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Abstract
We present a novel method for computing cache-oblivious layouts
of large meshes that improve the performance of interactive visual-
ization and geometric processing algorithms. Given that the mesh is
accessed in a reasonably coherent manner, we assume no particular
data access patterns or cache parameters of the memory hierarchy
involved in the computation. Furthermore, our formulation extends
directly to computing layouts of multi-resolution and bounding vol-
ume hierarchies of large meshes.

We develop a simple and practical cache-oblivious metric for esti-
mating cache misses. Computing a coherent mesh layout is reduced
to a combinatorial optimization problem. We designed and imple-
mented an out-of-core multilevel minimization algorithm and tested
its performance on unstructured meshes composed of tens to hun-
dreds of millions of triangles. Our layouts can significantly reduce
the number of cache misses. We have observed 2−20 times speedups
in view-dependent rendering, collision detection, and isocontour ex-
traction without any modification of the algorithms or runtime appli-
cations.

1 Introduction
Over the last few years, advances in model acquisition, computer-
aided design, and simulation technologies have resulted in massive
databases of complex geometric models. Meshes composed of tens
or hundreds of millions of triangles are frequently used to represent
CAD environments, terrains, isosurfaces, and scanned models.

Efficient algorithms for processing large meshes utilize the com-
putational power of CPUs and GPUs for interactive visualization and
geometric applications. A major computing trend over the last few
decades has been the widening gap between processor speed and
main memory speed. As a result, system architectures increasingly
use caches and memory hierarchies to avoid memory latency. The
access times of different levels of a memory hierarchy typically vary
by orders of magnitude. In some cases, the running time of a pro-
gram is as much a function of its cache access pattern and efficiency
as it is of operation count [Frigo et al. 1999; Sen et al. 2002].

Our goal is to design cache efficient algorithms to process large
meshes. The two standard techniques to reduce cache misses are:

1. Computation Reordering: Reorder the computation to im-
prove program locality. This is performed using compiler opti-
mizations or application specific hand-tuning.

2. Data Layout Optimization: Compute a cache-coherent layout
of the data in memory according to the access pattern.

In this paper, we focus on data layout optimization of large meshes
to improve cache coherence. A triangle mesh is represented by linear
sequences of vertices and triangles. Therefore, the problem becomes
one of computing a cache efficient layout of the vertices and trian-
gles.

Figure 1: Scan of Michelangelo’s St. Matthew: We precompute a cache-oblivious
layout of this 9.6GB scanned model with 372M triangles. Our novel metric results in
a cache-oblivious layout and at runtime reduces the vertex cache misses by more than
a factor of four for interactive view-dependent rendering. As a result, we improve the
frame rate by almost five times. We achieve a throughput of 106M tri/sec (at 82 fps) on
an NVIDIA GeForce 6800 GPU.

Many layout algorithms and representations have been proposed
for optimizing the cache access patterns for specific applications.
The representations include rendering sequences (e.g. triangle strips)
that are used to improve the rendering performance of large meshes
on GPUs. Recent extensions include processing sequences (e.g.
streaming meshes), which work well for applications that can access
the data in a fixed order. Some algorithms for image processing and
visualization of large datasets use space filling curves as a heuristic
to improve cache coherence of a layout. These algorithms work well
on models with a regular structure; however, they do not take into ac-
count the topological structure of a mesh and are not general enough
to handle unstructured datasets.
Main Results: We present a novel method to compute cache-
oblivious layouts of large triangle meshes. Our approach is general in
terms of handling all kinds of polygonal models and cache-oblivious
as it does not require any knowledge of the cache parameters or block
sizes of the memory hierarchy involved in the computation.

We represent the mesh as an undirected graph G = (V, E), where
|V | = n is the number of vertices. The mesh layout problem reduces
to computing an optimal one-to-one mapping of vertices to positions
in the layout, ϕ : V → {1, ..., n}, that reduces the number of cache
misses. Our specific contributions include:

1. Deriving a practical cache-oblivious metric that estimates the
number of cache misses.

2. Transforming the layout computation to an optimization prob-
lem based on our metric.

3. Solving the combinatorial optimization problem using a multi-
level minimization algorithm.

We also extend our graph-based formulation to compute cache-
oblivious layouts of bounding volume and multiresolution hierar-
chies of large meshes.

We use cache-oblivious layouts for three applications: view-
dependent rendering of massive models, collision detection between
complex models, and isocontour extraction. In order to show the
generality of our approach, we compute layouts of several kinds of
geometric models including CAD environments, scanned models,
isosurfaces, and terrains. We use these layouts directly without any
modification to the runtime application. Our layouts significantly



reduce the number of cache misses and improve the overall perfor-
mance. Compared to a variety of popular mesh layouts, we achieve
on average:

1. Over an order of magnitude improvement in performance for
isocontour extraction.

2. A five time improvement in rendering throughput for view-
dependent rendering of multi-resolution meshes.

3. A two time speedup in collision detection queries based on
bounding volume hierarchies.

Organization: The rest of the paper is organized as follows. We
give a brief summary of related work on cache-efficient algorithms
and mesh layouts in Section 2. Section 3 gives an overview of our
approach and presents techniques for computing the graph layout of
hierarchical representations. We present our cache-oblivious metric
in Section 4 and describe the multilevel optimization algorithm for
computing the layouts in Section 5. Section 6 highlights the use of
our layouts in three different applications. We analyze our algorithms
and discuss some of their limitations in Section 7.

