
ar
X

iv
:c

s/
05

01
07

4v
2

 [c
s.

S
C

]
8

F
eb

 2
00

5

Efficient Computation of the Characteristic Polynomial

Jean-Guillaume Dumas∗ and Clément Pernet∗and Zhendong Wan†

August 18, 2016

Abstract

This article deals with the computation of the characteristic polynomial of dense matrices
over small finite fields and over the integers. We first present two algorithms for the finite
fields: one is based on Krylov iterates and Gaussian elimination. We compare it to an
improvement of the second algorithm of Keller-Gehrig. Then we show that a generalization
of Keller-Gehrig’s third algorithm could improve both complexity and computational time.
We use these results as a basis for the computation of the characteristic polynomial of integer
matrices. We first use early termination and Chinese remaindering for dense matrices. Then
a probabilistic approach, based on integer minimal polynomial and Hensel factorization, is
particularly well suited to sparse and/or structured matrices.

1 Introduction

Computing the characteristic polynomial of an integer matrix is a classical mathematical problem.
It is closely related to the computation of the Frobenius normal form which can be used to
test two matrices for similarity. Although the Frobenius normal form contains more information
on the matrix than the characteristic polynomial, most algorithms to compute it are based on
computations of characteristic polynomial (see for example [23, §9.7]).

Using classic matrix multiplication, the algebraic time complexity of the computation of the
characteristic polynomial is nowadays optimal. Indeed, many algorithms have a O(n3) algebraic
time complexity (to our knowledge the older one is due to Danilevski, described in [13, §24]).
The fact that the computation of the determinant is proven to be as hard as matrix multiplication
[2] ensures this optimality. But with fast matrix arithmetic (O(nω) with 2 ≤ ω < 3), the best
asymptotic time complexity is O(nω logn), given by Keller-Gehrig’s branching algorithm [18]. Now
the third algorithm of Keller-Gehrig has a O(nω) algebraic time complexity but only works for
generic matrices.

In this article we focus on the practicability of such algorithms applied on matrices over a
finite field. Therefore we used the techniques developped in [5, 6], for efficient basic linear algebra
operations over a finite field. We propose a new O(n3) algorithm designed to take benefit of
the block matrix operations; improve Keller-Gehrig’s branching algorithm and compare these two
algorithms. Then we focus on Keller-Gehrig’s third algorithm and prove that its generalization is
not only of theoretical interest but is also promising in practice.

As an application, we show that these results directly lead to an efficient computation of the
characteristic polynomial of integer matrices using chinese remaindering and an early termination
criterion adaptated from [7]. This basic application outperforms the best existing softwares on
many cases. Now better algorithms exist for the integer case, and can be more efficients with
sparse or structured matrices. Therefore, we also propose a probabilistic algorithm using a black-
box computation of the minimal polynomial and our finite field algorithm. This can be viewed as
a simplified version of the algorithm described in [24] and [17, §7.2]. Its efficiency in practice is
also very promising.

∗Université de Grenoble, laboratoire de modélisation et calcul, LMC-IMAG BP 53 X, 51 avenue des
mathématiques, 38041 Grenoble, France. {Jean-Guillaume.Dumas, Clement.Pernet}@imag.fr .

†Dept. of Computer and Inf. Science, University of Delaware, Newark, DE 19716, USA. Wan@cis.udel.edu.

1

http://arxiv.org/abs/cs/0501074v2

2 Krylov’s approach

Among the different techniques to compute the characteristic polynomial over a field, many of
them rely on the Krylov approach. A description of them can be found in [13]. They are based on
the following fact: the minimal linear dependance relation between the Krylov iterates of a vector
v (i.e. the sequence (Aiv)i gives the minimal polynomial Pmin

A,v of this sequence, and a divisor
of the minimal polynomial of A. Moreover, if X is the matrix formed by the first independent
column vectors of this sequence, we have the relation

AX = XCP min
A,v

where CP min
A,v

is the companion matrix associated to Pmin
A,v .

2.1 Minimal polynomial

We give here a new algorithm to compute the minimal polynomial of the sequence of the Krylov’s
iterates of a vector v and a matrix A. This is the monic polynomial Pmin

A,v of least degree such
that P (A).v = 0. We firstly presented it in [22, 21] and it was simultaneously published in [20,
Algorithm 2.14].

The idea is to compute the n × n matrix KA,v (we call it Krylov’s matrix), whose ith column
is the vector Aiu, and to perform an elimination on it. More precisely, one computes the LSP
factorization of Kt

A,v (see [14] for a description of the LSP factorization). Let k be the degree

of Pmin
A,v . This means that the first k columns of KA,v are linearly independent, and the n − k

following ones are linearly dependent with the first k ones. Therefore S is triangular with its last
n − k rows equals to 0. Thus, the LSP factorization of Kt

A,v can be viewed as in figure 1.

v

(A v)2

t

t

.....

L

Lk+1

1..k
= S. . P

t

t(Av)

K(A,v) =
tk+1(A v)

Figure 1: principle of the computation of Pmin
A,v

Now the trick is to notice that the vector m = Lk+1L
−1
1...k gives the opposites of the coefficients

of Pmin
A,v . Indeed, let us define X = Kt

A,v

X1...n,k+1 = (Akv)t =

k−1∑

i=0

mi(A
iv)t = m · X1...n,1...k

where Pmin
A,v (X) = Xk − mkXk−1 − · · · − m1X − m0.

