Relational Languages for Metadata
Integration

CATHARINE M. WYSS and EDWARD L. ROBERTSON
Indiana University

In this article, we develop a relational algebra for metadata integration, Federated Interoperable
Relational Algebra (FIRA). FIRA has many desirable properties such as compositionality, closure, a
deterministic semantics, a modest complexity, support for nested queries, a subalgebra equivalent
to canonical Relational Algebra (RA), and robustness under certain classes of schema evolution.
Beyond this, FIRA queries are capable of producing fully dynamic output schemas, where the
number of relations and/or the number of columns in relations of the output varies dynamically
with the input instance. Among existing query languages for relational metadata integration, only
FIRA provides generalized dynamic output schemas, where the values in any (fixed) number of
input columns can determine output schemas.

Further contributions of this article include development of an extended relational model for
metadata integration, the Federated Relational Data Model, which is strictly downward compatible
with the relational model. Additionally, we define the notion of Transformational Completeness
for relational query languages and postulate FIRA as a canonical transformationally complete
language. We also give a declarative, SQL-like query language that is equivalent to FIRA, called
Federated Interoperable Structured Query Language (FISQL).

While our main contributions are conceptual, the federated model, FISQL/FIRA, and the notion
of transformational completeness nevertheless have important applications to data integration and
OLAP. In addition to summarizing these applications, we illustrate the use of FIRA to optimize
FISQL queries using rule-based transformations that directly parallel their canonical relational
counterparts. We conclude the article with an extended discussion of related work as well as an
indication of current and future work on FISQL/FIRA.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design—Data mod-
els; H.2.3 [Database Management]|: Languages—Query languages

General Terms: Languages

Additional Key Words and Phrases: Data integration, federated databases, federated data model,
interoperability, metadata integration, metadata querying, multidatabases, relational query alge-
bra, schema integration, transformational completeness

The work of E. L. Robertson was supported in part by National Science foundation (NSF) grant
11S-82407.

Authors’ address: Indiana University, Computer Science Department, Bloomington, IN 47405;
email: {cmw,edrbtsn}@cs.indiana.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.

© 2005 ACM 0362-5915/05/0600-0624 $5.00

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005, Pages 624—660.

Relational Languages for Metadata Integration . 625

1. INTRODUCTION

In this article, we present a formal paradigm for transformationally com-
plete relational metadata integration. Our paradigm consists of an extended
relational algebra, Federated Interoperable Relational Algebra (FIRA). FIRA
augments canonical Relational Algebra (RA) with the ability to query and re-
structure metadata along with data directly within the relational model. Fur-
thermore, FIRA has an equivalent SQL-like counterpart, called Federated In-
teroperable Structured Query Language (FISQL). While our main contributions
are conceptual, the FISQL/FIRA framework nevertheless has important appli-
cations to data integration and OLAP, which we now summarize.

The field of data integration has interested database researchers for decades.
The dominant architectural model today is federated, where sources export
(import) views to (from) a mediated schema. This requires both wrappers en-
capsulating source data repositories as well as mapping functions giving the
translation between source data and/or schemas and the mediated schema.
Wrappers, mapping functions, and mediated schemas are crucial concepts in
data integration, whether the overall network architecture is centralized, peer-
to-peer, or hybrid [Halevy 2004].

Our language, FIRA, can assist with the creation and maintenance of wrap-
pers, mediating functions, and mediated schemas, especially in the case of
relational data sources. FIRA is more robust under schema evolution than tra-
ditional relational languages, as several examples throughout the paper illus-
trate. Furthermore, one open problem that FIRA addresses in data integration
is that of dynamically varying schemas, where target schemas may depend
dynamically on source data. For instance, relational “pivot”-type operations re-
quire certain data values to become attribute names. An example of this is the
translation between Indianapolis and Chicago stores in our sales federation
(Figure 1). FIRA extends contemporary solutions to this problem with more
generality. For example, dynamic transformations are no longer restricted to
a single column per query as in SchemaSQL [Gingras and Lakshmanan 1998;
Lakshmanan et al. 2001]. Also, the federated data model underpinning FIRA
provides for a clean extension of RA to federations without recourse to a two-
tiered language as in MD-SQL [Rood et al. 1999] or MQL/MA [Wyss and Van
Gucht 2001; Wyss et al. 2001]. A deeper discussion of related work appears in
Section 6.

Another important application area for FIRA is OnLine Analytical Process-
ing (OLAP). Many relational transformations required in OLAP contain a “rela-
tional transpose” similar to our T operator (Section 3.8). However, the semantics
of this operation within the constraints of the relational model have not been
well understood. FIRA leads to important theoretical results concerning rela-
tional transposition, which we report elsewhere [Robertson and Wyss 2004].
Furthermore, we are working to extend FISQL with aggregation capabilities
to better facilitate OLAP applications within the FISQL/FIRA framework.

1.1 Motivating Example

As an example motivating our languages, consider the relational tables shown
in Figure 1. In Figure 1, sales data for Amart stores in three midwestern

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

626 . C. M. Wyss and E. L. Robertson

Indy

sales Chicago
Store Dept AvgSales
Pinest Wmn 62500 AvgSales
WestRd Wmn 75000 Store Wmn Men Boy Girl
AndAve Wmn 81500 CedarRd 48500 35000 25500 L
PineSt Men 50000 CtrsSqg 55500 50000 32000 52500
AndAve Men 73500 Washst 63500 58500 42250 58500
PineSt Toddler 41250 Illst 78000 63250 50000 65500
WestRd Toddler 55000
AndAve Toddler 68500
Milw
LincAvesales FreePkSales WashStSales
Dgpt AvgSales LCode Dept AvgSales FCode Dept AvgSales WCode
Gﬁlol;l ggggg ; Girl 35000 2 Boy 28500 538
Men 48500 B Men 46500 cls8
Men 65000 3 wimn 55000 c wmn 60000 x27
Wmn 80000 4

Fig. 1. Average sales for Amart stores in three midwestern cities.

SELECT I.Dept, I.Store

FROM Indy.Sales AS I, Chicago.AvgSales AS C

WHERE (I.Dept = "Wmn" AND C.Wmn > I.AvgSales)
OR (I.Dept = "Men" AND C.Men > I.AvgSales)

Fig. 2. Using SQL to compare Amart data.

cities is shown. Each city uses a different relational representation of their
sales data. The goal is to facilitate posing queries comparing data in the three
cities. An SQL query comparing the Indianapolis and Chicago data is shown
in Figure 2. This query returns pairs of Indianapolis departments and stores
that make less than at least one comparable department in some Chicago
store.

The SQL for this comparison has several problems, centering around the fact
that the compared departments are “hard-coded” into the query. Thus, for ex-
ample, if any Chicago store begins offering clothing for toddlers, this query will
no longer perform the correct comparisons. Similarly, if any Indianapolis stores
change their department structure, the query is broken. Furthermore, this ap-
proach does not scale well as the number of departments increases. For 50 or
100 departments, the query would be daunting to write. In contrast, compare
the concise representation in FISQL which is independent of the specific de-
partments (Figure 10, Section 4.1). Previous work has coined the term Schema
Independence for queries that are robust under this type of schema evolution
[Lakshmanan et al. 2001; Masermann and Vossen 2000].

Another class of problems with the SQL query centers around the problem
of missing or incomplete information. If Chicago stores decide to discontinue
men’s clothing, the query in Figure 2 will break because “C.Men” no longer refers
to a legitimate column in Chicago.AvgSales. In contrast, FISQL assumes a

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Relational Languages for Metadata Integration . 627

federated data model which differs from the relational model in its approach to
missing information, and behaves gracefully under such losses of information.
At the same time, the federated model is strictly downward compatible with
the relational model, in that every relation has a unique federated counterpart
(see Definition 3.5, Section 3.2). Furthermore, this counterpart can be generated
purely syntactically without recourse to semantic information about the data
(unlike the transformation to the tabular model in Lakshmanan et al. [1999],
for example).

1.2 Main Contributions

In summary, the main contributions of the current article are as follows:

—We introduce the Federated Relational Model in Section 2.1 as a straightfor-
ward syntactic extension of the relational model. The federated model treats
relation and attribute names as first class domain elements, and behaves
well under incomplete information.

—We introduce the notion of Transformational Completeness for query lan-
guages in Section 2.2. This notion captures our intuition concerning
the completeness of a query language for relational data < metadata
transformations.

—Our foremost contribution in this article is to introduce the algebraic query
language FIRA, which is our paradigm for transformationally complete re-
lational metadata integration. FIRA has several advantageous properties
beyond current relational metadata integration languages, including:
—Compositionality—A FIRA query maps a set of federated databases to a

single federated database. This closure is a natural parallel of RA closure,
since RA accepts a finite number of relations and returns a single relation
as output.

—Downward Compatibility—FIRA contains a subalgebra isomorphic to the
canonical RA. This entails that RA equivalences translate directly to FIRA
equivalences. Thus (for example), FIRA Cartesian Product is commutative
and associative, unlike previous algebras [Grant et al. 1993].

—Generality—FIRA allows dynamic schema transformations in more gen-
erality than previous languages such as SchemaSQL [Lakshmanan et al.
2001] where only a single column of data could be promoted to metadata
per query.

—Nested Queries—FIRA includes support for nested queries, and FIRA
queries can be arbitrarily chained together in finite sequences. This is in
contrast to previous languages that have used view mechanisms to inte-
grate data and metadata, such as SchemaSQL [Lakshmanan et al. 2001].

—In Section 4, we present FISQL and show subsequently that it is equivalent
to FIRA (Section 4.4). The FISQL-FIRA equivalence parallels the SQL-RA
equivalence, which means rule-based query optimization techniques devel-
oped for SQL immediately carry over to FISQL, as we show in Section 5.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

628 . C. M. Wyss and E. L. Robertson

—Finally, in Section 6, we give a targeted overview of related work, com-
paring properties of previous relational metadata integration languages to
FISQL/FIRA. A tabular summary of the survey is given in Table I.

In the next section, we begin by detailing formal notation and concepts as-
sumed throughout the presentation.

2. FORMAL PRELIMINARIES

For the remainder of the article, we assume familiarity with the standard re-
lational model and Relational Algebra (RA). To fix these notions, we briefly
recapitulate what we understand to be accepted definitions of these concepts.

We assume a domain of atomic elements, denoted dom, which contains al-
phanumeric strings, such as 123, abc or SomeElement. We use teletype font to
denote specific elements of dom. In addition, we use a special element, L, called
the null element. We assume | ¢ dom, so that L can be used to distinguish
noninformation within the model.

For metadata, we also assume a domain of atomic elements, denoted 91,
which is usually considered to contain alphanumeric strings beginning with a
letter. We assume 9, C dom.}

Definition 2.1

(1) A (Canonical) Tuple, t is a mapping from a finite set S C iy to dom U { L}.
Elements of S are termed attributes. The square-bracket notation ¢[A] is
used to signify the element ¢(A) for A € S.

(2) A(Canonical) Relation hasaname N € 9, and a finite schema S C 9. The
relation body consists of a finite set of (canonical) tuples ¢ : S — dom U {_L}.

(3) A (Canonical) Database consists of a finite set of (canonical) relations.
Definition 2.2

(1) The Relational Algebra (RA) is understood to be the query language gener-
ated by applying the six relational operations p (Renaming), o (Selection),
7 (Projection), x (Cartesian Product), U (Set Union), and—(Set Difference).
A query in the RA maps a set of input relations (i.e., a database) to a single
output relation.

(2) A query language that can express all queries of the RA is said to be Rela-
tionally Complete [Codd 1970].

