
Decentralized Algorithms using both Local and Random
Probes for P2P Load Balancing

Krishnaram Kenthapadi
∗

Stanford University

kngk@cs.stanford.edu

Gurmeet Singh Manku
†

Google Inc.

manku@google.com

ABSTRACT
We study randomized algorithms for placing a sequence of
n nodes on a circle with unit perimeter. Nodes divide the
circle into disjoint arcs. We desire that a newly-arrived node
(which is oblivious of its index in the sequence) choose its
position on the circle by learning the positions of as few ex-
isting nodes as possible. At the same time, we desire that
that the variation in arc-lengths be small. To this end, we
propose a new algorithm that works as follows: The kth node
chooses r random points on the circle, inspects the sizes of v
arcs in the vicinity of each random point, and places itself at
the mid-point of the largest arc encountered. We show that
for any combination of r and v satisfying rv ≥ c log k, where
c is a small constant, the ratio of the largest to the small-
est arc-length is at most eight w.h.p., for an arbitrarily long
sequence of n nodes. This strategy of node placement under-
lies a novel decentralized load-balancing algorithm that we
propose for Distributed Hash Tables (DHTs) in peer-to-peer
environments.

Underlying the analysis of our algorithm is Structured
Coupon Collection over n/b disjoint cliques with b nodes per
clique, for any n, b ≥ 1. Nodes are initially uncovered. At
each step, we choose d nodes independently and uniformly
at random. If all the nodes in the corresponding cliques are
covered, we do nothing. Otherwise, from among the chosen
cliques with at least one uncovered node, we select one at
random and cover an uncovered node within that clique. We
show that as long as bd ≥ c log n, O(n) steps are sufficient
to cover all nodes w.h.p. and each of the first Ω(n) steps
succeeds in covering a node w.h.p. These results are then
utilized to analyze a stochastic process for growing binary
trees that are highly balanced – the leaves of the tree belong
to at most four different levels with high probability.

∗Supported in part by NSF Grants EIA-0137761 and ITR-
0331640, and a grant from SNRC.
†Most of this work was done at Stanford University, sup-
ported in part by NSF Grant EIA-0137761 and grants from
SNRC and Veritas.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’05, July 18–20, 2005, Las Vegas, Nevada, USA
Copyright 2005 ACM 1-58113-986-1/05/0007 ...$5.00.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications
[Load Balancing]; F.2.2 [Analysis of Algorithms and

Problem Complexity]: Non-numerical Algorithms and
Problems

General Terms
Algorithms, Theory

Keywords
Coupon collection, bins and balls, load balancing, cliques,
binary trees, decentralized algorithms, peer to peer systems,
distributed hash tables.

1. INTRODUCTION
Consider a sequence of nodes. Each node has to be placed

somewhere on the circumference of a circle. Nodes divide
the circumference into disjoint arcs. We denote the ratio
between the largest and the smallest arc by σ. An interesting
tradeoff emerges between σ and the amount of knowledge
of existing node-positions available to the ith node in the
sequence. If the ith node has complete knowledge of all
existing node-positions, then it can be placed such that σ ≤
2 always. If the ith node has no knowledge of existing node-
positions (and is oblivious of its own index in the sequence),
we could assign it a position uniformly at random – this
results in σ = Θ(n log n) with high probability1 [26].

We study the relationship between σ and the amount of
knowledge available to the ith node. Knowledge of existing
node-positions is gained by two means:

✧ Random Probe: A point on the circumference is chosen
uniformly at random. The positions of the two nodes
which sandwich that point are then learnt.

✧ Local Probe: The positions of v nodes adjacent to a
known node along the circle are learnt. We call this
a “local probe of size v”.

The ith node assigns itself that position which splits the
largest arc encountered by random and local probes. It
is natural to ask: What combinations of random and local
probes are sufficient to guarantee σ = Θ(1)?

Our key result is that with r random probes, each followed
by a local probe of size v, σ ≤ 8 with high probability, as long
as rv ≥ c log i, where c is a small constant, and i denotes the

1By “with high probability” (w.h.p.), we mean “with probability
at least 1 − O(n−λ) for an arbitrary constant λ > 1.

index of the node in the sequence. (Remark: since a node is
oblivious of i, its index in the sequence, how do we enforce
the constraint rv ≥ c log i when placing the ith node? We
estimate log i from the first random probe).

Three previous results can be stated in terms of local and
random probes. With one random probe, followed by split-
ting the arc encountered by the random probe, σ = Θ(log n)
for a sequence of n nodes [2, 40]. Naor and Wieder [40]
and Abraham et al [1] showed that with O(log n) random
probes (followed by no local probes), σ = Θ(1) (it is as-
sumed that the ith node knows n, the length of the se-
quence). Manku [32] showed that with one random probe,
followed by a local probe of size O(log i) (where log i is es-
timated), σ ≤ 4. In contrast, our result shows that there is
a smooth tradeoff between random and local probes. More-
over, our proof technique is quite different from the tech-
niques in [1, 32, 40].

There is a connection between the problem of assigning
positions to nodes on the circumference of a circle, and “bal-
anced binary trees” which grow in size stochastically. We
explore this connection in the next sub-section.

1.1 Balanced Binary Trees
Consider a binary tree in which we repeatedly walk down

the tree (starting at the root), choosing between the left-
and the right-child with equal probability. We then split
the leaf node encountered. The n leaves of the resulting tree
belong to Θ(log log n) levels [2,40]. If we split the shallowest
leaf node encountered by O(log n) random walks, the leaves
belong to Θ(1) different levels [1, 40]. The same property
holds for the following strategy too: We take one random
walk to reach some leaf node at level `, then start traveling
up the tree until the size of the sub-tree exceeds c` for some
constant c, then split the shallowest leaf in that sub-tree [32].

In this paper, we study the following strategy: We take a
random walk down the tree to reach a node at level `. We
then take r−1 additional random walks. For each leaf node
encountered, we start moving up the tree until the size of the
sub-tree exceeds v. Among the r sub-trees thus encountered,
we split the shallowest leaf-node (breaking ties arbitrarily).
We show that as long as rv ≥ c` for a suitably large constant
c, leaves belong to at most four different levels.

Our proof technique borrows ideas developed by Adler et
al [2]. We divide the tree level-by-level into layers. We
then define a coupon collection problem over each layer and
prove lower- and upper- bounds on its running-time. These
bounds help us bound the levels to which leaves belong.
In the next sub-section, we describe the coupon collection
problem we study and related prior work.

1.2 Structured Coupon Collection
In the standard coupon collector process, there are n types

of coupons and in each trial, a coupon is chosen indepen-
dently and uniformly at random. It is well known that
the number of trials needed to collect at least one copy of
each type is sharply concentrated around n log n (see [39],
for example). If we have to collect b copies each of n/b
coupons where b is a constant, then the number of trials
needed to collect all copies is sharply concentrated around
n
b
(ln n

b
+ (b − 1) ln ln n

b
) [39].