Thus
Lk+1SP = m · L1...kSP

And finally m = Lk+1.L
−1
1...k

The algorithm is then straightforward:
The dominant operation in this algorithm is the computation of K, in log2n matrix multipli-

cations, i.e. in O(nωlogn) algebraic operations. The LSP factorization requires O(nω) operations

2

Algorithm 2.1 MinPoly : Minimal Polynomial of A and v

Require: A a n × n matrix and v a vector over a field
Ensure: PA,v

min (X) the minimal polynomial of the sequence of vectors (Aiv)i

1: K1...n,1 = v
2: for i = 1 to log2(n) do

3: K1...n,2i...2i+1−1 = A2i−1

K1...n,1...2i−1

4: end for

5: (L, S, P) = LSP(Kt), k = rank(K)
6: m = Lk+1.L

−1
1...k

7: return PA,v
min (X) = Xk +

∑k−1
i=0 miX

i

and the triangular system resolution, O(n2). The algebraic time complexity of this algorithm is
thus O(nωlogn).

When using classical matrix multiplications (assuming ω = 3), it is preferable to compute the
Krylov matrix K by k successive matrix vector products. The number of field operations is then
O(n3).

It is also possible to merge the creation of the Krylov matrix and its LSP factorization so as to
avoid the computation of the last n− k Krylov iterates with an early termination approach. This
reduces the time complexity to O(nωlog(k)) for fast matrix arithmetic, and O(n2k) for classic
matrix arithmetic.

Note that choosing v randomly makes the algorithm Monte-Carlo for the computation of the
minimal polynomial of A.

2.2 LU-Krylov algorithm

We present here an algorithm, using the previous computation of the minimal polynomial of the
sequence (Aiv)i to compute the characteristic polynomial of A. The previous algorithm produces
the k first independent Krylov iterates of v. They can be viewed as a basis of an invariant subspace
under the action of A, and if Pmin

A,v = Pmin
A , this subspace is the first invariant subspace of A.

The idea is to make use of the elimination performed on this basis to compute a basis of its
supplementary subspace. Then a recursive call on this second basis will decompose this subspace
into a series of invariant subspaces generated by one vector.

The algorithm is the following, where k, P , and S come from the notation of algorithm 2.1.

Algorithm 2.2 LUK : LU-Krylov algorithm

Require: A a n × n matrix over a field
Ensure: PA

char(X) the characteristic polynomial of A
1: Pick a random vector v
2: PA,v

min (X) = MinPoly(A, v) of degree k

{X =

[
L1

L2

]

[S1|S2]P is computed}
3: if (k = n) then

4: return PA
char = PA,v

min

5: else

6: A′ = PAT PT =

[
A′

11 A′
12

A′
21 A′

22

]

where A′
11 is k × k.

7: P
A′

22−A′

21S−1

1
S2

char (X) = LUK(A′
22 − A′

21S
−1
1 S2)

8: return PA
char(X) = PA,v

min (X) × P
A′

22−A′

21S−1

1
S2

char (X)
9: end if

3

Theorem 2.1. The algorithm LU-Krylov computes the characteristic polynomial of an n × n
matrix A in O(n3) field operations.

Proof. Let us use the following notations

X =

[
L1

L2

]

[S1|S2]P

As we already mentioned, the first k rows of X (X1...k,1...n) form a basis of the invariant
subspace generated by v. Moreover we have

X1..kAT = CT
P A,v

min

X1..k

Indeed
∀i < k XiA

T =
(
Ai−1v

)T
AT =

(
Aiv

)T
= Xi+1

and

XkAT =
(
Ak−1v

)T
AT =

(
Akv

)T
=

k−1∑

i=0

mi

(
Aiv

)T

The idea is now to complete this basis into a basis of the whole space. Viewed as a matrix,
this basis form the n × n invertible matrix X. It is defined as follows:

X =

[
L1 0
0 In−k

]

︸ ︷︷ ︸

L

[
S1 S2

0 In−k

]

︸ ︷︷ ︸

S

P =

[
X1...k,1...n[
0 In−k

]
P

]

Let us compute

XAT X
−1

=

[

CT 0
[

0 In−k

]
PAT PT S

−1
L
−1

]

=

[

CT 0
[

A′
21 A′

22

]
S
−1

L
−1

]

=

[
CT 0
Y X2

]

with
X2 = A′

22 − A′
21S

−1
1 S2

By a similarity transformation, we thus have reduced A to a block triangular matrix. Then
the characteristic polynomial of A is the product of the characteristic polynomial of these two
diagonal blocks:

PA
char = PA,v

min × P
A′

22−A′

21S−1

1
S2

char

Now for the time complexity, we will denote by TLUK(n) the number of field operations for this
algorithm applied on a n × n matrix, by Tminpoly(n, k) the cost of the algorithm 2.1 applied on a
n×n matrix having a degree k minimal polynomial, by TLSP(m, n) the cost of the LSP factorization
of a m× n matrix, by Ttrsm(m, n) the cost of the simultaneous resolution of m triangular systems
of dimension n, and by TMM(m, k, n) the cost of the multiplication of a m × k matrix by a k × n
matrix.

4

The values of TLSP and Ttrsm can be found in [6]. Then, using classical matrix arithmetic, we
have:

TLUK(n) = Tminpoly(n, k) + TLSP(k, n) + Ttrsm(n − k, k)

+Tmm(n − k, k, n − k) + TLUK(n − l)

= O(n2k + k2n + k2(n − k) + k(n − k)2)

+TLUK(n − k)

= O(
∑

i

n2ki + k2
i n)

= O(n3)

The latter being true since
∑

i ki = n and
∑

i k2
i ≤ n2.

Note that when using fast matrix arithmetic, it is no longer possible to sum the log(ki) into
log(n) or the kω−2

i n2 into nω, so this prevents us from getting the best known time complexity
of nωlog(n) with this algorithm. We will now focus on the second algorithm of Keller-Gehrig
achieving this best known time complexity.

2.3 Improving Keller-Gehrig’s branching algorithm

In [18], Keller-Gehrig presents a so called branching algorithm, computing the characteristic poly-
nomial of a n × n matrix over a field K in the best known time complexity of nωlog(n) field
operations.