2 Related Work
In this section we briefly review related work on cache-efficient al-
gorithms, out-of-core techniques, mesh sequences, and layouts.
2.1 Cache-Efficient Algorithms
Cache-efficient algorithms have received considerable attention over
last two decades in theoretical computer science and compiler litera-
ture. These algorithms include theoretical models of cache behavior
[Vitter 2001; Sen et al. 2002], and compiler optimizations based on
tiling, strip-mining, and loop interchanging; all of these can mini-
mize cache misses [Coleman and McKinley 1995].

At a high level, cache-efficient algorithms can be classified as ei-
ther cache-aware or cache-oblivious. Cache-aware algorithms uti-
lize knowledge of cache parameters, such as cache block size [Vitter
2001]. On the other hand, cache-oblivious algorithms do not assume
any knowledge of cache parameters [Frigo et al. 1999]. There is
a considerable amount of literature on developing cache-efficient al-
gorithms for specific problems and applications, including numerical
programs, sorting, geometric computations, matrix multiplication,
FFT, and graph algorithms. Most of these algorithms reorganize the
data structures for the underlying application, i.e., computation re-
ordering. More details are given in recent surveys [Arge et al. 2004;
Vitter 2001]. There exists relatively little work on computing cache-
coherent layouts for a wide variety of applications.
2.2 Out-of-Core Mesh Processing
Out-of-core algorithms are designed to handle massive geometric
datasets on computers with finite memory. A recent survey of these
algorithms and their applications is given in [Silva et al. 2002]. The
survey includes techniques for efficient disk layouts that reduce the
number of disk accesses and the time taken to load the data required
at runtime. These algorithms have been used for model simplifica-
tion [Cignoni et al. 2003], interactive display of large datasets com-
posed of point primitives [Rusinkiewicz and Levoy 2000] or poly-
gons [Corrêa et al. 2003; Yoon et al. 2004b], model compression
[Isenburg and Gumhold 2003], and collision detection [Franquesa-
Niubo and Brunet 2003; Wilson et al. 1999]. Out-of-core techniques
are complimentary to cache-coherent mesh layouts.
2.3 Mesh Sequences and Layouts
The order in which a mesh is laid out can affect the performance of
algorithms operating on the mesh. Several possibilities have been
considered.
Rendering Sequences: Modern GPUs maintain a small buffer
to reuse recently accessed vertices. In order to maximize the benefits
of vertex buffers for fast rendering, triangle reordering is necessary.
This approach was pioneered by Deering [1995]. The resulting or-
dering of triangles is called a triangle strip or a rendering sequence.

Figure 2: Double Eagle Tanker: We compute a cache-oblivious layout of the tanker
with 82M triangles and more than 127K different objects. This model has an irregu-
lar distribution of primitives. We use our layout to reduce vertex cache misses and to
improve the frame rate for interactive view-dependent rendering by a factor of two; we
achieve a throughput of 47M tri/sec (at 35 fps) on an NVIDIA GeForce 6800 GPU.

Hoppe [1999] casts the triangle reordering as a discrete optimiza-
tion problem with a cost function relying on a specific vertex buffer
size. If a triangle mesh is computed on the fly using view-dependent
simplification or other geometric operations, the rendering sequences
need to be recomputed to maintain high throughput. Other tech-
niques improve the rendering performance of view-dependent algo-
rithms by computing rendering sequences not tailored to a particu-
lar cache size [Bogomjakov and Gotsman 2002; Karni et al. 2002].
However, these algorithms have been applied only to relatively small
models (e.g., 100K triangles).

Processing Sequences: Isenburg and Gumhold [2003] propose
processing sequences as an extension of rendering sequences to
large-data processing. A processing sequence represents a mesh as
an interleaved ordering of indexed triangles and vertices that can
be streamed through main memory [Isenburg and Lindstrom 2004].
However, global mesh access is restricted to a fixed traversal order;
only localized random access to the buffered part of the mesh is sup-
ported as it streams through memory. This representation is mostly
useful for offline applications (e.g., simplification and compression)
that can adapt their computations to the fixed ordering.

Space Filling Curves: Many algorithms use space filling curves
[Sagan 1994] to compute cache-friendly layouts of volumetric grids
or height fields. These layouts are widely used to improve perfor-
mance of image processing [Velho and Gomes 1991] and terrain or
volume visualization [Pascucci and Frank 2001; Lindstrom and Pas-
cucci 2001]. A standard method of constructing a layout is to em-
bed the meshes or geometric objects in a uniform structure that con-
tains the space filling curve. Therefore, these algorithms have been
used for objects or meshes with a regular structure (e.g. images and
height fields). Methods based on space filling curves do not con-
sider the topological structure of meshes. It is unclear whether these
approaches would extend to large CAD environments with an irreg-
ular distribution of geometric primitives. Moreover, if an application
needs to access the mesh primitives based on connectivity informa-
tion, space filling curves may not be useful. Algorithms have also
been proposed to compute paths on constrained, unstructured graphs
as well as to generate triangle strips and finite-element mesh layouts
[Heber et al. 2000; Oliker et al. 2002; Bartholdi and Goldsman 2004;
Gopi and Eppstein 2004].

Sparse Matrix Reordering: There is considerable research on
converting sparse matrices into banded ones to improve the perfor-
mance of various matrix operations [Diaz et al. 2002]. Common
graph and matrix reordering algorithms attempt to minimize one of
three measures: bandwidth (maximum edge length), profile (sum of
maximum per-vertex edge length), and wavefront (maximum front
size, as in stream processing). These measures are closely connected
with MLA and layouts for streaming, and generally are more appli-
cable to stream layout than cache-oblivious mesh layout.



