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Abstract

Power consumption has been a major concern, both
for processor design with high clock rates and embed-
ded systems driven by batteries. Recent support for dy-
namic frequency and voltage scaling (DVS) in contem-
porary processor architectures allows software to affect
power consumption by varying execution frequency and
supply voltage on the fly. However, processors generally
enter a sleep state while transitioning between frequen-
cies/voltages. In this paper, we examine the merits of
hardware/software co-design for a feedback DVS algo-
rithm and a novel processor capable of executing instruc-
tions during frequency/voltage transitions. We study
several power-aware feedback schemes based on earliest-
deadline-first (EDF) scheduling that adjust the system
behavior dynamically for different workload characteris-
tics. An infrastructure for investigating several hard real-
time DVS schemes, including our feedback DVS algo-
rithm, is implemented on an IBM PowerPC 405LP em-
bedded board. Architecture and algorithm overhead is as-
sessed for different DVS schemes. Measurements on the
experimentation board provide a quantitative assessment
of the potential of energy savings for DVS algorithms
as opposed to our prior simulation work that could only
provide trends. Energy consumption, measured through
a data acquisition board, indicates a considerable poten-
tial for real-time DVS scheduling algorithms to lower en-
ergy up to 64% over the näıve DVS scheme. Our feedback
DVS algorithm saves at least as much and often consid-
erably more energy than previous DVS algorithms with
peak savings of an additional 24% energy reduction.

1. Introduction
Energy consumption has become a vital design con-

straint in embedded systems for a long time. The de-
mand for efficient energy management is increasing in
hand-held and embedded devices, where battery ser-
vice life is usually critical to system performance. For
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many non-battery powered systems, energy consump-
tion is also an important cost factor due to environ-
ment issues. The processor is one of the most power-
consuming devices of a computer. In order to reduce
the CPU energy consumption, Dynamic Voltage Scal-
ing (DVS) technology has been widely supported in re-
cent years for extending battery life. DVS dynamically
scales the processor core voltage up or down depending
on the computational demand of the system. Reducing
the supply voltage results in a lower transistor switch-
ing speed, which also allows a lower clock frequency.
Assuming that voltage and frequency are linearly re-
lated, scaling down both voltage and frequency results
in cubic reduction of power consumption (P ∝ V 2 ×f)
[5]. While useful for simulation, this formula cannot re-
flect architectural details that this study focuses on.

DVS algorithms have been intensively studied for
both non real-time and real-time systems [21, 1, 14, 7,
9, 20, 24]. In the case of real-time systems, the DVS al-
gorithm calculates a safe frequency that provides just
enough processing resources to finish a given task be-
fore its deadline. The goal is to save the maximum pos-
sible amount of energy and still guarantee the schedu-
lability of hard real-time systems where all tasks are
required to meet their deadlines.

In this work, we develop several power-aware feed-
back schemes for our feedback DVS algorithm based on
earliest-deadline-first (EDF) scheduling, which adjusts
a real-time system dynamically according to different
workload characteristics. A feedback DVS algorithm
has been presented and evaluated in simulation exper-
iments in our previous work [6, 25]. We refine those
algorithms in this paper and develop several feedback
schemes considering practical design and implementa-
tion issues on a real embedded architecture. We are in-
terested in studying the performance of the DVS algo-
rithm in an embedded environment where the overhead
and the actual energy consumption can be measured
quantitatively. The real-time scheduler itself, when in-
tegrated with a DVS algorithm, may execute at sev-
eral different CPU frequencies, which also requires ac-
curate modeling of the system overhead.



We examine all these issues by integrating our feed-
back DVS algorithm within a real-time EDF sched-
uler. An infrastructure to assess our algorithm as well
as several other DVS algorithms is implemented on
an IBM PowerPC 405LP embedded board, which was
specially modified for power management research. A
unique DVS feature supported by the test board is that
frequency switching can be done either synchronously
or asynchronously, both of which we evaluated exper-
imentally for different DVS algorithms. We show the
strength of our feedback DVS algorithm by compar-
ing the actual energy consumption with other DVS al-
gorithms.

The rest of this paper is organized as follows. Sec-
tion 2 gives a brief introduction of the DVS schedul-
ing framework and task model. Section 3 discusses our
DVS algorithm and two feedback mechanisms proposed
for the practical environment. Detailed experimental
results are presented in Section 4. Section 5 discusses
some of the related work. Conclusions are given in Sec-
tion 6.