One generalization of the standard coupon collection prob-
lem is multiplicity of choices: in each trial, pick d coupons at
random and if any of them is not collected, collect a random

uncollected coupon. Another generalization is to introduce a
graph structure: coupon collection is carried out on a graph
whose nodes correspond to coupons and are initially uncov-
ered. In each trial, pick a node at random and if any of its
neighbors is uncovered, cover a random uncovered neighbor.
Adler et al [2] call this process Structured Coupon Collec-
tion over graphs. They establish that with w.h.p., O(n)
steps suffice to cover all nodes of hypercubes on n nodes,
∆-regular graphs with ∆ = Ω(log n log log n) and random
∆-regular graphs with ∆ = Ω(log n). Alon [3] has shown
that at least n − n

∆
+ n

∆
loge

n
∆

steps are necessary to cover
all nodes for any ∆-regular graph. In this paper, we study
the following problem:

Definition (Structured Coupon Collection over Cliques).
We have to collect b copies each of n/b coupons. In each
trial, d coupons are chosen independently and uniformly
at random but at most one of them can be retained to aug-
ment our collection: if we have already collected b copies
of each of these d coupons, we do nothing; otherwise, from
among the chosen coupons having less than b copies, we
randomly select one to include in our collection.

Our main results are that for any combination of b and
d satisfying bd ≥ c log n for some suitably large constant c,
the following hold w.h.p.: (a) O(n) trials suffice to collect
b copies of all the coupons, and (b) each of the first Ω(n)
trials increases the size of our collection.

In terms of bins and balls, we have n/b bins, each with
capacity b. In each trial, we choose d bins independently and
uniformly at random. If all the d bins are full, we do nothing
(the trial fails). Else, we select one of the non-full bins (from
among the d choices) at random and place a ball into it.
The classic balls-and-bins problem involves bins with infinite
capacity and d = 1 (see Johnson and Kotz [22] or Kolchin et
al [27]). Recently, there has been interest in the computer
science community in analyzing the height of the fullest bin.
With n bins and n balls, the height of the fullest bin is
Θ(log n/ log log n) (see Gonnet [18], Mitzenmacher [37] and
Raab and Steger [41]). For the case d ≥ 2, a breakthrough
was achieved by Azar et al [6] who showed that the height of
the fullest bin is log log n/ log d+Θ(1), if the least-loaded bin
among the d bins is chosen at each trial. For further results
and a survey of proof techniques for d ≥ 2, see Mitzenmacher
et al [38]. Our focus is on cliques, which are equivalent to
bins with finite capacity. Moreover, we wish to bound the
height of the bin with the fewest balls.

Structured coupon collection over cliques was motivated
by the desire to analyze the growth of stochastically grow-
ing binary trees (§1.1), which in turn were motivated by
load balancing concerns arising in Distributed Hash Tables
(DHTs). We review DHTs in the next sub-section.

1.3 Distributed Hash Tables
Distributed hash tables (DHTs) in peer-to-peer (P2P) en-

vironments have witnessed a surge of interest recently. The
goal is to build a giant hash table over a large number of
hosts spanning the Internet. The scale of the system encour-
ages decentralized algorithms which do not require global
knowledge. There are two fundamental problems:

✡ Load Balancing: How do participating hosts partition the
hash table among themselves?

✡ Routing: How is the mapping between partitions and IP
addresses of hosts maintained?

Algorithm σ Message Cost Departures? Notes

Random Binary Tree Θ(log n) R No
Adler et al [2] Θ(1) Θ(R + log n) No Only for hypercubic routing networks.
Naor & Wieder [40] Θ(1) Θ(R log n) (Yes) No proof for departures.
Abraham et al [1] Θ(1) Θ(R log n) No
Karger & Ruhl [25] Θ(1) Θ(R log n) Yes O(log log n) re-assignments per arrival/departure.
Giakkoupis & Hadzilacos [15] 4 Θ(R log n) Yes 1 re-assignment per departure.
Manku [32] 4 Θ(R + log n) Yes 1 re-assignment per departure.

1 + ε, Θ(R + 1
ε2

log n) Yes O(1/ε) re-assignments per departure.
ε ∈ (0, 1]

Our algorithms 8 Θ(rR + v) No Smooth tradeoff between r and v.
(any rv ≥ c log n)

Table 1: R denotes the average number of messages required by the overlay routing layer. Typically, R = Θ(log n) or
R = Θ(log n/ log log n), w.h.p. σ denotes the ratio of the largest partition to the smallest partition. For the scheme by Adler
et al [2], R = Θ(log n) since it is tied to a specific overlay routing topology (the hypercube). When R = Θ(log n/ log log n),
the optimal message cost using our algorithm is Θ(log n/

√
log log n).

Load Balancing: Each participant is assigned an ID in
the unit interval [0, 1). It is convenient to imagine the in-
terval as a circle with unit perimeter. Hosts join the system
dynamically over time. At any instant, the current set of
IDs partitions [0, 1) into disjoint sub-intervals – each host
is the manager of one such sub-interval. We define σ, the
partition balance ratio, to be the ratio between the sizes of
the largest and the smallest partitions.

Routing: Routing networks for DHTs have received much
attention [1, 5, 12, 14, 19, 20, 23, 28–31, 33–36, 40, 44–47]. Ba-
sically, hosts establish TCP connections among themselves
as a function of their IDs. These connections are of two
kinds: short-distance links and long-distance. The short-
distance links connect nodes with adjacent IDs in [0, 1),
thereby forming a ring2 (Chord [45], D2B [12], Koorde [23],
SkipNet [20], Symphony [34], Viceroy [30], Ulysses [28], and
others [1,31,40]). Some DHT routing networks do not form
a complete ring (examples: Pastry [44], Tapestry [47], Bam-
boo [43] and Kademlia [36]). However, almost all of the ring
connections do exist in these networks because nodes in the
circular ID space [0, 1) are divided into disjoint clusters3 and
nodes within a cluster form a clique. Apart from the ring
connections (which constitute the short-distance links), each
host also makes long-distance links with a few other hosts
whose IDs are far away along the circle. Taken together,
the short-distance and the long-distance links ensure fault-
tolerant message delivery in a small number of hops.

Random and Local Probes: We treat the routing net-
work as a black-box that supports two operations: local
probes and random probes, as outlined in §1. A local probe
of size k costs 2k messages. A random probe costs R mes-
sages. R depends on the routing network. For networks
based on hypercubes, R = Θ(log n) when each node makes
Θ(log n) links per node (examples: Chord [14, 45], Pas-
try [44] and Tapestry [47]). Concerns for “physical network-
proximity” (see Gummadi et al [19] for a discussion of
this issue) have resulted in the creation of randomized vari-

2In practice, a host makes connection with f hosts adjacent to
it along the circle for a fault-tolerant ring, where f is a small
number (see the Chord [45] paper, for example). We will ignore
this issue, however, as it does not affect the asymptotes of our
algorithms.
3In Pastry, these are called leafsets with expected size 16.

ants of these networks — randomized-Chord [19, 46] and
randomized-hypercubes [8, 19]. For these networks, R =
Θ(log n/ log log n) when “neighbor-of-neighbors” are used
for greedy routing [35]. In fact, R = Θ(log n/ log log n)
holds for a variety of networks with Θ(log n) links per node:
high-degree de Bruijn networks (an observation made by
many groups [1, 12, 23, 29, 40]), high-degree butterflies [28],
Kleinberg-style randomized butterflies [31], and several ran-
domized networks analyzed by Manku, Naor and Wieder [35]
— these include randomized-Chord [19, 46], randomized-
hypercubes [19], Symphony [34], skip-graphs [5] and Skip-
Net [20].

