
A MULTILEVEL SIMULATOR AT THE REGISTER TRANSFER LEVEL
FOR USE IN AN INTRODUCTORY MACHINE ORGANIZATION CLASS

by Dale Skrien
Colby College, Waterville, ME 04901 USA

djskrien@colby.edu
and

John Hosack
University of the South Pacific, Suva, Fiii Islands

hosackj@usp. ac.nz -

Abstrac!

This paper discusses
simulator and its use in the
new simulator is presented

a multilevel
classroom. A
that allows the

user to dynamically change the simulated
hardware at run time. We also discuss an
incremental series of projects that we have
successfully used with the simulator.
These projects give the student hands-on
experience with the advantages and
disadvantages of several architectures.

Introduction

We have used the hardware
simulator STARTLE [1] for the past 8 years
in the freshmen/sophomore-level
machine organization class. Several
interesting programming projects have
been developed that use STARTLE.

Because of the ready availability of
high-quality graphics displays on
relatively low-cost micro-computers, such
as Apple’s Macintosh, a new simulator,
based on the ideas in STARTLE, has been
created that utilizes the graphical
interface of the Macintosh to allow the
students to spend more time understanding
what the simulator is doing rather than
understanding how to run the simulator.

Objective

In our machine organization and
assembly language course, we want the
students to learn about different
architectures and the advantages and

Permission to copy without fee all or part of this material is

granted provided that tha copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its data appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

e 1991 ACM 0-89791-377-9/91 /0002-0347 . ..$1 .50

disadvantages of each. We do not wish to
restrict ourselves to a particular machine,
since that would narrow the student’s
experience and perceptions of machine
architecture. In addition, the usage of a
real machine would require the students to
spend a lot of time learning peripheral
details (of a machine they will probably
never program at the machine level). For
similar reasons, we also want to stress
machine organization rather than
assembly language programming, which is
essentially symbolic machine language.

Meeting our obiectiv~

Because we can not afford to provide
a lab full of hardware containing the
different architectures, especially due to
the time the students would have to spend!
learning how to run each machine,
several years ago we searched for
simulators. We encountered many of the
same problems as Tangorra [2] with
existing simulators. We were not happy
with simulators that only simulated simplle
accumulator-based machines with a small
fixed set of machine instructions and few
addressing modes. We adopted STARTLE
because of the way it allowed the users to
design the architecture they wanted to
simulate at the register transfer level,
including the registers, flipflops, i/o
channels, and stores, as well as all the
micro-instructions and machine
instructions. Using STARTLE, we could
require the students to develop an
architecture themselves and then create
and run
it. To
series of

machine-language programs on
accomplish this, we developed a
lab exercises to gradually

347

http://crossmark.crossref.org/dialog/?doi=10.1145%2F107005.107081&domain=pdf&date_stamp=1991-03-01

introduce the students to more and more
complex machines.

Laboratory uroiects

The series of projects we have used
should give an idea of how such a
simulator might be used in any classroom.

In the first project, the students are
given a machine description and a sample
machine language program for a simple
one-accumulator machine, called the
Wombat 1, with only direct addressing and
no stack operations. We felt it was very
important that the students be given the
first machine so as to avoid the difficulty
of creating a machine completely from
scratch. In line with our gradual,
incremental approach, the students are
initially asked to modify the sample
program for the Wombat 1. After
familiarizing themselves with the
Wombat 1, they are asked to write a

6 File Edit Modifu Run DisDlau

program that reads in an arbitrarily long
list of positive integers, followed by a
negative integer sentinel, and then prints
out the positive integers in reverse order.
The fact that this can’t be done on the
Wombatl without writing self-modifying
code helps the students to quickly
understand the need for either indirect
addressing or the use of a stack.

The second project asks the students
to upgrade the Wombatl to the Wombat2,
which contains a hardware stack and the
operations of push and pop, which must be
defined using micro-instructions. This
project requires the students to begin to
familiarize themselves with the multilevel
concepts, working at the register-transfer
level. They are then asked to redo the
previous program on reversing a list using
the enhanced machine.