2. EDF Scheduling with DVS Support
In order to assess DVS algorithms for their suit-

ability and energy saving performance in an embed-
ded environment, we consider the scheduling problem
in hard real-time systems with the earliest deadline first
(EDF) policy. The entire scheduler framework consists
of two components: (1) an EDF scheduler and (2) a
DVS scheduler. These two components are indepen-
dent of each other so that the EDF scheduler is ca-
pable of working with different DVS algorithms. EDF
is especially attractive to DVS algorithms because of
its dynamic property, which allows the DVS scheduler
to exploit slack. Our DVS scheduler is based on feed-
back control that incrementally adjusts system behav-
ior in order to reduce energy consumption.

A periodic, fully preemptive and independent task
model is used in the framework. Each task Ti is defined
by a triple (Pi, Ci, ci), where Pi is the period of Ti, Ci

is the measured worst-case execution time of Ti, and
ci is the actual execution time of Ti. Each task’s rel-
ative deadline, di, is equal to its period, and all tasks
are released at time zero. The periodically released in-
stances of a task are called jobs. Tij is used to denote
the jth job of task Ti. Its release time is Pi ∗ (j − 1)
and its deadline is Pi ∗j. cij is used to represent the ac-
tual execution time of job Tij . The hyperperiod H of
the task set is defined as the least common multiplier
(LCM) among all the tasks’ periods. The schedule re-
peats at the end of each hyperperiod.

In the following, we describe in detail the feedback
DVS scheduler and several feedback schemes used in
the framework.

3. Feedback DVS Algorithm
Our feedback DVS algorithm anticipates an actual

execution time of each task invocation (a job) based
on the feedback from the execution time in previous
invocations. It then splits the execution budget of a
task into two parts, as depicted in Figure 1. The an-
ticipated actual time CA is scaled at the lowest pos-
sible frequency. Conversely, the remaining execution
time CB is scaled at the maximum frequency such that
CA + CB = WCET .
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Figure 1. Task Splitting

All future tasks are deferred as long as possible us-
ing a maximal (worst-case) schedule, which is related
to the actual schedule to derive the currently available
slack sk for task k. Thus,

α =
CA

CA + sk

indicates the scaling factor and the corresponding low-
est possible frequency. The algorithm is capable of cap-
turing changes in actual execution times using a feed-
back scheme. Preemption of the current task is antic-
ipated via future slot allocations in the schedule. It
is implemented in a backward sweep to fill idle and
early completion slots from a task’s deadline back-
wards (for algorithmic details, see [25]). Due to the
even more greedy approach than any of the previous
schemes, the algorithm was reported to exhibit addi-
tional energy savings in simulation experiments, par-
ticularly for medium utilization systems, which are
quite common [6]. Even more substantial savings have
been observed for fluctuating execution times where
PID-feedback provides new opportunities for aggres-
sive scaling [25]. During the implementation of the al-
gorithm for the 405LP embedded board, we refined the
feedback scheme proposed in [25] and developed the fol-
lowing two feedback mechanisms.

3.1. Simple Feedback

Some of the periodic real-time workloads have a rel-
atively stable behavior during certain intervals. The
actual execution time of their different jobs remains
nearly constant or varies only within a very small range
in that interval. For such workloads we use a very sim-
ple feedback mechanism by computing the moving av-
erage of previous jobs’ actual execution times and feed
it back to the DVS scheduler. We try to avoid the
overhead of a more complicated feedback mechanism,



such as the PID-feedback controller described in the
next section, because a simple feedback usually pro-
vides good enough performance in this case. The quan-
titative comparison of the overhead between our PID-
feedback DVS algorithm and several other DVS algo-
rithms (detailed in Section 4) also makes us believe
that a complicated feedback DVS scheme degrades its
energy saving potential to some extend.

The simple feedback mechanism chooses the value of
CA as the controlled variable. Each job Tij ’s actual ex-
ecution time cij is chosen as the set point. CA is as-
signed to be 50% WCET for the first job of each task,
which means half of the job’s execution is budgeted at
a low frequency, and half of it is reserved at the maxi-
mum frequency. The maximum frequency portion guar-
antees the deadline requirements, even if the worst-case
execution time is used in full. Each time a job com-
pletes, its actual execution time is fed back and aggre-
gated to anticipate the next job’s CA. Let CAij denote
the CA value for Tij . The (j +1)th job of the task is as-
signed a CA value according to:

CAi(j+1) = (CAij + ci(j+1) − ci(j−N+1))/N (1)

where N is a constant representing the number of
items used in the moving average calculation. Our ex-
periments show significant energy savings for such a
simple feedback mechanism with very low scheduling
overhead as long as the workload’s actual execution
time exhibits a stable behavior during some interval.
When the workload’s behavior keeps changing dynam-
ically with highly fluctuating execution times, simple
feedback becomes not enough to yield the best energy
savings. In those cases, a more sophisticated feedback
mechanism is required, as detailed in the next section.

