 8-triples, and passes them to task

four. Task four maintains a sorted linked list of numbers

and updates that list by merging it with the incoming

sorted 8-tuples. Task four displays each number as it

is inserted, along with the portion of the list where it

is being inserted. All four tasks maintain a display of

the number of numbers they have processed at any given

time.

If students understand the problems of multiple tasks con-

tending for fixed resources, then some more int.cresting

kinds of things can be done. Each of two or more win-

dows may be made to maintain a cash drawer with some

random initial assignment of twenty, ten, five, and one-

dollar bills. The windows then can present requests to

each other to make change, with the eventnal goal to ob-

t ain at least one of each denomination of bill. A window

with six or more ones and no fives might reqnest to ex-

change five ones for a five, bnt would have its reqnest

ignored nnt il a corresponding window requested change

for a five. Thns each window has to present its request,

wait a judicious amount of time, then perhaps try an-

other request. Of course, deadlock and starvation can

occur here.

In [Liss and McMillun], a class project is described based

on a simple game of skill. The t caching point is the ab-

stract data type, and the motivation comes in large part

from competition between students. Each team of stu-

dents writes a strategy modnle for the game and a tour-

nament is held which competes one against the other.

This kind of experience is very rewarding for the students

and much can be taught in this way about abstract data

types both from the designer’s point of view and from the

client’s point of view. On the other hand, most games do

not make very good concurrency exercises because the

purely internal activity of planning strategy is the only

asynchronous act ivity that goes on.

There is a very int cresting class of card games, how-

ever, where much concurrent activity takes place. These

are the games in which the players engage in asyn-

chronous “swapping” of cards. In the popular game called

“Spoons”, two or more people sit in a circle and the one

who is designated the dealer deals fonr cards to each per-

son, face down. The dealer places the rest of the cards

to his/her right, face down. The players pick up their

hands, and the dealer then begins to try to collect four

cards of the same face value ( “four of a kind”) by draw-

ing cards from the right and discarding them to the left.

The player on the dealer’s left can begin doing the same

thing ns soon as the dealer makes the fist discard. At no

time does any player have more than five cards in his/her

hand. The score is kept in an interesting manner. In the

center of the ring of n players is a pile of n — 1 spoons.

As soon M any player achieves four of a kind she or he

is allowed to pick up a spoon. As soon as a spoon is

picked up, all players are allowed to pick up a spoon. Of

course, one player fails to get a spoon nnd thus has “lost”

that hand. The loser gets a mark against him/her, the

deal passes to the left, and play continues until all play-

ers except cme have six marks (enough to spell “spoons”).

Whenever a player receives six marks, that player exits

the game immediately, taking a spoon with her/him.
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The above game was the basis for two successful exer-

cises in a grwiuat e level course in Programming g Lmt-

gnnges at the University of Alabama, A versiou of Mod-

ula 2 for the IBM PC was used, along with n modified

‘{Process” I.ibrarymodnle, which provided rs time-sliced

scheduler and a SIGEAL data type (semaphore), among

other things. In the first exercise, students were given

the definition modnle “Spo onsManager” of figure 1, along

with a “Cards” module which provided a playing card

abstrnct data type with limited operations, nnd told to

nse the facilities of the provided modules to program one

hand (strategy module) of a spoons game. They tested

their strategy modules by informally competing them

agRinst one another. The Spo onsl!anager module takes

care of the dealing, display, and windowing functions. A 11

that n strategy module really does is obtain a player ID

from the Spo onsManager, then enter an infinite loop. IJ~-

side the infinite loop, a player requests cards from the

SpoonsManager then enters an inner hand-playing loop

which is exited when a spoon is obtained or no spoons

remain. An example strategy module is seen in figure 2.

In the second exercise, students were split into teams

and told to write the implementation code for the

Spoonsl!anager module. They were given an expanded

version of the Cards module, and they were responsible

for providing safe access to shared variables and nmin-

taining sufficient security to see that no plnyer module

“cheated.” in any way.

Both exercises were quite successful. All students tom-

pleted exercise 1, and all teams successfully completed

the sp eons manager. The students enjoyed the exp e-

rience and indicated that they understood con currency

much more thoroughly after having applied the essential

concepts in an actual simulation.

