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Dynamic slicing algorithms are used to narrow the attention of the user or an algorithm to a relevant
subset of executed program statements. Although dynamic slicing was first introduced to aid in
user level debugging, increasingly applications aimed at improving software quality, reliability,
security, and performance are finding opportunities to make automated use of dynamic slicing. In
this paper we present the design and evaluation of three precise dynamic data slicing algorithms
called the full preprocessing (FP), no preprocessing (NP) and limited preprocessing (LP) algorithms.
The algorithms differ in the relative timing of constructing the dynamic data dependence graph
and its traversal for computing requested dynamic data slices. Our experiments show that the
LP algorithm is a fast and practical precise data slicing algorithm. In fact we show that while
precise data slices can be orders of magnitude smaller than imprecise dynamic data slices, for
small number of data slicing requests, the LP algorithm is faster than an imprecise dynamic data
slicing algorithm proposed by Agrawal and Horgan.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Debuggers;
D.2.5 [Software Engineering]: Testing and Debugging—Debugging aids, testing tools, tracing

General Terms: Algorithms, Measurement, Performance

Additional Key Words and Phrases: Program slicing, data dependences, pointer references,
debugging

1. INTRODUCTION

The concept of static program slicing was first introduced by Weiser [1979,
1982]. The program slice corresponding to a variable at a specific program
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point is defined to contain the subset of program statements which can po-
tentially contribute to the computation of the value of the variable across all
program executions. Weiser introduced program slicing as a debugging aid and
gave the first static slicing algorithm. According to this algorithm the static
slice is computed by taking a transitive closure over data and control depen-
dences that directly or indirectly influence the value of the variable at a pro-
gram point. Since then a great deal of research has been conducted on static
slicing and an excellent survey of many of the proposed techniques and tools
can be found in Tip [1995] and Hoffner [1995]. Other works on slicing have
explored the applications of static slicing in greater depth. Some examples of
such works include the use of slicing in debugging sequential and distributed
programs as well as testing sequential programs [Agrawal et al. 1993; Kamkar
1993].

For programs that make extensive use of pointers, the highly conservative
nature of data dependence analysis leads to highly imprecise (i.e., considerably
larger) program slices [Mock et al. 2002]. In other words, statements are in-
cluded in the slice that do not truly influence the value of the variable. Since
the objective of slicing is to focus the attention of the user or an algorithm
to the relevant subset of program statements, conservatively computed large
slices are clearly undesirable. Recognizing the need for precise slicing, Korel
and Laski [1988] proposed the idea of dynamic slicing. The dependences that
are exercised during a program execution are captured precisely and saved in
form of a dynamic dependence graph. Dynamic program slices are constructed
in response to requests by traversing the captured dynamic dependence infor-
mation. It has been observed that precise dynamic slices can be considerably
smaller than static slices [Venkatesh 1995; Hoffner 1995].

The importance of dynamic slicing extends well beyond debugging of pro-
grams [Agrawal et al. 1993; Duesterwald et al. 1992a; Korel and Rilling 1997].
Increasingly applications aimed at improving software quality, reliability, secu-
rity, and performance are making automated use of dynamic slicing algorithms.
For example, dynamic slicing algorithms are being used for: detecting spy-
ware that has been installed on systems without the user’s knowledge (S. Jha,
private communication, 2003) carrying out dependence-based software testing
[Duesterwald et al. 1992b; Kamkar 1993], measuring module cohesion for pur-
pose of code restructuring [Gupta and Rao 2001], and guiding the development
of performance enhancing transformations requiring estimating criticality of
instructions [Zilles and Sohi 2000] and identifying instruction isomorphism
[Sazeides 2003].

While precise dynamic slices can be very useful, it is also known that comput-
ing them is expensive. Therefore, researchers have proposed imprecise dynamic
slicing algorithms that trade-off precision of dynamic slicing with the costs of
computing dynamic slicing. Agrawal and Horgan [1990] were the first to pro-
pose two imprecise dynamic slicing algorithms, Algorithm I and Algorithm II.
While such algorithms preserve the safety of slicing and have the potential of re-
ducing the cost of slicing, they have also been found to greatly increase reported
slice sizes thus diminishing their effectiveness. Another approach considered
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Table I. Effectiveness of Dynamic Slicing

PDDS
Program Static Executed AVG MIN MAX

008.espresso 74,039 27,333 350 2 1,304
099.go 95,459 61,350 5,382 4 8,449
130.li 31,829 10,958 206 2 834
126.gcc 585,491 170,135 6,614 2 11,860
134.perl 116,182 21,451 765 2 2,208
181.mcf 4,655 2,278 135 3 394
197.parser 49,461 3,217 72 2 217
255.vortex 253,296 74,359 826 2 4,017
256.bzip2 12,104 8,048 395 2 1,393
300.twolf 94,050 16,810 1,159 2 2,597