3.2. PID Feedback

The original PID-feedback DVS mechanism, as pre-
sented in [25], requires the DVS scheduler to cre-
ate and maintain multiple independent feedback con-
trollers for each of the tasks in the workload. Multi-
ple inputs and multiple outputs need to be manip-
ulated simultaneously by the DVS scheduler. Such a
PID-feedback mechanism, albeit its potential for en-
ergy savings shown in our previous simulation exper-
iments, results in substantial execution overhead on
an embedded architecture. Giving the difficulty of pre-
cisely characterizing the behavior of a multiple-input
multiple-output control system, it also adds complex-
ity to the theoretical analysis of the algorithm. There-
fore, we refine the original PID-feedback DVS mecha-
nism by the following simplified design.

Instead of using CAi(i = 1...n) as the controlled vari-
able for each task Ti and creating n different feedback
controller for n different tasks, we now define a sin-
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Figure 2. Control Loop Model

gle variable r as the controlled variable for the entire
system as:

r =
1

n

n∑

i=1

CAij − cij

cij

(2)

where j is the index of the latest job of task Ti be-
fore the sampling point. Our objective is to make r ap-
proximate 0 ( i.e., the set point). The system error be-
comes

ε(t) = r − 0. (3)

ε(t) is fed back to the PID scheduler to regulate the
controlled variable r. The PID feedback controller is
now defined as:

∆rj = Kpεi(t) + 1
Ki

∑
IW εi(t) + Kd

εi(t)−εi(t−DW )
DW

rj+1 = rj + ∆rj

(4)
For each rj , we adjust the CA value for task Ti by

CAi(j+1) = rjcij + cij . The transfer function Gr be-
tween r and CA can be derived by taking derivative of
both sides of the equation 2:

Gr(s) = Mrs (5)

where Mr = 1
n

∑n

i=1
1
ci

. The block diagram of the
model is shown in Fig. 2. Its transfer function is :

GP (s)Gr(s)

1 + GP (s)Gr(s)
=

MKps + MKi + MKds
2

1 + MKps + MKi + MKds2
(6)

According to control theory, a system is stable if
and only if all the poles of its transfer function are in
the negative half-plane of the s-domain. From Equa-
tion 6, we infer the poles of our system as

−MKp ±
√

MK2
p − 4MKd(MKi + 1)

2MKd

(7)

Note that −MKp +
√

MK2
p − 4MKd(MKi + 1) is

still less than 0 when MK2
p − 4MKd(MKi + 1) > 0.

Hence, all the poles are in the negative half-plan of the
s-domain. Therefore, the stability of the above system
is ensured.

Such a single controller mechanism is easy to imple-
ment because just one feedback controller suffices for
the entire system, which reduces the complexity and
overhead of the feedback DVS algorithm. But it also
has its drawback, i.e., it does not provide direct feed-
back information of the CA value for each individual
task. When r equals zero, one cannot imply that every
task’s CA has approximated its actual execution time.



It is an imprecise description of the original scheduling
objective and may take longer to get the system into a
stable status. Nonetheless, our experiment shows sig-
nificant energy savings of this feedback DVS mecha-
nism with much reduced overhead compared to other
DVS algorithms. In the next section, we present the de-
tails of our experimental results.

4. Experimental Evaluation
By evaluating our feedback DVS algorithm on a

real embedded architecture, we assess the true po-
tential of our algorithm for energy savings in an ac-
tual system as opposed to a simulation environment.
Also, we compare the overhead and energy consump-
tion between our algorithm and several other DVS al-
gorithms, namely static DVS, cycle-conserving DVS,
look-ahead-1/2 DVS (all by Pillai and Shin [21]) as
well as DR-OTE and AGR-2 (by Aydin et al. [1]).
Look-ahead-1 and look-ahead-2 are the original and a
modified version of the original look-ahead DVS algo-
rithm in [21], respectively. Look-ahead-1 updates each
task’s absolute deadline immediately when a task in-
stance completes. Look-ahead-2 delays such update till
the next task instance is released, which results in addi-
tional energy savings. AGR-2 follows the most aggres-
sive scheme presented in [1] with an aggressiveness pa-
rameter k of 0.9. In these experiments, we also wanted
to determine if the lower frequencies and voltages cho-
sen by our feedback scheme outweigh the higher com-
putational overhead required to make scheduling deci-
sions.