The ID Assignment Problem: Upon arrival, a new
host has to be assigned an ID. It is customarily assumed in
DHT design that the new host “knows” one existing member
of the ring at the outset. DHTs are decentralized — there
is no global knowledge of the current set of IDs. At any
instant, any member of the ring can ascertain the IDs of k
adjacent hosts in the ring by paying a cost of 2k messages (a
local probe), or it can identify the ID of a host that manages
a random number in [0, 1), by paying a cost of R messages
(a random probe). A good ID selection algorithm should
enjoy three properties: (a) simplicity and decentralization,
(b) low-cost in terms of number of messages, and (c) small
variation in partition sizes for load balance among managers.

1.4 Load Balance and ID Assignment in DHTs
Early DHT designs allowed each host to independently

choose a number in [0, 1) uniformly at random [12, 20, 23,
30, 34, 42, 44, 45, 47]. Such an algorithm is decentralized
and requires zero messages to select an ID. However, σ =
Ω(log2 n) [40] w.h.p. King and Saia [26] recently estab-
lished that σ = Θ(n log n) w.h.p. If each host chooses a
random number in [0, 1) and splits the partition the number
falls into, σ diminishes to Θ(log n) [2, 40]. Further im-
provement is possible by assigning multiple virtual IDs per
host (CFS [10] uses this idea). With Θ(log n) IDs per host,
σ = Θ(1) (see the consistent hashing paper [24], for exam-
ple). However, by using virtual IDs, the number of overlay
connections per host gets amplified by a factor of Ω(log n) –
this is costly because higher degree overlay networks require
more resources for maintenance.

It is natural to ask whether a highly balanced distribution

of partitions can be achieved with only one ID per host if
we allow a newly-arrived host to first learn the IDs of a
few existing hosts, and then choose an ID for itself. Indeed,
σ = Θ(1) is possible, as described below.

Two different approaches for ID management have re-
cently emerged. Both guarantee σ = Θ(1) with only one
ID per host. The first approach [1, 25, 32, 40] is overlay-
independent while the second is overlay-dependent [2]. Naor
and Wieder [40] and Abraham et al [1] proposed that a
new host should choose Θ(log n) random points from [0, 1),
identify the managers of these points and split the largest
manager into two. An extension proposed by Karger and
Ruhl [25] handles node departures too, albeit at the cost of
O(log log n) re-assignment of IDs of at per arrival and depar-
ture, w.h.p. The deletion scheme by Giakkoupis and Hadzi-
lacos [15] necessitates only Θ(1) re-assignments. Adler et al
[2] analyzed an overlay-dependent scheme that is specific to
hypercubes. The idea is to identify the manager of a ran-
dom point in [0, 1), probe other managers it has established
overlay connections with, and to split the largest of these
managers into two. A scheme for handling departures exists,
but it has not yielded to formal analysis yet. The idea in [2]
had earlier been proposed as a heuristic in [42]. Manku [32]
recently established that σ ≤ 4 for the following scheme: a
new host first randomly identifies the manager of a random
number in [0, 1), inspects Θ(log n) managers in its “vicin-
ity” and splits the largest manager. Departures are handled
similarly and cause at most one host ID to be re-assigned.
The message complexity for the schemes outlined above is ei-
ther Θ(log2 n/ log log n) messages [1,25,40] or Θ(log n) mes-
sages [2, 32], for networks with R = Θ(log n/ log log n).

For load balancing over heterogeneous nodes, see [15, 17].

1.5 Other DHT Load Balancing Problems
Byers et al [7] suggest a variant of the power-of-two

choices paradigm (see Mitzenmacher et al [38] for a sur-
vey). In their scheme, nodes continue to choose random
numbers in [0, 1) as their IDs. However, an object is stored
at one out of several possible locations (determined by mul-
tiple hash-values of the object-name). A drawback of this
idea is the overhead associated with multiple probes neces-
sary when storing and retrieving objects. Godfrey et al [16]
take a systems approach, identifying the run-time loads on
various nodes. They propose heuristics for re-distributing
objects between pairs of lightly- and heavily-loaded nodes.

Load balance for range-queries over an ordered list of data
elements has also received attention. The goal is to divide
a sorted list of elements among a fixed number of blocks in
the face of adversarial insertions and deletions of elements,
such that the ratio of the largest and the smallest block is
Θ(1). Two operations are allowed: (a) two adjacent blocks
are re-balanced, or (b) two adjacent blocks are fused into one
block while a large block is split into two. The cost associ-
ated with a fusion or a split is proportional to the number
of data elements that have to move. Ganesan et al [13]
present an efficient deterministic algorithm that guarantees
a constant number of moves per data element, amortized
over the lifetime of the data structure. If each block is as-
signed to one machine in a DHT, and if a skip-graph [5] is
maintained over the starting keys of blocks, we obtain an
efficient load-balanced range-queriable data structure. The
scheme by Ganesan et al assumes that the largest (and the
smallest) block can be efficiently discovered. It is not clear

how this operation can be implemented in a decentralized
fashion without causing congestion in a DHT. Karger and
Ruhl [25] and Aspnes et al [4] present efficient congestion-
free algorithms that match large blocks with small blocks.
Their algorithms are randomized, decentralized and handle
a dynamic number of blocks.

1.6 Summary of Results
1. Improvements over Previous Work: Existing DHT load

balancing algorithms can be viewed in terms of random
probes and local probes (see §2). However, they are ei-
ther designed for a specific routing network [2] (the hy-
percube), or use only one random probe (r = 1) [2,32], or
are limited to local probes of size v = 1 [1,25,40]. In con-
trast, our algorithm is oblivious of the long-distance links
of the routing network, making it applicable to DHT
designs in which all or almost-all of the short-distance
links (along the ring) are present. Moreover, the algo-
rithm enables a smooth tradeoff between r (the number
of random probes) and v (the size of local probes).

2. Optimal Combination of Random and Local Probes: The
tradeoff between r (the number of random probes) and
v (the size of local probes) can be exploited to derive
the optimal number of messages for a specific routing
network. With R = Θ(log n/ log log n) messages per
random probe, the optimal number of random probes
is r = Θ(

√
log log n), for a total of Θ(log n/

√
log log n)

messages. In practice, the gains over an algorithm with
r = 1 or v = 1 are substantial, as we show experimen-
tally in §5. The schemes corresponding to r = 1 and
v = 1 constitute the currently best-known algorithms
for load-balancing.

3. Structured Coupon Collection over Cliques: Our algorithm
constructs binary-trees which are highly balanced – leaf
nodes belong to at most four different levels. Deriv-
ing bounds on the height of the deepest and the shal-
lowest leaves requires analysis of an interesting coupon-
collection problem defined in §1.2.

2. BALANCED BINARY TREES
We study a variety of stochastic processes over binary

trees which result in highly balanced trees. Balance is mea-
sured in terms of the number of different levels to which leaf
nodes belong. Some definitions:

Level and vicinity: The level of a node is the length of the
path from the root to that node. The root has level 0. The
vicinity of a node at level ` is the set of v(`) nodes at level
` that have a common ancestor at level ` − log2 v(`).

Functions VxW, r and v: Let VxW ≡ 2k where integer k
satisfies 2k−1 < x ≤ 2k. Let r : N → N be a monotonically
non-decreasing function, i.e., r(` + 1) ≥ r(`). Let v : N → N

be a function satisfying v(0) = 1 and v(`) ≤ 2`. Moreover,
either v(` + 1) = v(`) or v(` + 1) = 2v(`). Thus v(`) always
equals some power of two.