Figure 3: Vertex layout for a mesh: A mesh consisting of 5 vertices is shown with two
different orderings obtained using a local permutation of v4 and v5. We highlight the
span of each edge based on the layout. The ordering shown on the right minimizes cache
misses according to our cache-oblivious metric.

3 Mesh Layout and Cache Misses
In this section, we introduce some of the terminology used in the
rest of the paper and give an overview of memory hierarchies. We
represent a mesh as a graph and extend our approach to layouts of
multi-resolution and bounding volume hierarchies of a mesh.

3.1 Memory Hierarchy and Caches
Most modern computers use hierarchies of memory levels, where
each level of memory serves as a cache for the next level. Mem-
ory hierarchies have two main characteristics. First, higher levels are
larger in size and farther from the processor, and they have slower
access times. Second, data is moved in large blocks between differ-
ent memory levels. The mesh layout is initially stored in the highest
memory level, typically the disk. The portion of the layout accessed
by the application is transferred in large blocks into the next lower
level, such as main memory. A transfer is performed whenever there
is a cache miss between two adjacent levels of the memory hierar-
chy. The number of cache misses is dependent on the layout of the
original mesh in memory and the access pattern of the application.

3.2 Mesh Layout
A mesh layout is a linear sequence of vertices and triangles of the
mesh. We construct a graph in which each vertex represents a data
element of the mesh. An edge exists between two vertices of the
graph if their representative data elements are likely to be accessed
in succession by an application at runtime.

For single-resolution mesh layout, we map mesh vertices and
edges to graph vertices and edges. A vertex layout of an undirected
graph G = (V, E) is a one-to-one mapping of vertices to positions,
ϕ : V → {1, . . . , n}, where |V | = n. Our goal is to find a mapping,
ϕ, that minimizes the number of cache misses during accesses to the
mesh.

A mesh layout is composed of two layouts: a vertex layout and
a triangle layout. While a triangle layout can be constructed as a
vertex layout of the dual graph, because the triangles and their ver-
tices are often accessed together we ensure that the triangle layout
is “compatible” with the vertex layout, e.g. by ordering triangles on
their minimum or maximum vertex index (cf. [Isenburg and Lind-
strom 2004]). In the rest of the paper, we use the term layout to refer
to a vertex layout for the sake of clarity.

3.3 Layouts of Multiresolution Meshes and Hierarchies
In this section, we show that our graph-based formulation can be
used to compute cache-coherent layouts of hierarchical representa-
tions. Hierarchical data structures are widely used to speed up com-
putations on large meshes. Two types of hierarchies are used for ge-
ometric processing and interactive visualization: bounding volume
hierarchies (BVHs) and multi-resolution hierarchies (MRHs). The
BVHs use simple bounding shapes (e.g. spheres, AABBs, OBBs) to
enclose a group of triangles in a hierarchical manner. MRHs are used
to generate a simplification or approximation of the original model
based on an error metric; these include vertex hierarchies (VHs) used
for view-dependent rendering, and hierarchies that are defined using
subdivision rules.

Figure 4: A layout of a vertex hierarchy: A vertex hierarchy is shown on the left.
Each node of the vertex hierarchy represents a leaf or intermediate level vertex. A parent
node, v1

1 , is constructed by merging two child nodes, v0
1 and v0

2 . Solid lines between
the nodes represent connectivity access and dotted lines represent the spatial locality
between the nodes at the same level. Its corresponding graph and a layout of the vertices
(with a position in the layout shown in blue) are shown on the right.

Terminology: We define vi = v0
i as the ith vertex at the leaf level

of the hierarchy, and vk
i as a vertex at the kth level. vk

i is a parent
of vk−1

i and vk−1
i+1 . In the case of a BVH, vk

i denotes a bounding
volume. In the case of a vertex hierarchy, vk

i denotes a vertex gener-
ated by decimation operations. An example of a vertex hierarchy is
shown in Fig. 4.

In order to compute a layout of a hierarchy, we construct a graph
that captures cache-coherent access patterns to the hierarchy. We add
extra edges to our graph that capture the spatial locality and parent-
child relationships within the hierarchy.

1. Connectivity between parent-children nodes: Once a node
of a hierarchy is accessed, it is highly likely that its parent or
child nodes would be accessed soon. For example, a vertex-
split of a node in the VH activates its child nodes and an edge-
collapse of two sibling nodes activates their parent node.

2. Spatial locality between vertices at the same level: When-
ever a node is accessed, other nodes in close proximity are also
highly likely to be accessed thereafter. For example, collisions
or contacts between two objects occur in small localized re-
gions of a mesh. Therefore, if a node of a BVH is activated,
other nearby nodes are either colliding or are in close proxim-
ity and may be accessed soon.

Graph Representation: We take these localities into account and
compute an undirected graph for MRHs and BVHs. For a BVH, we
represent each BV with a separate vertex in the graph. The edges in
our graph include edges between parent vertices and their children,
and edges between nearby vertices at each level of the BVH. Edges
are created between nearby vertices when their Euclidean distance
falls below a given threshold. Fig. 4 shows the graph as well as its
layout for the given vertex hierarchy. More details on connectivity
and spatial localities of BVHs are also available [Yoon and Manocha
2005].