4.1. Platform and Methodology

The embedded platform used in our experiment is a
PowerPC 495LP embedded board running on a diskless
MontaVista Embedded Linux variant, which is based
on the 2.4.21 stock kernel but has been patched to sup-
port DVS on the PPC 405LP. This board provides the
hardware support required for DVS and allows soft-
ware to scale voltage and frequency via user-defined
operation points ranging from a high end of 266 MHz
at 1.8V to a low end of 33 MHz at 1V [19, 4, 10].
The board has also been modified for 50% reduced ca-
pacitance, which allows DVS switches to occur more
rapidly, i.e., switches are bounded by at most a 200
microseconds duration from 1V to 1.8V. The DVS al-
gorithms (static, cycle-conserving, look-ahead [21] and
our feedback DVS) were exposed to the DVS capabil-
ities of the 405LP board. The scheduling algorithms
can choose any frequency/voltage pair from the set de-
picted in Table 1.

This set of pairs was constrained by a need to have
a common PLL multiplier of 16 relative to the 33MHz
base clock and a divider of two or any multiple of 4.
Changing the multiplier incurs additional overhead for

Setting 0 1 2 3 4
CPU freq. (MHz) 33 44 66 133 266
bus freq. (MHz) 33 44 66 133 133

CPU voltage (Volts) 1.0 1.0 1.1 1.3 1.7

Table 1. Valid Frequency/Voltage Pairs

switching, which we wanted to eliminate in this study.
A dynamic power management (DPM) facility [4] is de-
veloped as an enhancement to the Linux kernel to sup-
port DVS features. DPM operating point defines stable
frequency/voltage pairs (as well as related system pa-
rameters), which we experimentally determined.

In order to assess power consumption, we need to
monitor processor core voltage and current at a high
rate. Hence, we used a high-frequency analog data ac-
quisition board to gather data for (a) the processor
core voltage and (b) the processor current. The lat-
ter was measured as a voltage level over a resistor with
a 1V drop per 360mA. Power consumption was com-
puted by multiplying the CPU voltage with its current.
Data acquisition board allowed us to experiment with
longer-running applications to assess the energy con-
sumption of the processor, which is the integration of
power over time. We also employed an oscilloscope for
visualizing the voltages and currents with high preci-
sion in readings.

We implemented an EDF scheduler as a user-level
thread library under Linux on the 405LP board. A user-
level library was chosen over a kernel-level solution be-
cause of the simplicity of its design and the fact that
the operating system background activity is minimal
on the embedded board infrastructure. Different DVS
scheduling schemes were attached into the EDF sched-
uler as independent modules.

4.2. Synchronous vs. Asynchronous Switch

We first assessed the overhead of different DVS tech-
niques supported by the test board and the dynamic
power management extensions of the operating system.

A unique DVS feature supported by the IBM PPC
405LP embedded board is that frequency switching
can be done either synchronously or asynchronously.
Synchronous switching is the traditional approach for
processor frequency/voltage transitions, where appli-
cations have to stop execution during the transi-
tional interval. Asynchronous switching, on the con-
trary, allows application to continue execution during
the frequency/voltage transitions. Figure 3 depicts the
changes in current (lower curve) and voltage (upper
curve) of the PPC 405LP processor core during an
asynchronous switch.

This unique feature of asynchronous switching is
achieved by a system call that, when switching to a
higher voltage/frequency, first reprograms the voltage



Figure 3. Current and Voltage Transition During
Asynchronous Frequency Switching

to ramp up towards the maximum as fast as possible
(the 30 degree voltage ramp on the upper curve of Fig-
ure 3). Meanwhile, the time to reach a voltage level at
least as high as required by the new frequency is esti-
mated. A high-resolution timer is programmed to inter-
rupt when this duration expires, prior to which the ap-
plication can still continue execution. Once the timer
interrupt triggers its handler (at the peak after the 30
degree ramp on the upper curve), the power manage-
ment unit is reprogrammed to settle at the target volt-
age level, and the new processor frequency is activated
before returning from the handler. The voltage then
settles (in case it overshot) in a controlled manner to
the new operating point. The current also settles in
a controlled manner depending on the actual process-
ing activity.

