
An Exercise in Denotational Semantics

Ken Slonneger

The University of Iowa

Iowa City, Iowa 52242

slonnegr@herky. cs. uiowa. edu

ABSTRACT

This paper describes an exercise used in a
first-year graduate course, Programming
Languages Foundations, which deals with
formal methods of speci~ing the semantics
of a programming language. By having the
students translate semantic equations di-
rectly into Prolog clauses thereby construct-
ing an interpreter, this exercise makes deno-
tational semantics more tangible and practi-
cal, After a brief description of the course,
the two parts of the exercise are presented and
illustrated by an example.

INTRODUCTION

Although some undergraduates take
Programming Languages Foundations, it is
primarily intended for graduate students.
The textbook for the course is Formal

Specification of Programming Languages: A

Panoramic Primer [Pagan81], and the main

topics covered in the course are:

a) Syntactic Issues

b) Attribute Grammars

c) Operational Semantics

d) Denotational Semantics

e) Axiomatic Semantics

f) Algebraic Specifications

For many students, this is their first en-
counter with the formal methods of defining
programming language semantics. Specif-
ically, the complexity and succinctness of

denotational specifications cause the most
trouble to students in this course. They tend
to be overwhelmed by the formalism and no-
tational conciseness of denotational seman-
tics, viewing it as a purely theoretical drill.
Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

@ 1991 ACM 0-89791 -377 -9/91 /0002-0178 . ..$1 .50

The purpose of the exercise described here is
to study denotational semantics in a more
practical and experimental framework.
Other authors have suggested this sort of pro-
ject, namely translating a denotational defi-
nition into an interpreter for the language
[Pagan79], [Allison83]. These examples have
been carried out in imperative languages such
as Pascal. The interpreters include a scanner
and a recursive descent parser, which create a
pointer structure representing the source pro-
gram and then use function subprograms to
implement the denotational definitions.

Denotational interpreters written in an im-
perative language are more difficult to write,
read, and modify than the example to be de-
scribed in this exercise. Using Prolog for this
purpose puts the programming at a higher
level so that time is not wasted in debugging
the code that builds and manipulates the
pointer structures for the abstract syntax tree
and in fitting the denotational functions into
the limited configuration of Pascal func-
tions.

The goal of the exercise is to have the students
produce a working interactive language pro-
cessor based on a denotational definition of a
programming language with a minimum
number of distractions generated by the de-
tails of the implementation language.

The structure of the resulting interpreter pro-
gram is shown in Figure 1.

PART ONE: Scanner and Parser

The first part of the exercise is to write a
scanner and a parser for the Pam program-
ming language presented in the Pagan text.
Pam is a toy algorithmic language with inte-
ger arithmetic using a single global scope.
Figure 2 contains a BNF specification of its
syntax.

178

http://crossmark.crossref.org/dialog/?doi=10.1145%2F107005.107036&domain=pdf&date_stamp=1991-03-01

Figure 1:
Source Program

+

List of Tokens
(a Prolog List)

Abstract Syntax Tree
(a Prolog structure)

<program> ::= <series>

<series> ::= <statement> I <series> ; <statement>

:statement> ::= <variable> := <exp~ I

read <variable list> I wrRe cvariable list> I

if <comparison> then <series> fi I

if <comparison> then <series> else <series> fi I

while <comparison> do <series> end I

to cexpr> do cseries> end

mariable list> ::= -aariable> I

cvariable list> , cvariable>

<comparison> ::= cexpr> crelatiorD <exp~

eexpr> ::= <term> I cexpr> <weak op> <term>

derm> ::= <element> I <term> <strong op> <element>

:element> ::= <constant> I <variable> I (<expr>)

:relation> ::= c= I < I = I > I >= I <>

:weak op> ::= + I - <strong op> ::= * I /

Figure 2: BNF for Pam

output

After a brief introduction (or review) of
Prolog, students are given a short problem to
solve in Prolog, for example, defining a set of
string processing predicates. This is suffi-
cient preparation for the first part of the ex-
ercise, producing a scanner and a parser for
Pam.