The notion of Relational Completeness is often used to gauge expressivity
within the relational model. Beyond this, the data complexity of the RA is
LoGSPACE. This is often used as a second gauge for relational query languages,
since efficient query processing is of paramount importance in large data sets.
The LocsPack class is considered to contain enough power for most common
query tasks, while remaining efficient in terms of execution times. The RA itself
is particularly suited to optimized query execution, since several nice algebraic

1Classically, relational metadata and data are not compared within the model. However, relational
metadata are represented as alphanumeric strings beginning with a letter, so in principle there is
no problem with comparing metadata and data literals (as strings).

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Relational Languages for Metadata Integration . 629

rules give rise to simple but effective rule-based query optimization strategies
[Garcia-Molina et al. 2000].

2.1 The Federated Relational Data Model

One of the main contributions of our work is to extend the relational model to
incorporate metadata. The resulting data model is termed the Federated Re-
lational Data Model, or simply the Federated Model. In the federated model,
relational metadata can be compared and transformed along with relational
data. However, the meta-ness of metadata in the ordinary relational model
must be recapitulated in the federated model, only at the “next-higher” level.
Thus, we assume a countable domain of meta-metadata, denoted 2i;, contain-
ing elements distinct from any in dom and 9; that is, 93 N dom = ¢ and
M1 N Moy = @. In the federated model, relational data and metadata are al-
lowed to occupy both data and schema positions.2 However, federated metadata
(elements of M17) are not allowed as data.

Definition 2.3
(1) A (Federated) Tuple is a mapping from a finite set S C dom U to dom
U{L}. S is known as the Schema of the tuple, that is, S = schema(t).

(2) A (Federated) Relation has a name N € dom. The relation body consists of
a finite set of (federated) tuples.

(3) A (Federated) Database has a name D € 9. The database body consists of
a finite set of (federated) relations.

(4) A Federation consists of a finite set of (federated) databases.
Definition 2.4

(1) A federated relation can be seen as a pair (N, B), where N € dom and
B is a finite set of federated tuples. Given federated relation R = (N, B),
we use the notation name(R) and body(R) to refer abstractly to N and B

(respectively).
(2) Given a federated relation R, we define its Schema to be
schema(R)= U schemal(t).
tebody(R)

Note that a federated relation is allowed to contain tuples with (possibly)
differing schemas. The schema of the relation is the union of the schemas of
tuples it contains, so that the schema of a federated relation depends critically
on the relation instance. This is an important design decision in the creation
of the federated model, and facilitates dynamic schema transformations, such
as relational transposition (Section 3.8) or attribute dereference (Section 3.5).
One consequence of this decision is that algebraic operations that remove or
change tuples may modify the relation schema. As per Definition 2.4, we denote

2]t may seem odd to allow numbers as attributes and relation names. However, there is no reason
in principle to rule this out; in fact, dates or ages (for example) may be quite useful column or
relation names. In any case, the formalism for disallowing these cases is unwieldy, so for clarity we
defer such considerations to implementation.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

630 . C. M. Wyss and E. L. Robertson

< relation names)

attributes

C oo 2

Fig. 3. Data-metadata transformations.

the schema of a federated relation abstractly as schema(R), even though the
extension of this set varies with the relation instance. This view is notationally
convenient, and we use it throughout the remainder of this article.

2.2 Transformational Completeness

So far, we have seen federated analogs of the relational notions of tuple, relation,
database, and schema. Another analogous concept is that of Transformational
Completeness. We say that a query language is Transformationally Complete if
(i) it is relationally complete and (ii) it can express schema-independent queries
encompassing all six data-metadata transformations depicted in Figure 3. Note
that canonical RA is not transformationally complete in this sense, as previous
work has indicated [Lakshmanan et al. 2001].

Several languages have been proposed that capture some or all of the trans-
formations depicted in Figure 3. These languages are discussed in more detail
in Section 6 after we present our transformationally complete query languages
FIRA and FISQL (Sections 3 and 4, respectively). In fact, one of our contri-
butions is to formalize the notion of “transformational completeness” by pos-
tulating FIRA as a paradigmatic transformationally complete language. This
is not to say FIRA is the final word in relational metadata integration; rather
we use FIRA as a formal archetype for what it means to be transformationally
complete (in the same way as RA is a formal archetype for what it means to be
relationally complete). Thus, transformational completeness and FIRA are the
federated analog of relational completeness and RA.

Note that the transformations of Figure 3 must be carried out in a man-
ner that preserves the semantics of the underlying data. For the relational
model, one formalization of this type of symmetry is encoded in the notion of
BP-Completeness [Abiteboul et al. 1995]. To fully capture the notion of sym-
metry inherent in federated transformations, ongoing work is extending BP-
Completeness and related notions to the federated data model.

2.3 Higher-Order Federated Data Models

In principle, there is no reason to stop with federations and 9%;. For 2 > 2
we can assume a “higher-order” metadata domain 9%, that is disjoint from
dom and from 9t; where j < k. We can then define the concepts of tuple,
relation, database, federation, set of federations, set of sets of federations, etc.,
and associated notions. The query languages for these “higher-order” relational
models will have affinities with higher-order logics, just as FIRA and FISQL
(and similar languages) have affinities with second-order logic. Ongoing work is
characterizing the resulting relational hierarchy and languages. In particular,

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Relational Languages for Metadata Integration . 631

extended federated models provide a segue to tree-structured databases and
XML.

In the present federated model, elements of 21; cannot be demoted to data
within the federated model; thus the “chain of removal” ends with 91;.

3. FEDERATED INTEROPERABLE RA

In this section, we present the query algebra called Federated Interoperable Re-
lational Algebra. Each operator in FIRA accepts a fixed number of databases as
input (i.e., a federation) and returns a single database. This closure is a natural
parallel of RA closure, since RA accepts a fixed number of relations and returns
a single relation as output. As with RA, some operators are parameterized by
elements of the input schema.

3.1 Basic Terms

Basic terms in FIRA are database names or database variables. For example,
“Indy” is a basic term in the FIRA. We use variables of the form D1, Dy, ... to
denote databases.

3.2 The Relational Core of FIRA

Each of the six RA operators (p, o, 7, x, U, —) has a federated counterpart within
FIRA. We use hatted notation for these FIRA counterparts (p, &, etc.). The
definitions of the FIRA relational algebra operators include applications of
canonical RA operators to federated relation bodies. Given federated relation R,
body(R) is not, strictly speaking, a canonical relation. However, these notions
are so close that we ignore the difference to facilitate concise definitions.?

One twist in the definition of the federated counterparts for unary RA op-
erators is that we need to allow relation renaming in addition to attribute re-
naming; this is done in Definition 3.1(1). Selection and Projection are straight-
forward (Definitions, 3.1(2) and 3.1(3), respectively).

Definition 3.1 (Federated Unary Relational Operators)

(1) (Renaming) Let D be a federated database. There are two cases.
(a) (General Renaming) Let A;, B; € dom UM, for 1 <i < n. Then
PA,—B,,.,A,—B,(D) = {{name(R), pa,~B,,..,a,—B,(body(R)))IR € D}.

(b) (Relation Specific Renaming) Let A;, B; € dom U My for 1 <i <n and
N, M € dom. Then

ﬁlezjgl,m,An*)Bn(D) =
(M, pa,—~B,...A,—B,(body(R))|R € D,name(R) = N}
U{R € Dlname(R) # N}.

3Formally, for federated relation R, we consider schema(R) as the set “S” in Definition 2.1, extending
tuples in body(R) with null values where necessary. Since RA operators do not demote relational
metadata to data, we can view elements of dom and 91; in schema(R) as canonical metadata
constants so that the action of RA operators on columns headed by these elements is the same as
for columns headed by elements of 9.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

632 . C. M. Wyss and E. L. Robertson

(2) (Selection) Let D be a federated database and C be a well-formed Boolean
selection condition. Then

6¢(D) = {(name(R), oc(body(R))IR € D}.

(8) (Projection)Let D be a federated database and Ay, edom UM forl <k < n.
Then

4,(body(R))|R € D}.

For the binary RA operators, the fact that relation names are now a part
of the formalism means that we must be careful when defining the federated
counterparts of these operations. When operating on federated databases, the
FIRA counterparts of the binary RA operators behave consistently with the
RA by acting non-trivially only on like named relations. Furthermore, since
schemas vary dynamically in FIRA, we assume outer versions of the canonical
RA operators x, U, and —, so that mismatched schemas will still provide sensible
answers.

Definition 3.2 (Federated Cartesian Product). Let D and Dy denote feder-
ated databases. Their Federated Cartesian Product is defined as

.....

D1 x Dy = {{name(R1), body(R1) x body(Rz))
| R1 € D1, Ry € Dy and name(R1) = name(Rs)}.

Note that unmatched relations in either database are dropped in the product,
so the cardinality of D;x Ds is equal to or less than that of D;. This decision
may seem odd, but has two important consequences. First, X is commutative
and associative, unlike in previous algebras that define the Cartesian Product
of databases as all pairwise combinations of products [Grant et al. 1993]. Also,
there exists an embedding of canonical relations into federated relations that
preserves RA as a subalgebra of FIRA (Theorem 3.6, below). For similar reasons,
federated set union and set difference are defined analogously, as follows.

Definition 3.3 (Federated Set Union). Let D; and Ds denote federated
databases. Their Federated Set Union is defined as

D1UDy = {{(name(R1), body(R1) U body(Rs))
| R1 € D1, Ry € Dy and name(R1) = nameRs)
U {R1 € Dq] there is no Ry € Dy such that name(R1) = nameRs}
| (Rs € Dy| there is no Ry € Dy such that name(Rz) = nameR,).

Definition 3.4 (Federated Set Difference). Let D; and Dy denote federated
databases. The Federated Set Difference of D; and Dy is defined as

D1-Dy = {{name(R1), body(R1) — body(Rz))
| R1 € D1, Re € Dy and name(R1) = nameRs}

U {R1 € Dq| there is no Ry € Dy such that name(R1) = nameRs}.

The six FIRA operators p, 6, #, x, U, and = are in and of themselves a
compositionally closed algebra on federated databases. This algebra is thus

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Relational Languages for Metadata Integration . 633

a subalgebra of full FIRA (which we have yet to define), and furthermore is
equivalent to canonical RA. To see this, we require a well-defined embedding of
canonical relations into federated databases. Note that since dom C dom U t,,
we can view a canonical relation as the body of a federated relation without
issue. Let ¢ be a distinguished symbol in dom, called the “empty name”. We
federate canonical relations simply by assigning them the name ¢.

Definition 3.5. Let R be a canonical relation. The Federated Counterpart
of R, denoted federate(R), is the federated database {(¢, R)}.

THEOREM 3.6. RA is isomorphic to a subalgebra of FIRA.

Proor. Definition 3.5 defines a mapping, federate, from canonical relations
into federated databases given by R > federate(R).Itis easy to see that federate
is injective. Furthermore, federate is a homomorphism with respect to the RA
operators and their FIRA counterparts so that, for example, federate(oc(R)) =
éc(federate(R)), federate(R U S) = federate(R) U federate(S), ete.

On the other hand, consider the class © that consists of exactly the federated
databases that are the image of some canonical relation under federate. Clearly,
federate is surjective for this class. It is relatively easy to see that we have
closure under the FIRA operations p, 6, #, X, U, and = within D.

Thus, federate induces a subalgebra of FIRA that is isomorphic to RA. We
term this subalgebra the Relational Core of FIRA. O

Theorem 3.6 is important because it precisely characterizes how FIRA se-
mantics properly extends RA semantics. Previous algebras have not shown such
a result.

The next subsections introduce the operators of full FIRA that move beyond
the relational core.

3.3 Drop Projection
FIRA includes a projection operator that allows one to remove elements from
relation schemas, denoted .

Definition 3.7

(1) (Drop Projection for Federated Relations) Let R be a federated relation and
A edom U M. Then

2A(R) = {(name(R), Tschemar)—a(body(R))}.