4 Cache-Oblivious Layouts
In this section we present a novel algorithm for computing a cache-
coherent layout of a mesh. We make no assumptions about cache
parameters and compute the layout in a cache-oblivious manner.
4.1 Terminology
We use the following terminology in the rest of the paper. The edge
span of the edge between vi and vj in a layout is the absolute dif-
ference of the vertex indices, |i − j| (see Fig. 3). We use El to
denote the set that consists of all the edges of edge span l, where
l ∈ [1, n − 1]. The edge span distribution of a layout is the his-
togram of spans of all the edges in the layout. The cache miss ratio
is the ratio of the number of cache misses to the number of accesses.
The cache miss ratio function (CMRF), pl, is a function that relates
the cache miss ratio to an edge span, l. The CMRF always lies within
the interval [0, 1]; it is exactly 0 when there are no cache misses, and
equals 1 when every access results in a cache miss. We alter the



Figure 5: Puget Sound contour line: This image shows a contour line (in black) ex-
tracted from an unstructured terrain model of the Puget Sound. The terrain is simplified
down to 143M triangles. We extracted the largest component (223K edges) of the level
set at 500 meters of elevation. Our cache-oblivious layouts improve the performance of
the isocontour extraction algorithm by more than an order of magnitude.

layouts using a local permutation that reorders a small subset of the
vertices. The local permutation changes the edge span of edges that
are incident to the affected vertices (see Fig. 3).

4.2 Metrics for Cache Misses
We first define a metric for estimating the cache misses for a given
layout. One well known metric for the graph layout problem is the
minimum linear arrangement (MLA), which minimizes the sum of
edge spans [Diaz et al. 2002]. Heuristics for the NP-hard MLA prob-
lem, such as spectral sequencing, have been used to compute mesh
layouts for rendering and processing sequences [Bogomjakov and
Gotsman 2002; Isenburg and Lindstrom 2004]. We have empirically
observed that metrics used to estimate MLA may not minimize cache
misses for general applications (See Fig. 6). This is mostly because
MLA results in a front-advancing sweep over the mesh along a dom-
inant direction that tends to minimize the length of the front. On a
rectilinear grid, for example, MLA roughly corresponds to a row-by-
row layout, which has poor worst-case performance when accessing
the grid column by column. We present an alternate metric based on
the edge span distribution and the CMRF that captures the locality
for various access patterns and results in layouts with a more “space
filling” quality. Contrary to MLA, our layouts are not biased towards
a particular traversal direction.
Cache-coherent Access Pattern: If we know the runtime ac-
cess pattern of a given application a priori and the CMRFs, we can
compute the exact number of cache misses. However, we make no
assumptions about the application and instead use a probabilistic
model to estimate the number of cache misses. Our model approxi-
mates the edge span distribution of the runtime access pattern of the
vertices with the edge span distribution of the layout. Based on this
model, we define the expected number of cache misses of the layout
as:

ECM =

n−1∑

i=1

|Ei|pi (1)

where |Ei| is the cardinality of Ei and is a function of the layout, ϕ.

4.3 Assumptions
Our goal is to compute a layout, ϕ, that minimizes the expected num-
ber of cache misses for all possible cache parameters. We present a
metric that is used to check whether a local permutation would re-
duce cache misses. We make two assumptions with respect to CM-
RFs: invariance and monotonicity.
Invariance: We assume that the CMRF of a layout is invariant be-
fore and after a local permutation. Since a local permutation affects
only a small region of a mesh, the changes in CMRF due to a local
permutation are very small.
Monotonicity: We assume that the CMRF is a monotonically non-
decreasing function of edge span. As we access vertices that are
farther away from the current vertex (i.e. the edge spans increase),

Figure 6: Edge span distributions: The edge span histogram of the dragon model with
871K triangles and 437K vertices. We show the histogram of the original model rep-
resentation (red), spectral sequencing (green), and our cache-oblivious metric (black).
In the original layout, a large number of edges have edge spans greater than 600. Intu-
itively, our cache-oblivious metric favors edges that have small edge spans. Therefore,
our layouts reduce cache misses.

the probability of having a cache miss increases, until eventually lev-
eling off at 1.

4.4 Cache-oblivious Metric
Our cache-oblivious metric is used to decide whether a local permu-
tation decreases the expected number of cache misses, which due to
the invariance of pi is true if the following inequality holds:

n−1∑

i=1

(|Ei| + ∆|Ei|)pi <

n−1∑

i=1

|Ei|pi ⇔

m∑

j=1

∆|El(j)|pl(j) < 0 (2)

Here ∆|Ei| is the signed change in the number of edges with edge
span i after a local permutation and n − 1 is maximum edge span for
a mesh with n vertices. Furthermore, we let m denote the number of
sets (among E1, E2, . . . , En−1) whose cardinality changes because
of the permutation, and let l(j) denote the edge span associated with
the jth such set, with l(j) < l(j + 1) and m � n − 1.
Constant Edge Property: The total number of edges in a layout
is the same before and after the local permutation. Hence

m∑

j=1

∆|El(j)| = 0 (3)

Parameterization of cache miss ratio: We parameterize each
cache miss ratio, pl(j), by introducing a parametric variable, xj ,
which due to the monotonicity of pl(j) is monotonically non-
decreasing with j. This is represented as:

pl(j) = xjpl(1) (4)

where 1 ≤ j ≤ m and

1 = x1 ≤ x2 ≤ · · · ≤ xm−1 ≤ xm ≤
1

pl(1)
(5)

pl(1) is the cache miss ratio of the first edge, and 0 ≤ pl(1) ≤ 1.
The leftmost constraint of Eq. (5) is obvious because

pl(1) = x1pl(1). The rightmost constraint is computed from
pl(m) = xmpl(1) ≤ 1, because all the cache miss values are less than
or equal to 1.