The program for reading English sentences
found in Clocksin and Mellish [Clocksin841
is used as a model for the scanner. The scan-
ner for Pam reads a text file containing a
source program and produces a Prolog list of
tokens. The scanner employs the native data
types of Prolog to represent the tokens of
Pam, which have the following forms:

2. Numerals (nonnegative integers) are
Prolog integers.

3. Single character (+, <, etc.) and double
character (:=, c=, etc.) tokens are trans-
lated into Prolog literal atoms.

4. The end of the file is signaled by a Prolog
atom “eof’.

Pam has ten reserved words (read, while, etc.),
which are constructed first as variables and
then recognized as reserved words. Variables
that are not reserved words (negation by fail-
ure) are passed on as tokens of Pam with the
form “var(sum)”. Numeral tokens are for-
warded in the form “num(123)”.

A sample Pam program is shown in Figure 3,
and the resulting token list in Figure 4.

1. Variables and reserved words are repre-
sented as Prolog literal atoms.

179

read x;

P 1:
.-.-

while pc1000do

p := x$x

write x,p

end

Figure 3: Sample Pam Program

[read, var(x), semicolon,

var(p), assign, num(1), semicolon,

while, var(p), less, num(1000), do,

var(p), assign,

var(x), times, var(p), semicolon,

write, var(x), comma, var(p), end, eof]

Figure 4: Token List for Sample Program

Students develop a parser for Pam as a logic .

grammar obtained by converting the BNF
definition into grammar clauses with as lit-
tle modification as necessary. The principle
change is to remove the left recursion in the
definitions of <series>, <variable list>,
<expc-, and <term>. The standard approach
is to write a BNF rule of the form

<expm ::= <term> I <expr> -aveak op> <term>

as a set of grammar rules of the form

expr(E) --> term(T), remexpr(T,E).

remexpr(T,E) --> weakop(Op), term(Tl),
remexpr(exp(Op,T,Tl) ,E).

remexpr(E,E) --> [].

As the Lokens are parsed, an abstract syntax
tree is constructed by means of the parame-
ters to the grammar rules. For example, an
expression such as

b–b/a*a
will produce the syntax tree

exp(minus,

var(b),

exp(times, exp(divides,var(b) ,var(a)),

var(a)))

Since statement sequencing is associative, a
series of statements in Pam can be converted
into a list of statements. Also a <variable
list> can be represented as a Prolog list of
variables. The parse tree for the program in
?igure 2 is show% in Figure 5. - -

[read([var(x)]),

assign(p, num(l)),

while(exp(less, var(p), num(1000)),

[assign(p, exp(times, var(x), var(p))),

Write[[var(x), var(p)])])]

Figure 5: Abstract Syntax Tree for Sample
Program

Because of the close correspondence between
the BNF specification of th; syntax of a pro-
gramming language and its logic grammar, a
parser is easily constructed by the students.
They can see the usefulness and power of a
BNF definition from this simple translation
into a logic grammar.

PART TWO: The Denotational Definition

The second part of the exercise is to take the
abstract syntax tree produced in part one and
apply to it Prolog translations of the func-
tions in a denotational definition of Pam.
Such a definition consists of semantic func-
tions that map the syntactic constructs of
Pam into semantic domains. For the specifi-
cation of these functions, the syntax of Pam
is expressed as abstract productions rules re-
lating the syntactic domains of Pam.

These syntactic domains are shown in Figure
6 and the abstract production rules are listed
in Figure 7. Note that the recursion in the
definition of a variable list has been altered
to right recursion, which agrees more closely
with the representation of variable lists as
Prolog lists.

In the abstract syntax, comparisons have
been included in the syntactic domain of ex-
pressions, assuming that only syntactically
correct programs will have their denota-
tional semantics elaborated.