(2) (Drop Projection for Federated Databases) Let D be a federated database
and A € dom U M. Then 14(D) = {xa(R)|R € D}. In addition, we use the
shorthand notation 4, 4,(D) for A, € dom U 9, (1 < k < n) to mean
Zp, (- (2a,(D))---).

Note that since federated schemas vary dynamically with instances, the drop
projection cannot uniformly be imitated with canonical projection. In fact, re-
cent work shows that drop projection is not superfluous for polymorphic versions
of the canonical RA [Van den Bussche and Waller 2002].

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

634 . C. M. Wyss and E. L. Robertson

T3 as Dept | AvgSal | FCode
FreePkSales Dept Girl 35000 A
FreePkSales Dept Men 48500 B
FreePkSales Dept Wmn 55000 C
FreePkSales | AvgSales | Girl 35000 A
FreePkSales AvgSales Men 48500 B
FreePkSales | AvgSales Wmn 55000 C
FreePkSales FCode Girl 35000 A
FreePkSales FCode Men 48500 B
FreePkSales FCode Wnn 55000 C

Fig. 4. The relation |3 (Milw.FreePkSales).

3.4 The Down Operator

FIRA contains a family of operators which explicitly demote relational meta-
data to federated data. Notationally, we use fixed constants from 91, to signify
columns created to hold relational metadata. We will assume two families of
constants in 9t; which we represent using lowercase, subscripted versions of the
“Fraktur” font, such as t3, and ag; (for relation, and attribute names, respec-
tively). Note that these constants can appear in federated relation schemas,
however they cannot be demoted to federated data. This is a consequence of
“stopping” the relational hierarchy at federations (as discussed in Section 2.3).

Definition 3.8 (Down Operators)

(1) (Down Operators for Federated Relations) Let R be a federated relation and
i € N be a fixed natural number.
(a) Let name(R) = N € dom and schema(R)N dom = {A,,...,A,}. We
define metadata;(R) to be the following set of federated tuples:

T a;
N | A
N | Ay
N | A,

(b) The down of R with respect to i, denoted |; (R) is the federated relation
Ui (R) = (name(R), metadata;(R) x 1, o,(body(R))).
(2) (Down Operators for Federated Databases) Let D be a federated database.
Then

1 (D)= {}; (R)IR € D}.
Example 3.9. The federated relation |3(Milw.FreePkSales) is shown in
Figure 4.

Note that i only affects the choice of constants from 9t; labeling the out-
put columns of metadata;(R). The drop projection in the body of |; (R) en-
sures that we only add meta-metadata subscripted by i once. In other words,

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Relational Languages for Metadata Integration . 635

1il;(R)) = |;(R). This plus the fact that we do not include meta-metadata as
data in the relation metadata;(R) means that |; (}; (R)) = |; (R)X|; (R) for
i,j € N.

3.5 Attribute Dereference

FIRA includes an operator for projecting a relation R on attributes determined
by cell values in another attribute. For each tuple ¢ € R, instead of projecting
that tuple on field A, we project on the field named by ¢[A]. This operation is
termed Attribute Dereference and is denoted A.

Definition 3.10 (Attribute Dereference)
(1) (Attribute Dereference for Federated Relations) Let R be a federated relation
and A, B € dom U M;. Then AB(R) = (name(R), R') where R’ is obtained

from body(R) tuple-by-tuple as follows: For ¢ € body(R), we obtain s € R’
as:

t[t[A]l]liff X = B;
t[X] otherwise.

slX]=

(2) (Attribute Dereference for Federated Databases) Let D be a database and
A, B e dom U M. Then AB(D) = {AB(R)|R € D}.

Example 3.11. Consider dereferencing Chi.AvgSales by the Indy depart-
ments. We will first augment Chi. AvgSales with the column of Indy department
names (Figure 5(a)); then we can dereference the resulting relation to obtain
the desired information (Figure 5(b)).

Dereferencing is common when comparing data from relations having “trans-
posed” structure, such as the Chi.AvgSales and the Indy.Sales relations. This
type of structural mismatch is commonly found when comparing spreadsheet
data to native relational data. In these cases, dereference terms will most often
be included within selections and projections. For these situations, we provide
convenient notational shorthands.

Definition 3.12
(1) Let R be a federated relation and A, B € dom U ;. Let op € {<, >, =, #,
<, >}. Then o4, g(R) is shorthand notation for
1x(0x op B(AS (R))).

where X € (dom U9t;) — schema(R) is arbitrary (but fixed). Similarly, we
allow selection terms of the form o, ,, 5(R) or 07 o 5(R).

(2) Let R be a federated relation and A, B € dom UM;. Then ng(R) is short-

hand for 75(AB(R)). When such projection terms are included in a list, it is
understood that the dereferencing will take place first, then the projections.

In general, the overline notation (A) means we dereference on column A first,
then perform the desired selection or projection on the result of the dereference.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

636 . C. M. Wyss and E. L. Robertson

R’ = Chi.AvgSales X ppept— Ipept (Tpept (Indy . Sales)):

IDept Store Wmn Men Boy Girl
Wmn CedarRd | 48500 | 35000 | 25500 1
Wmn Ctrsq 55500 | 50000 | 32000 | 52500
Wmn WashSt 63500 | 58500 | 42250 | 58500
Wmn Illst 78000 | 63250 | 50000 | 65500
Men CedarRd | 48500 | 35000 | 25500 1
Men Ctrsq 55500 | 50000 | 32000 | 52500
Men WashSt 63500 | 58500 | 42250 | 58500
Men Illst 78000 | 63250 | 50000 | 65500

Toddler | CedarRd | 48500 | 35000 | 25500 1

Toddler Ctrsq 55500 | 50000 | 32000 | 52500
Toddler WashSt 63500 58500 42250 58500
Toddler Illst 78000 | 63250 | 50000 | 65500

(a) Augmenting Chicago Relation with Indianapolis Department Names.

AC}%ESg;]éeS(RI .

Chisales IDept Store Wmn Men Boy Girl
48500 Wmn CedarRd | 48500 | 35000 | 25500 1
55500 Wmn CtrSsq 55500 50000 32000 52500
63500 Wmn WashSt 63500 | 58500 | 42250 | 58500
78000 Wmn I11st 78000 63250 50000 65500
35000 Men CedarRd | 48500 | 35000 | 25500 1
50000 Men CtrSsqg 55500 50000 32000 52500
58500 Men WashSt 63500 | 58500 | 42250 | 58500
63250 Men I11st 78000 63250 50000 65500

1 Toddler | CedarRd | 48500 | 35000 | 25500 L

1 Toddler CtrSsq 55500 50000 32000 52500
1 Toddler WashSt 63500 | 58500 | 42250 | 58500
1 Toddler I11st 78000 63250 50000 65500

(b) Dereferencing Result of (a) to Pair Chicago Sales with Indianapolis Departments.

Fig. 5. Result of augmenting Chi.AvgSales and dereferencing.

3.6 Generalized Union

FIRA contains a generalized union operator (denoted X) that unions all rela-
tions within an input database. The result of T is a database containing a single
federated relation named ¢ whose body is the outer union of all those in the in-
put. Thus, X effectively combines a database into a single federated relation
containing all the information within that database.

Definition 3.13 (Generalized Union). Let D be a federated database. Then
(D) = {{e, U body(R))|.

Example 3.14. The result of £(Milw) is shown in Figure 6. This query
returns a single relation containing the information from all the Milwaukee
relations.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Relational Languages for Metadata Integration . 637

Dept | AvgSales | Lcode | Fcode | Wcode
Girl 45000 1 1 1
Boy 55000 2 1 1
Men 65000 3 1 1L
Wrn 80000 4 1 L
Girl 35000 1 A 1
Men 48500 1 B 1
Wmn 55000 1 C 1L
Boy 28500 1 1 B38
Men 46500 1 1 c18
Wmn 60000 1 1 X217

Fig. 6. Result of Z(Milw) operation.

3.7 The Partition Operator

The next FIRA operator is the inverse to . The partition operator (denoted ¢)
splits a given relation into several relations, based on names given in a column
of the input relation.

Definition 3.15 (Partition)

(1) (Partition for Federated Relations) Let R be a federated relation and A <
dom U;. Then ©4(R) is the federated database

©A(R) = {(@, oa—rq>(body(R))) | It € body(R) such that t[A] = a}.
(2) (Partition for Federated Databases) Let D be a database and A € dom U ;.
Then

0a(D) = RL;JD@AUU

For notational convenience, it is often necessary to “partition” on a constant.
By this we mean a renaming of the input relation(s); so that for a fixed domain
element a € dom,

P”a”(D) = RL;JD /3 name(R)ﬂa(R).

Example 3.16. Figure 7 shows the result of the operation g...(Indy.
Sales).

3.8 The Transpose Operator

To be transformationally complete, FIRA must include an operator that allows
the promotion of data to attribute names. This operator, denoted t, is termed
Transpose, due to affinities with the matrix transpose operation. In spread-
sheets, a similar operation is termed Pivot [Cunningham et al. 2004]. Unlike a
spreadsheet, a relation is transposed tuple-by-tuple, as follows.

Definition 3.17 (FIRA Transpose)

(1) (Transpose for Federated Relations) Let R be a federated relationand A, B <
dom U9M;. Then the transpose of A on B of R, denoted t5(R), is a relation
having the same name as R, where each tuple, s, in the body of the output

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

638 . C. M. Wyss and E. L. Robertson

PineSt

Indy.Sales Store| Dept |AvgSales

Store Dept Angales/ PineSt Wmn 62,500
i PineSt| Men 50,000
PineSt| Wmn | 62,5007 PineSt|Toddler 41,250
WestRd Wmn 75,000
AndAve Wmn 81,500 WestRd
PineSt Men 50,000
AndAve Men 73,500
PineSt| Toddler 41,250 WestRd| — Wmn 75,000
WestRd| Toddler] 55,000 WestRd) Toddler 55,000

AndAve| Toddler] 68,500

Store Dept |AvgSales

£

AndAve

Store Dept |AvgSales
AndAve| Wmn 81,500

AndAve| Men 73,500
AndAve| Toddlery 68,500

Fig. 7. Partitioning Indy.Sales.

Store Dept AvgSales Wmn Men Toddler
PineSt Wmn 62500 62500 1 1
WestRd Wmn 75000 75000 1 1
AndAve Wmn 81500 81500 1 1
PineSt Men 50000 1 50000 1
AndAve Men 73500 1 73500 1
PineSt Toddler 41250 1 1 41250
WestRd | Toddler 55000 1 1 55000
AndAve | Toddler 68500 1 1 68500

Fig. 8. Result of the operation rffgstales(lndy.Sales).

relation is obtained from tuple ¢ € body(R) as follows.
t[A]iff X =¢[B];
s[X 1= {t[X]iff X € schema(t), X # t[B];
1 otherwise.

(2) (Transpose for Federated Databases) Let D be a database and A, B € dom U
My. Then (D) = (xf(R)IR e D}.

Dept

Example 3.18. Figure 8 shows the result of the operation & = 7,515
(Indy.Sales). Note that the contents of the AvgSales column in Figure 8 are
identical with the contents of the column X in the dereference operation A§_.(£).
This illustrates that r and A essentially perform inverse operations.

In transposing a relation, null values are explicitly not promoted to column
headings. However, in general, many null values appear as data within the new
relation. Sometimes it is a simple matter to reduce these null values by “merg-
ing” based on key values. In general, for a given relation, finding an equivalent

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Relational Languages for Metadata Integration . 639

merged form with a minimal number of tuples is NP-complete [Robertson and
Wyss 2004].

FIRA is the query algebra generated by applying finite sequences of the
operations p, 6, #, x, U, =, x, |, A, X, p, and 7 to federated databases. FIRA is
our paradigm for transformationally complete query languages. For usability
and familiarity, we provide an equivalent SQL-like query language which is
introduced in the next section.