The third project requires the
students to add call and return machine

Wombat 1

Nf3Ht machine instruction:
input

-0 r

Time so fac

NeHt JI-instruction:
pc->mar

Input by: User

Output to: User

Flipflops:

ir 0000000000000000
top 111111111111

O: 001 I 000000000000 ;read n -> acc
1: 0101 000000001010 ;add 999 to n

I

2: 1010 000000000111 ;jrnp.z to line ...=

3: 0110 000000001010 ;acc:= acc - !.. .3$
‘t: 0101 000000001011 ;add it to the.. w,W
5: 0010 000000001011 ;store new sum..ljij
6: 1001 000000000000 ; j mp O to reac... H
7: 0001 000000001011 ; Iood the sum ~
8: 0100 000000000000 ;wite the sum &
9: 0000 000000000000 ; stop,

Steck

o: 0000000000000000
1: 0000000000000000
2: 0000000000000000

3: 0000000000000000
4: 0000000000000000
5: 0000000000000000
6: 0000000000000000
7: 0000000000000000

8: 0000000000000000

9: 0000000000000000

Figure 1.

348

instructions, creating the Wombat3, so that
subprograms can be written and run.

They are then asked to write
programs using subprograms, including
recursive subprograms.

Finally, the fourth project asks the
students to create a much more realistic
machine, the Wombat4, with direct,
indirect, immediate, and stack addressing
modes. Programming assignments for this
machine include the writing of
subprograms that pass parameters by
reference rather than just by value.

STARTLE only accepts programs
written in machine language, and so does
not allow for assembly language
programming. However, the second
author has written an assembler for the
Wombat3 machine, and so the students are
given the opportunity to write some simple
assembly language programs, have them

6 File Edit ~ Run DisDlau

assembled into machine language, and
then run these programs on the Wombat3
using STARTLE.

As students proceed through the
project phases they also write a simple
interpreter in Pascal for each Wombat.
This interpreter reads the machine
language file and stores the instructions in
an array simulating memory. Then the
basic machine cycle is followed: fetch
instruction, increment program counter,
decode instruction, and execute
instruction.

The students gain a great deal from
writing an interpreter. They improve
their programming ability, especially in
constructing well-documented and
organized programs easily upgraded from
one Wombat version to the next, and their
implementation of the machine cycle
provides reinforcement of the concepts.

EDIT THE STORECONTENTS

Edit line:

O decimal by fields

Display in: O decimal as one number
m

@ binary by fields
-

0’ ~ ~—1

Notes ...

1: 0101 000000001010 ; add 999 to n
2: 1010 000000000111 ; jrnpz to line 7, else ; @ZKl

3: 0110 000000001010 ; ace:= acc - 999
::2.:::::;::::fi:

4: 0101 000000001011 ; add i.t to the sum 30 far.
5: 0010 000000001011 ; store new sum to location 11 M-
6: 1001 000000000000 ; jmp O to read more numbers.
7: 0001 000000001011 “ load the sum from location 11
8: 0100 000000000000 ;

IJm
write the sum ~:;

9: 0000 000000000000 ;
++

3top.
10: 0000 001111100111 ; data : 999 (sentinel) ~m
11: 0000 000000000000 ; data : 0 (initial sum)
12: 0000 000000000000 l!lm

13: 0000 000000000000 ; ‘his program repeatedly add3 input.
14: 0000 000000000000 ; until the number -999 is read. Mm

15: 0000 000000000000
@w,:;

16: 0000 000000000000
17: 0000 000000000000 II -

18: 0000 000000000000
19: 0000 000000000000 Ijlj (mEEEl

20: 0000 000000000000
;>::i}

21: 0000 000000000000

:;;ii;

22: 0000 000000000000 B GEE)

23: 0000 000000000000

10 EiEcl

Figure 2.

349

The new simulator

These exercises have worked very
successfully for us. The students have felt
they learned a lot through the use of the
simulator. However, STARTLE was written
in Pascal with purely textual i/o. This has
meant that too much time has to be spent
teaching the students how to run the
simulator; in particular, they had to be
instructed in the proper format of the
input and output for the simulator, which
included many values whose meaning was
not immediately clear. There seemed to be
some frustration with this that detracted
from the purpose of the course. However,
with the purchase of a lab of Macintosh
IIcx’s, Colby obtained the hardware to do
much more in the way of providing the
students with a user-friendly
environment.

For this reason, a project was started
to create a new simulator, based on the
ideas in STARTLE, that fully utilized the
Macintosh interface to allow the students
to concentrate on the simulation rather
than the simulator.