PDDS stands for precise dynamic data slices.

is to use limited dynamic information to refine static slices. In Mock et al.
[2002], the authors use dynamic points-to data to improve the accuracy of slic-
ing. Unfortunately, their studies indicate that “improved precision of points-to
data generally did not translate into significantly reduced slices”. Gupta and
Soffa [1995] proposed hybrid slicing technique, which uses limited amounts of
control flow information; however, it does not address the imprecision in data
dependency computation in presence of pointers. From the above observations,
we conclude that it is worthwhile to spend effort in designing efficient precise
dynamic data slicing algorithms.

Next, we present some data to support the two key points made above: dy-
namic slices are useful in narrowing the focus of attention; and imprecise dy-
namic slicing algorithms have greatly diminished effectiveness. In producing
this data, and throughout the article, we compute data slices that are obtained
by taking the transitive closure over data dependences. The main motivation
for using data slices, as opposed to full slices that are obtained by taking transi-
tive closure over both data and control dependences, is as follows. Imprecision
in computation of data dependences is the main source of imprecision in slices.
Control dependences do not introduce significant imprecision as a vast major-
ity of statements in a program are typically statically control dependent upon
a single branch predicate. Therefore, control dependences can be accurately
determined by all slicing algorithms, static as well as dynamic. It should be
noted that program slices that consider both data and control dependences
yield slices that represent executable programs. In other words, if S represents
the slice of variable v at program point p on input I , then S can be reexe-
cuted on I to produce the value of v at point p. In contrast, data slices are not
executable.

The data in Table I shows the effectiveness of dynamic data slicing. For each
of the benchmark programs, we computed 25 distinct dynamic slices at the end
of program’s execution. The average (AVG), minimum (MIN) and maximum
(MAX) precise dynamic data slice sizes that were observed are given in the
precise dynamic data slices (PDDS) column. The slice sizes are measured in
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Table II. Comparison between Precise and Imprecise Dynamic Data Slicing

IDDS-II/PDDS IDDS-I/PDDS
Program AVG STD MIN MAX AVG STD MIN MAX

008.espresso 4 8.3 1 49 46 224.6 1 1,274
099.go 39 185.2 1 946 1,413 926.0 1 3,328
126.gcc 419 1,417.4 1 5,188 2,698 3,841.6 2 13,759
130.li 13 15.5 1 42 143 353.2 1 1,373
134.perl 8 19.9 1 96 41 172.0 1 974
181.mcf 1 0.31 1 2 2 2.8 1 11
197.parser 4 9.3 1 32 7 14.6 1 49
255.vortex 69 132.1 1 475 1,993 3,176.1 1 8,161
256.bzip2 35 65.7 1 229 57 91.4 1 319
300.twolf 9 20.2 1 75 27 65.8 1 242
Average 60 187.4 1 713 643 887 1.1 2,949

IDDS stands for imprecise dynamic data slices.

terms of intermediate representation (IR) statements. In the rest of the paper
when we refer to statements we mean IR statements. In addition, the num-
ber of distinct statements in the program (Static) and the number of distinct
statements that are executed (Executed) are also given. For example, program
126.gcc contains 585491 static statements and, during the collection of the ex-
ecution trace, 170135 of these statements were executed at least once. When 25
precise dynamic data slices were computed, they had average, minimum and
maximum sizes of 6614, 2 and 11860 statements respectively. As we can see,
the PDDS values are much smaller than the Static and Executed values. Thus,
dynamic data slices could be very helpful in focusing the attention of the user
or algorithm on a small subset of statements during debugging.

We have implemented extended versions of the two imprecise algorithms pro-
posed by Agrawal and Horgan [1990] and compared the sizes of the imprecise
dynamic data slices (IDDS-I and IDDS-II) with corresponding precise dynamic
data slices (PDDS). The ratios IDDS-I/PDDS and IDDS-II/PDDS are given in
Table II (average, standard deviation, minimum, and maximum values of the
ratios are given). As we can see, imprecise slices can be many times larger than
precise dynamic data slices. In the worst case, for program gcc, the imprecise
dynamic data slice IDDS-II was over 5188 times larger than the precise dy-
namic data slice. The IDDS-I sizes are even larger. Therefore, these imprecise
algorithms can be quite inaccurate.