4. FEDERATED INTEROPERABLE SQL

In this section, we present the syntax and semantics of Federated Interoperable
SQL (FISQL). FISQL is a strict extension of the query sub-language of SQL
equivalent to RA (we refer to this sub-language as “core SQL”), in that it contains
a sub-language equivalent to core SQL and its semantics are extended in a
manner that is wholly consistent with SQL.

Syntactically, the most obvious additions to SQL are the declaration of
metavariables in the FROM clause and the ability to give parameterized names
to output schemas. Semantically, FISQL maps an input federation to an output
database whose schema may depend on the input data.

Metavariables in the FROM clause range over relation and attribute names.
They allow the creation of queries that have a second-order appearance; how-
ever, FISQL has a first-order semantics since metavariables range over meta-
data as domain elements as opposed to relations themselves. In this, FISQL
follows in the tradition of syntactically higher-order query languages with
a first-order semantics, such as HiLog [Chen et al. 1990b] and SchemaSQL
[Lakshmanan et al. 2001].

Unlike previous languages, FISQL provides explicit keywords signaling dy-
namically varying output schemas in the SELECT clause, namely the “ON” and
“INTO” keywords. This design decision has two main purposes.

First, it gives FISQL downward compatibility with the CREATE VIEW con-
struct of ordinary SQL. In contrast (for example), SchemaSQL uses the CRE-
ATE VIEW construct to determine when an otherwise non-dynamic query gives
a dynamic result; thus, the same SchemaSQL base query has different seman-
tics if it is contained in a view.* This is problematic for the compositionality of
the language as well as compatibility with SQL.

Secondly, from a syntactic viewpoint, previous languages such as Schemal.og
[Lakshmanan et al. 1997] and SchemaSQL [Lakshmanan et al. 2001] have used
a notation whereby a single parameter may unify with a domain element or an
entire list in the final output. Instead, the FISQL “ON” keyword specifically
denotes the particular case of unifying with a list of output values. We find this
notation more directly reflects the intended semantics of the query.

4.1 FISQL Examples

A full EBNF for FISQL appears in Figure 9. For brevity, we introduce FISQL
by means of representative examples showing key transformations in the

4This becomes clear in the presentation of queries Q7 and Q8 in Lakshmanan et al. [2001].

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

640 . C. M. Wyss and E. L. Robertson

(query)

(col_decls)
(col_decl)

(variable_decls)
(var_decl)

(base_var_decl)
{condition)

(cond_operator)
(name_term)

SELECT (col_decls) INTO (name_term)

FROM (variable_decls)

[WHERE {{condition)}*]

({query)) UNION ((query))

({query)) MINUS ({query))

(col_decl) {, (col_decl)}*

(name_term) AS (string)

(name_term) ON (name_term)

* [DROP (name_term) {, (name_term)}*]
(var_decl) {, (var_decl) }*

(db-name) (base_var_decl)

({query)) (base_var_decl)
:(varname(rel)):(varname(att)) AS (varname(tup))
((condition))

({condition)) AND ({condition))

({condition)) OR ({condition))

NOT ({condition))

(name_termy (cond_operator) (name_term)
=|l=|<=|<]|>]|>=

(string)
(varname(meta)
(varname(tup)).
(varname(tup)).(dom_elt)
(varname(tup)).(varname(tup)).(dom_elr)
(varname(rel))|(varname(att))

(dom_elt) — X is rel, att, or tup

(dom_elr)

" (dom_elt) "
(a—z|a-2|0-9){(a—z|A-2Z|0-9|-)}*

varname(meta))

O o~~~

Fig. 9. EBNF grammar for Federated Interoperable SQL.

SELECT I.Dept AS "Dept", I.Store AS "Store"

INTO "CompareChiIndy"

FROM Chicago.AvgSales AS C, Indy.Sales AS I
WHERE C.I.Dept > I.AvgSales

AmartSales federation (Figure 1). The first example shows a transformation

Fig. 10. @1: Use of tuple dereferencing.

from the Chicago to Indianapolis representations.

Example 4.1. Consider query @ (Figure 10) where we dereference the
tuples in the input relation Chicago.AvgSales based on Indianapolis depart-
ments. This query returns departments in Indianapolis stores that are under-
performing with respect to some Chicago counterpart. The result is a database

having a single relation named CompareChiIndy.5

5Compare this schema-independent FISQL query to the schema-dependent SQL version in

Figure 2.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Relational Languages for Metadata Integration . 641

SELECT I.Dept AS "Dept", I.AvgSal AS "AvgSal"
INTO I.Store
FROM Indy.Sales AS I

Fig. 11. @g: Indy.Sales > Milw.

SELECT R AS "Store", T.Dept AS "Dept", T.AvgSales AS "AvgSales"
INTO "Milw2Indy"
FROM Milw:R AS T

Fig. 12. @3:Milw > Indy.Sales.

Two tuple variables are declared (C and I) over the Chi.AvgSales and
Indy.Sales relations, respectively. The Dept value of the I tuple then gives the
name of the attribute whose value in the C tuple is to be compared to I.AvgSales;
in other words, the dereferenced value C.I.Dept is to be compared to I.AvgSales.
In case I.Dept ¢ schema(Chi.AvgSales), the term C.I.Dept resolves to L.

As the previous example illustrates, in FISQL the terms “Ty.75.2” where
T: and Ty are tuple variables or “T'.M” where T is a tuple variable and M
is a metavariable capture the FIRA dereference operator, A. The next exam-
ples (4.2 through 4.4) show FISQL counterparts for the g, ¥, and t operators,
respectively.

Example 4.2. Query Q2 (Figure 11) restructures the Indy.Sales relation
into the format of the Milwaukee database.® A separate relation for each
value of 7mgiore(Indy.Sales) is created within the output database due to the
parameterized term “I.Store” occurring in the INTO part of the SELECT clause.
This effects the same transformation as the FIRA g operator depicted in
Figure 7.

Example 4.3. Query @3 (Figure 12) exhibits the opposite transformation
from query @g, effecting the same transformation as the FIRA generalized
union operator, X.7

Example 4.4. Query Q4 (Figure 13) restructures the Indianapolis data into
the format of the Chicago data. For each value of 7g,1.5(Indy.Sales), a new
column is created with appropriate contents. This is the same transposition
depicted in Figure 8.

4.2 FISQL Semantics

In defining the semantics of FISQL, we assume an underlying Federation Meta-
data Dictionary (denoted FMD) which is a two-column relation containing the re-
lation, and attribute names for each relation in the federation.? We will assume

6Since the Indy relation does not include store codes, these columns are omitted. They could be
included containing null values for exact schema conversion.

"In an implementation, we would want to provide basic string manipulation capabilities in FISQL
so that (for example) the string “LincAveSales” can be transformed to the string “LincAve”, giving
a more precise result.

8Commercial database platforms commonly store the required metadata in system specific tables;
FMD can be easily obtained by querying these tables for each component database in the federation
as long as appropriate privileges are held.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

642 . C. M. Wyss and E. L. Robertson

SELECT I.Store AS "Store", I.AvgSales ON I.Dept
INTO "Indy2Chi"
FROM Indy.Sales AS I

Fig. 13. @4: Indy.Sales > Chi.AvgSales.

SELECT X1 AS "a1", .., X, AS "a;", Y1 ON Z1, ..., Y ON Z,,
INTO N

FROMD; : Ry : A1 ASTh,....,Dpn : Ry : Ap AS Ty,

WHERE C7 AND - - - AND Cyy,

Fig. 14. Canonical form of FISQL query.

SELECT I.Dept AS "Dept", I.Store AS "Store"
INTO "CompareChiIndy"
FROM Chicago:R;:A; ASC,Indy:R2:A2AST
WHERE R] = "AvgSales" ANDRg = "Sales" AND C.I.Dept > I.AvgSales

Fig. 15. Query @ from Figure 10 written longhand.

the schema of this relation is FMD (relName,attName). FMD provides instantia-
tions for FISQL metavariables at runtime.

A well-formed FISQL query has the form shown in Figure 14. In Figure 14, N,
X;,Y;,and Z; denote FISQL name terms conforming to the EBNF in Figure 9.
The a; are constants of dom. Furthermore, D; € 9, are database names, and
R;, A;, and T; are relation metavariables, attribute metavariables, and tuple
variables, respectively.?

Note that in the full form of a FISQL query, range declarations contain
all metavariable declarations as well as tuple declarations. In Examples 4.1
through 4.4, we have made use of two convenient notational shortcuts in ex-
pressing FROM clauses, which we now elucidate.

First, variables that are not elsewhere used in the SELECT or WHERE clauses
are normally omitted from the query. Second, it is often the case that specific
relations are intended. In such a case, fixed relations are used directly within
the FROM clause. The formal semantics involves unwinding these uses by replac-
ing the relation name with a metavariable and adding an appropriate clause to
the WHERE clause which constrains the metavariable. As an example, Figure 15
shows the long version of query @ 1. This long version can be given a precise,
uniform semantics.

The semantics of a canonical FISQL query is given by a nested loop algorithm
that instantiates each FROM clause metavariable using FMD and instantiates
each tuple variable from the relation currently indicated by the metavariable
instantiation. The algorithm is shown in Figure 16. Note that FISQL FROM
clause declarations are independent, as in SQL (but unlike in SchemaSQL).

4.2.1 Subqueries. FISQL allows subqueries in the FROM clause, so we must
extend the semantics of nested range declarations inductively to subqueries. We

9We have simplified the form somewhat by (i) assuming the WHERE clause is in Conjunctive Normal
Form (CNF), (ii) omitting separate SELECT clauses for *, and (iii) putting ON terms after AS terms in
the SELECT clause. These simplifications are for ease of presentation only and do not significantly
impact either the semantics or the proof of equivalence with FIRA (Section 4.4).

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Relational Languages for Metadata Integration . 643
for i1 € FMD, let Ry = i1[relName], A1 = i1[attName]

for i, € FMD, let Ry, = i, [relName|, A, = in[attName]
for vy in relation Ry

for v, in relation Ry,
if the WHERE clause is satisfied when instantiated values from v1 through vy,
and 71 through 2, are substituted,
then evaluate the terms in the SELECT clause according to the instantiation
and produce the tuple of values that results into the resulting relation named.

Fig. 16. Nested loops algorithm for evaluating FISQL queries.

begin at the innermost nested queries; by induction these return well-formed
databases. Now consider a range declaration over a subquery, for example of
the form: FROM (Q) :R:A AS T. By induction, the subquery Q returns a database
Dg. We obtain valid interpretations for this declaration by replacing FMD in the
nested loops algorithm by the appropriate references from Dg.

Given this technique, we determine the range of each (meta) variable in the
FROM clause of an arbitrary FISQL query, working from innermost to outermost
queries. A similar nested loops algorithm to that in Figure 16 is used to in-
stantiate the (meta) variables. The WHERE and SELECT clause semantics will not
change.

4.3 Complexity of FISQL

ProrosiTioN 4.5. The data complexity of a fixed FISQL query @ is LOGSPACE.
That is, given input federation I, we can compute the result Q(Z) using
O(log(|Z))) workspace in addition to that required to store the input and output.

Proor. Given a flat FISQL query that has n FROM clause declarations, con-
sider how the nested loops computation of @ (Z) works. We need only maintain
3n pointers to the input federation (one for each tuple- and meta-variable in
the FROM clause). Pointers corresponding to metavariables reference tuples
in the Federation Metadata Dictionary (FMD) which is part of Z; pointers cor-
responding to tuple variables reference data tuples of Z. Each “pointer” is an
index value numerically indicating a place in the input (a cell on an input tape
for a Turing Machine, for example). It is well known that such numbers require
logarithmic space to store (in terms of their magnitude).