A summary of results established in earlier papers (n de-
notes the current number of leaf nodes):

1. At each step, we perform one random walk and split the
leaf node encountered. Adler et al [2] and Naor and
Wieder [40] show that leaf nodes belong to Θ(log log n)
different levels w.h.p.

2. At each step, we perform c log n random walks down

the tree and split the shallowest leaf node encountered.
Abraham et al [1] showed that after n steps, the leaves
lie in Θ(1) different levels w.h.p. Naor and Wieder [40]
analyze a similar stochastic process in which we estimate
log n before performing the random walks.

3. For a node at level l, let v(`) = Vc`W, where c is a
suitably-large constant. First, we perform a random
walk to reach a leaf node r. If all nodes in the vicin-
ity of r’s parent are split, we split r itself. Otherwise, we
split one of the leaf nodes in the vicinity of r’s parent.
Manku [32] showed that the leaf nodes in a tree with n
leaves belong to at most three different levels w.h.p.

4. Perform a random walk to reach a leaf node r. Then
identify the shallowest hypercubic neighbor4 of r, split-
ting it into two. Adler et al [2] established that the re-
sulting tree has leaf nodes in Θ(1) different levels w.h.p.

Remark: Karger and Ruhl [25] extend the idea underly-
ing Process 2 to handle both arrivals and departures, albeit
at the cost of O(log log n) re-assignments of existing IDs per
arrivals/departures. Subsequently, Giakkoupis and Hadzila-
cos [15] proposed a simple deletion scheme that guarantees
σ = 4 at the cost of only Θ(1) re-assignments.

The algorithms described above either use just one ran-
dom probe, or limit themselves to local probes of size one.
Moreover, the scheme by Adler et al is not designed for ar-
bitrary routing networks. In this paper, we study a natural
combination of the two kinds of probes: r random probes,
each of size v, where rv ≥ c log n (there is no global knowl-
edge of n though). Formally, we grow the binary tree in a
randomized fashion by splitting some leaf node at each step:

We first perform a random walk down the tree. Let `
denote the level of the leaf node encountered. We then
perform r(`)−1 additional random walks, to obtain a set
of leaf nodes X. For each leaf node x ∈ X, if all nodes
in the vicinity of its parent are already split, we retain x

in the set. Otherwise, we replace x by its parent. Let X ′

denote the new set thus obtained. Let `′ denote the level
of the shallowest node in X ′. We shrink X ′ to arrive
at set X ′′ ⊆ X ′, limited to nodes at level `′. We then
choose some x′′ ∈ X ′′ uniformly at random, and split an
un-split node belonging to the vicinity of x′′.

Different combinations of functions r and v result in different
processes: Process 1 corresponds to r(`) = v(`) = 1. Process
2 is equivalent to r(`) = c log n and v(`) = 1. A variation of
this process is r(`) = c` and v(`) = 1. Process 3 amounts to
r(`) = 1 and v(`) = Vc`W. Process 4 amounts to r(`) = 1 and
v(`) = ` where the vicinity is defined to be the hypercubic
neighbors of a node (see [2] for more details). Our interest
in this paper lies in the following general condition: ∀` :
r(`)v(`) ≥ c`. This includes Processes 2 and 3 as special
cases. Our main result is the following theorem:

Theorem 2.1. For any combination of r and v satisfying
∀` : r(`)v(`) ≥ c`, where c is a suitably large constant, the
tree is highly balanced – leaf nodes belong to at most four
different levels.
4Label the left and right branches of the tree with 0’s and 1’s
respectively. Let the sequence of bits along the path from the
root to r denote the ID of r. A hypercubic neighbor of a leaf
node is obtained by flipping a bit in the ID string, and identifying
the leaf node with the longest matching prefix of the new string.
Please see [2] for a pictorial definition and more details.

Proof. The proof, described in §3 and §4, borrows ideas
from [2] and works as follows: We break the tree into layers
(all nodes at the same level belong to one layer). At each
layer, we study a coupon-collection problem over disjoint
cliques defined over nodes at that layer (Section 3). Using
these results, we bound the depth of the shallowest and the
deepest leaf nodes (Section 4).

The relationship between binary trees and host IDs is as
follows. Only leaf nodes of the tree correspond to IDs. The
internal nodes of the tree are conceptual. The sequence of 0s
and 1s along the path from the root to a leaf node, treated
as the binary expansion of a fraction in [0, 1), constitutes
the ID of that leaf.

A “random walk down the tree” is equivalent to identi-
fying the manager of a point chosen uniformly at random
from the interval I = [0, 1). We need R messages per ran-
dom walk. Inspecting the “vicinity” of a leaf node or its
parent (see Section 2 for a formal definition of vicinity) is
equivalent to identifying whether the corresponding set of
IDs along the circle exists or not. To make the inspection
low-cost, we stipulate that each host maintain knowledge of
its vicinity at all times. Thus when a new host is added to
the ring (some leaf node splits in the corresponding tree),
all other nodes in its vicinity are informed of the arrival. By
choosing r(`) =

√
log ` and v(`) = Vc`/

√
log ` W, we obtain

the following theorem:

Theorem 2.2. A new host requires Θ(log n/
√

log log n)
messages to obtain an ID w.h.p., where n denotes the current
number of hosts and R = Θ(log n/ log log n). The partition
balance ratio is σ ≤ 8 w.h.p.

Proof. From Theorem 2.1, the tree has leaves in at most
four different levels w.h.p. With n leaf nodes, the level of
any leaf node is Θ(log n) w.h.p. With r(`) =

√
log `, the

number of random walks down the tree is Θ(
√

log log n).
With R = Θ(log n/ log log n) messages per random walk,
the total number of messages is Θ(log n/

√
log log n).

Whenever a new host is inserted, all other members of
the vicinity it belongs to, are informed of its existence. In-
forming all members of a vicinity of size v(`) requires at
most v(`) messages (by using only the short-distance “ring”-
connections). With v(`) = Vc`/

√
log ` W, each vicinity has

Θ(log n/
√

log log n) nodes, requiring as many messages.
Since leaf nodes are in at most 4 different levels, σ = 8

w.h.p.

Remarks: Experimental results show that leaf nodes ac-
tually belong to at most 3 different levels; therefore, σ ≤ 4
in practice. It is natural to ask: How small a value of σ
can possibly be realized in a decentralized setting? Ideally,
we would like to have a distributed algorithm which en-
sures that the number of bits in any ID is either blog2 nc or
dlog2 ne, when the current number of hosts is n. This goal
seems unattainable for a decentralized algorithm because of
the following intuition. When n = 2k − 1, all leaf nodes in
the corresponding tree should ideally be in levels {k− 1, k}.
However, with n = 2k + 1, all leaf nodes should be in levels
{k, k + 1}. Therefore, a decentralized algorithm is likely to
have leaves in at least three different levels, especially when
n is close to a power of two5.

5A formal proof requires a precise definition of the notion of de-
centralization.

3. STRUCTURED COUPON COLLECTION
OVER CLIQUES

Problem definition: we have to collect b copies each of n/b
coupons. In each trial, d coupons are chosen independently
and uniformly at random but at most one of them can be
retained to augment our collection: if we have already col-
lected b copies of each of these d coupons, we do nothing;
otherwise, from among the chosen coupons having less than
b copies, we randomly select one to include in our collection.
This process is equivalent to the process on cliques defined
in Section 1.

