skip to main content
article

Mesh saliency

Published:01 July 2005Publication History
Skip Abstract Section

Abstract

Research over the last decade has built a solid mathematical foundation for representation and analysis of 3D meshes in graphics and geometric modeling. Much of this work however does not explicitly incorporate models of low-level human visual attention. In this paper we introduce the idea of mesh saliency as a measure of regional importance for graphics meshes. Our notion of saliency is inspired by low-level human visual system cues. We define mesh saliency in a scale-dependent manner using a center-surround operator on Gaussian-weighted mean curvatures. We observe that such a definition of mesh saliency is able to capture what most would classify as visually interesting regions on a mesh. The human-perception-inspired importance measure computed by our mesh saliency operator results in more visually pleasing results in processing and viewing of 3D meshes. compared to using a purely geometric measure of shape. such as curvature. We discuss how mesh saliency can be incorporated in graphics applications such as mesh simplification and viewpoint selection and present examples that show visually appealing results from using mesh saliency.

Skip Supplemental Material Section

Supplemental Material

pps032.mp4

mp4

39.7 MB

References

  1. Al-Regib, G., Altunbasak, Y., and Rossignac, J. 2005. Error-resilient transmission of 3D models. ACM Transactions on Graphics 24, 2, 182--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Blanz, V., Tarr, M. J., and Bülthoff, H. H. 1999. What object attributes determine canonical views? Perception 28, 5, 575--599.Google ScholarGoogle ScholarCross RefCross Ref
  3. Chen, L., Xie, X., Fan, X., Ma, W., Zhang, H., and Zhou, H. 2003. A visual attention model for adapting images on small displays. ACM Multimedia Systems Journal 9, 4, 353--364.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. DeCarlo, D., and Santella, A. 2002. Stylization and abstraction of photographs. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2002) 21, 3, 769--776. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Fleishman, S., Cohen-Or, D., and Lischinski, D. 1999. Automatic camera placement for image-based modeling. In Proceedings of the 7th Pacific Conference on Computer Graphics and Applications (PG 1999), 12--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Frintrop, S., Nüchter, A., and Surmann, H. 2004. Visual attention for object recognition in spatial 3D data. In 2nd International Workshop on Attention and Performance in Computational Vision (WAPCV 2004). 75--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Garland, M., and Heckbert. P. 1997. Surface simplification using quadric error metrics. In Proceedings of ACM SIGGRAPH, 209--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Gooch, B., Reinhard, E., Moulding, C., and Shirley, P. 2001. Artistic composition for image creation. In Proceedings of Eurographics Workshop on Rendering Techniques, 83--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Guy. G., and Medioni, G. 1996. Inferring global perceptual contours from local features. International Journal of Computer Vision 20, 1--2, 113--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Heckbert. P. S., and Garland, M. 1999. Optimal triangulation and quadric-based surface simplification. Computational Geometry 14, 49--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hisada, M., Belyaev, A. G., and Kunii, T. L. 2002. A skeleton-based approach for detection of perceptually salient features on polygonal surfaces. Computer Graphics Forum 21, 4, 689--700.Google ScholarGoogle ScholarCross RefCross Ref
  12. Hoppe. H. 1996. Progressive meshes. Proceedings of ACM SIGGRAPH.99--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Howlett, S., Hamill, J., and O'Sullivan, C. 2004. An experimental approach to predicting saliency for simplified polygonal models. In Proceedings of the 1st Symposium on Applied Perception in Graphics and Visualization, 57--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Itti, L., Koch, C., and Niebur, E. 1998. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 11, 1254--1259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kamada, T., and Kawai. S. 1988. A simple method for computing general position in displaying three-dimensional objects. Computer Vision, Graphics, Image Processing 41, 1, 43--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Karni. Z., and Gotsman, C. 2000. Spectral compression of mesh geometry. In Proceedings of ACM SIGGRAPH, 279--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Katz, S., and Tal, A. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2003) 22, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kim, S.-J., Kim, S.-K., and Kim, C.-H. 2002. Discrete differential error metric for surface simplification. In Proceedings of 10th Pacific Conference on Computer Graphics and Applications (PG 2002), 276--283. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kobbelt, L., Campagna, S., Vorsatz, J., and Seidel, H.-P. 1998. Interactive multi-resolution modeling on arbitrary meshes. In Proceedings of ACM SIGGRAPH, 105--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Koch, C., and Ullman, S. 1985. Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology 4, 219--227.Google ScholarGoogle Scholar