Thus, for fixed @ , we require at most 3n pointers, independently of how many
relations occur in the input federation or how large each is. This argument
shows that the evaluation of a flat FISQL query is Logspack. To see that the
evaluation of an arbitrarily nested FISQL query is also LOGSPACE, consider the
“innermost-to-outermost” evaluation of nested FISQL queries and note that
the composition of LOGSPACE functions is LOGSPACE. O

This result is not particularly surprising, but it indicates that FISQL is a
tractable language, as is canonical RA. The query complexity of FISQL will
be significantly higher (as for SQL), however note that FISQL queries will in

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

644 . C. M. Wyss and E. L. Robertson

general be short, and for many common tasks will be significantly shorter than
SQL counterparts, as the queries in Figures 2 and 10 exemplify.

4.4 Equivalence of FIRA and FISQL

THEOREM 4.6

(1) For every FISQL query Q there is an equivalent FIRA query Q such that for
well-formed federation instances F, Q(F) = Q(F).

(2) For every FIRA query Q there is an equivalent FISQL query such that for
well-formed federation instances F, Q(F) = Q(F).

Proor. From the presentation above, it should be reasonably clear that
FISQL can express all FIRA queries. The interesting direction is the reverse,
namely that FIRA can express all FISQL queries. In particular, this gives a
formal, set-based (implementation independent) definition of the FISQL se-
mantics.

To fix a notation for the translation, assume the input FISQL query is as
in Figure 14. The translation from FISQL to FIRA parallels the SQL to RA
translation and comprises five steps, as follows:

(1) Each FROM clause declaration has the form D; : R; : A; AS T;. (Note that we
use the index i to indicate the position of the declaration in the FROM clause.)
Given this, we translate the range declaration to the FIRA term X(|; (D;)).
Asin the SQL to RA translation, the entire FROM clause translates to a Carte-
sian product of range terms, so that the result from this step has the form:

F:=%(; (D) X - x (], D).
(Note that renaming may be required during this step as well.)

(2) The WHERE clause translates to a Boolean selection condition, so that this
step results in a query of the form S := og(F'). The condition B depends
on the WHERE clause; the overline notation is particularly useful for a
direct translation, so that A terms are absorbed into the selection (see the
examples below).

(3) To translate the SELECT clause, we first project S on all columns appearing
in the SELECT clause (including those arising within the ON construct on
either side).

(4) Next, we perform the transpositions listed as ON terms in the SELECT clause.
It can be shown that the order of the transpositions does not matter as
long as the input query satisfies a certain well-definedness condition.!”

(5) Finally, we drop the columns appearing in the ON constructs and partition
to obtain Q.

We illustrate the translation process on queries @i (Figure 10) and @4
(Figure 13). O

10The condition is given pairwisely for transpositions as follows. Let R be a federated relation
and let Ay, Ay, By, By € dom UM,. If np, (body(R)), np,(body(R)), and schema(R) are pairwise

disjoint, then rfll(rf;(R)) = rf;(rfl(R)). If this condition does not hold, the X =# ¢[B] clause of
Definition 3.17(1) can be used to enflorce a desired order of transpositions.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Relational Languages for Metadata Integration . 645

Example 4.7. Recall query @, (Figure 10) that finds the Indianapolis de-
partments that make less than their Chicago counterparts. Query @ ; translates
to FIRA as follows:

(1) Toresolve conflict between the Indy.Sales and Chicago.AvgSales relations,
we rename the Sales attribute appropriately.!! The FROM clause then trans-
lates as:

F = E(\Ll (pSales—>CSa1es(Chicago))) X E(»LZ (pSaleSAISales(IndY)))-
(2) Translating the WHERE clause results in:

S = Oy ="AvgSales” A to="Sales” A Dept:Angales(F)'
(3) The ProjeCtion results in P = IOCStore—>Store(nDept,CStore(S))~
(4) Query @1 has no transpositions.

(5) Since there are no transpositions, there are no columns to drop, so we di-
rectly partition to obtain @; := £ Comparechi Tndy”(P)-

Example 4.8. Recall query @4 (Figure 13) restructuring the Indianapolis
data into the format of the Chicago relation. This FISQL query translates to a
FIRA query as follows.

(1) The FROM clause translates to F' := (| (Indy)).

(2) The WHERE clause translation results in S := o, —7sa1es”(F).

(3) The projection results in P := Tsore avgsates,pept (S).12

(4) There is only one transposition, which translates as T := 7jyrs,1..(P). Note
that this relation is exactly that depicted in Figure 8.

(5) Finally, we drop the AvgSales and Dept columns and partition to obtain the
result: Q4 = §9”Inay2cni”(Lavgsales,bept (1)).

CoroLLARY 4.9. FIRA operators can be implemented using space that is log-
arithmic in the size of the input federation and query.

CoroLLARY 4.10. FISQL contains a sub-language equivalent to core SQL.

By “core SQL”, what is meant is the part of SQL that is equivalent to RA.
Corollary 4.10 formally characterizes how FISQL extends SQL, in that the
equivalent sub-language of FISQL has the same semantics as this core. Fur-
thermore, Corollary 4.10 sets the stage for adding nonclassical SQL features
such as aggregation to FISQL (see future work in Section 7).

5. QUERY PROCESSING IN FISQL/FIRA

The query lifecycle of a FISQL query is shown in Figure 17(a). For reference,
the SQL query lifecycle is shown in Figure 17(b). This figure highlights a major

11n the presentation we use “understandable” names whereas a formal mechanism would use
system-specific, uniquely generated symbols for this.

2Note that this results in a relation whose contents are identical to the original Indy.Sales re-
lation. In the next section, we provide optimization rules to forgo the previous two steps when
actually processing such a query.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

646 . C. M. Wyss and E. L. Robertson

Input
Federation Query Plan Optimzed Query Output
+ Query T T Plan Database
FISQL<—>FIRA FIRA
Equivalence Optimization
(@)
Input
Database Query Plan Optimzed Query Output
+ Query T T Plan Relation
SQL<—>RA RA
Equivalence Optimization

(b)
Fig. 17. Parallel query lifecycles.

strength of our framework, namely that the FISQL/FIRA lifecycle directly par-
allels the SQL/RA lifecycle. This direct parallel may seem “obvious” for FIRA
and FISQL, but has been lacking in previous frameworks. In particular, the
fact that RA is a subalgebra of FIRA allows us to utilize known query optimiza-
tion techniques for the relational core of FISQL. General FISQL queries will
no doubt require nonclassical extensions of these techniques. Future work will
report on these extensions in the context of a FISQL prototype.

Figure 17 indicates that a query plan is the output of the FISQL/FIRA equiv-
alence. Given an input FISQL query, @, the query plan is essentially the parse
tree for the equivalent FIRA query, @. In practice, this parse tree may be aug-
mented with statistics concerning the data in the federation to assist in the
optimization.

Given a query plan, optimization proceeds by transforming the FIRA ex-
pression tree according to algebraic equivalences with the goal of obtaining an
optimally efficient query plan. In general, of course, this is a combinatorially
difficult problem; however, several heuristic methods have been developed for
RA expressions that work very well in practice—often decreasing the run time
of a query by several orders of magnitude or more. We can identify two salient
heuristic principles in the optimization of RA expressions which we can port
into our FIRA framework without much difficulty (adapted from Ramakrishnan
and Gehrke [2003]):

(1) We want to “push” selections (o) and projections (7, 1) as far down the parse
tree as possible in order to maximize their constraining effect.

(2) We want to combine selections and Cartesian products into joins, since joins
are (in general) much more efficient than Cartesian products.

Note that since RA is isomorphic to a subalgebra of the FIRA, the algebraic
identities used in RA optimization will have natural FIRA counterparts. These
identities include such transformations as pushing selections (and projections)
over unions and Cartesian products, or commuting Cartesian products. We will

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Relational Languages for Metadata Integration . 647

assume these results without explicit statement (see Garcia-Molina et al. [2000]
and Ramakrishnan and Gehrke [2003]). In addition (in line with heuristic prin-
ciple (1) above), we will use the following identities which cover the cases of the
new FIRA operators with respect to selection and projection.

Prorosition 5.1

(1) Let D be a database and A, B, and C be distinct elements of dom U ;.
Then
(a) 04=B(2(D)) = X(0a=p(D)) and
(b) 0a=B(c(D)) = pcloa=p(D)).

(2) Let D be a database and A, B, C, and X be distinct elements of dom UMy
such that A, B & nx(body(R)) for any R € D. Then

oa=p (A (D)) = AG(0a—p(D)).
(3) Let D be a database and Aq, ..., A, € dom UM;. Then
T, A, (E(D) = X(ma,,.,4,(D))).

(4) Let D be a database and A, ..., A, € dom UM,. Let X € dom UM, be
distinct from each A; (1 <i < n). Then

Ay, A, X (0x (D) = px (s, a,x(D)).
(5) Let D be a database. Let Aq, ..., A,,C,X € dom UM, be distinct elements
such that A; € nx(R)for 1 <i <nand R € D. Then

,,,,,,,,,,

The proof of these equivalences is not difficult, and is omitted for brevity.

So far, FISQL optimization parallels SQL optimization. However, there is
at least one important optimization paradigm that this does not capture. Note
that we have defined the generalized union operator (X) as essentially unioning
entire input databases, whereas most queries will only mention a subset of these
relations. Given a database D and N € 9, let the notation D|y represent the
restriction of D to the relation named N (i.e. {R} where R € D and name(R) =
N). In this case, we have the following additional rewrite rule:

LemMA 5.2. Let D be a database and X € M. Then o,—x(E(]; (D)) =
1; (DIx).

This rule enables us to restrict the input federation on the basis of the rela-
tions that are actually used in the query.

As an illustration, we provide a detailed example of how to use these identi-
ties when optimizing a FISQL query plan.

Example 5.3. Consider the query shown in Figure 18. This query finds
those departments whose average monthly sales exceeds $10,000 for at least
one store in every region. This FISQL query translates to the (unoptimized)
FIRA query, @ (Figure 19). The parse tree for @ is shown in Figure 20(a).

To optimize the initial FIRA query, we can push selections down the tree
according to the algebraic identities from Proposition 5.1 and Ramakrishnan
and Gehrke [2003]. We can also combine Cartesian products with selections to
form joins. The resulting optimized FIRA query plan is shown in Figure 20(b). In

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

648 . C. M. Wyss and E. L. Robertson

SELECT T1.Dept INTO result
FROM Indy:Rj:A1 AS T1,Chi:Ro:A2 AS T9,Milw:Rg:A3 AS T3
WHERE R; = "Sales" ANDR2 = "AvgSales" AND T .AvgSales > 10000 AND
T2 .T1.Dept > 10000 AND T3.Dept = Ty.Dept ANDT3.AvgSales> 10000

Fig. 18. FISQL query @ to be optimized.
§ 1 resrel” (WT1 -Dept (0' ti="Sales" A ro="AvgSales" A

T1 .AvgSales >10000 A T1 .Dept >10000 A
T3 .Dept=Tj .DeptA Tg.AvgSales> 10000

(21 (Indy)) x £(l2 (chi)) x (I3 (an)))))

Fig. 19. Unoptimized algebraic query @ equivalent to Q.

resRel resRel

T 1, .pept
1-Dep T 7, pept

Oy - 'sales'A U, = 'AvgSalesp |
T ,.AvgSales > 10000 A T .Dept > 10000A [—
_ T,.Dept > 10000
T ;.AvgSales > 10000 A T ;.Dept = T .Dept |

X /X \
Z/ T i; X
i / \Z | T;.Dept = T 1.Dept
1 IE: | { Indy.Sales)‘L Z
2
2 v, [
Indy I | { Chi.AvgSales }L}
Chi Milw M!l
1lw
(@ (b)

Fig. 20. Query plan for @ translated into FIRA (a) and optimized (b).

practice, the execution plan shown in Figure 20(b) is likely to be several orders
of magnitude faster than that shown in Figure 20(a). The ease with which the
SQL/RA optimizations are formally ported to the FISQL/FIRA framework is
one of our main contributions to the field.