By substituting the parameterization of cache miss ratios shown
in Eq. (4) into Eq. (2) and canceling the constant pl(1), we have:

m∑

j=1

∆|El(j)|xj < 0. (6)

This is our exact cache-oblivious metric.



Figure 7: Geometric volume computation: The left figure shows a 2D geometric view
of Eq. (6). The 3D version is shown in the right figure.

4.5 Geometric Formulation
We reduce the computation of the expression in Eq. (6) to a geomet-
ric volume computation in an m dimensional hyperspace. Geomet-
rically, the parameterization domain represented in Eq. (5) defines
a closed hyperspace in R

m. We refer to this hyperspace as the do-
main. Eq. (6) defines a closed subspace within the domain of Eq.
(5). Moreover, a dividing hyperplane defining this closed subspace
passes through the point, {1, 1, . . . , 1} = PO ∈ R

m, of the domain
according to the constant edge property highlighted in Eq. (3). We
also define the top-polytope of the domain as the polytope intersect-
ing the rightmost constraints of Eq. (5) with the open hyperspace
defined by the other constraints of Eq. (5). Moreover, we define V+

to be the volume of the subspace represented in Eq. (6) and V
−

to
be the volume of its complement within the closed domain. These
geometric concepts in 2 and 3 dimensions are illustrated in Fig. 7.
Volume Computation: Intuitively speaking, the volume V+ cor-
responds to the set of cache configurations parameterized by {xj}
for which we expect a reduction in cache misses. Since we assume
all configurations to be equally likely, we probabilistically reduce the
number of cache misses by accepting a local permutation whenever
V+ is larger than V

−
.

Complexity of Volume Computation: The computation of the
volume of a convex polytope defined by m + 1 hyperplanes in m di-
mensions is a hard problem. The complexity of exact volume com-
putation is O(mm+1) [Lasserre and Zeron 2001] and an approxi-
mate algorithm of complexity O(m5) is presented in [Kannan et al.
1997]. In our application, each local permutation involves around
20–50 edges and these algorithms can be rather slow.
4.6 Fast and Approximate Metric
Given the complexity of exact volume computation, we use an ap-
proximate metric to check whether a local permutation would reduce
the expected number of cache misses. In particular, we use a single
sample point—the centroid of the top-polytope—as an estimate of
{xj} and compute an approximate metric with low error.

Note that the dividing hyperplane between V+ and V
−

passes
through the point PO . Therefore, the ratio of V+ to V

−
is equal

to the ratio of the (m − 1) dimensional areas formed by partitioning
the top-polytope by the same dividing hyperplane. For example, in
the 2D case, the result of volume comparison computed by substi-
tuting a centroid into Eq. (6) is exactly same as the result of the 2D
area comparison between V+ and V

−
. This formulation extends to

3D, but it introduces some error. The error is maximized when the
dividing plane is parallel to one of the edges of the top-polytope and
it is minimized (i.e., exactly zero) when the plane passes through one
of its vertices.

We generalize this idea to m dimensions. PC , the centroid of a
top-polytope, is defined as ( 1

m
, 2

m
, . . . , m−1

m
, m

m
) × 1

pl(1)
+ PO . By

substituting PC into Eq. 6 and canceling the constants, 1
pl(1)

and PO ,
we have:

m∑

j=1

∆|El(j)|j < 0 (7)

If inequality (7) holds, we allow the local permutation. Based on this
metric, we compute a layout, ϕ, that minimizes the number of cache
misses.

Figure 8: Isosurface model: This image shows a complex isosurface (100M triangles)
generated from a 3D simulation of turbulent fluids mixing. Our layout reduces the vertex
cache misses by more than a factor of four during view-dependent rendering. As a result,
we improve the frame rate by 4 times as compared to prior approaches. We achieve a
throughput of 90M tri/sec (at 30 fps) on a PC with an NVIDIA GeForce 6800 GPU.

Error Bounds on Approximate Metric: The approximate
cache-oblivious metric has a worst case error of 26%, when the di-
viding hyperplane is parallel to one of the edges of the top-polytope.
In practice, the worst case configuration is rare. In our benchmarks,
we found that the actual error is typically much less than the worst
case bound.

5 Layout Optimization
Given the cache-oblivious metric, our goal is to find the layout, ϕ,
that minimizes the expected number of cache misses, defined in Eq.
(1). This is a combinatorial optimization problem for graph layouts
[Diaz et al. 2002]. Finding a globally optimal layout is NP-hard
[Garey et al. 1976] due to the large number of permutations of the set
of vertices. Instead, we use a heuristic based on multilevel minimiza-
tion that performs local permutations to compute a locally optimal
layout.

5.1 Multilevel Minimization

Our multilevel algorithm consists of three main steps. First, a se-
ries of coarsening operations on the graph are computed. Next, we
compute an ordering of vertices of the coarsest graph. Finally, we
recursively expand the graph by reversing the coarsening operations
and refine the ordering by performing local permutations. We will
now describe each of these steps in more detail.

Coarsening Step: The goal of the coarsening phase is to cluster
vertices in order to reduce the size of the graph while preserving the
essential properties needed to compute a good layout. We have tried
two approaches: clustering via graph partitioning [Karypis and Ku-
mar 1998] and via streaming edge-collapse [Isenburg and Lindstrom
2004], using only the topological structure of the graph as criterion
for collapsing edges. As mentioned above, geometric locality can be
preserved by adding additional edges to the graph between spatially
close vertices.