Our main results are that for any combination of b and
d satisfying bd ≥ c log n for some suitably large constant c,
the following hold w.h.p.: (a) O(n) trials suffice to collect
b copies of all the coupons, and (b) each of the first Ω(n)
trials increases the size of our collection.

In terms of bins and balls, we have n/b bins, each with
capacity b. In each trial, we choose d bins independently and
uniformly at random. If all the d bins are full, we do nothing
(the trial fails). Else, we select one of the non-full bins (from
among the d choices) at random and place a ball into it. The
first lemma below contains two useful forms of inequalities
by Chernoff [9] and Hoeffding [21]. The second lemma helps
us derive tail bounds for dependent binary random variables
under certain conditions.

Lemma 3.1. Let Z denote a random variable with a bi-
nomial distribution Z ∼ B(n, p).

For every λ > 1, Pr[Z > λnp] < (eλ−1λ−λ)np.

For every a > 0, Pr[Z < np − a] < e−a2/(2np).

Lemma 3.2. Let ω1, ω2, . . . , ωn be a sequence of random
variables. Let Z1, Z2, . . . , Zn be a sequence of binary random
variables, with the property that Zi = Zi(ω1, . . . , ωi−1). Let
Z =

Pn
i=1 Zi. Then

Pr[Zi = 1 |ω1, . . . , ωi−1] ≤ p ⇒ Pr[Z ≥ k] ≤ Pr[B(n, p) ≥ k].

Pr[Zi = 1 |ω1, . . . , ωi−1] ≥ p ⇒ Pr[Z ≤ k] ≤ Pr[B(n, p) ≤ k].

Theorem 3.1. There exists a constant α such that, with
high probability, all bins are full in αn trials, for any choice
of b and d satisfying bd ≥ c log2 n for a sufficiently large
constant c.

Proof. For all x > 1, (1 − 1
x
)x < e−1 < (1 − 1

x
)x−1.

Let f denote the fraction of non-full bins at any time.
Fraction f is non-increasing over time, and we divide the
process into two phases: In Phase I, f ≥ 1/d. In Phase II,
0 < f < 1/d. The intuition underlying our analysis is as
follows. In Phase I, many bins are non-full. Hence we make
rapid progress in populating the bins, terminating the phase
in O(n) steps. In Phase II, progress is slow. However, from
the perspective of an individual non-full bin, progress is fast
enough to fill it in O(n) steps.

Claim: Phase I terminates within t1 = (e
e−1

+ ε1)n trials,
w.h.p., where ε1 is a small constant.

Proof: At any time-step, the success probability, i.e., the
probability that the ball gets placed into some non-full bin
is at least 1 − (1 − f)d > 1 − 1/e. Let ns denote the num-
ber of balls lying in various bins when Phase I terminates.
Clearly ns ≤ n. Let T be the total number of trials in
this phase and Yt be the number of successes in the first
t trials. Yt =

Pt
i=1 Zi where Zi is the indicator random

variable corresponding to success in the ith trial. Let ωi

denote the random choices available to the ith ball. Then,
Pr[Zi = 1|ω1, . . . , ωi−1] ≥ 1 − 1/e. Using Lemma 3.2 , we

can conclude that Pr[T > n(1+δ)
1−1/e

] = Pr[Y n(1+δ)
1−1/e

< ns] ≤

Pr[B(n(1+δ)
1−1/e

, e−1
e

) < ns] ≤ Pr[B(n(1+δ)
1−1/e

, e−1
e

) < n]. Using

Lemma 3.1, the probability is less than e−nδ2/2(1+δ), which
is o(1/n2) when δ = ε1(1 − 1/e). Thus Phase I terminates
within t1 steps w.h.p.

Claim: Phase II terminates within t2 = (2e + ε2)n trials,
w.h.p., where ε2 is a small constant.

Proof: Let C denote a bin that is non-full at the end of
Phase I. The probability that C is one of the d bins selected
is 1 − (1 − b/n)d > db/2n. Given that one of the bins is
C, the probability that each of the other d − 1 bins is full
is (1 − f)d−1 > 1/e. Overall, the probability that C gets
the ball in any time-step in Phase II is at least db/2en.
As before, it follows from Lemma 3.2 that the number of
balls in C stochastically dominates6 the random variable
B(t2, db/2en). Using bd ≥ c log2 n, Lemma 3.1 yields that,
in t2 trials, C becomes full with probability 1 − o(1/n2).
By taking the union bound over all the n/b bins, Phase II
terminates within t2 steps w.h.p.

Choosing α = (e
e−1

+ 2e + ε1 + ε2), we find that αn trials
are sufficient to fill all bins w.h.p. ε1 can be made arbitrarily
small, and ε2 can be made small by choosing a large c.

Note that Theorem 3.1 holds even if at any step, we choose
a non-full bin (from among the d choices) arbitrarily (for
example, in an adversarial fashion).

Theorem 3.2. With high probability, each of the first βn
trials succeeds in placing a ball, for any β < 1

2
and any

choice of b and d satisfying bd ≥ c log2 n, for a sufficiently
large constant c.

Proof. The proof follows from a series of four claims:

Claim: In any of the first βn trials, the probability that
a specific bin receives a new ball is at most b

n(1−β)
.

Proof: At any time-step, for a specific bin C,
Pr[C is chosen] = 1 − (1 − b/n)d < db/n

Let f denote the fraction of non-full bins at any time-step.
Pr[Ball is placed in C | C is chosen] =

Pd
i=1(

1
i
)
`

d−1
i−1

´

f i−1(1−
f)d−i = (1

df
)

Pd
i=1

`

d
i

´

f i(1 − f)d−i = 1−(1−f)d

df
< 1

df
. At

the end of the first βn trials, the fraction of full-bins is at
most β. Therefore, at any earlier time-step, f > 1 − β. By
conditioning on the number of non-full bins found in the d
bins, we get

Pr[Ball is placed in C | C is chosen] < 1
d(1−β)

Therefore, the probability that C receives a new ball is at
most db

n
· 1

d(1−β)
= b

n(1−β)
.

Claim: For any β < 1
2
, there exists a constant µ > 1 such

that the probability that a specific bin becomes full at the
end of βn trials, is at most 1/µβ .

Proof: From Lemma 3.2 and the previous claim, it fol-
lows that the random variable B(βn, b

n(1−β)
) stochastically

dominates the number of balls received by a specific bin C
in βn trials. Using the Chernoff/Hoeffding inequalities in

6A random variable X stochastically dominates random variable
Y iff Pr[X ≥ r] ≥ Pr[Y ≥ r]∀r ∈ <.

Lemma 3.1, the probability that C becomes full is at most

1/µb where µ = (β
1−β

)e
(1−2β

1−β
)
, and µ > 1 iff β < 1

2
.

Claim: With high probability, the fraction of full bins at
the end of βn trials is at most 1/νb, for some constant ν > 1.

Proof: Let ν =
√

µ > 1. There are two cases:

a) b < logν n− logν logν n: Let Ii for i = 1, . . . , n/b, denote
a set of indicator variables, one per bin. The variable
is 1 if the bin becomes full within βn trials. The set
of variables are dependent but negatively correlated [11].
Therefore, for tail bounds on their sum, it suffices to
replace them by a set of independent variables. The
sum is dominated by the random variable B(n/b, 1/µb).
Using the Chernoff/Hoeffding inequalities in Lemma 3.1,
the number of full bins is at most n

bνb (where ν =
√

µ >
1) w.h.p., provided b < logν n − logν logν n.

b) b ≥ logν n − logν logν n: Any process with b ≥ logν n −
logν logν n dominates the corresponding process with d =
1. A simple application of Chernoff/Hoeffding inequali-
ties in Lemma 3.1 shows that the first βn trials succeed
w.h.p., for sufficiently large c.