Note that in the case of the Indianapolis and Chicago databases, the selec-
tions appearing after ¥ operations in fact reduce the input to single-relation
databases. However, in the Milwaukee database, we retain all input relations.!?

Additionally, we could eagerly project off relation columns that will not be
used in the query plan (this is standard practice, but not shown in Figure 20(b)).

Note that, in practice, statistics of the data and information about exist-
ing indices would allow us to further optimize the query, for example by
rewriting the join ordering optimally. However, this example illustrates that
FIRA provides the ability to optimize FISQL queries utilizing existing SQL/RA
methods.

13In an implementation, we could provide a LIKE operator, and extract relations from Milwaukee
having a name LIKE “Sales”.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Relational Languages for Metadata Integration . 649

Implementing the relational operators is well understood. Highly efficient al-
gorithms exist for o, 7, U and —. In practice, x is usually implemented as a join
(M), which is a combined selection and product. This enables us to achieve per-
formance significantly better than the quadratic time suggested by the behavior
of a product. We will not pursue the relational algorithms here; there are a num-
ber of good resources for this [Garcia-Molina et al. 2000; Ramakrishnan and
Gehrke 2003]. Furthermore, the new FIRA operators x, 3, o and A can clearly
utilize the sorting and/or hashing techniques employed by the relational algo-
rithms, obtaining linear (or better) performance. Ongoing work is discovering
innovative data structures and algorithms (or reframing existing structures
and algorithms) for use in the FISQL/FIRA framework. As an example, dis-
tributed query processing methods commonly utilize an analog of Lemma 5.2.

6. RELATED WORK

In this section, we discuss previous work that is related to our query languages.
Our emphasis is on languages that support relational metadata integration.
As such, we consider only briefly representative approaches based on complex
object or semistructured data models. Most recent wrapper generation and/or
mediator specification languages fall into the latter categories [Lenzerini 2002].

Within the area of relational metadata integration languages, we use sev-
eral criteria for comparison (see Section 6.14 for a summary of these). Foremost
among these is the notion of transformational completeness (Section 2.2). This
notion breaks down into two distinct concepts: schema independence and dy-
namic schemas. Most languages we consider below allow schema independent
queries to some degree, where the user can formulate queries without perfect
knowledge of the input schema. A consequence of this is that the language
supports at least some types of schema evolution gracefully.

Beyond schema independence, the FIRA t and g operators are capable of
producing fully dynamic output schemas, where the number of relations and/or
the number of columns in relations of the output varies dynamically with the
input instance. Of the languages surveyed, only FISQL/FIRA provides general-
ized dynamic output schemas, where the values in any (fixed) number of input
columns can determine output schemas.

Other criteria for comparison include the lowest published complexity of
the language, whether the language supports nested queries, and whether the
language has an equivalent (published) algebra. For a tabular summary of the
languages surveyed see Section 6.14.

6.1 HiLog

HilLog appeared as a database programming alternative in the late 1980s
[Chen et al. 1989, 1990b]. The premise was to extend ordinary first order pred-
icate logic (which underlies SQL and the RA) with second order capabilities so
that metadata could be included in queries seamlessly with data. HiLog had its
roots in F-logic [Kifer and Lausen 1989] and improved on its contemporaries
(COL [Abiteboul and Grumbach 1990] and LDL [Naqvi and Tsur 1989]) in that
it provided second order query functionality within a first order semantics.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

650 . C. M. Wyss and E. L. Robertson

This essentially meant that HiLog eliminated some of the unwieldy constraints
arising from second-order well-foundedness criteria. Furthermore, the idea of a
second-order syntax with a first-order semantics emerged as a foremost candi-
date for interoperable query languages as a result of HiLog [Chen et al. 1990al].

Although HiLog was a significant step forward, it has some limitations from
our point of view. HiLog was developed as a platform for supporting object-
oriented database languages, rather than purely relational ones. Also, HiLog
syntax is logical rather than declarative (it is based on Prolog). HiLog al-
lows recursion, which means it is inefficient according to current standards for
database query languages. HiLog has no equivalent algebra and no associated
query optimization framework.

Finally, a more serious limitation is that terms in HiLog have fixed arity so
that a query returning (for example) all relations (of all arities) that mention
the atom ‘Indy’ cannot be phrased in HiLog.

6.2 Multirelational Algebra

A precedent for some of our federated relational operators arose in work by
Grant, Litwin, Roussopolous and Sellis in the late 1980s and early 1990s on
MSQL Litwin et al. [1989] and a corresponding algebra for relational multi-
databases [Grant et al. 1993], which we term here the Multirelational Algebra,
or MRA. MSQL is a version of SQL developed for multidatabases. In MSQL, any
number of relations can be queried. MSQL allows for varying relation arities
and thus supports schema independent querying. MSQL includes facilities for
aggregation, view creation, and dynamic databases. However, MSQL does not
permit the restructuring of data into metadata on the fly, so that, for example,
the transformation of the Indy.Sales relation into the format of Chi.AvgSales
is not possible in MSQL.

MSQL queries can be optimized using the MRA. The MRA contains exten-
sions of the relational operators IT, o, X, U, and N for multirelations. These op-
erators are termed MPROJECT, MSELECT, MJOIN, MUNION, and MINTER-
SECT, respectively. The operators MPROJECT and MSELECT are essentially
identical to our federated operators IT and 6. However, MJOIN, MUNION, and
MINTERSECT results are defined to contain all pairwise combinations possible
in the input multirelations. This is possible in the MRA because relations may
be unnamed. One major consequence of this decision is that several desirable
properties of the RA do not carry over to the MRA. For example, MJOIN need
not be associative, and MPROJECT'Ss need not cascade [Grant et al. 1993].

In contrast, these desirable RA properties do carry over to FIRA. The decision
to use federated versions of X, U, and N that only modify like-named relations
is natural in the FISQL/FIRA framework, and entails that the behavior of our
operators remains closer to that of their original relational counterparts.

6.3 Interoperable Database Language

The Interoperable Database Language (IDL) is a Horn clause based language
for interoperability and schema integration developed shortly after HiLog
[Krishnamurthy et al. 1991]. IDL extends the Horn clause language developed

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Relational Languages for Metadata Integration . 651

by Krishnamurthy and Naqvi [1998], which in turn extends LDL [Naqvi and
Tsur 1989]. Thus, IDL may be seen as the result of a series of attempts to re-
fine the LDL framework; in this effort, many of the concerns posed within the
development of HiLog were addressed. IDL also has roots within the language
MSQL.

As with many of the frameworks for schema independent querying devel-
oped in the 1990s, IDL relies on a complex object model wherein metadata are
explicitly represented within a nested object structure. IDL also allows data
objects to be updated.

IDL does not allow recursion, so its complexity will fall below that of HiLog.
On the other hand, IDL allows negation in query terms, so the issue of safety
arises.

In IDL, output relations have fixed arity. Thus, in Krishnamurthy et al.
[1991], interoperability within a federation such as AmartSales is accomplished
by providing normalized views transforming data in formats such as Milw and
Chicago into a format much like that of Indy.Sales. (The reverse transforma-
tions are not provided.)

Additionally, the fact that IDL has a logic-based syntax and object based
semantics is problematic for integrating the IDL framework with existing
RDBMSs.

6.4 The Ross Algebra

Ross [1992] extended the relational algebra with two families of operators ca-
pable of metadata querying. These families are the totality operators, oz, that
return all names of relations with arity &; and the expansion operators, o*(R),
which return the union of the k-ary relations named in R, coupled with their
names. Thus, o’ (R), is a restricted form of = and |, where the input is a single
column of relation names and the output is restricted to arity £ + 1. The main
reason for the arity restriction is that Ross desires the relations be union com-
patible in the RA sense (so their schemas must match); in the federated model,
we have extended the notion of union compatible to arbitrary relations.

In the Ross algebra, relation names may be demoted and manipulated as
data. Relation names are simple domain elements. Ross provides an equiv-
alent calculus for the algebra, and shows that his algebra can be expressed
in the standard relational algebra in case the database contains “universal re-
lations” explicitly coupling the relation names with contents (these are essen-
tially the results of our | operator applied to the database). The Ross algebra
thus provides an elegant framework for querying relation names; however, the
framework is limited to the demotion of atomic relation names, and does not
support the other transformations of Figure 3.

6.5 Schemalog

SchemalLog [Lakshmanan et al. 1997, 1993] is another logic programming lan-
guage supporting metadata querying and interoperability, in the vein of LDL
and HiLog. Like HiLog, Schemal.og has a second-order syntax but first-order
semantics. Furthermore, SchemaLog has a well developed proof theory based

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

652 . C. M. Wyss and E. L. Robertson

on the first order predicate calculus [Lakshmanan et al. 1997]. Schemal.og sup-
ports recursion and so is inefficient as a query language without restrictions.

A significant advance in Schemal.og is the removal of the fixed arity restric-
tion of the Ross framework and HiLog. In Schemal.og, a single variable can
unify with a list of objects, providing dynamic schema creation. This syntactic
untypedness leads to a form of ambiguity where the difference between a dy-
namic output schema and static output schema cannot be determined within
the head of a query clause. (In contrast, we provide special keywords “ON” and
“INTO” for signaling dynamically varying schemas.)

In Lakshmanan et al. [1997], an extended relational algebra is developed for
a fragment of SchemalLog. This algebra (known as the ERA) contains facilities
for obtaining metadata from a federation, as well as a powerful operator, y, for
matching Schemal.og-type patterns. The ERA has an equivalent calculus, and is
shown to be equivalent to the “querying fragment” of Schemal.og. Dereference
and transposition operations cannot be performed within the ERA, so it is not
transformationally complete in the sense of Figure 3. The ERA is extended
in Andrews et al. [1996] to include procedural mapping operators which can
transform relations according to “programming relations”, an idea which seems
to recall the reflective programming model (Section 6.7, below).

A simplified version of Schemal.og known as WebLog, appears in
Lakshmanan et al. [1996a] for use in querying and restructuring data on the
World Wide Web.

6.6 Generalization/Aggregation Relational Algebra

An interesting precursor to our work is the extended relational algebra ob-
tained in Saltor et al. [1993] by adding operators that perform what the
authors term generalization and aggregation functions. Upon inspection,
the added operators are in fact restricted versions of FIRA operators. The
generalization/aggregation operators are added particularly to introduce the
data-metadata transformations in an example federation very similar to
the AmartSales federation. The example produces the following operators:
(inner) discriminated union, partition by attribute, decomposition, and com-
position. These are, in fact, restricted versions of the FIRA X, ¢, A, and t
operators, respectively. The outer version of the discriminated union is essen-
tially the full ¥ operation. It is interesting to note that problems with the shape
of transposition results are overcome in Saltor et al. [1993] by restricting the
input relation to a certain shape (in particular, only one “non-key” attribute).

We denote the extended algebra developed in Saltor et al. [1993] using the
term Generalization [Aggregation Relational Algebra, or G/A RA for short. The
G/A operators are extended in Saltor et al. [1993] to an object-oriented model,
however restrictions remain. No associated declarative (SQL-like) query lan-
guage is developed for the G/A framework.

6.7 Relational Languages Utilizing Reflection

Previous frameworks discussed involved augmenting the data model (usually
with nested objects) and/or raising the order of the query language (at least

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Relational Languages for Metadata Integration . 653

syntactically). A different approach involves adding reflective capabilities to
SQL [Van den Bussche et al. 1993]. In this approach, programs (queries) can
create, manipulate, and evaluate programs themselves. This idea led to the
Reflective Relational Algebra (RRA) of Van den Bussche et al. [1993] and Re-
flective SQL (RSQL) of Dalkilic et al. [1996], as well as (more recently) SISQL
[Masermann and Vossen 2000] and Meta-SQL [Van den Bussche et al. 2004].