180

Y : Prog programs

= : Var variables

A : Vars lists of variables

z : Stint statements

E : Exp expressions

@ : Opr binary operations

N : Num integer constants

Figure 6: Syntactic Domains

Y::=x

Z::= Z1:Z21 E:= Elread Al write Al

if Ethen Zfi I if Ethen X1else Z2fi I

to Edo Zendlwhile Edo Zend

A::= ZIZ, A

E::= El NlEl@E2

@::=+ l-1* 1/l= lc=l<l>l>lo

Figure 7: Abstract Production Rules

The semantic equations which define the
functions are listed in Figure 10.

‘T : T = {true,false}

v : N={..., -2,- 1,0,1,2,...}

& : Ev = Intg + Bool Expressible values

8 : Sv = Intg Storable values

0: State = Var --+ Sv

Figure 8: Semantic Domains

M: Prog -+ State

.$: Stint + State + State

E: Exp + State -+ Ev

Figure 9: Semantic Functions

A Pam program, which is simply a list
(series) of statements, is mapped to a final
state by calling the function M that defines
the meaning of a statement with an every-
where undefined state (store). In direct deno-
tational semantics, a statement and a state

The semantic domains used to define the
directly produce a new state. Normally, the

meaning of a Pam program are shown in
state in a denotational definition also con-

Figure 8. The semantics of Pam can be speci-
tains an input list, serving as an input file,

fied by three functions that map its syntactic
and an output list, initially empty, which

structures into these domains (Figure 9).
may be modified by IO statements.

!a@P] = .S[Y](E . 1)

4 E := E](J = o[z~E]G / E]

~if E then Z fi]a = if ‘z[E]cJ then $216 else G

~if E then Xl else Z2 fi]o = if IEIE]O then J@lks else $Z2]a

~while E do Z end]a = if !EJ,E]cJthen flwhile E do X endj@]o else a

.@l ; Z2] = s~z2]@z1]

~to E do Z endlia = if v >0 then $Z]VC else o where v = @E]a

~read Ella= a[val/S] where val is the next value read

Qread E, AIJcJ= ~read AJl(o[val/E]) where val is the next value read

$vrite Elks= G where the value of@] is printed next

~write s, A]CS = ~write Ala where the value of@ is pfinted ne~

EIE]O = 0[s] !E[N]G = N z!(E)] = z~E]

ZIE1 @ E21G = compUte(@,~[Ell~.~[E21~)

Figure 10: Semantic Equations for Pam

181

Since the intention here is to produce an in-
terpreter, input and output are treated as side
effects of the semantic functions for state-
ments, which explicitly modify only the
store. The interpreter will be run in an inter-
active environment to encourage experimen-
tation, so input and output are handled by
Prolog procedures through the standard de-
vices.

The semantic equations of denotational se-
mantics can be translated into Prolog predi-
cates in a straightforward manner letting
each semantic function be expressed as a
Prolog predicate. Observe that the curried
functions of the definition become unturned
as predicates. The delayed binding of logical
variables in Prolog creates the same effect as
the partial parametrization of curried func-
tions. See Figure 11 for the correspondence
between the semantic functions of the deno-
tational definiton and the Prolog predicates
used to implement them.

Statement composition can be handled by
simply treating the state transitions for a list
of statements:

sS([Stmt I Stmts],State,NewState) :-
sS(Stmt,State,TpState),
sS(Stmts,TpState, NewState).

sS([],State,State).

A while statement requires evaluating the
test expression and then determining
whether to execute the body or to return the
state unchanged:

sS(while(Test ,Body) ,State,NewState) :-
eE(Test,State,Ev),
iterate(Ev,Test, Body, State, NewState).

iterate(true,Test, Body, State, NewState) :-
sS(Body,State,TpState),
sS(while(Test ,Body) ,TpState,NewState).

iterate (false, _,_, State, State).

A Prolog representation of the state (or store)
needs to be formulated for statements that di-
rectly alter the state. The state is considered
to be a finite function, which is undefined
wherever it is not explicitly specified. It can
be represented as list-like structure, say
“sto(a, 5, sto(b. 8, sto(c, 13, nil)))” to represent
the bindings [5/a, 8/b, 13/c] where “nil”
stands for the totally undefined store. A
Prolog implementation can handle modifica-
tions and queries to the store by means of
predicates “updateSto” and “applySto”, re-
spectively. An assignment statement re-
quires an update of the store:

sS(assign(Var,Exp), State, NewState) :-
eE(Exp,State,Ev),
updateSto(St ate,Var,Ev,NewState).