Claim: Each of the first βn trials succeeds in placing a
ball w.h.p., where β < 1

2
.

Proof: The fraction of full bins at the beginning of ith

trial, for any i ≤ βn, is also at most 1/νb. Therefore, the ith

trial fails with probability at most (1/νb)d = o(1/n2), if c is
sufficiently large. By taking the union bound over the first
βn trials, we obtain that w.h.p., all of them succeed.

Notes: Constant α in Theorem 3.1 can be improved (see
Theorem 4.1). In fact, we suspect that a sharp threshold
result should hold. Further, we speculate that Theorem 3.2
should hold for any β < 1, not just β < 1

2
.

4. PROOF OF THEOREM 2.1
∀` : r(`)v(`) ≥ c` for a suitably large constant c.

Lemma 4.1. Assume that the following three claims hold
for some constants µ1 and µ2:

1. When n > µ12
L, no leaf is at level L or less, w.h.p.,

where 2a < µ1 < 2a+1 for some a ≥ 1.
2. When n < µ22

L, no leaf is at level L or more, w.h.p.,
where 2b < 1/µ2 < 2b+1 for some b ≥ 1.

3. µ1/µ2 < 2a+b+1.
Then leaf nodes belong to most a+b+1 different levels w.h.p.

Proof. Let 2k ≤ n < 2k+1 for some integer k. W.l.g.,
let µ1 < µ−1

2 (the other case is similar). There are 3 cases:

1. 2k ≤ n ≤ µ12
k+1:

Leaves belong to levels [k − a, k + b] w.h.p.

2. µ12
k+1 < n < µ−1

2 2k+1:

Leaves belong to levels [k − a + 1, k + b] w.h.p.

3. c) µ−1
2 2k+1 ≤ n < 2k+1:

Leaves belong to levels [k − a + 1, k + b + 1] w.h.p.

Thus leaves are in at most a + b + 1 different levels.

Consider the structured coupon collection process over a
graph with 2i/v(i) cliques, each of size v(i). At each step,
r(i) random choices are made. Let Ai denote the process

that terminates when all nodes in the graph have been cov-
ered. Let Bi denote the process that terminates when the
first failure occurs, i.e., no new node could be covered. Let
A(`) and B(`) denote series of processes 〈A0,A1, . . . ,A`〉 and
〈B0,B1, . . . ,B`〉, respectively.

In the remainder of the section, we will use four constants:
α, β, γ and δ. The first two are defined as follows: Let α2i

denote an upper bound on the number of steps taken by
Ai to terminate, with probability at least 1 − 1/poly(2i)
(see Theorem 3.1). Let β2i denote a lower bound on the
number of steps taken by Bi to terminate, with probability
at least 1 − 1/poly(2i). From Theorem 3.2, β can be set to
any constant less than half. Constants γ and δ emerge in
Lemmas 4.2 and 4.3 respectively. The interplay of all four
constants will appear towards the end of this section, when
we prove Theorem 2.1.

Lemma 4.2. A(k) terminates in at most α(2+γ)2k steps,
w.h.p., where γ is an arbitrarily small constant.

Proof. Let j = dlog2 1/γe, a constant depending upon
γ. For process Ai where 0 ≤ i < k − log2 k − j, we al-
locate αk2i steps. The probability that Ai does not ter-
minate in α2i steps is at most 1/poly(2i). Therefore, the
probability that Ai does not terminate in αk2i steps is at
most (1/poly(2i))k = O(1/poly(2k)). The total number of

steps we have allocated so far is
Pi=k−log2 k−j−1

i=0 αk2i <
α2−j2k ≤ αγ2k.

We allocate α2i time-steps to each Ai where k − log2 k −
j ≤ i ≤ k. With probability at least 1 − 1/poly(2i) =
1−O(1/poly(2k)), Ai terminates within α2i steps. The total

number of steps is
Pi=k

i=k−log2 k−j α2i <
Pi=k

i=0 α2i < α2k+1.

The total number of steps is at most α(2 + γ)2k.

Lemma 4.3. B(k) takes at least β(2−δ)2k steps to termi-
nate, w.h.p., where δ is an arbitrarily small constant.

Proof. Let j = dlog2 1/δe, a constant depending upon
δ. For k − j − 1 ≤ i ≤ k, the probability that process
Bi runs for less than β2i steps is at most O(1/poly(2i)) =
O(1/poly(2k)). As a consequence, the series of processes

〈Bk−j−1,Bk−j , . . . ,Bk〉 runs for at least
Pi=k

i=k−j−1 β2i ≥
β(2 − δ)2k steps w.h.p. Thus B(k) takes at least β(2 − δ)2k

steps to terminate, w.h.p.

Lemma 4.4. When n > α(2 + γ)2L, no leaf is at level L
or less, w.h.p., where γ is an arbitrarily small constant.

Proof. We divide the growth of the tree into phases.
Phase i is over (and phase i + 1 starts) when no node at
level i is a leaf node. Let Ti denote the time-step at which
phase i terminates. To prove that no leaf is at level L or less,
we will show that TL is stochastically dominated by the time
taken for A(L) to terminate. The claim then follows from
Lemma 4.2.

Let ` denote the level of the leaf node encountered in the
first random walk down the tree. In phase i, all leaves are
in level i or more. Therefore, ` ≥ i. Since function r is
monotonically non-decreasing, r(`) ≥ r(i). Moreover, each
vicinity that permits splitting of a leaf at level i, has size
exactly v(i), corresponding to a clique in process Ai. Thus

it follows that TL is dominated by the time taken for A(L)

to terminate.

Lemma 4.5. When n < 1
4
β(2− δ)2L, no leaf is at level L

or more, w.h.p., where δ is an arbitrarily small constant.

22
24
26
28

210
212
214
216
218

25 26 27 28 29 210 211 212 213 214 215 216

N
um

be
r

of
 N

od
es

Total Number of Nodes

(1, 1)-Algorithm

Level 7
Level 8

Level 9
Level 10

Level 11
Level 12

Level 13
Level 14

Level 14
Level 16

(a) Distribution of host IDs using 〈1, 1〉 scheme.

22
24
26
28

210
212
214
216
218

25 26 27 28 29 210 211 212 213 214 215 216

N
um

be
r

of
 N

od
es

Total Number of Nodes

(1, cl) Algorithm

Level 12

c=1/8
c=1/4
c=1/2

c=1
c=2
c=4
c=8

(b) The effect of increasing c in 〈1, c`〉 schemes.

22
24
26
28

210
212
214
216
218

25 26 27 28 29 210 211 212 213 214 215 216

N
um

be
r

of
 N

od
es

Total Number of Nodes

<1, 4l> Algorithm

Level 7
Level 8

Level 9
Level 10

Level 11
Level 12

Level 13
Level 14

Level 15
Level 16

(c) Distribution of host IDs with 〈1, 4`〉 scheme.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30 35 40

T
ot

al
 C

os
t (

#M
es

sa
ge

s)

Function r(l) [Number of random walks]

n = 213 hosts
n = 215 hosts
n = 217 hosts
n = 219 hosts

(d) Total cost for varying number of random walks.