Adding reflective capabilities to the relational model essentially allows
queries to create dynamic queries, which take into account the state of the
database at the time they are evaluated. As such, these languages can express
all PTIME queries (more powerful versions exist, for example the Recursive RRA
of Jain [1996]).

It is interesting to note that since the underlying query languages (RA or
SQL) allow only fixed schema output, the reflective versions cannot produce
truly dynamically varying schemas. This limitation is overcome by simulating
dynamically varying output, for example by producing triples over attributes
{rel, att, value} where rel contains the relation name of a resulting tuple, att
names the corresponding attribute, and value contains the corresponding data
value. For example, using this schema, Masermann and Vossen [2000] contains
a transformation that results in a relation that simulates the union of relations
with incompatible schemas. Although these languages can semantically simu-
late dynamically varying schemas, they are not transformationally complete in
our sense since relations whose attributes varies with the input data cannot be
produced directly.

6.8 The Uniform Data Model

We have mentioned that frameworks for data-metadata integration may extend
the data model using nested objects. At least one framework achieves relational
metadata integration without recourse to nested structures: the Uniform Data
Model, or UDM, of Jain [1996]. In UDM, there is no separation between data
and metadata; essentially, every piece of metadata and data is compiled into
binary information relations, which explicitly tag domain elements with their
use in the database instance. Query languages for UDM include a powerful
calculus and algebra; we can compare our work to the safe versions of these
query languages (the Safe Uniform Calculus and Safe Extended Uniform Alge-
bra, respectively). These languages can simulate transformationally complete
querying within UDM, and the associated safe query languages are expressive
yet feasible (in particular, Loaspack). However, in practice, it will be onerous
to compile existing relational databases into UDM; furthermore, many queries
that are naturally simple in the relational model become complex and unnatural
in UDM. Nevertheless, UDM sets a notable precedent and is also reminiscent
of the “simulation” approach toward dynamically varying schemas taken by the
Reflective languages (Section 6.7).

6.9 SchemaSQL

SchemaSQL [Lakshmanan et al. 1996b, 2001] is a declarative language allow-
ing schema-independent querying, and serves as an SQL-like counterpart for

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

654 . C. M. Wyss and E. L. Robertson

a restricted subset of Schemal.og. SchemaSQL syntax is defined by example
and provides transformations similar to FISQL, including a restricted version
of T where one column of data can be promoted to attribute values per query.
SchemaSQL does not allow nested queries, and use of the CREATE VIEW construct
in SchemaSQL changes the semantics of queries (making query composition-
ality problematic). SchemaSQL has no equivalent algebra, and unfortunately
includes a MERGE operation in its semantics that results in nondeterministic
behavior [Lakshmanan et al. 2001]. Recent attempts to pin down the semantics
of SchemaSQL using a relational version of the tabular algebra (below) seem
to rely on stored semantic knowledge [Lakshmanan et al. 1999]. Nevertheless,
SchemaSQL is a conceptual ancestor of FISQL, so we have indicated through-
out Section 4 where the design of FISQL diverges from that of SchemaSQL (and
why).

6.10 The Tabular Algebra

The Tabular Algebra [Gyssens et al. 1996] formalizes operations on
spreadsheet-like tables. The underlying data model is strictly richer than the
relational model, but values in a table are atomic (as opposed to object-based).
All FIRA operations can be imitated in the Tabular Algebra. The full Tabular
Algebra includes a looping construct, and a formal result proves this full al-
gebra can achieve any transformation between tabular data. We are currently
investigating whether the nonlooping core of the Tabular Algebra can be imi-
tated in FIRA (under a suitable mapping between the relational and tabular
data models).

6.11 MD-SQL and MQL/MA

MD-SQL [Rood et al. 1999] shares most of the objectives of FISQL. MD-SQL is
equivalent to a two-tiered meta-algebra containing a generalized join capable
of joining an arbitrary number of input relations in a single query. This ability
causes a leap in complexity to pspACE. MD-SQL has limited subquery capabili-
ties and, like SchemaSQL [Lakshmanan et al. 2001], includes “nested variable
declarations,” which must be unwound before an equivalent algebraic query
can be constructed.

The language MQL [Wyss and Van Gucht 2001; Wyss et al. 2001] is an evolu-
tionary step beyond MD-SQL, in that dynamic schemas can be created with the
“ON” construct in the SELECT clause (as in FISQL), instead of the generalized
join of MD-SQL. In the algebra equivalent to MQL, the Meta-Algebra (MA),
the “ON” construct translates to the t operator, as in FISQL/FIRA. However,
MQL/MA is two-tiered, like MD-SQL, and contains an unweildy “Dap” opera-
tion for producing dynamic output databases. This operator makes query opti-
mization after the RA/SQL fashion difficult. The complexity of MQL is LOGSPACE
(without the generalized join construct).

6.12 Complex-Object-Based Approaches to Metadata Integration

Many previous frameworks for data integration allow schema independent
querying within a complex object data model. Examples include MetaOQL

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Relational Languages for Metadata Integration . 655

[Su et al. 2000] and the TSIMMIS framework [Chawathe et al. 1994]. There are
many more such systems, but the two mentioned seem relatively representative
of the approach.

MetaOQL was developed to address the need to support complex schema
transformations in OQL [Su et al. 2000]. In particular, the developers of
MetaOQL were interested in supporting schema evolution in the SERF sys-
tem [Claypool et al. 1998]. MetaOQL uses a syntax somewhat similar to
SchemaSQL. MetaOQL queries can be translated at run time into ordinary
OQL queries.

The TSIMMIS project is a collaboration between Stanford and the IBM
Almaden Research Center to develop a framework for facilitating the rapid
integration of heterogeneous information [Chawathe et al. 1994]. This project is
much wider in scope than ours, and includes both structured and unstructured
data from a wide range of sources. As such, there was a need within TSIMMIS
to develop a framework for declaring metadata independent transformations
between data sources. Mediator Specification Language, or MSL, arose to
meet this need [Papakonstantinou et al. 1996]. MSL was designed to address
problems of rapidly evolving schemas as well as schema discrepancy. The result
is a powerful, rule-based language for specifying transformations between
constituent data sources. Although some form of “algebraic” optimization is
possible within the MSL framework, based on rule rewriting, there is no cor-
responding pure algebra (such as FIRA). Underpinning the MSL framework is
a common data model based on complex objects known as the Object Exchange
Model.

6.13 XML-Based Approaches to Metadata Integration

More recent frameworks for data integration are based on a semistructured
(tree-like) model and involve use of XML-based technologies to achieve schema
independent querying within that model. Examples of the approach include
MIX [Baru et al. 1999] and Lixto [Gottlob et al. 2004]. Many more such systems
for wrapper generation and data integration on the Web exist, but we restrict
our attention to the two mentioned as representatives of the approach.

Both MIX and Lixto target data integration on the web, where queries are
issued to form interfaces and responses are (X)HTML documents of varying
schemas (often utilizing visual-based tables for layout purposes). Within this
context, MIX provides mediator views of XML DTDs in an XML query lan-
guage termed XML Matching and Structuring Language (XMAS). In contrast,
Lixto utilizes a mediator language called Elog which is based on second-order
monadic Datalog over trees [Gottlob et al. 2004]. Both MIX and Lixto focus on
providing sophisticated graphical interfaces for web wrapper generation, since
XML query languages can seem overly complicated to many users.

One of the first points which becomes obvious when dealing with XML data
is that “metadata integration” needs to have a different meaning. Many XML
query languages naturally allow one to compare data (such as text) with el-
ement tags (metadata). There are many fruitful avenues for work on XML-
querying after the “FISQL style”, such as characterizing what transformational

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

656 . C. M. Wyss and E. L. Robertson

Table I. Comparison of Frameworks for Relational
Metadata Integration

Properties

Framework EA | SI | DOS | PX | Det | NQ
SQL/RA Vv LS v v
FISQL/FIRA Vv Vv v LS v v
HiLog Vv TC v v
MSQL/MRA v v v

Ross Alg/Calc v v LS v v
SchemaLog v v TC v v
G/ARA v | v v v
RSQL/RRA/SISQL | v Vv PT v Vv
SchemaSQL v v

MD-SQL Vv v v PS v
MQL/MA v | v v | LS| Vv

completeness involves for semi-structured data models. We defer a more de-
tailed discussion to future work.

6.14 Summary of Related Work

In Table I, we provide a brief summary of related work. In the table, only
query languages that have been used for the relational model are reflected.
The summary is based on the following six criteria.

(1) Equivalent Algebra (EA)—Is there a (published) query algebra for the
framework, in particular one that can be used in query optimization.

(2) Schema Independence (SI)—Can the framework support queries that are
(at least somewhat) independent of the input schema.

(8) Dynamic Output Schemas (DOS)—Does the framework support the cre-
ation of a varying number of relations and/or relations with a varying num-
ber of attributes.

(4) Published compleXity (PX)—The lowest published complexity is listed here
(LS = LoGSPACE, PS = pspACE, PT = priME, TC = Turing complete).

(5) Deterministic (Det)—This property is often left unsaid, but it is important:
does the framework output a deterministic, single result in response to a
query on an (unordered) relational database.

(6) Nested Queries (NQ)—Finally, does the framework allow the composition
of queries. This is important from a theoretical standpoint, as well as in
terms of easily supporting source-level optimizations in a data integration
framework.

7. CONCLUSION AND FUTURE WORK

In this article, we have presented a formal paradigm for relational metadata
integration consisting of the query languages FIRA and FISQL. Since we have
established a formal syntax, semantics, and equivalence for these languages,
we can more easily investigate important theoretical properties of the paradigm
and compare FISQL/FIRA to existing languages and frameworks.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Relational Languages for Metadata Integration . 657

In addition, we have contributed (i) a formal relational data model for sup-
porting metadata integration, termed the federated data model; (ii) a formal-
ization of the notion of “transformational completeness” along the lines of the
notion of relational completeness; and (iii) an extended survey of previous lan-
guages for relational metadata integration.

We have indicated throughout the article directions for ongoing and future
work on FISQL/FIRA. These include (i) extending the languages with aggre-
gation, (ii) extending BP-Completeness and related symmetry notions to the
federated model and FIRA, (iii) characterizing when “merging” is well-defined
in federated relations, (iv) characterizing the extended “relational hierarchy”
beyond federations, (v) adopting existing data structures and algorithms for
query processing in FISQL/FIRA (or inventing new structures and algorithms),
and (vi) extending the notion of transformational completeness to other data
models such as semi-structured or complex objects.

In general, future work on FISQL/FIRA will involve both implementation
and theory. In terms of implementation, we are investigating FISQL/FIRA
query processing within larger data integration networks based on central-
ized and peer-to-peer topologies. In terms of theory, we are working on formally
comparing FISQL/FIRA to other frameworks such as the Tabular Algebra. The
Tabular Algebra is particularly appealing because of formal results that the al-
gebra encompasses all possible tabular data transformations. It may be that a
Tabular Algebra “core” is equivalent to FIRA; in which case, we can postulate a
more refined notion of transformational completeness. Similar results charac-
terizing the relationship of FIRA to the nested relational algebra are also being
investigated.

ACKNOWLEDGMENTS

We thank the anonymous TODS reviewers for their detailed and invaluable
comments on previous drafts. Thanks also go to both Dirk Van Gucht and Felix
Wyss, who were instrumental in previous work that helped to lay the ground
for FISQL/FIRA. Also, thanks go to the members of the Indiana University
database lab for input on countless prior versions of this work.

REFERENCES

ABITEBOUL, S. AND GRUMBACH, S. 1990. COL: A logic-based language for complex objects. In Ad-
vances in Database Programming Languages, Papers from DBPL-1, September 1987, Roscoff,
France, F. Bancilhon and P. Buneman, Eds. ACM Press/Addison-Wesley, New York, 347-374.