Table 2 reports the overhead for synchronous and
asynchronous switching in a time range bounded by
two extremes: (a) Switching between adjacent fre-
quency/voltage levels and (b) switching between the
lowest and highest frequency/voltage levels. Further-
more, the overhead of the subsequent signal handler
associated with each asynchronous switch is also mea-
sured for a range of the highest and the lowest proces-
sor frequencies. The results indicate that a synchronous
DVS switch has about an order of a magnitude larger
overhead than an asynchronous switch. The timer in-
terrupt handler triggered at each asynchronous switch
only increases the overall overhead insignificantly.

activity sync. DVS async. DVS signal handler

overhead 117-162 µsec 8-20 µsec 0.07-0.6 µsec

Table 2. DVS Switching Overhead

4.3. DVS Scheduler Overhead

We compared the overhead of our feedback-DVS al-
gorithm with several other dynamic DVS algorithms.
We first measured the execution time of these DVS

scheduling algorithms under different frequencies on
the embedded board, as depicted in Table 3. The over-
head was obtained by measuring the amount of time
when a task issues a yield() system call till another
task was dispatched by the scheduler. The table shows
that static DVS has the lowest overhead among the
four while our PID-feedback DVS has the highest one.
This is not surprising since static DVS uses a very sim-
ple strategy to select the frequency and voltage falling
short in finding the best energy saving opportunities.
Cycle-conserving DVS, look-ahead DVS and our PID-
feedback DVS use more sophisticated and aggressive al-
gorithms for lower energy consumption, albeit at higher
overheads. The trade-off between overhead and perfor-
mance always needs to be examined carefully.

Next, we assessed if our feedback-DVS algorithm, al-
though incurring the largest overhead among the four,
gives the best energy saving results in the real em-
bedded environment. We measured the actual energy
consumption of these DVS algorithms when executing
three medium utilization task sets depicted in Table 4
using both synchronous and asynchronous DVS switch-
ings. As a baseline for comparison, we also implemented
a näıve DVS scheme where the maximum frequency is
always chosen whenever a task is scheduled, and the
minimum frequency is always chosen whenever the sys-
tem is idle.

DVS scheduling overhead[µsec]
CPU freq. static cc look-ahead PID-feedback

33 MHz 217 487 2296 3612
44 MHz 170 366 1714 2943
66 MHz 100 232 1112 1728
133 MHz 52 120 546 801
266 MHz 36 76 229 472

Table 3. Overhead of DVS-EDF Scheduler

The first task set in Table 4 is harmonic, i.e., all pe-
riods are integer multiples of the smallest period, which
facilitates scheduling. This often allows scheduling al-
gorithms to exhibit an extreme behavior, typically out-
performing any other choice of periods. The second
and third task sets are non-harmonic with longer and
shorter periods, respectively. Actual execution times
were half that of the WCET for each task for this ex-
periment.

Table 5 depicts the energy consumption in a unit
of mWatt-hours. The näıve DVS algorithm serves as a
base of comparisons for each of the subsequent DVS
algorithms. For task set one, static DVS reduces en-
ergy consumption by about 29% over the näıve scheme.
Cycle-conserving DVS saves 47% energy. Look-ahead
RT-DVS saves over 50%, and our feedback method
saves about 54% energy compared to näıve DVS. This



Task Set 1 Task Set 2 Task Set 3
task Period (Pi) WCET (Ci) Period (Pi) WCET (Ci) Period (Pi) WCET (Ci)
1 2,400 400 600 80 90 12
2 2,400 600 320 120 48 18
3 1,200 200 400 40 60 6

Table 4. Task Set, times in msec

algorithm näıve static static save cycle-cons. c-c save look-ahead l-a save our feedback fdbk save
Task Set 1

sync. 4.47 3.2 28.41% 2.38 46.61% 2.21 50.56% 2.04 54.21%
async. 4.43 3.13 29.35% 2.327 47.51% 2.12 52.07% 2.00 54.70%
savings 0.89% 2.19% 2.51% 3.92% 1.95%

Task Set 2
sync. 0.544 0.5056 7.06% 0.4713 13.36% 0.424 22.06% 0.4089 24.83%
async. 0.5276 0.5025 4.76% 0.4622 12.40% 0.4218 20.05% 0.4064 22.97%
savings 3.01% 0.61% 1.93% 0.52% 0.61%

Task Set 3
sync. 0.595 0.5616 5.61% 0.4799 19.34% 0.4043 32.05% 0.3708 37.68%
async. 0.5802 0.5496 5.27% 0.4547 21.63% 0.3912 32.57% 0.3671 36.73%
savings 2.49% 2.14% 5.25% 3.24% 1.00%

Task Set 2 vs. Task Set 3
change 9.07% 8.57% -1.65% -7.82% -10.71%

Table 5. Energy [mW − hrs] consumption per RT-DVS algorithm

clearly shows the tremendous potential in energy sav-
ings for real-time scheduling.

The savings for each algorithm are lower for task set
two peaking at about 23% for our feedback scheme. As
mentioned before, task set one is harmonic, which typi-
cally results in the best scheduling (and energy) results
since execution is more predictable. Task set three lies
in between the other two with peak savings of 37% for
our feedback scheme.