Expressions are evaluated in the context of a
store, which provides values for variables.
The actual calculations are carried out by a
Prolog predicate “compute”. For example,

compute(divides, N,O,O) :-
write(’Division by zero’), nl, abort.

compute(divides, N,D,R) :- R is N//D.

A sample execution of the denotational in-
terpreter with the source program in Figure 3
is shown in Figure 12. User input is displayed
in boldface.

MECHANICS

The students are given a predicate definition
to handle the file processing:

go :- Write(’>>> Interpreting Pamc<<’), nl,
write(’Enter name of source file: ‘),
readstr(File), exists(File), see(File),
scan(Tokens), seen, write(Tokens), nl,
program(AST,Tokens, [eofl), write(AST),
nl, mM(AST,State), nl,
write(’Ftnal State:’), nl, printstate(State).

Semantic Functions Prolog Predicates

M : Prog + State mM(StmLs,State)

s : Stint -+ State + State sS(Stmt ,State,NewState)

E : Exp -+ State --+ Ev eE(Exp ,State,Evalue)

Figure 11

182

>>> Interpreting Pam <<<
Enter name of source file: powers
Scan successful
Parse successful
Inputi 17
output = 17
output = 17
output = 17
Output = 289
output = 17
output = 4913
Final State:

x 17

P 4913
yes

Figure 12

rhey are instructed to have their scanner
produce a listing oi” the Pam program and to
be able to print the token list, the abstract
syntax tree, and the final state as well as the
output of the program.

The predicate “scan” has one output parame-
ter for its result. The predicate “program”
takes the token list, “Tokens”, and after a
successful parsing by the logic grammar,
which leaves only the token “eof’, produces
the abstract syntax tree in the variable
“AST’. The predicate “mM” takes that tree
and constructs the final state in the variable
“State” by calling the statement predicate “sS”
with an initially undefined state:

mM(Stmts,State) :- sS(Stmts,nil,State).

CONCLUSIONS

The goal of this paper has been to describe an
exercise that provides a concrete application
of denotational semantics using Prolog.
Students generally find the actual programm-
ing assignments surprisingly easy.

The interpreter can serve as a starting point
for a prototyping tool for investigating exten-
sions and alterations in the semantic con-
structs of a programming language. For ex-
ample, although single-scope Pam has no
need for environments, a block structured
language with its associated environments
can be interpreted in Prolog in a similar
manner.

Sequencers, such as “goto” and “exit”, com-
plicate the denotational semantics by re-
quiring continuations. Prolog can also ex-
press continuation semantics [Slonneger89]
with some increased complexity in the deno-
tational semantics and in the Prolog inter-
preter.

REFERENCES

[Allison83]
Lloyd Allison, “Programming Denota-
tional Semantics”, The Computer Jour-
nal, Volume 26, Number 2, pp. 164-174.

[Allison86]
Lloyd Allison, A Practical Introduction to
Denotational Semantics, Cambridge
University Press.

[Clocksin84]
W. F. Clocksin and C. S. Mellish, Program-
ming in Prolog, Second Edition, Springer
-Verlag.

[Moss82]
Chris D. Moss, “How to define a language
using Prolog”, Proc. 1982 ACM Symp. on
Lisp and Functional Programming,
Pp.67-73.

[Pagan79]
Frank Pagan, “Algo168 as a metalanguage
for denotational semantics”, The Compu-
ter Journal, Volume 22, Number 1, pp.63-
66.

[Pagan81]
Frank Pagan, Formal Specification of
Programming Languages: A Panoramic
Primer. Prentice-Hall.

[Slonneger89]
Ken Slonneger, “Denotational Semantics
in Prolog”, Technical Report 89-02,
Department of Computer Science, The
University of Iowa.

183