5 Conclusion

Concurrency features are a necessary part of a course in

programming languages, and t eaching them there pro-

vides an excellent opportunity to help the student to think

in terms of concurrent processes. A well-chosen set of ex-

ercises can be used to show the student the naturalness

and usefulness of the task concept.
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15.

Tanenbaurn, A. S., “A Tutorial on Algol 68”, Com- PROCEDURE GetSpoon(

puting$urveys, Vol. 8, No. 2 (June 1976), pp. 155- Hand: HandType;

190. VAR GotSpoon: BOOLEAN;

Tennent, R. D. Principles of Programming Lan-
VAR SpoonsRemain: BOOLEAN;

gauges. Englewood Cliffs, NJ, Prentice-Hall, 1981. id: IDType

Wirth, N. Programming

Springer-Verlag, 1982.

);
‘n ‘oduia-z” ‘ew York’ PROCEDURE Get Cards FromDealer (

VAR Hand: HandType;

i.d: IDType

);

DEFINITION MODULE SpoonsManager; PROCEDURE Cardlfaiting(

FROM Cards IMPORT

FaceValueType, CardType,

Sui.tType, HandType;

TYPE IDType;

PROCEDURE StartPlayer(

PlayerProc: PROC;

PlayerName: ARRAY OF CHAR

);

(* Starts a player process for

the ‘Spoons> game. May be

called up to eight times.

The CPlayerProc> parsmeter

contains the player logic

for this process. The Name

parameter is used by the

Spoons Manager to identify

the process on the screeen.

*)

PROCEDURE SelectCard(

VAR Card: CardType;

Hand: HandType;

Face: FaceValueType;

Suit: SuitType;

VAR Found: BOOLEAN;

id: IDType

);

PROCEDURE GetID(

PlayerProc: PROC;

VAR id: IDType

);

id: IDType

) : BOOLEAN;

PROCEDURE TakeCardFromRight(

VAR Card: CardType;

VAR Hand: HandType;

id: IDType

);

PROCEDURE PassCardToLeft(

VAR Card: CardType;

VAR Hand: HandType;

id: IDType

);

PROCEDURE NumberOfPlayers(

) : CARDINAL;

PROCEDURE ManageSpoonsGame;

END SpoonsManager.

Figure 1. Dellnition Module for the Spoons Man-

ager.
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IMPLEMENTATION MODULE Yeager;

FROM Cards IMPORT FaceValueType,

HandType, CardType, FaceCount;

FROM SpoonsManager IMPORT IDType,

GetID, GetSpoon, TakeCardFromRi-ght,

CardWaiting, PassCardToLeft,

GetCardsFromDealer, SelectCard;

PROCEDURE play;

VAR

id: IDType;

GotSpoon, SpoonsRemai.n,

FoundCard: BOOLEAN;

Hand: HandType;

Card: CardType;

FaceValue: FaceValueType;

BEGIN

GetID(play,i-d) ;

LOOP

GetCardsFromDealer(Hand, id);

GotSpoon := FALSE;

REPEAT

REPEAT

GetSpoon(Hand,GotSpoon,

SpoonsRemain ,id);

UNTIL CardWai.ti.ng(id) OR

GotSpoon OR

NOT SpoonsRemai.n;

IF NOT GotSpoon AND

SpoonsRemain THEN

TakeCardFromRight (Card,

Hand,i.d);

FaceValue := deuce;

LOOP

CASE FaceCount(FaceValue,

Hand) OF

I 1: SelectCard(

Card, Hand,

FaceValue, anysuit,

FoundCard,i.d) ;

EXIT ;

I 2: SelectCard(

Card, Hand,

FaceValue, anysuit,

FoundCard,id) ;

I 4: GetSpoon(

Hand,GotSpoon,

SpoonsRemain ,id);

END ;

IF FaceValue = Ace THEN

EXIT

ELSE

INC(FaceValue)

END

END ;

IF NOT GotSpoon THEN

PassCardToLeft(Card,
Hand,id);

END

END

UNTIL GotSpoon OR

NOT SpoonsRemain;

END

END play;

END Yeager.

Figure 2. Example implementation module for

player strategy.
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