The results also demonstrate that the overhead for
calculations inherent to scheduling algorithms is out-
weighed by the potential for energy savings. This is un-
derlined by the increasing overhead in execution time
for each of the scheduling algorithms (from left to right
in Table 5) accompanied by decreasing energy con-
sumption.

Another noteworthy result is the comparison be-
tween synchronous and asynchronous DVS switching
depicted in the last row for each task set in Table 5.
For each of the scheduling algorithms, we see addi-
tional savings of 1-5% on asynchronous switching due
to the ability to commence with a task’s execution dur-
ing frequency and voltage transitions. We also ran ex-
periments with task sets that had an order of a magni-
tude smaller periods and execution times. Surprisingly,
the synchronous vs. asynchronous savings remained ap-
proximately the same, even though DVS switches oc-
cur ten times as often. We believe that the periods and

execution time settings used in our experimental envi-
ronment are still large compared to the execution time
of a synchronous or asynchronous switching. If we only
save about 100 µsec at each frequency switch (as has
been shown in Table 2) but later on spend more then
10-100 msec in running a task, the benefit of the asyn-
chronous DVS switching becomes insignificant. These
results seem to indicate that the benefit of continuous
execution during DVS switching, although not negligi-
ble, is secondary to trying to minimize the overhead of
DVS scheduling itself.

We also compared task sets two and three in terms of
their absolute energy readings, which is valid since they
executed for the same amount of time (ten seconds),
the same actual to worst-case execution time ration
and the same utilization, albeit at seven times more
context switches. This change is depicted in the last
row of Table 5 for the asynchronous case. Not surpris-
ingly, the energy with näıve DVS is about 9% higher
for task set three than for set two due to the higher
context switch overhead of the latter. Quite interest-
ingly, this overhead turns into a reduction in energy as
DVS schemes become more aggressive.

4.4. Impact of Different Workloads

We also examined the behavior of our DVS algo-
rithm on different workloads in more detail. For this
purpose, we devised a suite of task sets with synthetic
CPU workloads. Each task set contains three indepen-



dent periodic tasks whose worst-case execution time
varies from 0.1 to 0.9 with an increment of 0.1. The ac-
tual execution time of a task is determined by tim-
ing the body of each task plus the scheduler over-
head (see Table 3) of the corresponding DVS algo-
rithm under the lowest CPU frequency. We dynam-
ically changed the number of instructions inside each
task body among different invocations, i.e., jobs, to ap-
proximate the workload fluctuation behavior of actual
real-time applications.

Altogether, four synthesized execution patterns were
created. For the first pattern, a task’s actual execution
time is always 50% WCET. For the second pattern, the
actual execution time of a task drops exponentially be-
tween a peak value and 50%WCET among its consec-
utive jobs, modeled as ci = 1/2(t−cm). The peak value
cm was chosen to be 20%WCET. This pattern sim-
ulates event-triggered activities that result in sudden,
yet short-term computational demands due to complex
inputs often observed in interrupt-driven systems. The
third pattern is similar to the second one except that it
drops more gradually, modeled as ci = cmsin(t+π/2).
This pattern simulates events resulting in computa-
tional demands in a phase of subsequent complex in-
puts with a decaying tendency. For the fourth pat-
tern, the actual execution time of a task increases and
decreases gradually around 50% WCET, modeled as
ci = cmsin(t) and ci = −cmsin(t). This pattern repre-
sents periodically fluctuating activities with gradually
increasing and decreasing computational needs around
peaks. We used simple feedback on pattern 1 because
of its nearly constant execution time pattern among
different jobs. The number of items to compute the
moving average was set as N = 10. PID-feedback was
used on patterns 2, 3, and 4 to exploit fluctuating exe-
cution time characteristics. The PID parameters were
chosen by tuning manually with Kp = 0.9, Ki = 0.08,
Kd = 0.1. The derivative and integral window size were
1 and 10, respectively. Asynchronous switching was al-
ways used in this experiment since it has a better per-
formance than synchronous switching.

Figure 4 and Figure 5 present the energy consump-
tion of our feedback-DVS as well as four other dy-
namic DVS algorithms under task execution pattern
2. The number of tasks in the task set varies between
3 and 30 tasks. All energy values are normalized to the
näıve DVS results. AGR-2 dynamically reclaims un-
used slack up to the next arrival time of any task in-
stance (NTA), hence saving about 50% extra energy
than näıve DVS. AGR-2 is not as good as Look-ahead-
1/2 DVS for 3 tasks since it considers slack only up
to the next task instance’s deadline, while Look-ahead
DVS collects slack up to the largest deadline among
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Figure 4. PID feedback for 3-task sets with dy-
namic exec. time pattern 2
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Figure 5. PID feedback for 30-task sets with dy-
namic exec. time pattern 2

all tasks. But AGR-2 benefits from smaller task gran-
ularity in 30-task sets and outperforms Look-ahead-1
for extreme utilizations (small and large) except for
the range of 0.5-0.7 utilization. When compared with
Look-ahead-2, AGR only outperforms it for hight uti-
lizations, otherwise Look-ahead-2 performs better.