The idea is to compute the Krylov iterates of a several vectors at the same time. More precisely,
the algorithm computes a sequence of n×n matrices (Vi)i whose columns are the Krylov’s iterates
of vectors of the canonical basis. U0 is the identity matrix (every vector of the canonical basis is
present). At the i-th iteration, the algorithm computes the following 2i Krylov’s iterates of the
remaining vectors. Then a Gaussian elimination determines the linear dependencies between them
so as to form Vi+1 by picking the n linearly independent vectors. The algorithm ends when each
Vi is invariant under the action of A. Then the matrix V −1AV is block diagonal with companion
blocks on the diagonal. The polynomials of these blocks are the minimal polynomials of the
sequence of Krylov’s iterates, and the characteristic polynomial is the product of the polynomials
associated to these companion blocks.

The linear dependencies removal is performed by a step-form elimination algorithm defined by
Keller-Gehrig. Its formulation is rather sophisticated, and we propose to replace it by the column
reduced form algorithm (algorithm 2.3) using the more standard LQUP factorization (described in

Algorithm 2.3 ColReducedForm

Require: A a m × n matrix of rank r (m, n ≥ r) over a field
Ensure: A′ a m × r matrix formed by r linearly independent columns of A
1: (L, Q, U, P, r) = LQUP(AT) (r = rank(A))
2: return ([Ir0](QT AT))T

[14]). More precisely, the step form elimination of Keller-Gehrig, the LQUP factorization of Ibarra
& Al. and the echelon elimination (see e.g. [23]) are equivalent and can be used to determine the
linear dependencies in a set of vectors.

Our second improvement is to apply the idea of algorithm 2.1 to compute polynomials associ-
ated to each companion block, instead of computing V −1AV . The Krylov’s iterates are already
computed, and the last call to ColReducedForm performed the elimination on it, so there only
remains to solve the triangular systems so as to get the coefficients of each polynomial.

Algorithm 2.4 sums up these modifications. The operations in the while loop have a O(nω)
algebraic time complexity. This loop is executed at most log(n) times and the algebraic time

5

Algorithm 2.4 KGB: Keller-Gehrig Branching algorithm

Require: A a n × n matrix over a field
Ensure: PA

char(X) the characteristic polynomial of A
1: i = 0
2: V0 = In = (V0,1, V0,2, . . . , V0,n)
3: B = A
4: while (∃k, Vk has 2i columns) do

5: for all j do

6: if (Vi,j has strictly less than 2i columns) then

7: Wj = Vi,j

8: else

9: Wj = [Vi,j |BVi,j]
10: end if

11: end for

12: W = (Wj)j

13: Vi+1 = ColReducedForm(W)
{Vi+1,j are the remaining vectors of Wj in Vi+1}

14: B = B × B
15: i = i + 1
16: end while

17: for all j do

18: compute Pj the minimal polynomial of the sequence of vectors of Vi−1,j , using algorithm
2.1

19: end for

20: return ΠjPj

complexity of the algorithm is therefore O(nω log(n)). More precisely it is O(nωlog(kmax)) where
kmax is the degree of the largest invariant factor.

2.4 Experimental comparisons

To implement these two algorithms, we used a finite field representation over double size float-
ing points: modular<double> (see [6]) and the efficient routines for finite field linear algebra
FFLAS-FFPACK presented in [6, 5]. The following experiments used a classic matrix arithmetic. We
ran them on a series of matrices of order 300 which Frobenius normal forms had different number
of diagonal companion blocks. Figure 2 shows the computational time on a Pentium IV 2.4Ghz
with 512Mb of RAM.

It appears that LU-Krylov is faster than KGB on every matrices. This is due to the extra log(n)
factor in the time complexity of the latter. One can note that the computational time of KGB is
decreasing with the number of blocks. This is due to the fact that the log(n) is in fact log(kmax

where kmax is the size of the largest block. This factor is decreasing when the number of blocks
increases. Conversely, LU-Krylov computational time is almost constant. It slightly increases,
due to the increasing number of rectangular matrix operations. The latter being less efficient than
square matrix operations.

3 Toward an optimal algorithm

As mentioned in the introduction, the best known algebraic time complexity for the computation
of the characteristic polynomial is not optimal in the sense that it is not O(nω) but O(nωlog(n)).
However, Keller-Gehrig gives a third algorithm (let us name it KG3), having this time complexity
but only working on generic matrices.

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of blocks

KGB vs LU−Krylov for a 300x300 matrix over GF(101)

LU−Krylov
Keller−Gehrig

Figure 2: LU-Krylov vs. KGB

To get rid of the extra log(n) factor, it is no longer based on a Krylov approach. The algorithm
is inspired by a O(n3) algorithm by Danilevski (described in [13]), improved into a block algorithm.
The genericity assumption ensures the existence of a series of similarity transformations changing
the input matrix into a companion matrix.

3.1 Comparing the constants

The optimal “big-O” complexity often hides a large constant in the exact expression of the time
complexity. This makes these algorithms impracticable since the improvement induced is only
significant for huge matrices. However, we show in the following lemma that the constant of KG3
has the same magnitude as the one of LUK.

Lemma 3.1. The computation of the characteristic polynomial of a n × n generic matrix using
KG3 algorithm requires Kωnω + o(nω) algebraic operations, where

Kω = Cω

[

− 2ω−2

2(2ω−2 − 1)(2ω−1 − 1)(2ω − 1)
− 1

2ω − 1

+
1

(2ω−2 − 1)(2ω−1 − 1)
− 3

2ω−1 − 1
+

2

2ω−2 − 1

+
1

(2ω−2 − 1)(2ω − 1)
+

2ω−2

2(2ω−2 − 1)(2ω−1 − 1)2

]

and Cω is the constant in the algebraic time complexity of the matrix multiplication.

The proof and a description of the algorithm are given in appendix A.
In particular, when using classical matrix arithmetic (ω = 3, Cω = 2), we have on the one hand

Kω = 176/63 ≈ 2.794.