AzmiteBOUL, S., HuLrL, R., anD Vianu, V. 1995. Foundations of Databases. Addison-Wesley, New
York.

ANDREWS, A. J., SHIRI, N., LaksaMANAN, L. V. S.; AND SuBramaniaN, I. N. 1996. On implementing
SchemalLog—A database programming language. In Proceedings of the 5th International Confer-
ence on Information and Knowledge Management (Baltimore, Md.). ACM, New York, 309-316.

Baru, C., Guprra, A., LUDASCHER, B., MarciaNo, R., ParakoNsTANTINOU, Y., VELIKHOV, P., AND CHU,
V. 1999. XML-based information mediation with MIX. In SIGMOD 1999, Proceedings ACM
SIGMOD International Conference on Management of Data (Philadelphia, Pa.). ACM, New York,
597-599.

CHAWATHE, S., GARCIA-MoLINA, H., HAMMER, J., IRELAND, K., PAPAKONSTANTINOU, Y., ULLMAN, J. D., AND
Wmowm, J. 1994. The TSIMMIS project: Integration of heterogeneous information sources. In

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

658 . C. M. Wyss and E. L. Robertson

Proceedings of the 16th Meeting of the Information Processing Society of Japan. IPSJ, Tokyo,
Japan, 7-18.

CHEN, W., KiFER, M., AND WARREN, D. S. 1989. HiLog: A first-order semantics for higher-order logic
programming constructs. In Logic Programming, Proceedings of the North American Conference
1989, E. L. Lusk and R. A. Overbeek, Eds. (Cleveland, Ohio). MIT Press, Cambridge, Mass.,
1090-1114.

CHEN, W., KiFer, M., AND WARREN, D. S. 1990a. HiLog: A foundation for higher-order logic pro-
gramming. Tech. Rep., State University of New York at Stony Brook, Stony Brook, N.Y.

CHEN, W., KireR, M., AND WARREN, D. S. 1990b. HiLog as a platform for database languages. In
Proceedings of the 2nd International Workshop on Database Programming Languages, R. Hull,
R. Morrison, and D. W. Stemple, Eds. (Gleneden Beach, Ore.). Morgan-Kaufmann, San Francisco,
Calif., 315-329.

Craypoor, K., Jiv, J., AND RUNDENSTEINER, E. A. 1998. SERF: Schema evolution through an ex-
tensible, re-usable and flexible framework. Tech. Rep. WPI-CS-TR-98-9, Worcester Polytechnic
Institute.

Copp, E. 1970. A relational model of data for large shared data banks. Commun. ACM 13, 60,
377-3817.

CunnNINGHAM, C., GALINDO-LEGARIA, C. A., AND GRAEFE, G. 2004. PIVOT and UNPIVOT: Optimiza-
tion and execution strategies in an RDBMS. In Proceedings of the 30th International Conference
on Very Large DataBases (VLDB 2004) (Toronto, Ont., Canada). Morgan-Kaufmann, San Fran-
cisco, Calif., 998-1009.

Davkiric, M., JaN, M., Van GucHrt, D., AND MENDHEKAR, A. 1996. Design and implementation of
reflective SQL. Tech. Rep. TR 451, Indiana University.

Garcia-MoriNa, H., Urnman, J. D., ano Winom, J. 2000. Database System Implementation.
Prentice-Hall, Upper Saddle River, New Jersey.

GINGRAS, F. AND LAKSHMANAN, L. V. 1998. nD-SQL: A multi-dimensional language for interoper-
ability and OLAP. In Proceedings of 24th International Conference on Very Large Data Bases,
A. Gupta, O. Shmueli, and J. Widom, Eds. (New York City, N.Y.). Morgan-Kaufmann, San Fran-
cisco, Calif., 134-145.

GorTLOoB, G., KocH, C., BAUMGARTNER, R., HERZOG, M., AND FLESCA, S. 2004. The lixto data extraction
project—Back and forth between theory and practice. In Proceedings of the 23rd ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 2004) (Paris, France).
ACM, New York, 1-12.

GRraNT, J., Litwin, W., RoussopouLos, N., AND SELLIS, T. 1993. Query languages for relational mul-
tidatabases. VLDB J. 2, 153-171.

GyssENS, M., LAKSHMANAN, L. V., AND SUBRAMANIAN, I. N. 1996. Tables as a paradigm for querying
and restructuring. In Proceedings of the 15th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems. (Montreal, Qur., Canada). ACM, New York, 93-103.

Harevy, A. 2004. Structures, semantics, and statistics. Keynote Address. In Proceedings of the
30th International Conference on Very Large Databases (Toronto, Ont., Canada). 4-6.

JaiN, M. 1996. Database models and query languages for relational data and metadata query
processing. Ph.D. dissertation, Indiana University.

KiFeRr, M. anD LauseN, G. 1989. F-Logic: A higher-order language for reasoning about objects,
inheritance, and scheme. In Proceedings of the 1989 ACM SIGMOD International Conference on
Management of Data, J. Clifford, B. G. Lindsay, and D. Maier, Eds. (Portland, Ore., May 31-June
2). ACM, New York, 134-146.

KrisuNnamuRTHY, R., LitwiNn, W., aAnD Kent, W. 1991. Language features for interoperability of
databases with schematic discrepancies. In Proceedings of the 1991 ACM SIGMOD International
Conference on Management of Data (Denver, Colo.). ACM, New York, 40—49.

KrisuNAMURTHY, R. AND Naqvi, S. A. 1988. Towards a real horn clause language. In Proceedings
of the 14th International Conference on Very Large Data Bases, F. Bancilhon and D. J. DeWitt,
Eds. (Los Angeles, Calif., Aug. 29-Sept. 1). Morgan-Kaufmann, San Francisco, Calif., 252—-263.

LaksHMANAN, L. V., Sapri, F., AND SuBraMANIAN, I. N. 1993. On the logical foundations of schema
integration and evolution in heterogeneous database systems. In Proceedings of the 3rd Interna-
tional Conference on Deductive and Object-Oriented Databases, S. Ceri, K. Tanaka, and S. Tsur,
Eds. (Phoenix, Az.). Springer-Verlag, New York, 81-100.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Relational Languages for Metadata Integration . 659

LaksaMaNAN, L. V. S, Saprr, F., anp SuBraManiaN, I. N. 1996a. A declarative language for querying
and restructuring the web. In Proceedings of the International Workshop on Research Issues in
Data Engineering (New Orleans, La.). IEEE Computer Society Press, Los Alamitos, Calif., 12—
19.

LaksaManan, L. V. S., Sapri, F., AND SuBraMaNIAN, I. N. 1996b. SchemaSQL—A language for inter-
operability in relational multi-database systems. In Proceedings of 22th International Conference
on Very Large Data Bases, T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda, Eds.
(Mumbai, India). Morgan-Kaufmann, San Francisco, Calif., 239-250.

LaksaMaNnaN, L. V. S., Sapri, F., anD SuBraManiaN, I. N, 1997. Logic and algebraic languages for
interoperability in multidatabase systems. J. Logic Prog. 32, 2 (Nov.), 101-149.

Laksamanan, L. V. S.; Sapri, F., anD SuBramanian, S. N. 1999. On efficiently implementing
SchemaSQL on a SQL database system. In Proceedings of 25th International Conference on
Very Large Data Bases, M. P. Atkinson, M. E. Orlowska, P. Valduriez, S. B. Zdonik, and M. L.
Brodie, Eds. (Edinburgh, Scotland). Morgan-Kaufmann, San Francisco, Calif., 471-482.

LAKSHMANAN, L. V. S., SaDR1, F., AND SUBRAMANIAN, S. N. 2001. SchemaSQL—An extension to SQL
for multidatabase interoperability. ACM Trans. Datab. Syst. 26, 4 (Dec.), 476-519.

Lenzerint, M. 2002. Data integration: A theoretical perspective. In Proceedings of the 21st ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, L. Popa, Ed. (Madi-
son, Wisc., June 3-5). ACM, New York, 233-246.

LitwiN, W., ABDELLATIF, A., ZEROUAL, A., AND NicorLas, B. 1989. MSQL: A multidatabase language.
Inf: Sci. 49, 59-101.

MasgerMANN, U. anD VosseN, G. 2000. SISQL: Schema-independent database querying (on and off
the web). In Proceedings of the International Database Engineering and Applications Symposium
(IDEAS’00) (Yokohama, Japan). IEEE Computer Society Press, Los Alamitos, Calif., 55—65.

Naqv, S. A. anp Tsur, S. 1989. A Logical Language for Data and Knowledge Bases. Computer
Science Press, Inc., New York, N.Y.

PapakonsTANTINOU, Y., GARCiA-MoriNa, H., anp UrLman, J. 1996. MedMaker: A mediation system
based on declarative specifications. In Proceedings of the 12th International Conference on Data
Engineering (New Orleans, La.). IEEE Computer Society Press, Los Alamitos, Calif.

RAMAKRISHNAN, R. AND GEHRKE, J. 2003. Database Management Systems, Third ed. McGraw-Hill,
New York.

RoBERTSON, E. L. AND Wyss, C. M. 2004. Optimal tuple merge is NP-Complete. Tech. Rep. TR599,
Indiana University Computer Science. July.

Roop, C. M., Van GucHT, D., anND Wyss, F. I. 1999. MD-SQL: A language for meta-data queries
over relational databases. Tech. Rep. TR-528, Indiana University at Bloomington. July.

Ross, K. A. 1992. Relations with relation names as arguments: Algebra and calculus. In Proceed-
ings of the 11th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.
(San Diego, Calif.). ACM, New York, 346-353.

SALTOR, F., CAsTELLANOS, M., AND GARcIiA-Soraco, M. 1993. Overcoming schematic discrepancies
in interoperable databases. In DS-5, D. K. Hsiao, E. J. Neuhold, and R. Sacks-Davis, Eds. IFIP
Transactions, vol. A-25. North-Holland, Amsterdam, The Netherland, 191-205.

Su, H., CravpooL, K., AND RUNDENSTEINER, E. A. 2000. Extending the object query language for
transparent metadata access. Tech. Rep. WPI-CS-TR-00-19, Worcester Polytechnic Institute.
VaN DEN BusscHE, dJ., VAN GucHT, D., AND VosseN, G. 1993. Reflective programming in the relational
algebra. In Proceedings of the 12th ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems (Washington, D.C., May 25-28). ACM, New York, 17-25.

VAN DEN BUSSCHE, J., VANSUMMEREN, S., AND VOssiN, G. 2004. Meta-SQL: Towards practical meta-
querying. In Advances in Database Technology (EDBT 2004): 9th International Conference on
Extending Database Technology (Heraklion, Crete, Greece). Springer-Verlag, New York, 823—
825.

VaN DEN BusscHE, J. AND WALLER, E. 2002. Polymorphic type inference for the relational algebra.
J. Comput. Syst. Sci. 64, 3, 694-718.

Wyss, C. anp Van Guchar, D. 2001. A relational algebra for data/metadata integration in a
federated database system. In Proceedings of the 2001 ACM CIKM International Conference
on Information and Knowledge Management (Atlanta, Ca., Nov. 5-10). ACM, New York, 65—
72.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

660 . C. M. Wyss and E. L. Robertson

Wyss, C., Wyss, F., AnD Van GucaT, D. 2001. Augmenting SQL with dynamic restructuring to sup-
port interoperability in a relational federation. In Engineering Federated Information Systems,
Proceedings of the 4th Workshop (EFIS 2001), R.-D. Kutsche, S. Conrad, and W. Hasselbring, Eds.
(Berlin, Germany Oct. 9-10). IOS Press, 5-18.

Wyss, C. M. 2002. Relational interoperability. Ph.D. dissertation, Indiana University at
Bloomington.

Received October 2003; revised September and December 2004; accepted February 2005

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