Ordering Step: Given the coarsest graph of a handful of vertices,
we list all possible orderings of its vertices and compute the costs
based on the cache-oblivious metric from Eq. (7). We choose a ver-
tex ordering that has the minimum cost among all possible orderings.

Refinement Step: We reverse the sequence of coarsening oper-
ations applied earlier and exhaustively compute the locally optimal
permutation of the subset of vertices involved in each corresponding
refinement operation.

5.2 Local Permutation

We compute local permutations of the vertices during the ordering
and refinement steps. A local permutation affects only a small num-
ber of vertices in the layout and changes the edge spans of those
edges that are incident to these vertices. Therefore, we can efficiently
recompute the cost associated with the metric. Each local permuta-
tion involves k! possible orderings for k vertices, which during re-
finement replace their common parent in the evolving layout. For
efficiency we restrict each coarsening operation to merge no more
than k = 5 vertices at a time, and also limit the number of vertices
in the coarsest graph to 5.



Model Type Vert. (M) Tri. (M) Size (MB) Layout Comp. (min)

Dragon s 0.4 0.8 33 0.25

Lucy s 14.0 28.0 520 8

David s 28.0 56.0 700 19

Double Eagle c 77.7 81.7 3, 346 56

Isosurface i 50.5 100.0 2, 543 49

Puget Sound t 67.0 134.0 1, 675 58

St. Matthew s 186.0 372.0 9, 611 176

Atlas s 254.0 507.0 12, 422 244

Table 1: Layout Benchmarks: Model complexity and time spent on layout computation
are shown. Type indicates model type: s for scanned model, i for isosurface, c for CAD
model, and t for terrain model. Vert. is the number of vertices and Tri. is the number
of triangles of a model. Layout Comp. is time spent on layout computation.

Model Double Eagle Isosurface St. Matthew

PoE 3 5 1

Frame rate 35 30 82

Rendering throughput(million tri./sec.) 47 90 106

Avg. Improvement 2.1 4.5 4.6

ACMR 1.58 0.75 0.72

Table 2: View-Dependent Rendering This table highlights the frame rate and rendering
throughput for different models. We improve the rendering throughput and frame rates
by 2− 4.6 times. The ACMR was computed with a buffer consisting of 24 vertices.

5.3 Out-of-Core Multilevel Optimization
The multilevel optimization algorithm needs to maintain an ordering
of vertices along with a series of coarsening operations. For large
meshes composed of hundreds of millions of vertices, it may not be
possible to store all this information in main memory. In both of our
graph partitioning and edge-collapse approaches, we compute a set
of clusters, each containing a subset of vertices. Each cluster repre-
sents a subgraph and we compute an inter-cluster ordering among the
clusters. We then follow the cluster ordering and compute a layout of
all the vertices within each cluster using our multilevel minimization
algorithm.

6 Implementation and Performance
In this section we describe our implementation and use cache coher-
ent layouts to improve the performance of three applications: view-
dependent rendering of massive models, collision detection between
complex models, and isocontour extraction. Moreover, we used
different kinds of models including CAD environments, scanned
datasets, terrains, and isosurfaces to test the performance of cache
coherent layouts. We also compare the performance of our metric
with other metrics used for mesh layout.
6.1 Implementation
We have implemented our layout computation and out-of-core view-
dependent rendering and collision detection algorithms on a 2.4GHz
Pentium-4 PC with 1GB of RAM and a GeForce Ultra FX 6800 GPU
with 256MB of video memory.

We use the METIS graph partitioning library [Karypis and Ku-
mar 1998] for coarsening operations to lay out vertex and bounding
volume hierarchies. Our current unoptimized implementation of the
out-of-core layout computation processes about 30K triangles per
sec. In the case of the St. Matthew model, our second largest dataset,
layout computation takes about 2.6 hours.
Memory-mapped I/O: Our system runs on Windows XP and uses
the operating system’s virtual memory through memory mapped files
[Lindstrom and Pascucci 2001]. Windows XP can map only up to
2GB of user-addressable space. We overcome this limitation by map-
ping a small portion of the file at a time and remapping when data is
required from outside this range.
6.2 View-dependent rendering
View-dependent rendering and simplification are frequently used for
interactive display of massive models. These algorithms precompute
a multiresolution hierarchy of a large model (e.g. a vertex hierar-
chy). At runtime, a dynamic simplification of the model is computed
by incrementally traversing the hierarchy until the desired pixels of
error (PoE) tolerance in image space is met. Current view-dependent

PoE 0.75 1 4 20

COL 0.71 0.72 0.73 0.74

SL 2.85 2.85 2.92 2.96

Table 3: ACMR vs. PoE: ACMRs are computed as we increase the PoE, i.e. use a more
drastic simplification. The ACMRs of cache-oblivious layouts (COL) are still low even
when a higher PoE is selected.

rendering algorithms are unable to achieve high polygon rendering
throughput on the GPUs for massive models composed of tens or
hundreds of millions of triangles. It is not possible to compute ren-
dering sequences at interactive rates for such massive models.