From the above observations, we conclude that it is worthwhile to spend ef-
fort in designing efficient precise dynamic data slicing algorithms. We observe
that once a program is executed and its execution trace collected, precise dy-
namic data slicing typically involves two tasks: [preprocessing] which builds a
dependence graph by recovering dynamic data dependences from the program’s
execution trace, which is called dynamic data dependence graph in this article;
and [slicing] which computes slices for given slicing requests by traversing the
dynamic data dependence graph. We present three precise dynamic data slic-
ing algorithms that differ in the degree of preprocessing they carry out prior
to computing any dynamic data slices. The full preprocessing (FP) algorithm
builds the entire data dependence graph before slicing. The no preprocessing
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(NP) algorithm does not perform any preprocessing but rather during slicing
it uses demand-driven analysis for recovering dynamic data dependencies and
caches the recovered dependencies for potential future reuse. Finally, the lim-
ited preprocessing (LP) algorithm performs some preprocessing to first augment
the execution trace with summary information that allows faster traversal of
the trace and then during slicing uses demand-driven analysis to recover the
dynamic data dependences from the compacted execution trace. Our experience
with these algorithms shows:

—The FP algorithm is impractical for real programs because it runs out of
memory during the preprocessing phase as the dynamic data dependence
graphs are extremely large. The NP algorithm does not run out of memory
but is slow. The LP algorithm is practical because it never runs out of memory
and is also fast.

—The execution time of the practical LP algorithm compares well with that
of the imprecise Algorithm II proposed by Agrawal and Horgan. The LP
algorithm is even faster than Algorithm II if a small number of slices are
computed. Also, the latency of computing the first slice using LP is several
times lower than the latency for obtaining the first slice by Algorithm II.

Thus, this article shows that while imprecise dynamic data slicing algorithms
could be very imprecise, a carefully designed precise dynamic data slicing algo-
rithm such as the LP algorithm is practical as it provides precise dynamic data
slices at reasonable space and time costs.

The remainder of the article is organized as follows: Related work is dis-
cussed in Section 2. In Sections 3 and 4, we present the precise and imprecise
data slicing algorithms respectively. In Section 5, we present our experimental
studies. Conclusions are given in Section 6.

2. RELATED WORK

Agrawal and Horgan [1990] proposed two imprecise and two precise dynamic
slicing algorithms. We have briefly shown the weaknesses of the imprecise al-
gorithms in the introduction to motivate our work. More detailed descriptions
of extended versions of these imprecise algorithms will be presented later in
the article. More detailed comparisons with our new algorithms will also be
given. The first precise algorithm they propose, Algorithm III, is quite similar
to our FP algorithm. The difference is in the dynamic dependence graph rep-
resentation. While FP labels data dependence edges with instances, Agrawal
and Horgan [1990] construct multiple instances of nodes and edges.

To reduce the size of the dependence graph, Agrawal and Horgan [1990] also
proposed another precise algorithm which is Algorithm IV in their paper. Algo-
rithm IV is based upon the idea of forward computation of dynamic slices where
slices for all variables can be maintained at all times, and when a statement
is executed, the new slice of the variable just defined can be computed from
the slices of the variables whose values are used in the definition. Algorithm
IV maintains the current dynamic slices in terms of the dynamic dependence
graph. A new node is added to the dynamic dependence graph only if following
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the execution of a statement the dynamic slice of the defined variable changes.
Thus, the size of the graph is bounded by the number of different dynamic slices.
As shown in Tip [1995], a program of size n can have O(2n) different dynamic
slices in the worst case.

Essentially Algorithm IV precomputes all of the dynamic slices. While this
idea results in space savings, the precomputation time of Algorithm IV can be
reasonably assumed to be much higher than the preprocessing time in FP, in
which the direct dependences are merely added as edge labels but no slices are
computed. Moreover, since LP is faster than FP, it is going to perform even
better in comparison to Algorithm IV. Furthermore, the dynamic dependence
graph produced by Algorithm IV can be used only to compute dynamic slices for
the last definitions of variables. All the algorithms we develop can be used to
compute dynamic slices corresponding to any executed definition of any variable
at any program point. In other words, in order to produce a compacted graph,
Algorithm IV sacrifices some of the functionality of Algorithm III.

While, in this article, we propose the LP algorithm that reduces space re-
quirements by constructing the relevant part of the dynamic dependence graph
in a demand-driven fashion, we have recently developed a complementary strat-
egy for reducing space requirements. We have developed a compressed repre-
sentation of the dynamic dependence graph [Zhang and Gupta 2004]. Therefore,
the dynamic dependence graphs of reasonably long program runs can be held
in memory. To achieve further scalability, the use of compressed dynamic de-
pendence graphs can be combined with demand-driven loading of these graphs
into memory.