Our feedback-DVS shows additional benefits over
both Look-ahead-2 AGR-2. Relative to the two
schemes, we save another 5%-20% energy due to our
algorithm’s self-adaptation to jobs’ actual execution
times. In cases of extremely low utilization, feedback-

��

���

���

���

���

���

���

���

��
���

���
��

�	

���

���
��


��
���

�

�	� �	� �	� �	� �	� �	� �	� �	
 �	�
��������������	�

�
������������
�������
�
����������������
��
�
���

Figure 6. Simple feedback for task sets with con-
stant exec. time pattern 1
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Figure7.PID feedback for task setswithdynamic
exec. time pattern 2
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Figure8.PID feedback for task setswithdynamic
exec. time pattern 3

DVS, Look-ahead DVS and AGR-2 are observed to re-
sult in virtually the same energy savings because every
task has enough slack to run at the minimum speed re-
sulting in the same frequencies for a schedule irrespec-
tive of the DVS algorithm.

Let us now focus on the comparison of our algo-
rithm with the look-ahead-2 DVS algorithm for 3-task
sets, but under different dynamic execution time pat-
terns. Figure 6 shows that when each task has a nearly
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Figure9.PID feedback for task setswithdynamic
exec. time pattern 4
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Figure 10. Pattern 4 with Different Avg. Exec.
Times – Energy Normalized to Näıve DVS

constant execution time among different instances, our
simple feedback DVS saves up to 19% more energy than
look-ahead-2 DVS. We notice a reduction in energy sav-
ings when utilization becomes extremely low or high.
Such extreme utilizations force all tasks to run at the
minimum or the maximum frequency. On average, the
simple feedback DVS outperforms look-ahead by 10%
and outperforms näıve DVS by about 50%.

Figures 7-9 shows the energy consumption with dy-
namic execution time patterns 2, 3 and 4. The maximal
savings over look-ahead-2 are 11%, 15% and 20%, re-
spectively. The maximal savings over näıve DVS are be-
tween 25% and 60%. The largest savings again happen
in median utilization cases where there is considerable
dynamic slack. PID-feedback mechanism helps capture
the dynamic behavior of task execution times and to
subsequently scale power even more aggressively than
other DVS algorithms. Although look-ahead DVS can
also take advantage of dynamic slack and lower the fre-
quency/voltages more aggressively than näıve DVS, it
lacks a feedback scheme to adjust its behavior dynam-
ically. From time to time, it has to overcome the fact
that the frequency was lowered too much in the past by
raising the voltage and frequency to a level even higher
than the safe frequency.

To better assess the scalability of our feedback-DVS
algorithm, we further measured the energy consump-
tion of the three task sets under pattern 4 with dif-
ferent average execution times. Figure 10 shows nor-
malized energy consumption relative to näıve DVS for
0.75WCET, 0.5WCET, and 0.3WCET. Our algorithm



can scale equally well for loose and tight execution-
time patterns. In all three cases, 14% to 24% addi-
tional energy is saved than for look-ahead DVS. Our
PID-feedback mechanism shows even better strength
for median and tight execution time cases than the
loose execution time case because capturing the dy-
namic behavior of a task’s actual execution time in a
tight execution environment is more critical than in a
loose environment.

Figure 11 depicts screen-shots of voltage and current
obtained from the oscilloscope for the phase just after
a simultaneous release of all tasks at the beginning of
a hyperperiod. Static DVS shows two levels of voltages
(busy/idle time) whereas cycle-conserving DVS differ-
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(d) our feedback RT-DVS EDF

Figure 11. Voltage/current oscilloscope
shot with loose WCET: WCET =
2 × ActualExecT ime, Utilization U = 0.5

entiates three levels on a dynamic base. Even lower
voltage and current readings are given by look-ahead
DVS, which not only distinguishes more levels but also
exhibits much lower power levels during load. The low-
est results were obtained by our feedback DVS, which
defers execution even more aggressively than any of the
other methods. However, our feedback scheme can only
further reduce power consumption occasionally as suf-
ficient slack exists to be recovered by the algorithms of
the previous schemes. Dynamic slack is recovered in in-
creasing levels by the latter three schemes.