Figure 1: In (a), the dotted curve shows the number of hosts with 12-bit IDs, as the total number of hosts increases over
time, with the 〈1, 1〉 scheme. The number of curves intersecting a vertical line equals the number of different levels at which
leaf nodes exist. In (c), the 〈1, c`〉 scheme with c = 4 results in 3-level trees. In (d), the total cost is Rx + y, where x is the
number of random walks, y = V4`/xW, and R = `/ log2 ` hops on average.

Proof. Consider the following variant of our algorithm:
As soon as the first leaf at some level ` is created, we in-
stantly create all leaf nodes at level `−1 as well. This variant
grows the tree faster than our original algorithm. Clearly,
the variant is dominated by the original algorithm, in terms
of the number of steps taken before creating the first leaf at
level L. The variant is equivalent to process B(L−2), which
runs for at least 1

4
β(2 − δ)2L steps (from Lemma 4.3).

We can now prove a slightly weaker version of Theorem 2.1:
we will establish that leaf nodes of the tree belong to at most
five different levels. Let µ1 = α(2 + γ) and µ2 = 1

4
β(2 − δ).

From Theorem 3.1, α = e
e−1

+ 2e + ε1 + ε2, where ε1 and
ε2 are arbitrarily small constants. It is possible to fix these
constants so that µ1 satisfies 22 < µ1 < 23. Moreover, with
a suitable choice of β < 1/2 (allowed by Theorem 3.2), and
sufficiently small δ, we can arrive at a value for µ2 that sat-
isfies 22 < 1/µ2 < 23, and µ1/µ2 < 25. From Lemma 4.1, it
follows that leaf nodes belong to at most five different levels.

To prove that leaf nodes belong to at most four different
levels, as claimed in Theorem 2.1, we need a tighter version
of Theorem 3.1, which we now prove.

Theorem 4.1. With high probability, all bins are full in
9
5
n trials, for any choice of d and b satisfying db ≥ c log2 n

for a sufficiently large constant c.

Proof. We treat d ≤ d0 (where d0 is a constant to be de-
fined later) as a special case. For a fixed value of b, the pro-
cess with d > 1 choices dominates the process with a single
choice (d = 1). A simple application of Chernoff/Hoeffding
inequalities in Lemma 3.1 shows that if 9

5
n balls were placed

into n/b ≤ d0n/(c log2 n) bins (of unlimited capacity), each
ball choosing a bin uniformly at random (i.e., d = 1), then
every bin would get at least b balls w.h.p. for a suitably
large value of c.

For the rest of the proof, we assume d > d0. We divide
the process into two phases as in the proof of Theorem 3.1.
The analysis for Phase I is the same as before.

Claim: Phase II terminates within t2 = (1
5

+ ε2)n trials,
w.h.p., where ε2 is a small constant.

Proof: As before, for a specific bin C that is non-full at the
end of Phase I, the number of balls in C stochastically dom-
inates the random variable B(t2, db/2en). Choosing d0 = 28
and using db ≥ c log2 n, application of Chernoff/Hoeffding
inequalities in Lemma 3.1 yields that, in t2 trials, C becomes
full with probability 1 − o(1/n2). Taking the union bound
over all the n bins yields the claim.

We need (e
e−1

+ 1
5

+ ε1 + ε2)n trials w.h.p., where ε1 can
be made arbitrarily small, and ε2 can be made small by
choosing a large c. The total is less than 9

5
n.

5. EXPERIMENTAL RESULTS
Figure 1 studies various schemes for growing binary trees.

With 〈r, v〉 = 〈1, 1〉, IDs belong to as many as 6 different lev-
els when n = 211. With 〈r, v〉 = 〈1, 4`〉, IDs are in only three
different levels. Thus 4 appears to be a reasonable value for
constant c in the constraint: ∀` : r(`)v(`) ≥ c`. Finally, five
random walks are sufficient to obtain 3-level trees, when the
number of hosts is n = 216. In terms of messages, this is
superior to either of the two extremes: 〈1, c`〉 and 〈c`, 1〉.

6. FUTURE DIRECTIONS
Our load-balancing algorithm does not address host de-

partures. Simulations show that a simple variation of the in-
sertion algorithm maintains 3-level trees: “A departed host is
replaced by the deepest leaf in the union of vicinities probed.”
A formal proof for this observation would extend the results
in [15, 32]. Structured coupon collection over cliques when
bd 6≥ c log n, and the impact of multiple choices (d ≥ 2) over
general graphs appear to be interesting problems.

7. REFERENCES
[1] Ittai Abraham, Baruch Awerbuch, Yossi Azar, Yair

Bartal, Dahlia Malkhi, and Elan Pavlov. A generic
scheme for building overlay networks in adversarial
scenarios. In Proc. Intl. Parallel and Distributed
Processing Symposium (IPDPS 2003), April 2003.

[2] Micah Adler, Eran Halperin, Richard M Karp, and
Vijay V Vazirani. A stochastic process on the
hypercube with applications to peer-to-peer networks.
In Proc. 35nd ACM Symposium on Theory of
Computing (STOC 2003), pages 575–584, June 2003.

[3] Noga Alon. Problems and results in extremal
combinatorics, II. Available as http://www.math.tau.

ac.il/~nogaa/PDFFS/publications.html, 2004.

[4] James Aspnes, Jonathan Kirsch, and Arvind
Krishnamurthy. Load balancing and locality in
range-queriable data structures. In Proc. 23rd ACM
Symposium on Principles of Distributed Computing
(PODC 2004), June 2004.

[5] James Aspnes and Gauri Shah. Skip graphs. In Proc.
14th ACM-SIAM Symposium on Discrete Algorithms
(SODA 2003), pages 384–393, January 2003.

[6] Yossi Azar, Andrei Z Broder, Anna R Karlin, and Eli
Upfal. Balanced allocations. SIAM Journal of
Computing, 29(1):180–200, 1999.

[7] John W Byers, Jeffrey Considine, and Michael
Mitzenmacher. Geometric generalizations of the power
of two choices. In Proc. 16th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA
2004), pages 54–63, June 2004.

[8] Miguel Castro, Peter Druschel, Y Charlie Hu, and
Antony I T Rowstron. Topology-aware routing in
structured peer-to-peer overlay networks. In Proc.
Intl. Workshop on Future Directions in Distrib.
Computing (FuDiCo 2003), pages 103–107, 2003.

[9] Herman Chernoff. A measure of asymptotic efficiency
for tests of a hypothesis based on the sum of
observations. Annals of Mathmematical Statistics,
23(4):493–509, 1952.

[10] Frank Dabek, M Frans Kaashoek, David Karger,
Robert Morris, and Ion Stoica. Wide-area cooperative
storage with CFS. In Proc. 18th ACM Symposium on
Operating Systems Principles (SOSP 2001), pages
202–215, 2001.

[11] Devdatt P Dubhashi and Desh Ranjan. Balls and
bins: A study in negative dependence. Random
Structures and Algorithms, 13(2):99–124, 1998.

[12] Pierre Fraigniaud and Philippe Gauron. (brief
announcement) An overview of the
content-addressable network D2B. In Proc 22nd ACM
Symposium on Principles of Distributed Computing
(PODC 2003), pages 151–151, July 2003.

[13] Prasanna Ganesan, Mayank Bawa, and Hector
Garcia-Molina. Online balancing of range-partitioned
data with applications to peer-to-peer systems. In
Proc. 30th Intl. Conf. on Very Large Data Bases
(VLDB 2004), 2004.