In Beszedes [2001], another algorithm for forward computation of dynamic
slices was introduced which precomputes and stores all dynamic slices on disk
and later accesses to them in response to users’ requests. This algorithm saves
sufficient information so that dynamic slices at any execution point can be ob-
tained. Like Algorithm IV, it will also take a long time to respond to user’s
first request due to the long preprocessing time. Some applications of dynamic
slicing, such as debugging, may involve only a small number of slicing re-
quests. Thus, the large amount of preprocessing performed is not desirable. Our
demand-driven approach represents a much better choice for such situations.

Korel and Yalamanchili [1994] introduced another forward method which
computes executable dynamic slices. Their method is based on the notion of
removable blocks. A dynamic slice is constructed from the original program by
deleting removable blocks. During program execution on each exit from a block,
the algorithm determines whether the executed block should be included in a
dynamic slice or not. It is reported in Tip [1995] that executable dynamic slices
produced may be inaccurate in the presence of loops.

No experimental data is presented to evaluate the forward computation of
dynamic slices in any of the above works [Agrawal and Horgan 1990; Beszedes
et al. 2001; Korel and Yalamanchili 1994]. Recently, we proposed a method that
allows storage of forward computed dynamic slices in a space efficient fashion
[Zhang et al. 2004]. In particular, we showed that by using reduced ordered
binary decision diagrams (roBDDs) we can store a set of dynamic slices in a
space efficient manner. We also compared the performance of the roBDD based
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forward computation algorithm with the LP algorithm described in this article.
While the preprocessing time of the roBDD algorithm is higher than the LP
algorithm, after preprocessing is complete, roBDD based algorithm responds
quicker to slicing requests than the LP algorithm. However, the LP algorithm
is scalable to longer executions than the roBDD-based algorithm.

If static program slicing is considered as one extreme which is very imprecise
and has very low cost, dynamic slicing is the other extreme which is very precise
for one execution and very expensive. There are many other works trying to find
a balance between the static slicing and dynamic slicing. In Mock et al. [2002],
the authors use dynamic points-to data to improve the accuracy of slicing, which
is very similar to our extended version of Algorithm II. They show that the
improved precision of points-to data did not improve the precision of slices in
general. Gupta and Soffa [1995] proposed the hybrid slicing technique which
uses limited amounts of control flow information. However, it does not address
the imprecision in data dependency computation in presence of pointers. In
Nishimatsu et al. [1999], the authors use the dynamic calling information to
augment static slicing. Beszedes et al. [2002], use the union of dynamic slices
from multiple executions to approximate the realizable slice which is smaller
than the static slice but larger than the dynamic slice from any single execution.
There are also some works which are variants of static slicing with dynamic
flavor. Quasi-static [Venkatesh 1991] slicing is a technique in which the prefix
of the program input is specified. In this way, the computed slice is for a group of
executions, different from one execution in dynamic slicing and from all possible
executions in static slicing. In conditioned slicing [Harmon et al. 2001], the pre-
or post-conditions of the execution are specified. In parametric slicing [Field
et al. 1995] the notion of static and dynamic slices is generalized to that of a
constrained slice, where any subset of the inputs of a program may be supplied.

3. PRECISE DYNAMIC DATA SLICING

The basic approach to dynamic data slicing is to execute the program once
and produce an execution trace that is processed to construct dynamic data
dependence graph that in turn is traversed to compute dynamic data slices.

The execution trace captures the complete runtime information of the pro-
gram’s execution that can be used by a dynamic slicing algorithm—in other
words, there is sufficient information in the trace to compute precise dynamic
data slices. The information that the trace holds is the full control flow trace
and memory reference trace. Therefore, we know the complete path followed
during execution, and at each point where data is referenced through pointers,
we know the address at which data is accessed.

A slicing request can be specified both in terms of a program variable and in
terms of a memory address. The latter is useful if the slice is to be computed
with respect to a field of a specific instance of a dynamically allocated object.
Data slices are computed by taking closure over data dependences.