  21. Lee, C. H., Hao, X., and Varshney, A. 2004. Light collages: Lighting design for effective visualization. In Proceedings of IEEE Visualization, 281--288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Luebke, D., and Hallen, B. 2001. Perceptually driven simplification for interactive rendering. In Proceedings of Eurographics Workshop on Rendering Techniques, 223 -- 234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Luebke, D., Reddy, M., Cohen, J., Varshney, A., Watson, B., and Huebner, R. 2003. Level of Detail for 3D Graphics. Morgan Kaufman. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Mantiuk, R., Myszkowski, K., and Pattanaik, S. 2003. Attention guided MPEG compression for computer animations. In Proceedings of the 19th Spring Conference on Computer Graphics, 239--244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Medioni, G., and Guy, G. 1997. Inference of surfaces, curves and junctions from sparse, noisy 3-D data. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 11, 1265--1277. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H. 2003. Discrete differential-geometry operators for triangulated 2-manifolds. In Visualization and Mathematics III(Proceedings of VisMath 2002), Springer Verlag, Berlin (Germany), 35--54.Google ScholarGoogle Scholar
  27. Milanese, R., Wechsler, H., Gil, S., Bost, J., and Pun, T. 1994. Integration of bottom-up and top-down cues for visual attention using non-linear relaxation. In Proceedings of IEEE Computer Vision and Pattern Recognition, 781--785.Google ScholarGoogle Scholar
  28. Privitera, C., and Stark, L. 1999. Focused JPEG encoding based upon automatic preidentified regions of interest. In Proceedings of SPIE, Human Vision and Electronic Imaging IV, 552--558.Google ScholarGoogle Scholar
  29. Reddy., M. 2001. Perceptually optimized 3D graphics. IEEE Computer Graphics and Applications 21, 5. 68--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Rosenholtz, R. 1999. A simple saliency model predicts a number of motion popout phenomena. Vision Research 39, 19, 3157--3163.Google ScholarGoogle ScholarCross RefCross Ref
  31. Shashua, A., and Ullman, S. 1988. Structural saliency: The detection of globally salient structures using a locally connected network. In Proceedings of IEEE International Conference on Computer Vision, 321--327.Google ScholarGoogle Scholar
  32. Stoev, S., and Straber, W. 2002. A case study on automatic camera placement and motion for visualizing historical data. In Proceedings of IEEE Visualization, 545--548. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Suh, B., Ling, H., Bederson, B. B., and Jacobs, D. W. 2003. Automatic thumbnail cropping and its effectiveness. CHI Letters (UIST 2003) 5, 2, 95--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Taubin, G. 1995. Estimating the tensor of curvature of a surface from a polyhedral approximation. In Proceedings of IEEE International Conference on Computer Vision, 902--907. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Tsotsos, J., Culhane, S., Wai, W., Lai. Y., Davis, N., and Nuflo, F. 1995. Modeling visual-attention via selective tuning. Artificial Intelligence 78, 1-2, 507--545. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Turk, G. 1992. Re-tiling polygon surfaces. In Proceedings of ACM SIGGRAPH, 55--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. VáZQUEZ, P.-P., FEIXAS, M., SBERT, M., AND LLOBET, A. 2002. Viewpoint entropy: a new tool for obtaining good views of molecules. In Proceedings of the Symposium on Data Visualisation (VISSYM 2002), 183--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Watanabe, K., and Belyaev, A. G. 2001. Detection of salient curvature features on polygonal surfaces. Computer Graphics Forum (Eurographics 2001) 20, 3, 385--392.Google ScholarGoogle Scholar
  39. Watson, B., Walker, N., and Hodges, L. F. 2004. Supra-threshold control of peripheral LOD. ACM Transactions on Graphics 23, 3, 750--759. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Weinshall, D., and Werman, M. 1997. On view likelihood and stability. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 2, 97--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Yee, H., Pattanaik, S., and Greenberg, D. P. 2001. Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments. ACM Transactions on Graphics 20, 1, 39--65. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Mesh saliency

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 24, Issue 3
        July 2005
        826 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/1073204
        Issue’s Table of Contents

        Copyright © 2005 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2005
        Published in tog Volume 24, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader