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Single-language runtime systems, in the form of Java virtual machines, are widely deployed
platforms for executing untrusted mobile code. These runtimes provide some of the features that
operating systems provide: interapplication memory protection and basic system services. They do
not, however, provide the ability to isolate applications from each other. Neither do they provide
the ability to limit the resource consumption of applications. Consequently, the performance of cur-
rent systems degrades severely in the presence of malicious or buggy code that exhibits ill-behaved
resource usage. We show that Java runtime systems can be extended to support processes, and that
processes can provide robust and efficient support for untrusted applications.

We have designed and built KaffeOS, a Java runtime system that provides support for pro-
cesses. KaffeOS isolates processes and manages the physical resources available to them: CPU
and memory. Unlike existing Java virtual machines, KaffeOS can safely terminate processes with-
out adversely affecting the integrity of the system, and it can fully reclaim a terminated process’s
resources. Finally, KaffeOS requires no changes to the Java language. The novel aspects of the
KaffeOS architecture include the application of a user/kernel boundary as a structuring principle
for runtime systems, the employment of garbage collection techniques for resource management
and isolation, and a model for direct sharing of objects between untrusted applications. The diffi-
culty in designing KaffeOS lay in balancing the goals of isolation and resource management against
the goal of allowing direct sharing of objects.

For the SpecJVM benchmarks, the overhead that our KaffeOS prototype incurs ranges from 0%
to 25%, when compared to the open-source JVM on which it is based. We consider this overhead
acceptable for the safety that KaffeOS provides. In addition, our KaffeOS prototype can scale to
run more applications than running multiple JVMs. Finally, in the presence of malicious or buggy
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code that engages in a denial-of-service attack, KaffeOS can contain the attack, remove resources
from the attacked applications, and continue to provide robust service to other clients.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Runtime en-
vironments

General Terms: Algorithms, Design, Reliability, Languages, Performance

Additional Key Words and Phrases: Robustness, resource management, isolation, termination,
language runtimes, virtual machines, garbage collection

1. INTRODUCTION

The need to support the safe execution of untrusted programs in runtime sys-
tems for type-safe languages is clear. Language runtimes are being used to
execute untrusted code that may violate a system’s safety or security. Current
runtime systems implement memory protection in software through the enforce-
ment of type safety [Bershad et al. 1995a]. They do not, however, sufficiently
isolate untrusted code and are unable to control the computational resources
used by such code. We describe KaffeOS, a design for a Java virtual machine
(JVM) that allows for the robust execution of untrusted code. Like a hardware-
based operating system that supports and manages multiple processes running
on one physical machine, KaffeOS provides resource control and isolation to its
processes.

Consider the following application scenarios that employ type-safe
languages:

—Java applets enjoy widespread use. There is no prior trust relationship be-
tween the originator of an applet—who could be a malicious attacker—and
the client who executes the applet. A Java program can be verified to en-
sure that the code will not compromise security on the client’s machine,
but it includes no defenses against denial-of-service attacks directed against
computing resources such as memory and CPU. Even though Java was first
released to the public in 1995, industrial browsers still do not withstand even
the simplest of attacks [McGraw and Felten 1997].

—Java has also become popular for many server-side applications, such as Java
Server Pages [Bergsten 2000] or Oracle’s JServer environment [Lizt 1999].
Even though such code is usually trusted, a buggy application could cause
the server to spend all its time collecting garbage and deny service to other
applications.

—Extensible operating systems allow applications to download code into the
kernel. In the SPIN extensible OS [Bershad et al. 1995b], both the kernel
and the extensions are written in the type-safe language Modula-3, which
enables extensions’ access to kernel interfaces to be controlled. However, it is
impossible to control the resources used by a given extension—for instance,
to guarantee that one extension obtains a certain share of CPU time.

These applications require a runtime system that supports the following
features:
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Protection. Protection includes confidentiality and integrity. Confidential-
ity requires that an application must not be able to read another applica-
tion’s data unless permitted. Integrity requires that an application must not be
able to manipulate the data of another application or system-level data in an
uncontrolled manner, or destroy the data of another application.

Isolation. Applications must be isolated from each other. One application’s
failure must not adversely affect unrelated applications or the system itself.

Resource management. First, resources allocated to an application must
be separable from those allocated to other applications to ensure proper
accounting. Second, resource management policies must guarantee that an un-
privileged or untrusted application is not able to starve other applications by
denying them resources.

Communication. Since the system may include multiple cooperating appli-
cations, applications should be able to communicate with each other. For Java,
an efficient way of sharing data should be supported that does not compromise
protection and isolation.

These features are provided by traditional operating systems through pro-
cesses. They support the level of assurance that a system administrator would
want to execute completely untrusted code. In certain situations, greater levels
of trust may be permissible, in which case some of these features could be re-
laxed. However, in situations where untrusted code is to be executed, we believe
that any relaxation would be undesirable.

Existing mechanisms such as type safety, language-based access control, and
permission checks provide protection—our research shows how to support the
remaining three features. Some existing systems [Czajkowski and von Eicken
1998; Hawblitzel et al. 1998; Gorrie 1998] provide limited support for these
features. These systems superimpose an operating system model on Java, but
do so without changing the underlying virtual machine. Figure 1(a) depicts the
basic structure of these types of systems. Systems with this structure cannot
account for resources that are spent by the JVM itself.

An alternative approach to separating different applications is to give each
one its own virtual machine and run each virtual machine in a different process
on an underlying OS [Jaeger et al. 1998; Malkhi et al. 1998], as shown in
Figure 1(b). Depending on the operating system has multiple drawbacks: the
per-JVM overhead is typically high, and the flexibility with which resources can
be managed may be limited. For instance, a typical JVM’s memory footprint
is on the order of 1–2 MB, which can severely restrict scalability. A JVM’s
startup costs, which include the cost of loading and linking the Java bytecode,
are typically high. When different instances of a JVM run on the same machine,
they typically do not share any runtime data structures, even on systems that
provide support for shared memory. Finally, the option of dedicating one JVM
process to each application does not work on small devices that may not provide
OS or hardware support for managing processes [Wind River Systems, Inc.
1995], or in software environments where the JVM is nested inside another
application.
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Fig. 1. Different JVM models. In the single JVM model, applications run on top of an ad hoc layer
in one JVM. In the multiple JVM model, each application runs in its own JVM as a separate process
on top of the underlying base operating system. By supporting multiple processes within the JVM
itself, KaffeOS achieves both the efficiency and ease of sharing of the single JVM model and the
isolation provided by the multiple JVM model.

Our approach to providing isolation and resource management is shown in
Figure 1(c). It uses the same basic principles upon which operating systems
are built. On a traditional operating system, untrusted code can be executed
in its own process; CPU and memory limits can be placed on the process; and
the process can be killed if it is uncooperative. We have designed and built a
runtime system for Java that supports such a process abstraction. The mecha-
nisms we describe are not specific to Java and are applicable to other type-safe
languages.

Our design has three advantages over the other designs. First, it reduces per-
application overhead. For example, applications can share runtime code and
data structures in much the same way that an OS allows applications to share
libraries. Second, communication between processes can be more efficient in
one VM. Processes can share data directly through a direct memory reference
to a shared object. Direct sharing is more efficient than exchanging data by
copying it or sharing it indirectly through intermediate proxy objects. Third, a
JVM that does not rely on underlying operating system support can be used in
environments where such support is missing. For example, such a JVM could be
used on a portable or embedded device that may only have a minimal operating
system, especially one that is not powerful enough to fully isolate applications;
or it could be used when embedding one application in another.

Our design makes KaffeOS’s isolation and resource control mechanisms com-
prehensive. We focus on the management of CPU time and memory, although
other resources such as network bandwidth or persistent storage could be added
in the future. We paid particular attention to memory management and garbage
collection, which proved to be the issues that posed the largest challenges in
designing KaffeOS. We have devised a scheme in which the allocation and
garbage collection activities of different processes are separated, so that the
memory consumption of individual processes can be separately accounted
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for and so that the garbage collector does not become a source of priority
inversion.

KaffeOS uses three different approaches for direct sharing of objects be-
tween processes. These approaches represent different points in the spectrum
spanned by the conflicting goals of process isolation and resource management
versus direct sharing. First, the sharing of kernel objects, which provide shared
services, is possible without restrictions. Second, KaffeOS does not support the
casual sharing of arbitrary objects between untrusted parties, because doing so
would compromise isolation. Third, untrusted parties can share dedicated ob-
jects in specially created shared heaps. Shared heaps are subject to a restricted
programming model so as not to compromise isolation. We demonstrate that
our programming model for shared heaps is practical: despite its restrictions,
applications can easily and directly share complex data structures in realistic
applications.

To evaluate the feasibility of KaffeOS’s design, we have built a prototype and
analyzed its performance. In the case of trusted code, there is a small perfor-
mance penalty for using KaffeOS. The run-time overhead ranges from 0% to
25%, relative to the JVM on which our prototype is based. We also demonstrate
that our prototype can successfully thwart those denial-of-service attacks.
KaffeOS can provide robust service to well-behaved applications, even in situa-
tions in which otherwise faster commercial JVMs provide practically no service
at all. Finally, we compared KaffeOS to a configuration that is based on the
multiple JVM model. We show that KaffeOS’s performance scales better, and
that it provides the same protection against misbehaved applications as an
underlying operating system.

In Section 2, we discuss the principles underlying KaffeOS’s design, and how
they influenced the mechanisms we implemented. In particular, we discuss how
KaffeOS reconciles the divergent needs of application isolation and sharing of
resources and how it controls the resources used by its processes. We defer
implementation-level details that are specific to our prototype to Section 3.
This section describes the structure of the kernel, how the memory allocator
and garbage collector work, and how the programming model for IPC works.
Section 4 discusses the performance of our prototype, which includes both the
overhead for trusted code and the performance improvement in the presence of
untrusted code. Section 5 provides an in-depth discussion and comparison with
related work. Section 6 suggests some directions for future work and summa-
rizes our conclusions.

2. DESIGN

In this section, we describe how KaffeOS works: how we protect and isolate
processes and how we guarantee safe termination; how garbage collection ac-
tivities are separated; how interprocess communication (IPC) works; and how
KaffeOS manages memory and CPU resources hierarchically. An important as-
pect of our design is that we wanted to avoid changing the programming model
of Java whenever possible. As we will see, the only part of our design that
impacts the programming model occurs with IPC.
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Fig. 2. User/kernel boundary in KaffeOS. All system code, which includes the kernel, the runtime
libraries and the garbage collector, can run either in kernel or user mode; such code enters kernel
mode where necessary. By contrast, user code always runs in user mode. The bottom part of the
figure shows that the trust dimension is orthogonal to the user/kernel mode dimension.

2.1 Protection and Isolation

KaffeOS depends on Java’s type safety and language-based access control to
provide some aspects of protection. First, Java’s type safety guarantees that
programs cannot forge pointers to obtain access to foreign objects. Second,
KaffeOS uses Java’s access modifiers, such as private and protected, to prevent
processes from accessing fields in system objects to which they have access.
Third, different processes use distinct classloaders, which provide each process
with a namespace with a distinct set of types. Fourth, kernel code is not allowed
to hand out references to a foreign process’s objects or to internal system ob-
jects. For example, we must prevent a user process from acquiring a lock on an
object that is used inside the kernel. We avoid leaking objects through interface
design and careful coding; in the presence of bugs, language access modifiers
and different namespaces would still restrict the possible use of such leaked
objects.

In a hardware-based operating system, user mode and kernel mode indicate
different CPU modes. User processes enter kernel mode through trap instruc-
tions when they execute system calls. A “red line” is said to separate user mode
and kernel mode, which are different environments with respect to protection,
termination, and resource control.

Figure 2 illustrates the high-level structure of KaffeOS. KaffeOS’s modes
represent a software analogue of the mode bit. The red line in KaffeOS, however,
does not prevent user objects from directly accessing shared kernel objects. A
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KaffeOS process can make system calls simply by invoking methods on kernel
objects or classes. Threads executing these methods can in turn enter kernel
mode by setting a software bit. User mode and kernel mode in KaffeOS are
different environments with respect to termination and resource consumption:

—Resources consumed in user mode are always charged to a user process and
not to the system as a whole. Only in kernel mode can a process consume re-
sources that are charged to the kernel, although typically such use is charged
to the appropriate user process.

—Processes running in user mode can be terminated at any time. Processes
running in kernel mode cannot be terminated at an arbitrary time, because
they must leave the kernel in a clean state. This design mirrors the way
termination is handled in a hardware-based system such as Unix [Ritchie
and Thompson 1978].

Application code executes in user mode, as do some of the trusted runtime
libraries and some of the garbage collection code. The remaining parts of the
system must run in kernel mode to ensure their integrity. These parts include
the rest of the runtime libraries and certain parts of the virtual machine, such
as the garbage collector or the just-in-time compiler. This structure echoes that
of exokernel systems [Engler et al. 1995]. In KaffeOS the kernel can trust user-
mode code to a great extent, because Java bytecode verification ensures that
application code cannot violate the Java language semantics.

The KaffeOS kernel is structured so that it can cleanly handle both termi-
nation requests and resource exhaustion. Termination requests are deferred
inside kernel code. Resource exhaustion is more difficult to handle; we adopt a
kernel programming style that avoids the use of Java exceptions and uses ex-
plicit return code checking instead. This style is applicable to both code written
in Java and in native code written in C. Avoiding Java exceptions also helps to
remove the requirement that the exception handling facilities in the runtime
system are not allowed to run out of resources.

Deferring termination to protect data structure integrity is superior to al-
ternatives. In one alternative model, a termination request would be delivered
as an asynchronous exception, and catch clauses would be added as cleanup
handlers. Cleanup handlers in the form of catch clauses have a slightly lower
cost than deferring termination in the common case, but programming them is
tedious and error-prone. In addition, Marlow et al. [2001] has pointed out that
the use of catch clauses for asynchronous exceptions can create race conditions.
Another alternative solution, used in the Real-Time Java proposal [Bollella
et al. 2000], defers asynchronous termination requests during synchronized
sections. However, this alternative conflates termination and synchronization,
which could lead to decreased parallelism, more deadlocks, or more confusing
code.

In some situations, kernel code has to call out to user code. When making
such upcalls, kernel code must be prepared for the user code to take an un-
bounded amount of time, or not to return at all, or to complete abruptly. The
thread executing the upcall cannot hold on to system-level resources that may

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.



590 • G. Back and W. C. Hsieh

be needed by other processes prior to making the call. Other than through vi-
sual inspection, we do not currently have a means to ensure that. For some
resources, static checking could be used to verify that they are released. For
other resources, we could check this property at run time, but it would be hard
to do in general unless we kept track of every lock a thread holds. Such book-
keeping would incur an overhead that would nullify the performance benefits
of fast locking algorithms, such as thin locks [Bacon et al. 1998].

2.2 Memory Management

Each process is given its own heap on which to allocate its objects. In addition,
there is a dedicated kernel heap on which only kernel code can allocate objects.
Processes can allocate memory from their heaps without having an impact on
other processes; in addition, they can garbage collect their heaps separately.
Multiprocessor memory allocators such as Hoard [Berger et al. 2000] use per-
CPU heaps to reduce lock contention and increase concurrency. In contrast, we
use them for resource separation and accounting.

Our goal is to account precisely for the memory used by or on behalf of a
process. Therefore, we account not only for objects at the Java level but for all
allocations done in the VM on behalf of a given process. For instance, the VM
allocates data structures during the loading and linking process for a class’s
symbols and range tables for exception handling. Accounting schemes based on
bytecode rewriting [Czajkowski et al. 1998; Czajkowski and von Eicken 1998]
can account only for object allocations, because they cannot modify the virtual
machine. Accounting schemes based on garbage collection [Wick et al. 2002;
Price et al. 2003] use a single garbage collector to estimate memory usage: they
are imprecise1 in the presence of sharing.

Kernel interfaces are coded so that memory that is used on behalf of a pro-
cess is allocated on that process’s heap. For example, a process object, which is
several hundred bytes, is allocated on its associated heap (not the kernel heap).
The handle that is returned to the creating process to control the new process
is allocated on the creating process’s heap. The kernel heap itself contains only
a small entry in a process table.

We have designed KaffeOS to map logical resources to memory as much as
possible. This design has the advantage that we need not create resource limits
for every logical resource. For example, KaffeOS does not need specific limits
for system objects such as open files, because it can allocate them completely on
user heaps. Of course, some resources cannot be mapped to memory, and require
explicit deallocation. For example, Unix network sockets must be closed using
the close(2) system call. In KaffeOS, such resources are always associated
with trusted system objects. Those objects must register reclamation handlers
with the kernel, which are executed upon a process’s exit.

2.2.1 Reclamation. We assume that all memory used by a process must be
reclaimed when a process exits or is terminated. Complete reclamation prevents

1Wick et al. [2002] do describe a precise scheme, but the overhead of using their precise scheme is
prohibitive.
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the possibility of a sharing attack, where a process passes references to its own
objects to another process in the hope that the second process can keep its own
objects alive.

Reclamation must not sacrifice type safety, which implies that dangling
pointers must not be created. Therefore, a process’s objects must not be ref-
erenced from either another heap or a foreign thread’s stack or registers. While
a thread is in the kernel executing some system calls, it could have pointers
to arbitrary user heaps. We designed the KaffeOS kernel so that system calls
cannot block indefinitely if a termination request is pending; as a result, recla-
mation cannot be delayed indefinitely. In addition, we assume that a thread in
one process that is not executing a system call cannot have pointers to another
process’s heap. That is, we designed the kernel so that it does not expose a
process’s heap to another process through system calls: such a leak would be
a bug. Automatic program checking or verification techniques could be applied
to enforce these rules statically [Engler et al. 2000; Chen and Wagner 2002;
Henzinger et al. 2002].

Our kernel design restricts cross-process stack and register pointers. Cross-
references between user heaps must be prevented, because such references
would preclude reclamation of a heap. If we trusted that the kernel was bug-
free, we could assume that cross-process heap pointers could not be created.
Because maintaining isolation is a primary design goal, we do not make that
assumption: KaffeOS monitors writes to the heap through the use of write bar-
riers [Wilson 1992]. A write barrier is a check that happens on every write of an
object reference into the heap. Unlike software-fault isolation schemes [Wahbe
et al. 1993], we do not instrument every “store” machine instruction: write bar-
riers need to be inserted only for instructions that store references to memory.
In Java, these instructions are PUTFIELD, PUTSTATIC, AASTORE, and any assign-
ment within the VM or in native libraries that creates a connection between
two garbage-collected objects.

KaffeOS’s write barriers prevent illegal cross-references by interrupting
those writes that would create them and raising an exception instead. We call
such exceptions “segmentation violations.” Although it may seem surprising
that a type-safe language runtime could throw such a fault, it actually follows
the analogy to traditional operating systems closely.

2.2.2 Garbage Collection. In KaffeOS, each process’s garbage collection ac-
tivity is independent. This independence enables KaffeOS to accurately charge
processes for their CPU usage during garbage collection. The GC-based account-
ing schemes [Wick et al. 2002; Price et al. 2003] that we mentioned earlier do
not have this feature, because they use one pass to garbage collect all objects.
As a result, such schemes account for garbage collection time with the same
precision with which they measure the memory consumption of shared objects.

KaffeOS makes use of techniques from distributed garbage collection
[Plainfossé and Shapiro 1995] to track cross-references between heaps. Write
barriers detect the creation of legal cross-references. When a cross-reference
is created, we create an entry item in the heap to which it points. Exit items
in the original heap keep references to corresponding entry items. Exit items
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Fig. 3. Use of entry and exit items. Legal references between user heaps and the kernel heap are
monitored through exit and entry items. Multiple exit items can refer to the same entry item if
an object is shared by more than one heap. Dashed lines mean that objects do not need to store
a direct pointer to the exit items; instead, they can be found through a hashtable indexed by the
remote address.

can share entry items, as shown in Figure 3. Unlike distributed object systems
such as Emerald [Jul et al. 1988], entry and exit items are not used for naming
nonlocal objects. Instead, they are used to decouple the garbage collection of
different heaps.

During a garbage collection cycle, entry items are treated as garbage collec-
tion roots. Entry items are reference counted: they keep track of the number
of exit items that point to them. When an entry item’s reference count reaches
zero, the entry item is removed, and the referenced object can be garbage col-
lected if it is not reachable through some other path. Exit items are subject to
garbage collection: if the garbage collector encounters a reference to an object
outside the current heap, it will not traverse that object, but the corresponding
exit item instead. Exit items that are not marked at the end of a GC cycle are
garbage collected, and the reference count of the entry item to which it points
is decremented.

Because cross-references between heaps are reference counted, we must pay
particular attention to cycles. Cycles cannot occur between user heaps; they can
only occur between the kernel heap and user heaps. Writes to kernel objects can
only be done by kernel code; therefore, we can control what cycles are created,
modulo any bugs. Our kernel code tries to avoid cycles where possible. However,
some cycles are unavoidable: for instance, a process object is allocated on the
user heap, while its process table entry is allocated on the kernel heap. These
two objects must reference each other. Our kernel allows such cycles only if they
include system objects whose expected lifetime is equal to the lifetime of their
owning processes.

User-kernel heap cycles are collected when a process terminates or is killed.
After we destroy all its threads, we garbage collect the process’s heap and merge
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the remaining objects into the kernel heap. Garbage collection of the kernel
heap can then collect any unreachable cycles. Because we allow user-kernel
cross-references, it is theoretically possible that a cycle that spans multiple
heaps could be created. Such a cycle would require intermediate objects on the
kernel heap that connected different user heaps, which would be considered a
kernel bug.

2.3 Interprocess Communication

In standard Java sharing is direct: objects contain pointers to one another, and
a thread accesses an object’s fields via offsets from the object pointer. Since Java
is designed to support direct sharing of objects, we choose to allow direct sharing
between processes. Direct sharing in single-address-space systems is somewhat
analogous to shared memory (or shared libraries) in separate-address-space
systems, but the unit of sharing is at a finer granularity.

Direct sharing between processes complicates process termination and re-
source reclamation. If a process exports a directly shared object arbitrarily, it
is possible that object cannot be reclaimed when the exporting process is ter-
minated. All exported references to a shared object must remain valid, so as
not to violate the type-safety guarantees made by the Java virtual machine.
As in the case of user/kernel sharing, we suitably restrict references while still
maintaining most of the benefits of direct sharing. Unlike user/kernel sharing,
however, our direct sharing model does not rely on trust that the sharing par-
ties avoid exporting references that would prevent reclamation. In addition, the
model guarantees that the amount of shared memory used by a given process
is known at all times.

In KaffeOS, a process can dynamically create a shared heap to directly share
objects with other processes. Our design for shared heaps guarantees three
properties. First, one process cannot use a shared heap to keep objects in an-
other process alive. Second, all sharers are charged in full for a shared heap
while they are holding onto the shared heap, whose size is fixed. Third, sharers
are charged accurately for all metadata, such as class data structures.

Shared objects are not allowed to have pointers to objects on user heaps,
because those pointers would prevent the user heap’s full reclamation. This
restriction is enforced by our write barriers; attempts to create such pointers
result in an exception. Figure 4 shows which references are legal between user
heaps, shared heaps, and the kernel heap. References between shared heaps
and the kernel heap are legal, similar to references between user heaps and
the kernel heap.

Shared resources pose an accounting problem: if a resource is shared between
n sharers, should all n sharers be charged 1/n of the cost? In such a model,
the required contribution of each sharer would grow from 1/n to 1/(n − 1)
when a sharer exits. Sharers would then have to be charged an additional
1/(n−1)−1/n = 1/n(n−1) of the total cost. As a result, a process could run out
of memory asynchronously through no action of its own. Such behavior would
violate isolation between processes. Therefore, we charge all sharers in full for
shared data when they obtain references to it and reimburse sharers in full
when they are done using the shared data.
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Fig. 4. Valid cross-references for shared heaps. References from a user heap to a shared heap are
legal and necessary to share objects. References from a shared heap to any user heap would prevent
full reclamation and are therefore illegal. Shared objects may refer to kernel objects and vice versa.

A similar problem would occur if one party could expand the size of the data
that is shared. If the size of the shared data increased over time, a process could
asynchronously run out of memory. To avoid this problem, we allow processes to
share only data of fixed size. This decision may lead to some waste of memory,
because applications that do not know how much data they will share may have
to overprovision the shared heaps they use.

Processes can exchange data by accessing shared objects, which reside on
shared heaps. Acquiring references to shared objects requires the invocation of
a special API, but making use of the objects does not. Instead of introducing
a special API, another possibility would be to change Java itself. For example,
one could provide a modified form of the new operator that would take the heap
on which to perform the allocation as a parameter.

A shared heap has the following lifecycle:

(1) One process picks one shared class out of a central shared namespace, cre-
ates the heap, loads the shared class into it, and instantiates a specified
number of objects of that shared class. During this instantiation, each ob-
ject’s constructor is invoked using the Java reflection API. All memory al-
located during this process is charged to the newly created shared heap. A
shared class can execute arbitrary code in its constructor, which includes
instantiating objects of additional classes. While the heap is being created,
its memory is charged to its creator. The creating process does not need to
know the actual size of the shared objects in advance.

(2) After the heap is populated with classes and objects, its size is frozen.
Kernel code keeps track of what shared heaps are currently in use and pro-
vides a lookup service to user processes. Other processes can use this service
to look up a shared heap; this operation returns a direct reference to the ob-
jects in it. When a process looks up a shared heap, it is charged the amount
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established when that heap was frozen. The lookup fails if the amount ex-
ceeds the potential sharer’s memory budget. Our prototype does not provide
access controls on shared heaps, although they could be added easily.

(3) When a process drops all references to a shared heap, all of its exit items
to that shared heap are unreachable. After the process garbage collects the
last exit item to a shared heap, that shared heap’s memory is credited to
the sharer’s budget. When the last sharer drops all references to a shared
heap, the shared heap can be garbage collected. The number of shared
heaps a process can create during a given time period is limited; otherwise,
a process could repeatedly create and abandon shared heaps and deny
service to other processes.

Metadata related to shared classes and objects are allocated on the shared
heap. Because the shared heap is frozen after it is populated with objects, we
need to ensure that no further allocations of metadata are necessary after-
wards. For this reason, we eagerly perform allocations that would otherwise be
performed lazily in Java, such as the compilation of bytecode to native code and
the resolution of link-time references.

Allocations on a frozen shared heap and writing references to user-heap ob-
jects into shared objects triggers segmentation violation exceptions. Therefore,
certain dynamic data structures, such as variable-length queues or trees with
a dynamically changing number of nodes, cannot be efficiently shared. Their
fixed-sized counterparts can be shared, however. For instance, it is easily possi-
ble to share such data structures as read-only tries that are used for dictionary
lookup.

Our direct sharing mechanism does not require the kernel to trust the code
associated with any shared classes. Untrusted parties, without additional priv-
ileges, can share data. However, the communicating parties must trust each
other: our sharing mechanisms do not defend a server against an untrusted
client. If an untrusted client is terminated while operating on a shared object,
the shared object might be left in an inconsistent state.

We could easily extend KaffeOS to permit trusted servers to enter kernel
mode to protect shared data structures. In this manner, we could implement
trusted servers that communicate with untrusted clients. Such an extension
would be analogous to supporting in-kernel servers in microkernel-based sys-
tems [Lepreau et al. 1993]. If a server could not be trusted in this way, clients
would have to use one of the traditional, copy-based communication mecha-
nisms Java supports, such as sockets or RMI. Alternatively, kill-safe abstrac-
tions could be used [Flatt and Findler 2004].

Our IPC mechanism does not satisfy all of Shapiro’s requirements for assured
IPC [Shapiro 2003]: asymmetric trust, reproducibility, and dynamic payload.
KaffeOS IPC is based on object invocation, which cannot satisfy the requirement
of asymmetric trust: the ability to pass closures between clients and servers
requires mutual trust. KaffeOS IPC is reproducible, because its semantics does
not depend on the system’s status. Finally, KaffeOS IPC supports dynamic
payload, because a server object on a shared heap can allocate memory in the
client’s heap. Note that IPC across the user-kernel boundary does satisfy all
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three requirements: the kernel is designed to distrust any closures provided
from user space.

If we modified our assumptions to relax our requirements, we could adjust
some aspects of our model in special cases. For instance, if we can rule out
sharing attacks because all sharers are known to terminate at about the same
time, we could allow some cross-references from shared heaps to user heaps.
Second, if the communicating processes trusted each other and shared a com-
mon soft ancestor memlimit (described in the next section), we might not have
to freeze the shared heap and charge all sharers. Instead, we could associate
the shared heap with a sibling memlimit and leave the responsibility to avoid
out-of-memory situations to the sharing processes.

GC-based accounting schemes take approaches that cannot ensure the same
precision in accounting for GC time. Wick et al. [2002] proposes a scheme in
which child processes are scanned before parent processes, which ensures pre-
cise accounting only under certain kinds of sharing patterns. (Their precise
scheme incurs unacceptable performance penalties.) Price et al. [2003] proposes
a scheme in which roots are scanned in different orders, which is accurate only
if sharing patterns are stable over time.

2.4 Hierarchical Resource Management

In KaffeOS, the kernel manages primary resources. Primary resources are those
that must be shared by all processes, such as CPU time, memory, or kernel data
structures. Kernel data structures can be managed simply by applying conven-
tional per-process limits. In this section, we focus on the mechanisms for setting
resource management policies for memory and CPU time.

To manage memory, we associate each heap with a memlimit, which consists
of an upper limit and a current use. The upper limit is set when the mem-
limit is created and remains fixed for its lifetime; only the current use portion
is updated. Memlimits form a hierarchy: each one has a parent, except for a
root memlimit. All memory allocated in a heap is debited from its memlimit,
and memory collected from a heap is credited to its memlimit. This process of
crediting/debiting is applied recursively to the node’s parents, according to the
following rules.

A memlimit can be hard or soft (note that a soft memlimit is not one that
can be exceeded temporarily, as in filesystem quotas). This attribute influences
how credits and debits percolate up the hierarchy of memlimits. A hard mem-
limit’s maximum limit is immediately debited from its parent, which amounts
to setting memory aside for a heap. Credits and debits are therefore not prop-
agated past a hard limit after it has been established. For a soft memlimit’s
maximum limit, on the other hand, no memory is set aside, so a process is not
guaranteed to be able to allocate its full limit. It cannot, however, individually
allocate more than this limit. All credits and debits of a soft memlimit’s current
usage are immediately reflected in the parent. If the parent is a soft limit itself,
the process is applied recursively such that an allocation fails only if it would
violate the maximum limit of any ancestor node.

Hard and soft limits allow different memory management strategies. Hard
limits allow for memory reservations but incur inefficient memory use if the
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Fig. 5. Hierarchical memory management in KaffeOS. The numbers inside the boxes represent
limits; the numbers outside represent current use. A hard limit is immediately debited from its
parent; for soft limits, only the actual use is debited.

limits are too high. Soft limits allow the setting of a summary limit for multiple
activities without incurring the inefficiencies of hard limits, but they do not
reserve memory for any individual activity. They can be used to guard malicious
or buggy applications where high memory usage can be tolerated temporarily.

Consider the example shown in Figure 5: the 64-MB root memlimit is split
into a hard memlimit with a total of 16 MB on the left, of which 9 MB are used,
and a soft memlimit with a total of 48 MB on the right. The soft memlimit
is further subdivided into two soft memlimits with a total of 30 MB each. Be-
cause these memlimits are soft, the sum of the maximum limits of sibling nodes
can nominally exceed the parent’s maximum limit. Doing so allows a child to
use more than it would have been able to use had the memory been strictly
partitioned.

We use a stride scheduler [Waldspurger 1995] for CPU scheduling of pro-
cesses. We do not specify how threads within a process should be scheduled: the
Java specification demands a priority-based scheduler for the threads within
one application [Joy et al. 2000, Sect. 17.12]. Our CPU resource objects repre-
sent a share of CPU. Stride scheduling is work-conserving: CPU time that a
process does not use can be used by other processes. Therefore, it does not limit
how much CPU time a given process uses under light load. Under full load, if
all processes are runnable, a process uses only its assigned share. The kernel
heap’s collector and finalizer threads are the only threads not scheduled by the
stride scheduler: they are always scheduled whenever they are runnable. As
already mentioned, denial-of-service attacks against the kernel heap can be
prevented by limiting the number of kernel operations a process can perform.

3. IMPLEMENTATION

Our KaffeOS prototype is an extension of Kaffe [Wilkinson 1996], an open-
source Java VM. It is not a very fast JVM because its just-in-time compiler
performs little to no optimizations. However, Kaffe is mature and complete

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.



598 • G. Back and W. C. Hsieh

enough to run real-world applications. While our design does not rely on any
specific properties of Kaffe, our prototype depends heavily on the details of
Kaffe’s implementation.

3.1 Kernel

We implemented the KaffeOS kernel as a set of Java classes with correspond-
ing native methods. Implementing the kernel involved implementing classes
for process and heap management, and introducing the red line to ensure safe
termination. We introduced the red line by redesigning some sections of code
and by applying transformations to others so that critical data structures are
manipulated in kernel mode and so that kernel code handles all exceptional
situations carefully. This experience shows that the user/kernel boundary can
be introduced into an existing code base; nevertheless, it should be used as a
structuring principle from the beginning when designing JVMs or other run-
time systems.

We implemented basic kernel services as classes in a package kaffeos.sys.-
*. We implemented as many methods as possible in Java and resorted to native
methods only when necessary, mainly for glue code to the portions of the virtual
machine written in C. Most of the kernel-related services are implemented in
the classes Kernel, Heap, and Process. Other kernel services, such as opening a
file or network socket, are implemented by adapting the existing classes in the
Java runtime libraries, such as java.net.Socket. Finally, we changed all kernel
code so that it does not synchronize on objects that are exposed to user code.

Kernel implements basic functionality to bootstrap and shutdown the system
or to enter and leave kernel mode; it also provides methods to control various
internal kernel properties. Heap implements access to the (native) implemen-
tation of multiple heaps; it allows for the creation of new heaps and provides
methods to manipulate existing heaps. It also provides functionality for deep
copying of objects between heaps. Deep copies are necessary when arguments
to a system call must be passed from one process to another. For instance, a
process’s command line arguments must be deep copied, because a child process
is not allowed to refer directly to the arguments stored in its parent process.
Only objects of known classes, such as file descriptors or immutable objects
such as strings can be deep copied; we do not support deep-copying of arbitrary
user-defined objects.

The Process class provides the following functionality:

—bootstrapping of new processes,
—code to safely kill a process and invoke any necessary cleanup handlers to

free its logical resources,
—handles that can be used to control running processes,
—process-local properties, such a timezone or language-specific output settings.

3.2 Namespace and Class Management

We use Java class loaders to provide KaffeOS processes with different name-
spaces. Other language-based systems provide different namespaces in other
ways: for example, the SPIN project used a mechanism called domains,
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implemented by a dynamic linker [Sirer et al. 1996]. Java represents its run-
time types as class objects, and each class object is distinguished by its defining
class loader. We use class loaders in two ways. First, we use multiple loaders if
we cannot allow or do not want processes to share classes. Second, we delegate
to a common loader for processes that share classes.

Reloading Classes. Reloading is the multiple instantiation of a class from
identical class files by different loaders. Although these instantiations are of
different types, they use the same code, and thus their visible behavior is iden-
tical. Reloaded classes are analogous to traditional shared libraries. Reloading
a class gives each instance its own copies of all static fields, just as a shared
library uses a separate data segment in each process in which it is mapped.
Reloaded classes could share text, although our current implementation does
not support such sharing. Sharing text could be accomplished by changing the
just-in-time compiler to emit code that follows shared-library calling conven-
tions. Such code would use indirect calls through a jump table for calls that
lead outside the library’s code segment.

Sharing Classes. We can share classes between different processes’ name-
spaces by delegating requests for them to a common loader. We share classes
in two cases: either because the class in question is part of the runtime library
or because it is the type of a shared object located on a shared heap. We refer
to the former as system-shared, and the latter as user-shared. System sharing
of classes makes more efficient overall use of memory than reloading them,
because only a single class object is created. Even if our implementation shared
the text and constants of reloaded classes, the advantage of having system-
shared classes would likely still be significant, because a system-shared class
needs to maintain only a single copy of its linking state. However, system-shared
classes are not subject to per-process accounting, because we assume that such
sharing benefits all processes. Their number and size are bounded, because
applications cannot add system-shared classes. Our goals in developing our
class loading policy were to gain efficiency by maximizing system sharing and
to maintain correctness and ease of use for user-shared classes. At the same
time, we had to take into account the sometimes conflicting constraints imposed
by the Java API and Kaffe’s linker implementation, which we discuss below.

Process Loaders. Each KaffeOS process has its own class loader, which man-
ages that process’s namespace. The process loader is a trusted system object
that implements the loading policy. When asked for a class, it decides whether
the class is shared or not. If so, the request is delegated to either the system
loader (for system-shared classes), or a shared loader (for user-shared classes).
If the class is not shared, it is either a system class that must be reloaded, or a
regular user class. For user classes, our default implementation uses the stan-
dard Java convention of loading classes from a set of directories and compressed
archives that are listed in a CLASSPATH variable.

To ensure full namespace control, the process loader must see all requests
for classes, including those from user-created class loaders in that process. By
default, user-created class loaders in standard Java first attempt to delegate
to the system loader to ensure that system classes are not replaced by user
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classes. We changed the class loader implementation to delegate to the process
loader whenever a user-created loader would delegate to the system loader in
a conventional JVM.

The class loading mechanism must ensure that dynamic loading of classes
does not violate type safety, even if user-defined class loaders behave maliciously
or contain bugs. The class loader algorithm and implementation in early ver-
sions of Java was found to be faulty [Saraswat 1997; Dean 1997]. In response,
a set of rules that govern the behavior of user-provided class loaders was devel-
oped [Dean 1997; Liang and Bracha 1998]. These constraints are orthogonal to
the restrictions related to KaffeOS’s process model. While our prototype does
not implement these rules, an implementation would not interfere with provid-
ing per-process namespaces.

System-Shared Classes. To determine which classes can be system-shared,
we examined each class in the Java standard libraries [Chan et al. 1998] to see
how it acts under the semantics of class loading. In particular, we examined how
classes make use of static fields. Because of some unfortunate decisions in the
Java API design, some classes export static fields as part of their public inter-
faces. For example, java.io.FileDescriptor exports the public static variables
in, out, and err (which correspond to stdin, stdout, and stderr.) Other classes
use static fields internally. To system-share classes with static fields, we must
either conclude that it is safe to leave the fields unchanged; we must eliminate
the fields; or we must initialize the fields with objects whose implementation
is aware of KaffeOS’s process model. Final static fields with a primitive type
such as int are constants in Java and can be left untouched. Elimination of
static fields is sometimes possible for singleton classes, which can be made to
use object fields instead of static fields. If static fields cannot be eliminated, we
examine whether they can be initialized with objects whose implementation is
process-aware. If an object stored in a static field is used only by invoking its
methods, we can provide a substitute implementation that provides the same
methods, but modifies their behavior to take the currently executing process
into account. For instance, a process-aware version of the System.out stream
maintains a stdout stream for each process and dispatches output to the appro-
priate stream.

If the object’s fields are directly accessed by other classes, then creating a sub-
stitute implementation becomes more complicated, because it requires changes
to the code that uses that object. As a practical matter, we tried to make as few
code changes as possible, to allow for easy inclusion of upgrades and bug fixes
developed for the code base upon which KaffeOS is built. Reloading classes
allows us to use a class with static fields practically unchanged in a multipro-
cess environment. Consequently, we reload some classes that could have been
rewritten to be shared.

Linker Constraints. The decision of whether to share or reload a class is sub-
ject to linker-specific implementation constraints as well. First, shared classes
cannot directly refer to reloaded classes, because such references are repre-
sented using direct pointers by the run-time linker, and not through indirect
pointers as in shared libraries. Second, certain classes must be shared between
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Fig. 6. Transforming library code. The original version of System.out was implemented as a sim-
ple PrintStream layered on top of a buffered file stream, which in turn relied on a FileOutputStream

constructed using the stdout file descriptor FileDescriptor.out. Because System must be shared,
System.out is replaced with a process-aware version that dispatches output to the current pro-
cess’s stdout stream. As in the original version, this stream is initialized with the current process’s
FileDescriptor.out. Because FileDescriptor is reloaded, reflection is used to avoid a direct ref-
erence from System to FileDescriptor.

processes. For example, the java.lang.Object class, which is the superclass
of all object types, must be shared. If this type were not shared, it would not
be possible for different processes to share generic objects! Consequently, the
transitive closure of classes pointed to by Object has to be shared.

We built a small tool that determines the transitive closure of classes ref-
erenced by a class, and used the tool on the classes we needed to share. For
java.lang.Object, we found that its closure turns out to be quite large: Object
refers to java.lang.Throwable, which is the base class of all exceptions, which
in turn refers to java.lang.System in its printStackTrace method. System is a
complex class with a multitude of references to other classes. We then rewrote
classes to remove direct references. This transformation requires the use of
reflection to access fields or methods in a class. An example of such a trans-
formation is given in Figure 6, which depicts the initialization code sequence
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for the System class. In the original version, the out variable was implemented
as a simple PrintStream layered on top of a buffered file stream, which in
turn relied on a FileOutputStream constructed using the stdout file descrip-
tor FileDescriptor.out. System.out is replaced with a process-aware object
that dispatches the output to the current process’s stdout stream; println() is
shown as an example. The current process’s output stream is initialized with
the current process’s FileDescriptor.out in a method called kaffeos init().
Because FileDescriptor is reloaded, reflection is used to resolve the name
java.io.FileDescriptor in the context of the current process’s loader, which
avoids a direct reference from System to FileDescriptor. By convention, the
static kaffeos init() method, if it exists, is invoked for every shared class
at process initialization time. It serves as an analogue to static initializers in
reloaded classes. Code that would otherwise be in a static initializer is moved
to kaffeos init() if process-local data must be initialized.

Our use of the term reloading differs from the use in Liang and Bracha
[1998], where it describes a technique to dynamically update systems by load-
ing multiple versions of the same class over time. Instances of classes reloaded
in this way can be accessed directly through a known shared supertype. In
this case, the linker does not have to create a direct connection between the
class accessing such instances and the reloaded classes themselves, because
the accessing class only refers to the shared supertype. KaffeOS supports this
dynamic update technique for its applications as well. The need for the indi-
rection discussed in this section arises only if the Java API dictates a direct
relationship between classes that must be shared and classes that cannot be
shared, as is the case in the example discussed above.

When writing native methods for reloaded classes, we must ensure that
references to class objects and static fields are properly handled. In standard
Java, a native library can be loaded only by a single class loader [Liang 1999,
Sect. 11.2.4]. This restriction was introduced to prevent native code from mis-
takenly intermixing classes and interfaces from different class loaders. Such
intermixing could occur if native libraries cached pointers to class objects and
static fields between calls. Such caching is safe if classes that contain native
methods are not reloaded. KaffeOS does not impose this restriction and reloads
classes with native methods. Therefore, we must ensure that its native libraries
do not perform such caching.

Adapting the runtime libraries to KaffeOS was a compromise between our
desire to share as many classes as possible to increase efficiency, yet at the
same time exploit reloading to avoid code changes. Out of roughly 600 classes
in the core Java libraries, we are able to safely system-share 430. This high
proportion (72%) was achieved with only moderate changes to a few dozen
classes and more extensive changes to a few classes, such as java.lang.System.
The rest of the classes are reloaded, which requires no changes at all. The
set of runtime classes that an application uses is, unsurprisingly, application-
dependent. Table I shows the distribution for the runtime classes used by the
SPEC JVM98 benchmarks. The proportion of shared classes lies above 72%,
although these benchmarks do not exercise many runtime classes, and the
results may therefore not be representative.
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Table I. Number of Shared Runtime Classes for SPEC JVM98 Benchmarks

Benchmark check compress jess db javac mpegaudio mtrt jack
reloaded 8 8 8 8 8 8 8 8
shared 55 46 54 49 60 49 51 47

This table shows that of the runtime classes used by the SPEC JVM98 benchmarks, only a small
number cannot be shared and must be reloaded. For all benchmarks, java.io.FileDescriptor,
java.io.FileInputStream, and java.io.FileOutputStream are among the eight reloaded classes.

User-Shared Classes. To ensure that every process that has access to a
shared heap sees the same types, process loaders delegate the loading of all
user-shared types to shared loaders. Each shared heap has its own shared
loader, which is created at the same time as the heap. Process loaders use a
shared class’s name to determine the shared loader to which the initial request
for a shared class should be delegated. Java’s class loading mechanism ensures
that subsequent requests are delivered to the shared loader that is the defining
loader of the initial class. If we did not delegate to a single loader, KaffeOS
would need to support a much more complicated type system for its user-shared
objects.

For simplicity, all user-shared classes share a single global hierarchical
namespace in shared.*, similar to a filesystem. Communicating partners can
look up shared classes by name. A table maps class names to loaders. This table
is a global resource, and limits on the number of entries a process can create
could be applied to prevent that table from growing indefinitely.

Like system-shared classes, user-shared classes cannot directly refer to
reloaded classes. Because most classes that are part of the runtime library are
shared, this limitation is not severe. As with system-shared classes, a devel-
oper of user-shared classes can use reflection to access reloaded classes. Failure
to use reflection results in write barrier violations during linking, because the
linker would attempt to create a cross-reference from a class on a shared heap
to a class on a user heap.

3.3 Memory Management

We focus on the process-specific implementation aspects of the memory manage-
ment subsystem of our KaffeOS prototype. Most of the other implementation
details were relatively straightforward. The implementation consists of two
parts: the memory allocator and the garbage collector.

3.3.1 Memory Allocator. The memory allocator is logically divided into two
components: the small object allocator and the primitive block allocator. The
small object allocator maintains a pool of pages from which small objects are
allocated. Each heap has its own pool of small object pages. The primitive block
allocator maintains a single global pool of continuous memory regions that are
comprised of one or more contiguous pages. Objects that are larger than one
page and small object pages are allocated from the pool of primitive blocks.

Keeping the free lists for small objects on a per-heap basis has the advantage
that all internal fragmentation is fully accounted for. Once a page is taken from
the primitive block list and prepared for use in a given heap, it is charged to
that heap. As a result, it is impossible for a process to launch a “fragmentation
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attack” against KaffeOS by holding on to a few objects that are spread over
multiple pages. A second advantage is that no cross-process locking is necessary
during allocation. Finally, because all objects within one page belong to the same
heap, we need to store the heap identifier only once for all objects on a page.

Conversely, because a page will be charged to a heap even if only a single
object is used, processes may be overcharged for memory. If we consider only
live objects, we can expect an average overcharge of n ∗ pagesize/2, where n is
the number of freelists. For n = 19 small object sizes, the overhead amounts to
38 KB on a machine with 4 KB pages. Picking a smaller n would reduce this
overhead, but would increase the slack that is wasted per object. Internal frag-
mentation can also lead to an overcharge when a heap is not garbage collected
frequently enough, so that it allocates long-lived objects in new blocks instead
of garbage collecting and reusing older blocks. The possible impact of this over-
charge is difficult to predict, because it depends on an application’s allocation
and garbage collection patterns. Note, however, that overcharging because of
internal fragmentation does not require an application to have a memlimit
with a maximum limit greater than the maximum total size of its live objects,
because a garbage collection is triggered when a heap reaches its maximum
limit. This fragmentation issue occurs only because our collector does not move
objects, and it is not inherent in our design.

Although internal fragmentation can be accounted for, our implementation is
subject to external fragmentation of global memory. In practice, this fragmen-
tation caused problems with lazily allocated kernel data structures, because
scattered small object pages with long-lived kernel data fragmented the space
of primitive block, which reduced the maximum size of primitive blocks avail-
able. To prevent the kernel from causing external fragmentation in this way,
we adopted a work-around: when possible, we allocate kernel pages from a
large continuous block at the bottom of the global memory pool. The primi-
tive block allocator allocates blocks of memory whose sizes are multiples of a
pagesize, and external fragmentation can occur. Like the internal fragmenta-
tion discussed earlier, this external fragmentation could be avoided if a moving
collector were used.

3.3.2 Garbage Collector. KaffeOS uses the garbage collector provided by
Kaffe, which is a nongenerational, nonincremental collector that walks stacks
conservatively. For correctness, we must ensure that the set of objects that
we identify as reachable does not change during the mark phase, even if the
reachability graph should change. The simplest solution would be to prevent
all threads from running during the full GC cycle. This solution would violate
the separation of different processes if we prevented all remote threads from
running for the full duration of the collection.

Given the absence of fully incremental garbage collection in Kaffe, we chose
to implement a simpler solution. In our solution, we block those foreign threads
that attempt writes into a heap when a garbage collection for that heap has been
started. Usually, this blocking affects few, if any, threads. Only foreign threads
in kernel mode have a legitimate reason to write into a process’s heap, and only
if they perform kernel operations directly related to that process. Examples
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of such operations include a process starting or stopping another process, or
retrieving a process’s properties.

Our thread stack algorithm needs to perform more work than in the single
process case. In particular, it needs to walk each remote entry twice, as well
as all objects reachable from them. Because entry items to user heaps can be
created only by kernel code, there are generally few of them. For instance, a
simple “Hello, World” program creates only two entry items. The collection of
the kernel heap itself is a special case, where we stop all threads for the entire
duration of GC.

3.3.3 Implementing KaffeOS on Modern VMs. The implementation of Kaf-
feOS design would likely be significantly different on a modern VM. We can
envision several ways in which the implementation could benefit:

Fast Write Barriers. We would combine KaffeOS write barriers with the
write barriers used by the VM’s collector. For instance, some allocators divide
the heap into heap regions that are aligned at major virtual memory alignment
boundaries [Stefanović et al. 1999]. Checking whether the source and target of
an assignment are within the same heap region—and therefore, in KaffeOS,
belong to the same KaffeOS heap—can be done without loading explicit bounds.
This common case takes only three or four instructions on most architectures.

Fully Precise Collection. Using a fully precise collector with garbage col-
lection maps would help us in at least two ways. First, we would be immune
against certain kinds of denial-of-service attacks against the garbage collec-
tor that are based on spoofing pointers on the stack to which a conservative
collector is vulnerable. Second, a precise collector would allow us to identify
which remote threads contain kernel frames on their stack, aiding the process
of scanning foreign threads.

Pretenuring. A generational collector could employ application-specific
knowledge for pretenuring [Blackburn et al. 2001]. In particular, shared kernel
objects that are known to be long-lived can be directly allocated in regions that
are least frequently collected. This would reduce the overhead associated with
collecting the kernel heap.

Thread-Local Heaps. Thread-local heaps [Steensgaard 2000; Domani et al.
2002] are used to reduce the synchronization overhead in a multi-threaded
environment. Each thread is given a heap in which to allocate objects that are
not shared with other threads, determined by performing a escape analysis.
KaffeOS could benefit because assignments to objects known to not escape the
current thread are certain to not escape the current process.

3.4 Programming Model for Shared Heaps

The practicality of our model for direct sharing is a very important aspect of
KaffeOS’s design. To demonstrate the model’s practicality, we implemented a
small subset of the Java 1.2 collection API under the shared programming
model, and used those data structures to implement a servlet microengine. In
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this section, we discuss the model’s restrictions in detail and show how they
affect the implementation of shared objects.

3.4.1 Restrictions on Shared Heaps. The design restrictions on shared
heaps imply several practical changes to the programming model for shared
classes:

Shared Heaps Remain Fixed in Size after Their Creation. All required ob-
jects must be allocated while the shared heap is being created. Some collection
types, such as java.util.LinkedList, use cells that contain a reference to an
item in the list and a next and prev pointer. On a KaffeOS shared heap, we
cannot allocate new cells after the heap is frozen. Furthermore, because there
is no way to reclaim and reuse memory, we cannot afford to discard removed
cells. Instead, we must manage cells manually, which can be done by keeping
them on a separate freelist.

Shared Objects Cannot Allocate Data Structures Lazily. All link-time ref-
erences must be resolved and all bytecode must be translated into native code
before freezing a shared heap. This requirement also affects certain program-
ming idioms in the Java code. For instance, the java.util.HashMap.keySet()
method returns a Set object that is created and cached on the first call. Sub-
sequent invocations return the same Set object. In our programming model,
this object must be created and cached before the shared heap is frozen; for
instance, by allocating the Set object eagerly in the constructor of HashMap.

All Entry Points into the Shared Heaps Must Be Known. The shared heap’s
size is fixed once the heap is frozen, so no entry items can be allocated after-
wards. We introduced an API function that allows the reservation of entry items
for specified objects while the heap is created. This function preallocates the
entry item; when the write barrier code detects that a reference to the object
is written to a user heap, it uses the preallocated entry item instead. Shared
classes must be careful to reserve entry items for all objects to which a process
might acquire references later.

No References from Shared Heaps to Objects on User Heaps Can Be Created.
We must avoid assignments to fields in shared objects, unless the object to
which a reference is being assigned is known to also reside on the same shared
heap. This requirement precludes the storage of temporary objects, which are
allocated on user heaps, in fields of shared objects. Instead, references to such
objects must be restricted to local variables on the stack.

These restrictions on our shared programming model result from two inde-
pendent design goals. The first goal is to avoid sharing attacks and guarantee
full memory reclamation. This goal requires the use of write barriers to prevent
illegal cross-heap references. The second goal is to prevent programs from asyn-
chronously running out of memory. For this reason, all sharers are charged,
which in turn requires that a shared heap is frozen after creation so as to ac-
curately charge all sharers.

3.4.2 Examples of Shared Data Structures. We give two examples to
detail the implications of our restrictions. As a first example, we created
shared.util.HashMap, which is an adaptation of java.util.HashMap for use on
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shared heaps. The shared.util.HashMap class is an immutable data structure.
Map instances are created and populated with (key, value) pairs during the
construction of a shared heap; no elements can be added after the shared heap
is frozen.

Kaffe’s implementation uses an array of buckets, each of which is an anchor
to a singly linked list of Entry objects. Each Entry object consists of a next
field, and two fields that hold references to a (key, value) pair of objects. A
hashmap provides methods that return handles to its key and value sets in the
form of Set objects, which in turn provide iterators. For implementation reuse
reasons, the key and value set objects are implemented in an abstract base class
AbstractMap.

Because the use of iterators on a heap requires direct pointers to the list
entries in the hashtable, we must reserve entry items for them. Our implemen-
tation is shown in Figure 7. It differs from the original implementation in only
three aspects.

(1) It is in the shared.util package instead of the java.util package. As a side
effect, we had to copy and rename java.util.AbstractMap to shared.util.-
AbstractMap as well to provide package access to fields in AbstractMap.
However, we did not need to duplicate the Map interface in the shared.util
package: hence, shared hashmaps can be used wherever java.util.Map
instances can be used.

(2) It allocates its keyset set and values collection eagerly in the constructor.
(3) It reserves entry items for all entries and the key and value collections.

Figure 8 illustrates the interheap connections that are created if an
iterator for the set of keys in the hashmap is created. Only three meth-
ods and one constructor of shared.util.HashMap differ from java.util.-
HashMap, in that they can throw new errors. For instance, put() would throw a
SegmentationViolation if an attempt is made to modify the hashmap after the
shared heap on which it is allocated is frozen. All other methods behave in the
same way. In particular, the entrySet, values, and keySet behave as defined in
the API specification; they return sets and collections with the same types that
a java.util.HashMap instance would return.

The shared hashmap implementation provides an example of a immutable
data structure. An instance in which the hashmap could be used might be a
dictionary that is built once but accessed frequently. If the dictionary changes
infrequently, discarding the shared heap that contains the hashmap and copy-
ing and updating the hashmap on a newly created shared heap should be viable.

As a second example, we consider the implementation of a service queue in
shared.util.LinkedList. A service queue is a common communication idiom
that is used in client and server applications. The java.util.LinkedList class
provides a doubly linked list implementation that can be used. However, unlike
a hashmap, there are few uses for a queue that do not involve changing the
queue’s elements. We therefore adapted the implementation to allow for the
addition and removal of elements to the queue. Because shared heaps are a fixed
size, addition is only possible as long as the total number of added elements
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Fig. 7. Implementation of shared.util.Hashmap. By copying the code of java.util.HashMap and
making slight modifications, we were able to create an implementation of a hashmap that is suitable
for use on KaffeOS’s shared heaps.

does not exceed the maximum number specified when constructing the shared.-
util.LinkedList object. The actual queue elements themselves must also be
preallocated on the shared heap. An example might be a set of preallocated
buffers that is read from and written to by the communicating processes.

Figure 9 sketches the object instances involved. We manually manage a num-
ber of preallocated Elem cells. We changed the original code in java.util.-
LinkedList to add a freelist field and methods getElem and putElem to get
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Fig. 8. Use of shared.util.HashMap on a shared heap. The keyset field in the hashmap object
refers to an AbstractSet allocated eagerly on the shared heap. Its iterator() method returns an
anonymous Iterator object, which in turn refers to a HashMap.EntryIterator object upon which its
implementation is based. This entry iterator object is obtained from a call to HashMap.entrySet(),
which allocates an AbstractMapEntrySet object, and a subsequent invocation of the entry set’s
iterator method. In KaffeOS, the use of iterators for hashmaps on a shared heap is unconstrained,
because our implementations allocate the key set eagerly and reserve entry items for all Entry
objects (not shown in the figure).

and put elements on the freelist. We replaced all calls to new Elem(...) with
calls to getElem to get cells from the preallocated list. In addition, we carefully
inserted calls putElem in those places where a list element is discarded to re-
cycle them. As with shared hashmaps, each list cell requires the reservation of
an entry item.

We required some changes to constructors and other methods. A construc-
tor LinkedList(int) was created for which the integer argument specifies the
maximum number of elements in the list. The add and related methods were
adapted to throw SegmentationViolationError if an object is not on the shared
heap. All other methods behave in the same way; in particular, iterator() re-
turns an object of type java.util.Iterator, and the shared.util.LinkedList
itself can be used as a java.util.List instance.

We used the shared hashmap class and the linked list class to implement
a servlet microengine. This engine does not implement the full Java servlet
API; however, it is sufficiently complete to demonstrate KaffeOS’s interprocess
communication. The example includes three processes: a http server process
and two servlet engine processes. The server and servlet processes share a
queue for http requests on a shared heap. The http server receives http GET
requests, examines the URL contained in the request, and dispatches the
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Fig. 9. Use of shared.util.LinkedList on a shared heap. Our implementation of shared.util.-
LinkedList, which can be used for queues, adds a freelist of Elem objects to store elements not
currently in use. The queue is bounded by the number of Elem cells that are preallocated. The
use of LinkedListIterator instances is unconstrained since we reserve entry items (not shown in
figure) for all elements and the LinkedList instance itself.

request to a servlet. Each servlet waits for requests on its queue and pro-
cesses incoming requests. The servlets perform a lookup in a German-English
dictionary and display the result to the user. The dictionary is stored in an
object of type shared.util.HashMap located on a second heap that is shared
between the servlet processes.

4. EVALUATION

We focus on three areas in the evaluation of our KaffeOS prototype. First, we
measure the run-time overhead KaffeOS introduces, when compared with a
JVM that does not provide robust support for multiple processes. We show that
the overhead is reasonable (from 0% to 25%) when compared to the Kaffe VM
upon which KaffeOS is based. Second, we evaluate KaffeOS’s effectiveness in
handling untrusted or buggy applications that may engage in denial-of-service
attacks. KaffeOS can defend against denial-of-service attacks directed at mem-
ory, CPU time, and the garbage collector; KaffeOS’s integrity is not compro-
mised by such attacks. Third, we compare KaffeOS to the possible alternative
of running multiple applications on multiple JVMs, and show that KaffeOS can
outscale that approach.

Our prototype runs as a user-mode application on top of the Linux operating
system. All our measurements were taken on a 800 MHz “Katmai” Pentium III,
with 256 Mbytes of SDRAM and a 133 MHz PCI bus, running Red Hat Linux
6.2. The processor has a split 32 K Level 1 cache and combined 256 K Level 2
cache. We used the GNU C compiler (Version egcs–1.1.2) to compile the VM,
and we used IBM’s jikes compiler (Version 1.12) to compile the Java portions of
the runtime libraries.
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4.1 Application Benchmarks

KaffeOS’s use of write barriers for isolation introduces some overhead when
running applications. To measure this overhead, we implemented several ver-
sions of the system:

No Write Barrier. We execute without a write barrier and run everything
on the kernel heap. The No Write Barrier version accounts for any possible
performance impact of the changes made to Kaffe’s runtime and provides the
baseline version for examining the write barrier overhead.

No Heap Pointer. This version is the default version of KaffeOS. For each
small object page, and for each large object, we store a heap ID in a block
descriptor. To avoid cache conflict misses, the block descriptor is not kept at a
fixed offset on the same page. Instead, block descriptors are stored in an array,
whose index values are computed as affine transformations of the address of
an object. At each heap pointer write, the write barrier consists of a call to a
routine that finds both the source and the destination object’s heap ID from
their addresses and performs the barrier checks.

Heap Pointer. In this version, we trade some memory for speed: we in-
creased each object’s header by 4 bytes, in which we store the heap ID. In this
case, extracting the heap ID is substantially faster, because the block descriptor
does not have to be read from memory to retrieve the heap ID. We coded the
fast path (i.e., where our policy allows the write to complete) for this barrier
version in assembly language.

Fake Heap Pointer. To measure the impact of the 4 bytes of padding in the
Heap Pointer implementation, we padded the object header by 4 bytes, but did
not store the heap ID in them. Instead, we determine the heap ID as in the No
Heap Pointer version. In other words, we impose the memory overhead of the
Heap Pointer version, but do not use a faster write barrier.

The KaffeOS JIT compiler does not inline the write barrier routine. Inlining
the write barrier code might improve performance, but it could also lead to
substantial code expansion. For instance, in the No Heap Pointer version, the
write barrier code includes 29 instructions, plus an additional 16 instructions
for procedure calling conventions, which an inlined version may not require.
Ideally, the intermediate representation of the write barrier code should be
available to a just-in-time compiler, so that the compiler can apply heuristics
to decide whether to inline or outline on a per-call site basis.

4.1.1 Write Barrier Overhead. We used the SPEC JVM98 bench-
marks [SPEC 1998] to evaluate the performance of KaffeOS for real-world,
medium-sized applications. These benchmarks measure the efficiency of
the just-in-time compiler, runtime system, operating system, and hardware
platform combined. SPEC JVM98 consists of 7 benchmarks: compress, jess, db,
javac, mpegaudio, mtrt, and jack. All except db are real-life applications that
were developed for purposes other than benchmarking. An eighth benchmark,
check, is used to test the proper implementation of Java’s features in the VM;
KaffeOS passes the check benchmark.
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Table II. Number of Write Barriers Executed by SPEC
JVM98 Benchmarks

Cross-heap
Benchmark Barriers Number Percent
compress 47,969 3336 6.95%
jess 7,939,746 4747 0.06%
db 30,089,183 3601 0.01%
javac 20,777,544 5793 0.03%
mpegaudio 5,514,741 3575 0.06%
mtrt 3,065,292 3746 0.12%
jack 19,905,318 6781 0.03%

The “cross-heap” column counts the occurrences where source
and destination do not lie in the same heap; that is, those for
which entry and exit items must be created or updated.

compress compresses and decompresses data from a set of five tar files using
a modified Lempel-Ziv method (LZW). Compress does not use many objects;
it spends most of its execution operating on two large byte arrays. jess is a
Java Expert Shell System (JESS) based on NASA’s CLIPS expert shell system.
This benchmark is computationally intensive and allocates many short-lived
objects. db is a synthetic benchmark that simulates database operations on a
memory-resident database. javac is the Java compiler from Sun Microsystem’s
Java Development Kit (JDK) version 1.0.2. Its workload is the compilation of
the jess benchmark. mpegcompress decompresses audio files that conform
to the ISO MPEG Layer-3 audio specification. This benchmark performs very
little memory allocation. mtrt is a raytracer program that renders a small scene
depicting a dinosaur. It is the only multithreaded benchmark. The jack parser
generator is based on the compiler toolkit now known as JavaCC. The workload
consists of a file that contains instructions for the generation of jack itself.

In addition to the four different write-barrier implementations mentioned
above, we include in our comparison the version of Kaffe on which KaffeOS
is based. We use a development snapshot from June 2000 for that purpose;
we label this version “Kaffe 2000” in our benchmarks. We also include IBM’s
JVM [Suganuma et al. 2000] from the IBM JDK 1.1.8, which provides one of
the fastest commercial JIT compilers available for JVMs that implement Java
version 1.1.x. Our prototype does not provide support for the abstract window-
ing toolkit (AWT), which prevents us from running the benchmark according to
the SPEC JVM98 run rules. Our results are not comparable with any published
SPEC JVM98 metrics.

We instrumented KaffeOS to determine the number of write barriers that
are executed in a single run of each benchmark. Except in the No Write Barrier
case, we run each benchmark in its own process. Table II shows how many write
barriers are executed for a single run. The number of write barriers depends
not only on the application, but also on implementation decisions in the run-
time libraries used. The table shows that the source and destination objects
lie in the same heap for almost all write barrier executions counted. Only a
miniscule fraction of write barriers (less than 0.2%, except for compress, which
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Fig. 10. KaffeOS performance in SPECjvm98 benchmarks. This chart displays the time needed to
run SPECjvm98 using the provided harness, relative to the time needed by Kaffe 2000. Kaffe 2000
is the version of the Kaffe VM upon which KaffeOS is based. All Kaffe-based versions are roughly
2–8 slower than IBM’s industrial VM. The differences between Kaffe 2000 and KaffeOS are small,
and the overheads of all write barrier versions with respect to the No Write Barrier version are
tolerable.

does hardly any writes) are “cross-heap,” in that they result in the creation
or update of entry and exit items. The other possible outcome produced by a
write barrier, a segmentation violation error, should not and does not occur in
these benchmarks. Differences in the number of “cross-heap” write barriers re-
sult when applications use different kernel services. For instance, javac opens
many more files than compress.

Figure 10 shows the results of running the SPECjvm98 benchmarks. We ran
each benchmark three times in the test harness provided by SPEC (in a run
that follows all of SPEC run rules, each benchmark is run two to four times).
We set the maximum heap size to 64 MB for each JVM. The bars show the
average runtime as displayed by the test harness, normalized with respect to
Kaffe 2000.

Overall, IBM’s JVM is between 2–8 times faster than Kaffe 2000. We focus
on the differences between Kaffe 2000 and the different versions of KaffeOS.
For those benchmarks that create little garbage, compress and mpegaudio, the
difference in total runtime is small. For the other benchmarks, we observe a
larger difference, even between Kaffe 2000 and the No Write Barrier version of
KaffeOS. This difference exists because of the changes we made to the runtime
system, but also because the time spent in garbage collection differs from bench-
mark to benchmark.
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Table III. Measured vs. Best-Case Overhead

Total Runtime Runtime Excluding GC Time
Benchmark No Heap Ptr Heap Ptr No Heap Ptr Heap Ptr
compress∗ −0.5%(0.0%) 0.0%(0.0%) 0.1%(0.0%) 0.5%(0.0%)
jess −1.1%(1.0%) 1.7%(0.3%) −0.5%(1.2%) 2.3%(0.3%)
db 2.5%(3.8%) 4.5%(1.1%) 3.5%(4.1%) 4.8%(1.2%)
javac 5.6%(2.5%) 3.2%(0.7%) 7.7%(3.4%) 2.9%(0.9%)
mpegaudio∗ −1.4%(0.8%) −0.7%(0.2%) −1.2%(0.8%) −0.5%(0.2%)
mtrt∗ 0.3%(0.5%) −0.4%(0.1%) 3.5%(0.6%) −0.1%(0.2%)
jack 3.4%(1.9%) 2.8%(0.5%) 4.2%(2.4%) 2.4%(0.6%)

∗small number of write barriers.
In each table cell, the first number is the measured overhead; the number in parentheses is
the best-case overhead relative to the No Write Barrier version.

Table III compares the measured overhead to the overhead that could be ex-
pected from the write barriers alone, assuming the best-case cycle counts. The
worst overhead measured is 5.6% with respect to runtime excluding GC time;
7.7% with respect to the total runtime without the heap pointer optimization;
and 4.5% and 4.8%, respectively, if the optimization is applied. For two bench-
marks that perform a substantial number of writes, java and jack, the actual
penalty is predictably larger than the estimate obtained using a hot cache. For
these two benchmarks, the heap pointer optimization is effective in reducing
the write barrier penalty. Excluding GC, KaffeOS Fake Heap Pointer performs
similarly to KaffeOS No Heap Pointer; however, its overall performance is lower
because more time is spent during GC.

There are some anomalies: jess runs faster with write barriers than without,
and the overhead of db is lower than the expected best-case overhead. The
relative performance order is not consistent. Without nonintrusive profiling,
which we do not have available for Kaffe, we can only speculate as to what
the reasons might be. It is possible that cache effects are to blame, since both
versions have completely different memory allocation patterns. Some internal
data structures, such as the table of interned strings, are instantiated only
once in the No Write Barrier cases, whereas they are duplicated for each heap
in all other cases. Finally, since the garbage collector collects only the user heap,
we may see a small generational effect, since fewer objects need to be walked
during each process’s GC.

On a better system with a more efficient JIT, the relative cost of using write
barriers could increase. However, a good JIT compiler could perform several
optimizations to remove write barriers. Static analysis could be used to remove
redundant write barriers, as demonstrated by Zee and Rinard [2002]. To per-
form such optimizations, the compiler would have to be extended to know about
how KaffeOS uses write barriers, so that it could infer when write barriers are
redundant. If a generational collector were used, we should be able to combine
the write barrier code for cross-heap checking with the write barrier code for
cross-generation checking.

4.1.2 Overhead for Thread Stack Scanning. Each KaffeOS process must
scan all threads when garbage collecting its heap. Our experiments show that
this requirement does not lead to priority inversion between processes. It can,
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however, impose significant overhead for each process, which we quantify for
our prototype.

Priority inversion could occur if one process prevented a second process from
running because it needed to stop the second process’s threads to scan them.
We stop remote threads on three occasions during the mark phase of a heap’s
garbage collection: first, when marking entry items, second, when scanning an
individual remote thread’s stacks, and third, when recoloring and rewalking the
list of black items. The potential for priority inversion depends on the maximum
amount of time remote threads must be stopped, which is the maximum of the
amounts of time spent on marking and recoloring entry items, respectively,
combined with the maximum amount of time spent on scanning any individual
remote thread stack. The overall maximum does not depend on the number of
remote threads.

All of the aforementioned times are application-specific. To estimate how
much time would be spent marking and recoloring, we ran the SPEC JVM98 in
parallel with a process that was instructed to repeatedly garbage collect its own
heap. We found that a very small amount of time was spent in theses phases
(about 4.7% and 3.6% of a 10 ms time slice on a 800-MHz machine, or 383 K
and 291 K cycles.)

To estimate how much time is spent scanning a remote thread stack, we
used a scenario in which the effective stack size was varied using a recursive
function with varying levels of recursion depth. Our experiments showed that
the time spent scanning increased linearly with the stack size, as could be
expected. For the maximum size in our experiment, a thread stack of length
221,000 bytes, thread stack scanning took about 39% of a time slice or 3.1 M
cycles, which corresponds to a delay of 4.8 ms. Typical stack sizes are much
smaller: in the vast majority of cases, fewer than four pages per thread must be
scanned.

We also estimated the total overhead introduced by remote thread scanning.
Based on the SPEC benchmarks, we estimated for n threads with stack sizes
si, i = 1..n an overhead of roughly

∑n
i=1 28 ∗ si cycles. As an example, for 100

remote thread stacks of 8 kilobytes average size, we could expect about 23 *
106 cycles or about 29 ms per garbage collection. This overhead is substantial,
which is why limits on the number of threads must be applied.

Several optimizations could reduce the O(mn) complexity for m processes
and n threads exhibited by our current implementation. The information from
a stack scan by one process’s garbage collector could be saved and made
available to all collectors (a time-space trade-off). Incremental thread stack
scanning [Cheng et al. 1998] could be used to reduce the time required to scan
a stack. Finally, we could avoid scanning a stack multiple times while it is
suspended.

4.2 Denial-of-Service Scenarios

We evaluate KaffeOS’s ability to prevent denial-of-service attacks using a Java
servlet engine. A Java servlet engine provides an environment for running
multiple Java servlets at a server. We used the off-the-shelf Apache 1.3.12 web
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server, the JServ 1.1 servlet engine [Java Apache Project 2000], and Sun’s JSDK
2.0 release of the Java servlet extensions. We modified a version of the Apache
benchmark program ab to simulate multiple clients on a single machine. Each
client issues HTTP GET requests for a specified URL on the server. On the
server machine, the Apache server processes and forwards these requests to
one or more JServ engines. An Apache module (mod jserv) communicates with
the servlet engines using a custom protocol called ajpv12.

Each JServ instance can host one or more servlet zones, which are virtual
servers. Although a servlet zone can host multiple servlets, in our experiment
each servlet zone hosts exactly one servlet for simplicity. A URL is mapped to
each servlet; the servlet is loaded when a user issues the first request for its cor-
responding URL. Servlets are kept in memory for subsequent requests; if no re-
quests arrive for a certain time period, they are unloaded and garbage collected.

We compared three configurations:

IBM/n: We run multiple servlets in one servlet engine; the servlet engine
runs in a single instance of the IBM JVM.

KaffeOS: We run each servlet in a separate engine; each servlet engine runs
in its own process on top of KaffeOS.

IBM/1: We run each servlet in a separate engine; each engine runs in a sep-
arate instance of the IBM JVM in a separate process on top of the
Linux operating system.

We consider three scenarios that involve different kinds of denial-of-service
attacks. First, we attempt to deny memory to other servlets by running a servlet
that allocates large amounts of memory until it exceeds its limit and is termi-
nated. We also use this scenario to verify that KaffeOS can terminate such ap-
plications safely. Finally, we examine attacks against CPU time and the garbage
collector.

4.2.1 MemHog Servlet. In this scenario, we use small “Hello, World”
servlets as examples of well-behaved servlets that provide a useful service.
Alongside these well-behaved servlets, we run a “MemHog” servlet that at-
tempts to deny memory to them. This servlet, when activated, spawns a thread
that enters a loop in which it repeatedly allocates objects. The objects are kept
alive by linking them in a singly linked list. In the IBM/1 and IBM/n configu-
rations, allocations will fail once the JVM’s underlying OS process reaches its
maximum heap size. In the KaffeOS configuration, allocations will fail when
the process reaches its set limit. In all three configurations, an OutOfMemory
exception is eventually thrown in the thread that attempts the first allocation
that cannot succeed.

The OutOfMemory exception can occur at seemingly random places, and not
only in the thread spawned by the MemHog. In the IBM/n scenario, a thread
can run out of memory in the code that manipulates data structures that are
shared between servlets in the surrounding JServ environment; in all three
scenarios, a thread can run out of memory in code that manipulates data
structures that are kept over successive activations of one servlet. Eventu-
ally, these data structures become corrupted, which results in an unhandled

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.



The KaffeOS Java Runtime System • 617

Fig. 11. Throughput for MemHog. This chart displays the number of successful requests received
in 30 seconds. IBM/1 is successful at isolating the MemHog, while IBM/n is not. IBM/n and KaffeOS
can support more than 64 servlets, while IBM/1 cannot.

exception in one or more threads. In KaffeOS, this event causes the underlying
KaffeOS process to terminate. In the IBM/1 and IBM/n scenarios, the under-
lying JVM terminates. In some instances, we observed the IBM JVM crash,
which resulted in segmentation violations at the OS process level. When sim-
ulating this denial-of-service attack, we did what a system administrator con-
cerned with availability would do: we automatically restarted the JVMs and the
KaffeOS processes, respectively, whenever they crashed because of the effects
caused by a MemHog.

We counted the number of successful responses our clients received from the
“Hello, World” servlets during a certain period of time (30 seconds). We consider
this number an effective measure for the amount of service the system provides,
because it accounts for the effects caused by the denial-of-service attack on
the Apache/JServ system as a whole. For each configuration, we measured the
amount of service provided with and without a denial-of-service attack. We ran
the experiment with a total of 2, 4, 8, 16, 32, 40, 48, 56, 64, 72, and 80 servlets. We
allowed up to 16 concurrent connections from the client; increasing that number
further did not increase throughput. The client rotated these connections among
all servlets, so that all servlets were activated shortly after the start of the
experiment and remained active throughout the experiment.

Figure 11 shows the results. This figure shows that the KaffeOS config-
uration, as well as the IBM/1 configuration, can successfully defend against
this denial-of-service attack, because the impact of the single MemHog is iso-
lated. However, the graph shows that running each of the servlets in a single
JVM, as done in the IBM/1 approach, does not scale. We estimate that each
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IBM JVM process takes about 2MB of virtual memory upon startup. Starting
multiple JVMs eventually causes the machine to thrash. An attempt to exe-
cute 100 IBM JVMs running the Apache/JServ engine rendered the machine
inoperable.

The IBM/n configuration, on the other hand, can easily support 80 servlets.
However, if the MemHog is added, this configuration exhibits a severe de-
crease in performance. This degradation is caused by a lack of isolation between
servlets. As the ratio of well-behaved servlets to malicious servlets increases,
the scheduler yields less often to the malicious servlet. Consequently, the ser-
vice of the IBM/n,MemHog configuration shown in Figure 11 improves as the
number of servlets increases. This effect is an artifact of our experimental setup
and cannot be reasonably used to defend against denial-of-service attacks.

In addition to being able to defend against the denial-of-service attack,
KaffeOS can support as many servlets as IBM/n, but its performance does not
scale very well. We identified two likely sources for the behavior. The first source
are inefficencies in the signal-based I/O mechanisms used in our prototype’s
user-level threading system. The second source are the deficiencies in KaffeOS’s
memory allocation subsystem, which we discussed in Section 3.3. Specifically,
we found that increased external fragmentation slightly increased the garbage
collection frequency of individual processes, because it became harder for them
to expand their heap even though they had not reached their limits. As dis-
cussed earlier, a moving collector should be able to alleviate this limitation.

We conclude from these experiments that KaffeOS’s approach of support-
ing multiple applications in a single JVM can effectively thwart denial-of-
service attacks directed against memory. The operating system-based approach
(IBM/1) has the same ability, but its scalability is restricted when compared to
KaffeOS.

4.2.2 MemHog Stress Test. To demonstrate that KaffeOS reclaims all of
a process’ memory upon termination, we developed a stress test in which we
repeatedly activate a single MemHog, and kill it once it exceeds its memory
limit. After each kill of a MemHog, we record the overall number of bytes
allocated by all heaps, as well as the number of bytes in objects on the ker-
nel heap. We found that both byte numbers remained almost constant over
time—linear regression analysis revealed a leakage of 31.5 bytes per kill, which
indicates that KaffeOS can reclaim virtually all of the memory used by the
MemHog.

To demonstrate that KaffeOS is robust, we ran this test with a debugging ver-
sion of KaffeOS that includes a series of internal integrity checks for this test.
If any inconsistency is detected during one of these tests, we abort the JVM. We
cannot claim that our prototype has the robustness and maturity of an indus-
trial product. MemHog will crash it at some point (between 1000 and 5000 kills)
because of bugs in our prototype. However, when compared to IBM/n, which
typically survives only a few MemHogs throwing OutOfMemory exceptions, this
test provides strong evidence that the introduction of a user/kernel boundary
is important for the construction of a system that is robust enough to safely
terminate ill-behaved applications.
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4.2.3 CpuHog Servlet. A denial-of-service attack against CPU time is
harder to detect than an attack against memory, because it can be difficult
to determine whether a servlet’s use of the CPU provides a useful service or is
merely wasting CPU time. We do not attempt to provide a general solution to
this problem. Instead, we show how our CPU management mechanisms can be
used to ensure that a servlet’s clients obtain the share of service that is pro-
visioned for them, even in situations in which another servlet attempts to use
more than its share.

We adopt the view that using the CPU when it would otherwise be idle is
harmless. In systems that bill users for CPU time used, this view would not be
appropriate. We consider a successful denial-of-service attack against the re-
source CPU a situation in which an important task cannot get done or is being
done much slower, because the CPU is used by some other, less important task.
Our scheduling scheme cannot limit the amount of CPU time a process con-
sumes: it can only guarantee a certain amount to processes that are runnable.

We used an MD5-Servlet as an example of a servlet that performs a computa-
tionally intensive task. MD5 is a one-way hash function that is used to digitally
sign documents [Rivest 1992]; hence, this servlet could be seen as representa-
tive of an application that provides notary services over the World Wide Web.
For each request, the servlet computes the MD5 hash function over the first
50,000 words of the /usr/dict/word dictionary file. As a measure of service, we
use the number of successfully completed requests per second. Our modified
version of ab estimates this number of requests per second simply by inverting
the time difference between consecutive responses. We also ran a “CPUHog”
servlet that executes an infinite loop in which it does not voluntarily yield the
CPU to other threads.

For the purposes of this experiment, we evaluated a possible scenario in
which a hog is activated and in which CPU shares must be adjusted so as to
thwart a possible denial-of-service attack. Four servlet zones start out with
equal shares of 1/4 each. The fourth servlet zone has no servlet running, so
we expect the three servlets to split the CPU time among them. After a few
seconds have passed, we activate the CPUHog. Once the CPUHog is activated, it
immediately uses its full share: it is limited to a 1/4 share of the CPU. We assume
that some external mechanism or watcher detects that this CPU consumption
by the Hog is undesirable. We then set the share of the Hog to zero, after which
the three MD5 servlets should again split the CPU evenly. Finally, we assume
that servlet C’s throughput should be increased. Servlet C’s share is increased
to 1/2, and A and B’s shares are reduced to 1/4, after which we expect to see an
identical ratio in the observed throughput of these three servlets.

Figure 12 shows our results for the CPUHog. When activated, the CPUHog
simply sits in a loop and consumes CPU cycles. The graph is stacked, that
is, the area between the lines indicates what share each servlet received. The
straight line at the top was determined by measuring the aggregate average
throughput of the MD5 servlets with no Hog. It provides an approximation of the
maximum throughput capacity in our system. The CpuHog’s area is computed
as the difference between this expected maximum capacity and the sum of the
throughputs of the A, B, and C servlets.
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Fig. 12. Throughput for CpuHog scenario. The measured throughput matches the expected
throughput in this scenario.

For implementation reasons, we give each task (even those with no share) at
least one ticket in the stride scheduler. This implementation artifact accounts
for the slight periodic dents at the top, in which the CPUHog gets to run for
a brief period of time, despite having been assigned a zero share. We disallow
zero tickets to avoid having to provide for CPU time to execute the exit code for
applications whose share is reduced to zero—other policies for handling this
situation are possible.

4.2.4 GarbageHog Servlet. In the last scenario, we replaced the CPUHog
with a “GarbageHog” servlet that attempts to hog the garbage collector. The
GarbageHog produces some garbage at each invocation; specifically, it allocates
25,000 objects of type Integer. Unlike the MemHog, it does not keep those ob-
jects alive, but drops all references to them. The garbage collector has to collect
these objects to reclaim their memory. Unlike the CpuHog, the GarbageHog
serves requests: in this respect, it resembles a well-behaved servlet, except for
its generation of excessive and unnecessary garbage.

The GarbageHog results are similar to the CpuHog, which indicates that
KaffeOS is successful at isolating the garbage collection activity of this servlet.
In other words, it demonstrates that we were successful in separating the
garbage collection activities of different processes. The garbage collector is no
longer a resource that is shared between processes, but has become an activity
within a process that is subject to the stride scheduler’s scheduling policy, along
with all other activities in the process. Note that our results do not measure
how accurately our prototype’s scheduler assigns CPU time.
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5. RELATED WORK

A great deal of the work on Java grew out of work on single-language operating
systems such as Pilot [Redell et al. 1980] and Cedar [Swinehart et al. 1986].
Other more recent single-language systems include the Juice system [Franz
1997] for Oberon [Wirth and Gutknecht 1992], the SPIN kernel [Bershad et al.
1995b], Inferno [Dorward et al. 1997], and the .NET system from Microsoft
Corporation [2003]. Similar systems include single-address-space operating
systems such as Opal [Chase 1995], Nemesis [Roscoe 1995], and Angel
[Wilkinson et al. 1992], as well as the transaction-based VINO system [Seltzer
et al. 1996]. None of these systems provided the combination of language-based
protection and resource management that KaffeOS provides.

In this section, we concentrate on relevant work on Java. Several other re-
searchers and developers have built systems for Java applications that address
some of the problems KaffeOS is designed to address. Early systems [Balfanz
and Gong 1998; Bernadat et al. 1998; Saulpaugh and Mirho 1999] provided
simple multiprocessing facilities for Java without addressing isolation and re-
source management. Other systems focused on the increased scalability that
can be obtained by running multiple applications in one JVM [Czajkowski 2000;
Dillenberger et al. 2000; Lizt 1999], but they did not address resource control.
Various other systems also provide process models for Java but use different
approaches, make different assumptions about the environment in which they
run, or use different sharing models [Hawblitzel et al. 1998; Tullmann 1999;
van Doorn 2000]. We discuss in more detail several of these systems; each
of them addresses only a single issue, such as resource control [Czajkowski
and von Eicken 1998], memory management [Bollella et al. 2000], or termina-
tion [Rudys and Wallach 2002]. Our work, on the other hand, addresses these
issues in a unified framework.

The MVM (Multitasking Virtual Machine) [Czajkowski and Daynés 2001]
is a JVM developed at Sun Labs that can support multiple processes. MVM’s
implementation can share text between processes, so achieves better efficiency
than KaffeOS. It achieves isolation by replicating as much state as possible.
Finally, it allows untrusted native code to be executed safely by executing such
code within its own OS-level process.

JSR-121 [Java Community Process 2003] is a proposed addition to Java
that has passed public review. It provides the notion of an isolate, which is
a lightweight process. Although it does not have all of the features of a KaffeOS
process, it is the first step in providing such functionality in the Java standard.
It illustrates the fact that the Java community has recognized the need for
supporting application isolation.

J-Kernel, JRes, and Luna. The J-Kernel system by Hawblitzel et al. [1998]
is a layer on top of a standard JVM that adds some operating system
functionality. Its microkernel supports multiple protection domains called
tasks. Communication in the J-Kernel is based on capabilities. Java objects
can be shared indirectly by passing a pointer to a capability object through a
“local RMI” call. The capability is a trusted object that contains a direct pointer
to the shared object. Because of the level of indirection through capabilities to
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shared objects, access to shared objects can be revoked. As with shared classes
in KaffeOS, a capability can be passed only if two tasks share the same class
through a common class loader.

All arguments to intertask invocations must either be capabilities, or must
be copied completely. By default, standard Java object serialization is used,
which involves marshaling into and unmarshaling from a linear byte buffer.
To decrease the cost of copying, a fast copy mechanism is also provided. In
contrast, KaffeOS provides its direct sharing model as a means of interprocess
communication. Although not optimized for indirect sharing, KaffeOS does not
preclude the use of object serialization. In addition, in KaffeOS a task’s primary
access to system services such as filesystem or network access is direct through
the KaffeOS kernel.

The J-Kernel’s use of indirect sharing, combined with revocation of capabil-
ities, allows for full reclamation of a task’s objects when that task terminates.
However, because the J-Kernel is merely a layer on top of a standard JVM,
it cannot isolate the garbage collection activities of different tasks, nor can it
account for other shared functionality.

The J-Kernel supports thread migration between tasks if a thread invokes a
method on an indirectly shared object. The thread logically changes protec-
tion domains during the call; a full context switch is not required. To pre-
vent malicious callers from damaging a callee’s data structures, each task is
allowed to stop a thread only when the thread is executing code in its own
process. This choice of system structure requires that a caller trust all of its
callees, because a malicious or erroneous callee might never return. In con-
trast, KaffeOS can always terminate uncooperative threads safely with respect
to the system, but interprocess communication will involve at least one context
switch.

JRes [Czajkowski and von Eicken 1998], a companion project to the J-Kernel,
provides a way to control and manage computational resources of Java appli-
cations. Like the J-Kernel, JRes can run on top of a standard JVM. It con-
trols CPU time, memory, and network bandwidth. CPU time is accounted
for by using hooks into the underlying OS, which is responsible for schedul-
ing them. JRes lowers the priority of threads that have exceeded their re-
source limit. Memory is accounted for by rewriting Java bytecode in a way
that adds bookkeeping code to instructions that allocate memory. JRes adds
finalization code to classes so that tasks can be reimbursed for allocated
objects.

Luna [Hawblitzel and von Eicken 2002] is a system that extends the Java
language to support intertask communication via special types. It is designed to
enable arbitrary sharing between processes while still preserving safe termina-
tion. Special types are used for interprocess object references; these references
all go through an extra indirection at runtime to determine their validity. As a
result, when process termination occurs, remote references can be invalidated
with a single write.

Alta. The Alta [Tullmann and Lepreau 1998; Tullmann 1999] system pro-
vides an environment that runs multiple applications in a single JVM that is
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modeled after the Fluke microkernel [Ford et al. 1996]. The Fluke microkernel
provides a nested process model, in which a parent process controls all aspects
of its child process. It does so by interposing on the child’s communication,
which is done via IPC. As in many microkernels, system services are provided
through servers, which complicates per-task accounting.

In Alta, capabilities provide a way to share objects between processes indi-
rectly, but there is no mechanism to prevent the leaking of references to objects
in one process to another. A parent task is responsible for restricting a child’s
communication so object references are not leaked. As a result, Alta cannot
always guarantee full reclamation. Objects can be directly shared between pro-
cesses if their types, and the closure of the types of their fields, are structurally
identical. This approach constitutes an extension of Java’s type system. In con-
trast, KaffeOS guarantees the type safety of its shared objects through the use
of a common class loader.

Alta provides the ability to control a process’s memory usage, which is
also done by the process’s parent. Unlike KaffeOS, Alta does not separate the
memory resource hierarchy from the process hierarchy. Because Alta does not
provide separate heaps, it cannot account for garbage collection activity on a
per-process basis.

Secure JVM on Paramecium. A secure JVM that runs on top of the Parame-
cium extensible operating system [van Doorn et al. 1995] is described in van
Doorn [2000]. Van Doorn argues that language-based protection is insufficient
and prone to bugs. The multiple protection domains his JVM supports are sep-
arated using hardware mechanisms, which provide strong memory protection
and eliminate the need to trust the bytecode verifier.

In the Paramecium JVM, each class or instance belongs to a domain. The
language protection attributes of a class or instance, such as private or pro-
tected, are mapped to page protection attributes. As a result, an object’s fields
may have to be split over multiple pages. Classes and objects are shared be-
tween domains if they are placed in the same page. False sharing could oc-
cur if a page contains both a shared object and another, unrelated object that
should not be shared. Because such false sharing would violate the confine-
ment of domains, the garbage collector moves objects or parts of objects between
pages to prevent this situation. Conversely, the garbage collector attempts to
move objects that can be safely shared to pages with the same set of access
permissions.

Garbage collection costs are not separately accounted for. In addition, in
order to not undermine the gain in safety added by using hardware protection,
the collector must be written in a way that can handle possible corruption of
the objects it examines. This necessity leads to increased overhead and can lead
to tricky code.

Real-Time Java (RTJ). Real-Time Java (RTJ) is a standard for program-
ming embedded devices. Unlike KaffeOS, RTJ is not concerned with untrusted
or buggy applications but instead focuses on providing bounds on the execution
time of applications. In particular, RTJ provides facilities to manage mem-
ory in a way that allows for real-time execution bounds in the presence of
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automatically managed memory. Despite dissimilar goals, RTJ and KaffeOS
use similar mechanisms.

Threads in RTJ can allocate their objects from scoped memory. Such mem-
ory areas are not garbage collected and can be freed once all threads have fin-
ished using them. Scopes are similar to explicit regions [Gay and Aiken 1998],
which are a memory management scheme in which a programmer can allocate
objects in different regions but free regions only as a whole. As in KaffeOS,
write barriers are used to ensure this property at run time; a runtime error is
triggered when an attempt to establish a reference from an outer, longer-lived
scope into an inner, short-lived scope is being made. Unlike KaffeOS heaps,
scoped memory is not garbage collected and does not allow any cross-scope
references.

RTJ also provides a mechanism to asynchronously terminate threads. To
address the problem of corrupted data structures, RTJ allows the programmer
to declare which sections of code are safe from termination requests and in
which sections of code such requests must be deferred. This use of deferred
termination is similar to the KaffeOS user/kernel boundary. Unlike in KaffeOS,
entering a region in which termination is deferred is not a privileged operation.
The goal of terminating threads asynchronously in RTJ is not to be able to
kill uncooperative applications but to provide the programmer with a means to
react to outside events.

RTJ’s designers acknowledge that writing code that is safe in the face of
asynchronous termination is hard. For this reason, asynchronous events are
deferred by default in legacy code, as well as during synchronized blocks and
constructors. Only code that explicitly enables asynchronous events by using a
throws clause can be asynchronously terminated. KaffeOS’s user/kernel bound-
ary does not provide termination as a means of programming multithreaded
applications, but solely as a means to terminate threads as a process exits.

Soft Termination. Rudys and Wallach [2002] propose a scheme for safe ter-
mination of “codelets” in language-based systems. Their work focuses only on
termination and does not include other aspects of a fully developed process
model, such as memory control or sharing. In their scheme, a codelet’s class file
is rewritten such that a “check-for-termination” flag is added to each class. The
bytecode is rewritten to check this flag whenever a non-leaf method is invoked
and on every backward branch. System code is not rewritten in this way. Hence,
as in KaffeOS, termination is deferred while a thread is executing system code.
The authors give a formal semantics for the rewrite rules and prove that a
thread terminates in a bounded amount of time.

Rudys and Wallach argue that a user/kernel boundary is too inflexible for a
language-based system because a thread can cross in and out of system code.
Although user and system code can indeed both call each other, it does not
follow that calls in both directions can be treated alike. In their system, just
as in KaffeOS, every call from system code to user code must be treated as an
upcall.

The semantics and expressiveness of the soft termination scheme appears
mostly identical to KaffeOS’s user/kernel boundary. Their implementation has
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the important advantage that it functions on a standard Java VM, but the
price they pay is a 3–25% overhead for checking the flag, even if no termination
request is pending (the common case). In comparison, KaffeOS only performs
such a check when leaving kernel mode.

JanosVM. JanosVM [Tullmann et al. 2001] is a VM for active networks
that uses KaffeOS as its design and implementation base. Unlike KaffeOS,
JanosVM is not intended as an environment in which to run applications
directly: it is intended as a foundation on which to build execution environments
for active code. JanosVM both restricts KaffeOS’s flexibility by specialization
for active code, and extends its flexibility by providing trusted access to some
kernel functionality.

JanosVM supports direct cross-heap references, but does not use entry and
exit items the way KaffeOS does. The responsibility of managing entry and exit
items falls on the designer who uses JanosVM to build an execution environ-
ment. An advantage of explicitly managed cross-heap references is that heaps
can be reclaimed immediately after a process terminates, as is the case in the
J-Kernel.

KaffeOS’s kernel boundary is static, but it also exports primitives for entering
and leaving kernel mode to trusted parties. JanosVM makes use of this facility
in a systematic way for interprocess communication between trusted parties.
This extension protects trusted servers without making them statically part of
the kernel, and can be viewed as a microkernel approach to structuring a Java
runtime.

Because JanosVM is not intended to support general-purpose applications,
shared heaps are not supported. Instead, JanosVM supports customized shar-
ing for its application domain. For instance, processes can share packet buffers,
which are objects with a well-known set of access primitives that are treated
specially by the system. Consequently, some implementation complexity was
removed, because the kernel garbage collector does not need to check for or-
phaned shared heaps.

JanosVM improves on KaffeOS’s resource framework by including other re-
sources in a uniform way. For instance, the namespace of a process is treated
as a resource that can be managed just like the memory and CPU time used
by a process. In KaffeOS, such policies would require a new process loader
implementation.

6. CONCLUSION

We have presented the design and an implementation of a Java runtime sys-
tem that supports multiple, untrusted applications in a robust and efficient
manner. We have used operating system ideas to introduce a process concept
into the Java virtual machine. KaffeOS’s processes provide the same properties
as operating system processes: they protect and isolate applications from each
other, and they manage and control the resources that they use.

We have demonstrated that separating “kernel” code from “user” code is nec-
essary to protect critical parts of the system from corruption when applications
are killed. Code that executes in kernel mode delays termination requests until
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it returns to user mode; in addition, it is written such that it can safely back out
of exceptional situations. This separation does not prevent sharing, because it
does not change the way in which objects access each other’s fields and methods;
type safety remains the means to enforce memory safety.

To ensure full reclamation of a process’s memory, we depend on proper kernel
design and provide each process with a separate heap. To ensure that heaps are
separate, KaffeOS uses write barriers, which are a garbage collection technique.
This use of write barriers prevents sharing attacks, in which a process could
prevent objects from being reclaimed by collaborating with or duping another
process into holding onto references to these objects.

KaffeOS adopts distributed garbage collection techniques to allow for the
independent collection of each process’s heap, even in the face of legal cross-
references between the kernel heap and user heaps. The key idea is to keep
track of the references that point into and out of each user heap. Incoming
references are kept track of in entry items, which are treated as garbage col-
lection roots. Outgoing references are kept track of in exit items, which allow
for the reclamation of foreign entry items when their reference counts reach
zero. These ideas were originally developed for situations where objects cannot
access other objects directly. KaffeOS does not prevent direct access, but uses
entry and exit items for resource control.

In addition to kernel-level sharing for increased efficiency, KaffeOS also sup-
ports user-level sharing through shared heaps. Shared heaps allow processes to
share objects directly, which allows for efficient interprocess communication in
KaffeOS. However, to not compromise full reclamation and accurate accounting,
we restricted the programming model for user-level shared objects somewhat:
a shared heap’s size is frozen after creation, and write barriers prevent the
creation references to objects in user heaps. We have shown that despite these
restrictions, applications can conveniently share complex data types such as
hashmaps.

In our implementation, we modified an existing single-processor, user-mode
Java virtual machine to support KaffeOS’s functionality. Some implementa-
tion decisions, such as the use of class loaders for multiple namespaces or the
specifics of how our garbage collector represents its per-heap data structures,
were a result of our chosen infrastructure. However, KaffeOS’s design princi-
ples apply to other JVMs as well, which is why we discussed them without
assuming a concrete underlying JVM.

The core ideas of KaffeOS’s design are the use of a red line for safe termina-
tion, the logical separation of memory in heaps for reclamation and resource
control, the use of write barriers for resource control, the use of entry and exit
items for separate garbage collection, and restricted direct sharing to support
interprocess communication. These ideas do not have to be applied in their to-
tality, but are useful individually as well. For instance, a red line could provide
safe termination in JVMs that use a single heap; write barriers could support
scoped memory as in Real-Time Java.

Finally, although KaffeOS was designed for a Java runtime system, its tech-
niques should also be applicable to other languages that exploit type safety
to run multiple, untrusted applications in a single runtime system. Such
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environments could also profit from KaffeOS’s demonstrated ability to manage
primary resources efficiently and the defenses against denial-of-service attacks
it provides.
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