7

On the other hand, the algorithm 2.2 called on a generic matrix simply computes the n Krylov
vectors Aiv (2n3 operations), computes the LUP factorization of these vectors (2/3n3 operations)
and the coefficients of the polynomial by the resolution of a triangular system (O(n2)). Therefore,
the constant for this algorithm is 2 + 2/3 ≈ 2.667. These two algorithms have thus a similar
algebraic complexity, LU-Krylov being slightly faster than Keller-Gehrig’s third algorithm. We
now compare them in practice.

3.2 Experimental comparison

We claim that the study of precise algebraic time complexity of these algorithms is worth-full in
practice. Indeed these estimates directly correspond to the computational time of these algorithms
applied over finite fields. Therefore we ran these algorithms on a small prime finite field (word size
elements with modular arithmetic). Again we used modular<double> and FFLAS-FFPACK. These
routines can use fast matrix arithmetic, we, however, only used classical matrix multiplication so
as to compare two O(n3) algorithms having similar constants (2.67 for LUK and 2.794 for KG3).
We used random dense matrices over the finite field Z65521, as generic matrices. We report the
computational speed in Mfops (Millions of field operations per second) for the two algorithms on
figure 3:

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 500 1000 1500 2000 2500 3000 3500

M
fo

ps

Matrix order

KG3 vs LU−Krylov over Z/65521Z

LU−Krylov
Keller−Gehrig Fast algorithm

Figure 3: LUK vs. KG3: speed comparison

It appears that LU-Krylov is faster than KG3 for small matrices, but for matrices of order
larger than 1500, KG3 is faster. Indeed, the O(n3) operations are differently performed: LU-
Krylov computes the Krylov basis by n matrix-vector products, whereas KG3 only uses matrix
multiplications. Now, as the order of the matrices gets larger, the BLAS routines provides better
efficiency for matrix multiplications than for matrix vector products. Once again, algorithms
exclusively based on matrix multiplications are preferable: from the complexity point of view,
they make it possible to achieve O(nω) time complexity. In practice, they promise the best

8

efficiency thanks to the BLAS better memory management.

4 Over the Integers

There exist several algorithms to compute the characteristic polynomial of an integer matrix. A
first idea is to perform the algebraic operations over the ring of integers, using exact divisions [1]
or by avoiding divisions [3, 15, 8, 17]. We focus here on field approaches. Concerning the bit com-
plexity of this computation, a first approach, using Chinese remaindering gives O˜ (nω+1log‖A‖)
bit operations (O˜ is the “soft-O” notation, hiding logarithmic and poly-logarithmic factors in
n and ‖A‖). Baby-step Giant-step techniques applied by Eberly [8] improves this complexity to
O˜ (n3.5log‖A‖) (using classic matrix arithmetic). Lastly, the recent improvement of [17, §7.2],
combining Coppersmith’s block-Wiedemann techniques [4, 16, 26, 25] set the best known exponent
for this computation to 2.697263 using fast matrix arithmetic.

Our goal here is not to give an exhaustive comparison of these methods, but to show that a
straightforward application of our finite field algorithm LU-Krylov is already very efficient and
can outperform the best existing softwares.

A first deterministic algorithm, using Chinese remaindering is given in section 4.1. Then we
improve it in section 4.2 into a probabilistic algorithm by using the early termination technique of
[7, §3.3]. Therefore, the minimal number of homomorphic computations is achieved. Now, for the
sparse case, a recent alternative [24], also developed in [17, §7.2], change the Chinese remaindering
by a Hensel p-adic lifting in order to improve the binary complexity of the algorithm. In section
4.4, we combine some of these ideas with the Sparse Integer Minimal Polynomial computation of [7]
and our dense modular characteristic polynomial to present an efficient practical implementation.

4.1 Dense deterministic : Chinese remaindering

The first naive way of computing the characteristic polynomial is to use Hadamard’s bound [10,
Theorem 16.6] to show that any integer coefficient of the characteristic polynomial has the order
of n bits:

Lemma 4.1. Let A ∈ Z
n×n, with n ≥ 4, whose coefficients are bounded in absolute value by B > 1.

The coefficients of the characteristic polynomial of A have less than ⌈n
2

(
log2(n) + log2(B

2) + 1.6669
)
⌉

bits.

Proof. ci, the i-th coefficient of the characteristic polynomial, is a sum of all the (n − i)× (n− i)

diagonal minors of A. It is therefore bounded by
(
n
i

)√

(n − i)B2
(n−i)

. The lemma is true for
i = n since the characteristic polynomial is unitary and also true for i = 0 by Hadamard’s bound.

Now, using Stirling’s formula (n! < (1 + ǫ)
√

2πnnn

en), one gets
(
n
i

)
< 1+ǫ√

2π

√
n

i(n−i)

(
n
i

)i
(

n
n−i

)n−i

.

Thus log2(ci) < n
2

(
log2(n) + log2(B

2) + C
)
− H . Well, suppose on the first hand that i ≤ n

2 ,

then H ∼ (1
ln(2) − 1 + C)n

2 + 3i2

nln(2) + C−3
2 i − 5i

2ln(2) . On the second hand, if (n − i) ≤ n
2 , then

H ∼ (1
ln(2) − 1)n+ 3k2

nln(2) + C+5
2 k− 7k

2ln(2) , where k = n− i. Both equivalences are positive as soon

as C < 1.6668979201.

For example, the characteristic polynomial of

1 1 1 1 1
1 1 −1 −1 −1
1 −1 1 −1 −1
1 −1 −1 1 −1
1 −1 −1 −1 1

is X5 − 5X4 + 40X2 − 80X + 48 and 80 =
(
5
1

)√
4
4

is greater than Hadamard’s bound 56, but less
than our bound 1004.4.

9

Note that this bound improves the one used in [11, lemma 2.1] since 1.6669 < 2 + log2(e) ≈
3.4427.

Now, using fast integer arithmetic and the fast Chinese remaindering algorithm [10, Theorem
10.25], one gets the overall complexity for the dense integer characteristic polynomial via Chinese
remaindering of

O(n4(log(n) + log(B))).

Well, as we see in next section, to go faster, the idea is actually to stop the remaindering earlier.
Indeed, the actual coefficients can be much smaller than the bound of lemma 4.1.

4.2 Dense probabilistic Monte-Carlo : early termination

We just use the early termination of [7, §3.3]. There it is used to stop the remaindering of
the integer minimal polynomial, here we use it to stop the remaindering of the characteristic
polynomial:

Lemma 4.2. [7] Let v ∈ Z be a coefficient of the characteristic polynomial, and U be a given
upper bound on |v|. Let P be a set of primes and let {p1 . . . pk, p∗} be a random subset of P . Let

l be a lower bound such that p∗ > l and let M =
∏k

i=1 pi. Let vk = v mod M , v∗ = v mod p∗

and v∗k = vk mod p∗ as above. Suppose now that v∗k = v∗. Then v = vk with probability at least

1 − logl(
U−vk

M
)

|P | .

The proof is that of [7, lemma 3.1]. The probabilistic algorithm is then straightforward: after
each modular computation of a characteristic polynomial, the algorithm stops if every coefficient
is unchanged. It is of the Monte-Carlo type: always fast with a controlled probability of success.
The probability of success is bounded by the probability of lemma 4.2. In practice this probability
is much higher, since the n coefficients are checked. But since they are not independent, we are
not able to produce a tighter bound.

4.3 Experimental results

We implemented these two methods using LU-Krylov over finite fields as described in section 2.4.
The choice of moduli is there linked to the constraints of the matrix multiplication of FFLAS.
Indeed, the wrapping of numerical BLAS matrix multiplication is only valid if n(p − 1)2 < 253

(the result can be stored in the 53 bits of the double mantissa). Therefore, we chose to sample
the primes between 2m and 2m+1 (where m = ⌊25.5 − 1

2 log2(n)⌋). This set was always sufficient
in practice. Even with 5000× 5000 matrices, m = 19 and there are 38658 primes between 219 and
220. Now if the coefficients of the matrix are between −1000 and 1000, the upper bound on the
coefficients of the characteristic polynomial is log2m(U) ≈ 4458.7. Therefore, the probability of
finding a bad prime is lower than 4458.7/38658 ≈ 0.1153. Then performing a couple a additional
modular computations to check the result will improve this probability. In this example, only 17
more computations (compared to the 4459 required for the deterministic computation) are enough
to ensure a probability of error lower than 2−50, for which Knuth [19, §4.5.4] considers that there
is more chances that cosmic radiations perturbed the output!

In the following, we denote by ILUK-det the deterministic algorithm of section 4.1, by ILUK-prob

the probabilistic algorithm of section 4.2 with primes chosen as above and by ILUK-QD the quasi-
deterministic algorithm obtained by applying ILUK-prob plus a sufficient number of modular
computations to ensure a probability of failure lower than 2−50.

We report in table 1 the timings of their implementations, compared to the timings of the same
computation using Maple-v9 and Magma-2.11. We ran these tests on an athlon 2200 (1.8 Ghz)
with 2Gb of RAM, running Linux-2.4.1 The matrices are formed by integers chosen uniformly
between 0 and 10: therefore, their minimal polynomial equals their characteristic polynomial.

1We are grateful to the Medicis computing center hosted by the CNRS STIX laboratory : http://medicis.

polytechnique.fr/medicis/.

10

n Maple Magma ILUK-det ILUK-prob ILUK-QD

100 163s 0.34s 0.22s 0.17s 0.2s

200 3355s 4.45s 4.42s 3.17s 3.45s
11.1Mb 3.5Mb 3.5Mb 3.5Mb

400 74970s 69.8s 91.87s 64.3s 66.75s
56Mb 10.1Mb 10.1Mb 10.1Mb

800 1546s 1458s 1053s 1062s
403Mb 36.3Mb 36.3Mb 36.3Mb

1200 8851s 7576s 5454s 5548s
1368Mb 81Mb 81Mb 81Mb

1500 MT 21082s 15277s 15436s
136Mb 136Mb 136Mb

2000 MT 66847s 46928s
227Mb 227Mb

2500 MT 169355s 124505s
371Mb 371Mb

3000 MT 349494s 254358s
521Mb 521Mb

Table 1: Characteristic polynomial of a dense integer matrix of order n (computation time in
seconds and memory allocation in Mb)

The implementation of Berkowitz algorithm used by Maple has prohibitive computational
timings. Magma is much faster thanks to a p adic algorithm (probabilistic ?) 2. However, no
literature exists to our knowledge, describing this algorithm. Our deterministic algorithm has
similar computational timings and gets faster for large matrices. For matrices of order over 800,
magma tries to allocate more than 2Gb of RAM, and the computation crashes (denoted by MT as
Memory Thrashing). The memory usage of our implementations is much smaller than in magma,
and makes it possible to handle larger matrices.

The probabilistic algorithm ILUK-prob improves the computational time of the deterministic
one of roughly 27 %, and the cost of the extra checks done by ILUK-QD is negligible.

However, this approach does not take advantage of the structure of the matrix nor of the
degree of the minimal polynomial, as magma seems to do. In the following, we will describe a third
approach to fill this gap.

4.4 Structured or Sparse probabilistic Monte-Carlo

By structured or sparse matrices we mean matrices for which the matrix-vector product can be
performed with less than n2 arithmetic operations or matrices having a small minimal polynomial
degree. In those cases our idea is to compute first the integer minimal polynomial via the spe-
cialized methods of [7, §3] (denoted by IMP), to factor it and them to simply recover the factor
exponents by a modular computation of the characteristic polynomial. The overall complexity is
not better than e.g. [24, 17] but the practical speeds shown on table 2 speak for themselves. The
algorithm is as follows:

Theorem 4.3. Algorithm 4.1 is correct. It is probabilistic of the Monte-Carlo type. Moreover,
most cases where the result is wrong are identified.