The result, called CPU SIM, has a
main display (see Figure 1) showing the
registers, flipflops, channels, the main
store and stack of the simulated machine,
and their contents (in decimal or binary
form). It also displays the current
machine instruction, micro-instruction,

and the time the simulated machine has
used up to this point.

After a hypothetical machine has
been created or loaded by the user
(including the hardware description,
micro-instructions, and machine-
instructions), and after initial values have
been loaded (see Figure 2 to see how the
contents of main memory are loaded and
edited), the simulator can start running
the program loaded in main memory. It
starts executing the instruction at the
address specified in the program-counter
register. The simulator can run the
program until it halts and then display the
final values in all memory devices, or
several break points can be set, halting the
machine at these points for inspection.
The user can also step through the
program, one machine instruction or one
micro-instruction at a time. Finally, the
user can backup one machine instruction
at a time. This flexibility allows the user to
easily find any point at which the program
did not perform as expected.

At any time during the execution or
before, the user can modify the contents of
any of the components. Furthermore, the
user can modify the actual simulated
hardware, such as changing the widths of
registers or adding new machine or micro-
instruction.

The hypothetical machine

Machine Edit machine instruction:

Name: ~’ , (m) @I@

Op code: ~] @ ‘inary
() Decimal

~-instructions:

Type: ~
Its u-instruction list:

write-store II mbr->ir

End. mbr->acc II

II Iacc->outcwt I I

Figure 3.

350

descriptions created for the simulator can
be saved as text files for reloading and
execution or modification at a later time.
Similarly, the machine language programs
to be run on the hypothetical machines
and the input data can be saved in separate
text files. The output can be directed to a
window on the screen or saved as a text
file.

The user can create or modify a
simulated machine very easily. By
selecting appropriate menu items, windows
will appear allowing the user to modify or
create new hardware components, or
change or create new machine or micro-
instruction. As an example, Figure 3
shows the window in which machine
instructions are edited. CPU SIM was
designed so that the user would have to do
as little typing as possible, thus avoiding
most of the usual typing and syntax errors.

Requirements

CPU SIM was designed using Allegro
Common LISP, and runs on any Macintosh
with 2.5 megabytes of RAM and a 13-inch
(or larger) monitor. The RAM is necessary
because of the overhead needed to support
a LISP program: the compiled code for CPU
SIM is a little over 1 megabyte. A large
monitor is needed since several of the CPU
SIM windows are too large for the standard
9-inch Macintosh screen. Plans are under
way to revise CPU SIM so that it will use
less memory and a smaller monitor.

The text files in which the
hypothetical machine descriptions are
saved consist of actual LISP code utilizing
Allegro’s Object LISP extensions to the
language. Therefore, these files could be
modified by the user with any word
processor, but could easily result in an
unreadable file if the result is not proper
LISP code. In any case, it is much easier
for the user to modify the machine
description using CPU SIM, so this should
rarely be necessary.

The machine language program and
data files just consist of integers and
comments and so allow easy modification
by the user at any time with any text
editor.

The standard version of STARTLE is
written in Pascal and has been ported to
UNIX and to MS-DOS (using Turbo Pascal).

Limitations

CPU SIM does not display the
contents of its components in HEX or octal

because it seemed sufficient to have it

display both decimal (to help the students

create their input and output) and in

binary so that the actual bits can be seen.

The only representation mode

allowed is two’s complement. The only

input and output data the simulator will

accept is integers in base 10.
The standard version of STARTLE

reads and displays all data in decimal
integers, but it does allow the choice of
two’s complement, one’s complement, or
signed magnitude for internal
representation of data.

Conclusion

A very versatile multilevel
simulator is valuable for use in the
classroom. It allows the students to use and
create many different hardware
configurations for comparison. It also
allows the students the opportunity to
experiment on their own in creating or
improving existing simulated machines.
We have found it to be an essential
component of our course since it gives
students hands-on experience with a
multilevel approach to machine
organization.

References

[1] J.M. Kerridge and N. Willis, “A
Simulator for Teaching Computer
Architecture,” ACM SIGCSE Bulletin,
Vol. 12, No. 2, July 1980, pp. 65-71.

[2] F. Tangorra, “The Role of the

Computer Architecture Simulator in
the Laboratory ,“ ACM SIGCSE Bulletin,
Vol. 22, No. 2, June 1990, pp. 5-10.

351