We use a clustered hierarchy of progressive meshes (CHPM)
representation [Yoon et al. 2004b] for view-dependent refinement
along with occlusion culling and out-of-core data management. The
CHPM-based refinement algorithm is very fast and most of the frame
time is spent in rendering the simplified model. We precompute a
cache-oblivious layout (COL) of the CHPM and use it to reduce the
cache misses for the vertex cache on the GPU. We computed layouts
for three massive models including a CAD environment of a tanker
with 127K separate objects (Fig. 2), a scanned model of St. Matthew
(Fig. 1) and an isosurface model (Fig. 8). The details of these mod-
els are summarized in Table 1. We measured the performance of our
algorithm along paths through the models. These paths are shown in
the accompanying video.
6.2.1 Results
Table 2 highlights the benefit of COL over the simplification layout
(SL), whose vertex layout and triangle layout are computed by the
underlying simplification algorithm. We are able to increase the ren-
dering throughput by a factor of of 2-4.6 times by precomputing a
COL of the CHPM of each model. We obtain a rendering throughout
of 106M triangles per second on average, with a peak performance
of 145M triangles per second.
Average Cache Miss Ratio (ACMR): The ACMR is defined by
the ratio of the number of accessed vertices to the number of ren-
dered triangles for a particular vertex cache size [Hoppe 1999]. If
the number of triangles in the model is roughly twice the number
of vertices (e.g. the St. Matthew and isosurface models), then the
ACMR is within the interval [0.5, 3]. Therefore, the theoretical up-
per bound on cache miss reduction is a factor of 6. For a cache of
24 vertices, we improve the ACMR by a factor of 3.95 and get a 4.5
times speedup in the rendering throughput. On the other hand, if the
number of vertices in the model is roughly the same as the number of
triangles, as in the tanker model, then the ACMR is within the inter-
val [1, 3] and the upper bound on cache miss reduction is 3 times. For
this model, we improve the ACMR by a factor of 1.89 and the ren-
dering throughput by a factor of 2.1. To verify the cache-oblivious
nature of our layouts, we also simulated a FIFO vertex cache of con-
figurable size and measured the ACMR as a function of cache size
(Fig. 10). Table 3 shows the ACMR achieved by varying the PoE in
the St. Matthew model.

6.3 Collision Detection
Many collision detection algorithms use bounding volume hierar-
chies to accelerate the interference computations [Lin and Manocha
2003]. We use cache-oblivious layouts to improve the performance
of collision detection algorithms. In particular, we compute layouts
of OBB-trees [Gottschalk et al. 1996] and use them to accelerate col-
lision queries within a dynamic simulator. The collision detection al-
gorithm traverses the bounding volume hierarchy of each model and
checks for overlap between the OBBs and triangle pairs. We have
tested the performance of our collision detection algorithm in a rigid
body simulation where 20 dragons (800K triangles each) drop on the
Lucy model (28M triangles). The details of these models are shown
in Table 1. Fig. 9 shows a snapshot from our simulation.

We compared the performance of our cache-oblivious layout with
the RAPID library [Gottschalk et al. 1996]. The OBBs are precom-
puted and stored in memory-mapped files and only the ordering of
the hierarchy is modified. We compared our cache-oblivious layout
with a depth-first layout (DFL) of OBB-trees. The DFL is computed



Figure 9: Dynamic Simulation: Dragons consisting of 800K triangles are dropping on
the Lucy model consisting of 28M triangles. We obtain 2 times improvement by using
COL on average.

Figure 10: ACMR vs. cache size: ACMRs of cache-oblivious layout (COL) and sim-
plification layout (SL) of the St. Matthew and double eagle tanker are shown. As the
cache size increases, the improvement of COL becomes larger, and is 3.95 at a cache
size of 24 in the St. Matthew model. Note that the lower bound on ACMR is 0.5 in St.
Matthew and 1 in the double eagle tanker. The two SL curves almost overlap.

by traversing the hierarchy from its root node in a depth-first order.
We chose DFL because it preserves the spatial locality within the
bounding volume hierarchy.
6.3.1 Results
We are able to achieve 2 times improvement in performance over the
depth-first layout on average. This is mainly due to reduced cache
misses, including main memory page faults. We observe more than 2
times improvement whenever there are more broad contact regions.
Such contacts trigger a higher number of page faults and in such
situations we obtain a higher benefit from cache-oblivious layouts.
The query times of collision detection during the dynamic simulation
are shown in Fig. 11.

6.4 Isocontour Extraction
The problem of extracting an isocontour from an unstructured dataset
frequently arises in geographic information systems and scientific
visualization. We use an algorithm based on seeds sets [van Kreveld
et al. 1997] to extract the isocontour of a single-resolution mesh. The
running time of this algorithm is dominated by the traversal of the
triangles intersecting the contour itself.

We use this algorithm to extract isocontours of a large terrain
(Fig. 5) and compute equivalent geometric queries such as extracting
ridge lines of a terrain1 and cross-sections of large geometric models.
6.4.1 Comparison with other layouts
We compare the the performance of the isocontouring algorithm on
four models, each stored in five different layouts. In addition to
our cache-oblivious layout, we also store the meshes in geometric
X/Y/Z orders (vertices sorted by their position along the corre-
sponding coordinate axis) and in spectral sequencing order [Diaz
et al. 2002]. We use edge-collapse as the coarsening step for com-
puting cache-oblivious layouts and store all meshes in a streaming
format [Isenburg and Lindstrom 2004], which allows us to quickly
compute the on-disk mesh data structure in a preprocess.

Table 4 reports the time in seconds to compute an isocontour and
a ridge line for the terrain models and to compute cross-sections of
the other 3D models. The tests have been performed on a 1.3GHz
Itanium Linux PC with 2GB of main memory. We take advantage of

1For extracting a ridge line the seed point is a saddle and the propagation
goes upward to the closest maxima instead of following an isocontour.