Proof. Let Pmin be the integer minimal polynomial of A and P̃min the result of the call to IMP.
With a probability of

√
1 − ǫ, Pmin = P̃min. Then the only problem that can occur is that

an irreducible factor of Pmin divides another factor when taken modulo p, or equivalently, that
p divides the resultant of these polynomials. Now from [10, Algorithm 6.38] and lemma 4.1 an
upper bound on the size of this resultant is log2(

√
n + 1 2n+1B + 1). Therefore, the probability

2http://www.msri.org/info/computing/docs/magma/text751.htm

11

Algorithm 4.1 CIA : Characteristic polynomial over Integers Algorithm

Require: A ∈ Z
n×n, even as a blackbox, ǫ.

Ensure: The characteristic polynomial of A with a probability of 1 − ǫ.
1: η = 1 −

√
1 − ǫ

2: PA
min = IMP(A, η) via [7, §3].

3: Factor PA
min over the integers, e.g. by Hensel’s lifting.

4: B = 2
n
2 (log2(n)+log2(||A||2)+1.6669)

5: Choose a random prime p in a set of 1
η log2(

√
n + 1 2n+1B + 1) primes.

6: Compute Pp the characteristic polynomial of A mod p via LUK.
7: for all fi irreducible factor of PA

min do

8: Compute f i ≡ fi mod p.
9: Find αi the multiplicity of f i within Pp.

10: if αi == 0 then

11: Return “FAIL”.
12: end if

13: end for

14: Compute PA
char =

∏
fαi

i = Xn − ∑n−1
i=0 aiX

i.
15: if (

∑
αidegree(fi) 6= n) then

16: Return “FAIL”.
17: end if

18: if (Trace(A) 6= an−1) then

19: Return “FAIL”.
20: end if

21: Return PA
char.

of choosing a bad prime is less than η. Thus the result will be correct with a probability greater
than 1 − ǫ

This algorithm is also able to detect most erroneous results and return “FAIL” instead. We
call it therefore “Quasi-Las-Vegas”.

The first case is when Pmin = P̃min and a factor of Pmin divides another factor modulo p.
In such a case, the exponent of this factor will appear twice in the reconstructed characteristic
polynomial. The overall degree being greater than n, FAIL will be returned.

Now, if Pmin 6= P̃min, the tests αi > 0 will detect it unless P̃min is a divisor of Pmin, say
Pmin = P̃minQ. In that case, on the one hand, if Q does not divide P̃min modulo p, the total
degree will be lower than n and FAIL will be returned. On the other hand, a wrong characteristic
polynomial will be reconstructed, but the trace test will detect most of these cases.

We now compare our algorithms to magma. In table 2, we denote by d the degree of the
integer minimal polynomial and by ω the average number of nonzero elements per row within the
sparse matrix. CIA is written in C++ and uses different external modules: the integer minimal
polynomial is computed with LinBox3 via [7, §3], the polynomial factorization is computed with
NTL4 via Hensel’s factorization.

We show the computational times of algorithm 4.1 (CIA), decomposed into the time for the
integer minimal polynomial computation (IMP), the factorization of this polynomial (Fact), the
computation of the characteristic polynomial and the computation of the multiplicities (LUK+Mul).
They are compared to the timings of the algorithms of section 4.1 and 4.2.

We used two sparse matrices A and B of order 300 and 600, having a minimal polynomial of
degree respectively 75 and 424. A is the almost empty matrix Frob08blocks and is in Frobenius
normal form with 8 companion blocks and B is the matrix ch5-5.b3.600x600.sms presented in
[7].

3www.linalg.org
4www.shoup.net/ntl

12

Matrix A U−1AU AT A B U−1BU BT B
n 300 300 300 600 600 600
d 75 75 21 424 424 8
ω 1.9 300 2.95 4 600 13

ILUK-prob 1.3 1.5 18.3 31.8 34.9 120.0
ILUK-det 37.5 121.7 265.0 310 3412 422.3
Magma 1.4 16.5 0.2 6.2 184.0 6.0
CIA 0.32 3.72 0.86 4.51 325.1 2.4

IMP 0.01 3.38 0.01 1.49 322.1 0.04
Fact 0.05 0.05 0.01 0.76 0.76 0.01

LUK+Mul 0.26 0.29 0.84 2.26 2.26 2.30

Table 2: CIA on sparse or structured matrices

On these matrices magma is pretty efficient thanks to their sparsity. The early termination in
ILUK-prob gives similar timings for A, since the coefficients of its characteristic polynomial are
small. But this is not the case with B. ILUK-det performs many useless operations since the
Hadamard bound is well overestimating the size of the coefficients. CIA also takes advantage of
both the sparsity and the low degree of the minimal polynomial. It is actually much faster than
magma for A and is slightly faster for B (the degree of the minimal polynomial is bigger).

Then, we made these matrices dense with an integral similarity transformation. The lack of
sparsity slows down both magma and CIA, whereas ILUK-prob maintains similar timings. ILUK-det
is much slower because the bigger size of the matrix entries increases the Hadamard bound.

Lastly, we used symmetric matrices with small minimal polynomial (AT A and BT B). The
bigger size of the coefficients of the characteristic polynomial makes the Chinese remainder methods
of ILUK-prob and ILUK-det slower. CIA is still pretty efficient (the best on BT B), but magma

appears to be extremely fast on AT A.
We report in table 3 on some comparisons using other sparse matrices5.