[14] Prasanna Ganesan and Gurmeet Singh Manku.
Optimal routing in Chord. In Proc. 15th ACM-SIAM
Symposium on Discrete Algorithms (SODA 2004),
pages 169–178, January 2004.

[15] George Giakkoupis and Vassos Hadzilacos. A scheme
for load balancing in hetergoneous distributed hash
tables. In Proc. 24th ACM Symposium on Principles
of Distributed Computing (PODC 2005), July 2005.

[16] P Brighten Godfrey, Karthik Lakshminarayanan,
Sonesh Surana, Richard M Karp, and Ion Stoica. Load
balancing in dynamic structured P2P systems. In
Proc. IEEE INFOCOM 2004, March 2004.

[17] P Brighten Godfrey and Ion Stoica. Heterogeneity and
load balance in distributed hash tables. In Proc. IEEE
INFOCOM 2005, March 2004.

[18] Gaston H Gonnet. Expected length of the longest
probe sequence in hash code searching. Journal of the
ACM, 28(2):289–304, 1981.

[19] Krishna P Gummadi, Ramakrishna Gummadi,
Steven D Gribble, Sylvia Ratnasamy, Scott Shenker,
and Ion Stoica. The impact of DHT routing geometry
on resilience and proximity. In Proc. ACM SIGCOMM
2003, pages 381–394, 2003.

[20] Nicholas J A Harvey, Michael Jones, Stefan Saroiu,
Marvin Theimer, and Alec Wolman. SkipNet: A
scalable overlay network with practical locality
properties. In Proc. 4th USENIX Symposium on
Internet Technologies and Systems (USITS 2003),
2003.

[21] Wassily Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, March 1963.

[22] Norman Lloyd Johnson and Samuel Kotz. Urn Models
and their Applications: An Approach to Modern
Discrete Probability Theory. John Wiley and Sons,
1977.

[23] M Frans Kaashoek and David R Karger. Koorde: A
simple degree-optimal hash table. In Proc. 2nd Intl.
Workshop on Peer-to-Peer Systems (IPTPS 2003),
pages 98–107, 2003.

[24] David R Karger, Eric Lehman, Frank Thomson
Leighton, Matthew S Levine, Daniel Lewin, and Rina
Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots
on the World Wide Web. In Proc. 29th ACM
Symposium on Theory of Computing (STOC 1997),
pages 654–663, May 1997.

[25] David R Karger and Matthias Ruhl. Simple efficient
load balancing algorithms for peer-to-peer systems. In
Proc. 16th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA 2004), pages
36–43, June 2004.

[26] Valerie King and Jared Saia. Choosing a random peer.
In Proc. 23rd ACM Symposium on Principles of
Distributed Computing (PODC 2004), pages 125–130,
July 2004.

[27] Valentin F Kolchin, Boris A Sevast’yanov, and
Vladimir P Chistyakov. Random Allocations. V H
Winston & Sons, 1978.

[28] Abhishek Kumar, Shashidhar Merugu, Jun Jim Xu,
and Xingxing Yu. Ulysses: A robust, low-diameter,
low-latency peer-to-peer network. In Proc. 11th IEEE
International Conference on Network Protocols (ICNP
2003), pages 258–267, November 2003.

[29] Dmitri Loguinov, Anuj Kumar, Vivek Rai, and Sai
Ganesh. Graph-theoretic analysis of structured
peer-to-peer systems: Routing distance and fault
resilience. In Proc. ACM SIGCOMM 2003, pages
395–406, 2003.

[30] Dahlia Malkhi, Moni Naor, and David Ratajczak.
Viceroy: A scalable and dynamic emulation of the
butterfly. In Proc 21st ACM Symposium on Principles
of Distributed Computing (PODC 2002), pages
183–192, 2002.

[31] Gurmeet Singh Manku. Routing networks for
distributed hash tables. In Proc. 22nd ACM
Symposium on Principles of Distributed Computing
(PODC 2003), pages 133–142, July 2003.

[32] Gurmeet Singh Manku. Balanced binary trees for ID
management and load balance in distributed hash
tables. In Proc. 23rd ACM Symposium on Principles
of Distributed Computing (PODC 2004), pages
197–205, July 2004.

[33] Gurmeet Singh Manku. Dipsea: A Modular Distributed
Hash Table. PhD dissertation, Stanford University,
Department of Computer Science, August 2004.

[34] Gurmeet Singh Manku, Mayank Bawa, and Prabhakar
Raghavan. Symphony: Distributed hashing in a small
world. In Proc. 4th USENIX Symposium on Internet
Technologies and Systems (USITS 2003), pages
127–140, 2003.

[35] Gurmeet Singh Manku, Moni Naor, and Udi Wieder.
Know thy neighbor’s neighbor: The power of
lookahead in randomized P2P networks. In Proc. 36th
ACM Symposium on Theory of Computing (STOC
2004), pages 54–63, June 2004.

[36] Petar Maymounkov and David Mazières. Kademlia: A
peer-to-peer information system based on the XOR
metric. In Proc. 1st Intl. Workshop on Peer-to-Peer
Systems (IPTPS 2002), pages 53–65, 2002.

[37] Michael Mitzenmacher. The Power of Two Choices in
Randomized Load Balancing. PhD dissertation,
University of California at Berkeley, Department of
Computer Science, 1996.

[38] Michael Mitzenmacher, Andrea W Richa, and
R Sitaraman. The power of two random choices: A
survey of techniques and results. In Handbook of
Randomized Computing (Vol 1). Kluwer Academic
Press, 2001.

[39] Rajeev Motwani and Prabhakar Raghavan.
Randomized Algorithms. Cambridge University Press,
1995.

[40] Moni Naor and Udi Wieder. Novel architectures for
P2P applications: The continuous-discrete approach.
In Proc. 15th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA 2003), pages
50–59, June 2003.

[41] Martin Raab and Angelika Steger. Balls into bins – a
simple and tight analysis. In Randomization and
Approximation Techniques in Computer Science
(RANDOM 1998), Lecture Notes in Computer Science
1518, pages 159–170, October 1998.

[42] Sylvia Ratnasamy, Paul Francis, Mark Handley, and
Richard M Karp. A scalable Content-Addressable
Network. In Proc. ACM SIGCOMM 2001, pages
161–172, 2001.

[43] Sean Rhea, Denis Geels, Timothy Roscoe, and John
Kubiatowicz. Handling churn in a DHT. In Proc. 2004
USENIX Annual Technical Conference, pages
127–140, June 2004.

[44] Antony I T Rowstron and Peter Druschel. Pastry:
Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In IFIP/ACM
International Conference on Distributed Systems
Platforms (Middleware 2001), pages 329–350, 2001.

[45] Ion Stoica, Robert Morris, David Karger, M Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable
peer-to-peer lookup service for Internet applications.
In Proc. ACM SIGCOMM 2001, pages 149–160, 2001.

[46] Hui Zhang, Ashish Goel, and Ramesh Govindan.
Incrementally improving lookup latency in distributed
hash table systems. In Proc. ACM SIGMETRICS
2003, pages 114–125, June 2003.

[47] Ben Y Zhao, Ling Huang, Jeremy Stribling, Sean C
Rhea, Anthony D Joseph, and John D Kubiatowicz.
Tapestry: A resilient global-scale overlay for service
deployment. IEEE Journal on Selected Areas in
Communications, 22(1), January 2004.