4.5. Comparison with Simulation Results

When we compare the energy saving results ob-
tained from the IBM 405LP embedded board with
our previous simulation results presented in [25], we
clearly see the advantage and disadvantage of simula-
tion for power-aware studies. The advantage of simula-
tion lies in its ease of implementation and predictabil-
ity of performance trends. The energy consumption of
different DVS algorithms show a consistent trend un-
der both simulation and the actual embedded platform.
But quantitative results differ. Our previous simulation
results reported 5%-10% higher savings on average. For
example, the best energy saving of our feedback DVS
over look-ahead DVS was report as 29% in simulation
while the best result we measured from the test board
is around 24%. It is also non-trivial to model the actual
power/energy consumption in simulation without con-
sidering actual hardware details. This is also the case
when evaluating the overhead. Since the overhead of
DVS algorithms was not included in our previous sim-
ulation experiment, we still observed 7%-10% energy
savings over look-ahead DVS even at high utilization
cases. But the actual energy measurement from the test
board show only 3%-6% savings for these cases.

Overall, our experiments on the embedded platform
quantitatively show the potential of our feedback DVS
algorithm and its ability to scale power even more ag-
gressively than previous DVS algorithms.

5. Related Work
Dynamic voltage scaling for real-time systems has

received considerable attention in recent years. Vari-
able processor speed opens novel opportunities for real-
time scheduling. Pillai and Shin present a suite of DVS
algorithms integrated with hard real-time EDF and
RM scheduling [21]. Processor speed for each task is
adjusted dynamically while the schedulability of the
system is still reserved. Look-ahead DVS is the most
aggressive DVS scheme among the suite of algorithms
proposed. Aydin et al. discuss a series of dynamic recla-
mation algorithms, which reclaim unused computation
time of real-time tasks to reduce the processor speed
[2]. Energy-aware scheduling of hybrid workloads, in-



cluding both periodic and aperiodic tasks, are further
investigated by Aydin and Yang in [3]. Gruian analyzes
a dual-speed DVS schedule based on stochastic data de-
rived from past task execution traces [8]. Jejurikar and
Gupta investigate static and dynamic slowdown fac-
tors for periodic tasks [12] and combine it with pro-
crastination scheduling [13] and preemption threshold
scheduling [11] for DVS.

The potential of feedback control on real-time
scheduling was first investigated by Stankovic et al.
[22]. Real-time system performance specifications are
analyzed systematically through a control-theoretical
methodology by Lu et al. [15]. A feedback-control real-
time scheduling framework for unpredictable dynamic
real-time systems is further proposed by Lu et al. where
task execution times diverge from their worst case [16].
Dynamic models of real-time systems are developed
to identify different categories of real-time applications
with different feedback control algorithms.

Feedback control was also proposed for energy-aware
computing in previous work, such as those by Varma
[23], Lu [17] and Minerick [18]. Varma et al. present a
feedback-control algorithm where the previous work-
load execution history is used to predict the future
workload behavior by a discrete-time PID function.
The combination of the proportional, integral and
derivative part of the PID function provides good es-
timation across different applications insensitive of the
change of their parameters [23]. Lu et al. describe a
formal feedback-control algorithm combined with dy-
namic voltage/frequency scaling technologies. While
Varma and Lu’s work targets soft real-time/multimedia
systems, our feedback DVS scheme focuses on hard
real-time system where timing constraints must not be
violated. A general energy management scheme with
feedback control is proposed by Minerick et al. [18]. Av-
erage energy usage is achieved by continuously adjust-
ing the voltage/frequency of a processor to meet the
energy consumption goal. The objective of their work
is to obtain low energy consumption for general pur-
pose systems while our work targets hard real-time sys-
tems with deadline requirements.

6. Conclusion
In this paper, we presented feedback DVS algorithm

considering practical design and implementation issues.
We evaluated it as well as several other real-time DVS
algorithms on an IBM 405LP embedded platform. A
unique DVS feature of this platform is asynchronous
frequency switching, which supports continued exe-
cution during voltage/frequency transitions. We have
shown up to 5% energy savings of asynchronous switch-
ing for fast DVS modulation without entering sleep
modes as opposed to traditional synchronous switch-

ing. We assessed the benefits of our feedback DVS al-
gorithm by measuring the energy consumption over
the hyperperiod of real-time tasks. Energy consump-
tion as well as scheduling overhead between different
DVS schemes were compared with each other. The ex-
perimental results indicate that our aggressive feedback
DVS scheduling algorithm achieves up to 24% addi-
tional savings in energy consumption over the look-
ahead DVS and AGR-2 algorithms and up to 64% en-
ergy savings over the näıve DVS scheme when consid-
ering scheduling overheads.
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