Matrix n ω magma CIA ILUK-QD

TF12 552 7.6 10.03s 6.93s 51.84s
Tref500 500 16.9 108.1s 64.58s 335.04s
mk9b3 1260 3 77.02s 35.74s 348.31s

Table 3: CIA on other sparse matrices

To conclude, ILUK-det is always too expensive, although it has better timings than magma for
large dense matrices (cf. table 1). ILUK-prob is well suited for every kind of matrix having a
characteristic polynomials with small coefficients. Now with sparse or structured matrices, magma
and CIA are more efficient; CIA being almost always faster.

5 Conclusion

We presented a new algorithm for the computation of the characteristic polynomial over a finite
field, and proved its efficiency in practice. We also considered Keller-Gehrig’s third algorithm and
showed that its generalization would be not only interesting in theory but produce a practicable
algorithm.

We applied our algorithm for the computation of the integer characteristic polynomial in two
ways: a combination of Chinese remaindering and early termination for dense matrix compu-
tations, and a mixed blackbox-dense algorithm for sparse or structured matrices. These two
algorithm outperform the existing software for this task. Moreover we showed that the recent im-
provements of [24, 17] should be highly practicable since the successful CIA algorithm is inspired
by their ideas. It remains to show how much they improve the simple approach of CIA.

5These matrices are available at http://www-lmc.imag.fr/lmc-mosaic/Jean-Guillaume.Dumas/Matrices

13

To improve the dense matrix computation over a finite field, one should consider the generaliza-
tion of Keller-Gehrig’s third algorithm. At least some heuristics could be built: using row-reduced
form elimination to give produce generic rank profile.

Lastly, concerning the sparse computations, the blackbox algorithms of [27] and of [9], could
handle huge sparse matrices (no dense computation is used as in CIA). But one should study how
their use of preconditionners, expensive in practice, penalize them.

References

[1] J. Abdeljaoued and G. I. Malaschonok. Efficient algorithms for computing the characteristic polynomial in a
domain. Journal of Pure and Applied Algebra, 156:127–145, 2001.

[2] W. Baur and V. Strassen. The complexity of partial derivatives. Theoretical Computer Science, 22(3):317–330,
1983.

[3] S. J. Berkowitz. On computing the determinant in small parallel time using a small number of processors. Inf.

Process. Lett., 18(3):147–150, 1984.

[4] D. Coppersmith. Solving homogeneous linear equations over GF[2] via block Wiedemann algorithm. Mathe-

matics of Computation, 62(205):333–350, Jan. 1994.

[5] J.-G. Dumas, T. Gautier, and C. Pernet. Finite field linear algebra subroutines. In T. Mora, editor, IS-

SAC’2002. ACM Press, New York, July 2002.

[6] J.-G. Dumas, P. Giorgi, and C. Pernet. FFPACK: Finite field linear algebra package. In Gutierrez [12].

[7] J.-G. Dumas, B. D. Saunders, and G. Villard. On efficient sparse integer matrix Smith normal form compu-
tations. Journal of Symbolic Computations, 32(1/2):71–99, July–Aug. 2001.

[8] W. Eberly. Black box frobenius decomposition over small fields. In C. Traverso, editor, ISSAC’2000. ACM
Press, New York, Aug. 2000.

[9] W. Eberly. Reliable krylov-based algorithms for matrix null space and rank. In Gutierrez [12].

[10] J. v. Gathen and J. Gerhard. Modern Computer Algebra. 1999.

[11] M. Giesbrecht and A. Storjohann. Computing rational forms of integer matrices. J. Symb. Comput., 34(3):157–
172, 2002.

[12] J. Gutierrez, editor. ISSAC’2002. Proceedings of the 2002 International Symposium on Symbolic and Algebraic

Computation, Lille, France. ACM Press, New York, July 2004.

[13] A. Householder. The Theory of Matrices in Numerical Analysis. Blaisdell, Waltham, Mass., 1964.

[14] O. H. Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP matrix decomposition algorithm and
applications. Journal of Algorithms, 3(1):45–56, Mar. 1982.

[15] E. Kaltofen. On computing determinants of matrices without divisions. In P. S. Wang, editor, ISSAC’92.
ACM Press, New York, July 1992.

[16] E. Kaltofen. Analysis of Coppersmith’s block Wiedemann algorithm for the parallel solution of sparse linear
systems. Mathematics of Computation, 64(210):777–806, Apr. 1995.

[17] E. Kaltofen and G. Villard. On the complexity of computing determinants. Computational Complexity,
13:91–130, 2004.

[18] W. Keller-Gehrig. Fast algorithms for the characteristic polynomial. Theoretical computer science, 36:309–317,
1985.

[19] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming. Addison-Wesley,
Reading, MA, USA, 2nd edition, 1997.

[20] H. Lombardi and J. Abdeljaoued. Méthodes matricielles - Introduction à la complexité algébrique. Berlin,
Heidelberg, New-York : Springer, 2004.

[21] C. Pernet. Calcul du polynôme caractéristique sur des corps finis. Master’s thesis, Universit Joseph Fourrier,
June 2003. www-lmc.imag.fr/lmc-mosaic/Clement.Pernet.

[22] C. Pernet and Z. Wan. L U based algorithms for characteristic polynomial over a finite field. SIGSAM Bull.,
37(3):83–84, 2003. Poster available at www-lmc.imag.fr/lmc-mosaic/Clement.Pernet.

[23] A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Institut für Wissenschaftliches Rechnen,
ETH-Zentrum, Zürich, Switzerland, Nov. 2000.

[24] A. Storjohann. Computing the frobenius form of a sparse integer matrix. Paper to be submitted, Apr. 2000.

[25] G. Villard. Further analysis of Coppersmith’s block Wiedemann algorithm for the solution of sparse linear
systems. In W. W. Küchlin, editor, ISSAC’97, pages 32–39. ACM Press, New York, July 1997.

[26] G. Villard. A study of Coppersmith’s block Wiedemann algorithm using matrix polynomials. Technical Report
975–IM, LMC/IMAG, Apr. 1997.