Figure 11: Performance of Collision Detection: Average query times for collision
detection between the Lucy model and the dragon model with COL and DFL are shown.
We obtain 2 times improvement in the query time on average.

Model Puget Sound Lucy David Atlas
Out. edg. 223K (Contour) 14K (Ridge) 17K (Section) 22K (Section) 38K (Section)

Cac. Obl. 026 (000.5) 003 (000.03) 03.3 (.04) 05.9 (.057) 010 (000.09)

Geom. X 232 (227.8) 001 (000.04) 01.2 (.04) 00.2 (.051) 015 (000.09)

Geom. Y 218 (215.5) 195 (185.10) 39.1 (.09) 60.7 (.103) 419 (379.78)

Geom. Z 011 (000.6) 135 (113.81) 26.1 (.09) 45.5 (.102) 443 (382.60)

Spec. Seq. 150 (127.3) 023 (000.04) 21.0 (.06) 43.1 (.068) 088 (000.10)

Table 4: Isocontouring. Time in seconds (on a 1.3GHz linux PC with 2GB of memory)
for extracting an isocontour (or equivalent geometric queries) for several models stored
each in five different mesh layouts: cache-oblivious, with vertices sorted by X/Y/Z geo-
metric coordinate, and spectral sequencing. In parentheses we report the time for second
immediate re-computation of the same contour when all the cache levels in the memory
hierarchy have been loaded. In all the cases, the performance of our cache-oblivious lay-
out is comparable to the one optimized for the particular geometric query. This demon-
strates the benefit of our layout for general applications.

the 64-bit architecture and memory map the entire model. We do not
perform any explicit paging. This way we ensure that we do not bias
the results in favor of any particular layout.

The empirical data shows that our cache-oblivious layout mini-
mizes the worst case cost of generic coherent traversals. The three
layouts that are sorted by geometric direction along the X , Y , and
Z axis show that the worst case performance is at least one order of
magnitude slower than the best case, which is achieved by the lay-
out that happens to be perfectly aligned along the query direction.
The spectral sequencing layout also does not perform well since the
geometric query is unlikely to follow its streaming order. Our cache-
oblivious layout consistently exhibits good performance.

The running times reported in parentheses in Table 4 are for a sec-
ond immediate re-computation of the same contour, ridge line, or
cross-section. They demonstrate the performance when all the cache
levels have been loaded by the first computation. In this case our
cache-oblivious layout is always as fast as the the best case and can
be two times to several orders of magnitude faster than the worst
case. More importantly, this test demonstrates the cache-oblivious
nature of the approach since performance advantages at different
scales are achieved both when disk paging is necessary and when
only internal memory and L2 caches are involved. In case of the
Puget Sound terrain model, our cache-oblivious layout is the only
layout that takes advantage of loaded cache levels for both the queries
(i.e., isocontour and ridge line extraction).

7 Analysis and Limitations
We present a novel metric based on edge span distribution and CMRF
to determine whether a local permutation on a layout reduces the
expected number of cache misses. In practice, our algorithm com-
putes layouts for which a high fraction of edges have very small edge
spans. At the same time, a small number of edges in the layout can
have a very large edge span, as shown in Fig. 6. This distribution of
edge spans improves the performance because edges with small edge
span increase the probability of a cache hit, while the actual length
of very high-span edges has little impact on the likelihood of a cache
hit.

Our multilevel minimization algorithm is efficient and produces
reasonably good results for our applications. Moreover, our mini-
mization algorithm maps very well to out-of-core computations and
is able to handle very large graphs and meshes with hundreds of mil-
lions of triangles. We have applied our cache-oblivious layouts to



models with irregular distribution of geometric primitives or irregu-
lar structure, for which prior algorithms based on space-filling curves
may not work well.
Limitations: Our metric and layout computation algorithm has
several limitations. The assumptions we make about invariance and
monotonicity of CMRFs may not hold for all applications, and our
minimization algorithm does not necessarily compute a globally op-
timal solution. Our cache-oblivious layouts result in good improve-
ments primarily in applications where the running time is dominated
by data access.

8 Conclusion and Future Work
We have presented a novel approach for computing cache-oblivious
layouts of large meshes. We make no assumptions about the run-
time access pattern and we compute an ordering that results in high
locality. We show that our formulation can be extended to com-
pute layouts of bounding volume and multiresolution hierarchies of
large meshes. We use a probabilistic model to minimize the num-
ber of cache misses. Our preliminary results indicate that our met-
ric works well in practice for reducing cache misses. Furthermore,
we computed cache-oblivious layouts of different kinds of geomet-
ric datasets including scanned models, isosurfaces, terrain, and CAD
environments with irregular distributions of primitives. We used our
layouts to improve the performance of view-dependent rendering,
collision detection and isocontour extraction by 2 − 20 times with-
out any modification of the algorithm or runtime applications.

There are many avenues for future work. In this paper, we have
only considered cache-oblivious access and we can obtain further
improvement in performance by taking into account cache parame-
ters to design an improved metric. We would like to use our layout to
improve the performance of algorithms for processing and manipula-
tion of large meshes including simplification, compression, parame-
terization, smoothing, isosurface extraction, shadow generation, and
approximate collision detection [Yoon et al. 2004a]. We would also
like to use our graph-based formulation to compute cache-coherent
layouts for other kinds of datasets, including point primitives and un-
structured volumetric grids. Finally, we would like to combine data
layouts with application specific techniques to increase program lo-
cality to further improve the cache access pattern and efficiency.
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