[27] G. Villard. Computing the Frobenius normal form of a sparse matrix. In V. G. Ganzha, E. W. Mayr, and
E. V. Vorozhtsov, editors, CASC’00, Oct. 2000.

14

A On Keller-Gehrig’s third algorithm

We first recall the principle of this algorithm, so as to determine the exact constant in its algebraic
time complexity. This advocates for its practicability.

A.1 Principle of the algorithm

First, let us define a m-Frobenius form as a n × n matrix of the shape:

[
0 M1

Idn−m M2

]

.

Note that a 1-Frobenius form is a companion matrix, which characteristic polynomial is given
by the opposites of the coefficients of its last column.

The aim of the algorithm is to compute the 1-Frobenius form A0 of A by computing the
sequence of matrices Ar = A, . . . , A0, where Ai has the 2i-Froebenius form and r = ⌈log n⌉. The
idea is to compute Ai from Ai+1 by slicing the block M of Ai+1 into two n× 2i columns blocks B
and C. Then, similarity transformations with the matrix

U =

[
0 C1

Idn−2i C2

]

will “shift” the block B to the left and generate an identity block of size 2i between B and C.

i,j

2i 2i

2Ci,j

Id

0
Id

0

0

j2i

B

1
i,jC

i,j
A =

i,j+1

2i 2i

0
Id

0

0

Id
C

i,j+1

2

(j+1)2i

A =

C
i,j+1

1

B
i,j+1

0 i,jC

2Ci,j

2i2i

U =
i,j

n−

Id

1

Figure 4: Principle of Keller-Gehrig’s third algorithm

More precisely, the algorithm computes the sequence of matrices Ai,0 = Ai+1, Ai,1, . . . , Ai,si
=

Ai, where si =
⌈
n/2i

⌉
− 1, by the relation Ai,j+1 = U−1

i,j Ai,jUi,j , whith the notations of figure 4.
As long as C1 is invertible, the process will carry on, and make at last the block B disapear

from the matrix. This last condition is restricting and is the reason why this algortihm is only
valid for generic matrices.

A.2 Proof of lemma 3.1

Lemma 3.1. The computation of the characteristic polynomial of a n × n generic matrix using
the fast algorithm requires Kωnω + o(nω) algebraic operations, where

Kω = Cω

[

− 2ω−2

2(2ω−2 − 1)(2ω−1 − 1)(2ω − 1)
− 1

2ω − 1

+
1

(2ω−2 − 1)(2ω−1 − 1)
− 3

2ω−1 − 1
+

2

2ω−2 − 1

+
1

(2ω−2 − 1)(2ω − 1)
+

2ω−2

2(2ω−2 − 1)(2ω−1 − 1)2

]

and Cω is the constant in the algebraic time complexity of the matrix multiplication.

15

Proof. We will denote by Xa...b the submatrix composed by the rows from a to b of the block X .
For a given i, KG3 performs n/2i similarity transformations. Each one of them can be described
by the following operations:

1: B′
n−2i+1...n = C−1

1...2iB1...2i

2: B′
1...n−2i = −C2i+1...nB′

n−2i+1...n + B2i+1...n

3: C′ = B′Cλ+1...λ+2i

4: C′
2i+1...2i+λ+ = C1...λ

5: C′
2i+λ+1...n+ = C2i+λ+1...n

The first operation is a system resolution, and consists in a LUP factorization and two trian-
gular system solve with matrix right hand side. The two following ones are matrix multiplications,
and we do not consider the two last ones, since their cost is dominated by the previous ones. The
cost of a similarity transformation is then:

Ti,j = TLUP(2i, 2i) + 2TTRSM(2i, 2i)

+TMM(n − 2i, 2i, 2i) + TMM(n, 2i, 2i)

From [6, Lemma 4.1] and [21], we have

TLUP(m, n) =
Cω

2ω−1 − 2
mω−1

(

n − m
2ω−2 − 1

2ω−1 − 1

)

and

TTRSM(2i, 2i) =
Cωmnω−1

2 (2ω−1 − 1)

Therefore

Ti,j =
Cω2ω−2

2 (2ω−2 − 1) (2ω−1 − 1)
(2i)ω +

Cω

(2ω−2 − 1)
(2i)ω

+Cω(n − 2i)(2i)ω−1 + Cωn(2i)ω−1

= Cω(2i)ω

(
2ω−3 + 2ω−1 − 1

(2ω−2 − 1) (2ω−1 − 1)
− 1

)

︸ ︷︷ ︸

Dω

+2nCω(2i)ω−1

And so the total cost of the algorithm is

T =

log(n/2)
∑

i=1

n/2i−1
∑

j=1

Ti,j

=

log(n/2)
∑

i=1

(n

2i
− 1

)

CωDω(2i)ω + 2nCω(2i)ω−1

= Cω

log(n/2)
∑

i=1

(Dω − 3)n(2i)ω−1 + 2n2(2i)ω−2

−Dω(2i)ω

And since
log(n/2)

∑

i=1

(2i)x =
nx − 1

2x − 1
=

nx

2x − 1
+ o(nx)

16

we get the result:

T = nωCω

[

− 2ω−2

2(2ω−2 − 1)(2ω−1 − 1)(2ω − 1)
− 1

2ω − 1

+
1

(2ω−2 − 1)(2ω−1 − 1)
− 3

2ω−1 − 1
+

2

2ω−2 − 1

+
1

(2ω−2 − 1)(2ω − 1)
+

2ω−2

2(2ω−2 − 1)(2ω−1 − 1)2

]

17

. . .

. . .

. . .

. . .

e1

(Ae2) t

t

(Ae1) t

e2

(A e1)
2 t

(A e1)
i1 t

tek

(Aek)

(A ek)
2

(A ek)
ik

t

t

t

t

t

. . .

(A e2)ti2

2(A e2)

S1

S2

Sk