For a dynamic data slice to be computed, dynamic data dependences that
are exercised during the program execution must be identified by processing
the trace. The precise algorithms that we present differ in the degree to which
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dependences are extracted from the trace prior to dynamic data slicing. The
full preprocessing (FP) algorithm follows an approach that is typical of pre-
cise algorithms proposed in the literature [Korel and Laski 1988; Agrawal and
Horgan 1990]. The execution trace is fully preprocessed to extract all depen-
dences and the full dynamic data dependence graph is constructed. Given this
graph, any dynamic data slicing request can be handled by appropriate traver-
sal of the graph. The no preprocessing (NP) algorithm does not precompute
the full dynamic data dependence graph. Instead, dynamic data dependences
are extracted in a demand-driven fashion from the trace during the handling
of dynamic data slicing requests. Therefore, each time the execution trace is
examined, only data dependences relevant to the slice being computed are ex-
tracted from the trace. Finally, the limited preprocessing (LP) algorithm differs
from the NP algorithm in that it augments the execution trace with trace-block
summaries to enable faster traversal of the execution trace during the demand-
driven extraction of dynamic dependences. Next, we describe the above algo-
rithms in detail.

3.1 Full Preprocessing

In developing our slicing algorithms, one goal that we set out to achieve was to
develop a dynamic data dependence graph representation that would not only
allow for computation of precise dynamic slices, but, in addition, support com-
putation of a dynamic slice for any variable or memory address at any execution
point. This property is not supported by the precise dynamic slicing algorithm
of Agrawal and Horgan [1990]. We take the statement-level control flow graph
representation of the program and add to it edges corresponding to the data
dependences extracted from the execution trace. The execution instances of the
statements involved in a dynamic data dependence are explicitly indicated on
the dynamic data dependence edges thus allowing the above goal to be met.

Consider a situation of memory dependences between stores and loads. A
statically distinct load/store statement may be executed several times during
program execution. When this happens different instances of a load statement
may be dependent upon different store statements or different instances of the
same store statement. For precisely recording data dependences, we associate
the instances of load and store statements to the dependence edges. A slicing
request not only identifies the use of a variable by a statement for which the
slice is needed, but also the specific instance of the statement for which the slice
is needed.

Consider the example above in which addr, addr′ and addr′′ are addresses
that may or may not be same at run time. We assume an execution in which the
load statement is executed twice. The first instance of the load reads the value
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stored by the store on the left and the second instance of the load reads the
value stored by the store on the right. In order to remember this information
we label the edge from the load to the store on the left/right with (1,1)/(2,1)
indicating that the first/second instance of the load’s execution gets its value
from the first instance of execution of the store on the left/right respectively.
Therefore when we include the load in the dynamic slice, we do not necessarily
include both the stores in the dynamic slice. If the dynamic slice for the first
instance of the load is being computed, then the store on the left is added to
the slice while if the dynamic slice of the second instance of the load is being
computed then the store on the right is added to the slice.

Thus, in summary this precise dynamic data slicing algorithm first prepro-
cesses the execution trace and introduces labeled dependence edges in the data
dependence graph. During slicing the instance labels are used to traverse only
relevant edges. We refer to this algorithm as the full preprocessing (FP) algo-
rithm as it fully preprocesses the execution trace prior to carrying out slice
computations.

The example in Figure 1 illustrates this algorithm. The dynamic data de-
pendence edges, from a use to its corresponding definition, for a given run are
shown. For readability, we have omitted the dynamic data dependence edges
for uses in branch predicates as computation of example slices does not re-
quire these edges; only the edges for all nonpredicate uses are shown. Edges
are labeled with the execution instances of statements involved in the data de-
pendences. The precise dynamic data slice for the value of z used in the only
execution of statement 16 is given. The data dependence edges traversed dur-
ing this slice computation include: (161, 143), (143, 132), (132, 122), (132, 153),
(153, 31), (153, 152), (152, 31), (152, 151), (151, 31), and (151, 41).

Note that it is equally easy to compute a dynamic data slice at any earlier
execution point. For example, let us compute the slice corresponding to the
value of x that is used during the first execution of statement 15. In this case,
we will follow the data dependence edge from statement 15 to statement 4 that
is labeled (1, 1), thus giving us the slice that contains statements 4 and 15.

3.2 No Preprocessing

The FP algorithm first carries out all the preprocessing and then begins slicing.
For large programs with long execution runs it is possible that the dynamic
dependence graph requires too much space to store and too much time to build.
In fact our experiments show that we run out of memory very often since the
graphs are too large. For this reason, we propose another precise algorithm
that does not perform any preprocessing. We refer to this algorithm as the no
preprocessing (NP) algorithm.

In order to avoid a priori preprocessing, we employ demand-driven analy-
sis of the trace to recover dynamic data dependences. When a slice computation
begins, we traverse the trace backwards to recover the dynamic dependences re-
quired for the slice computation. For example, if we need the dynamic data slice
for the value of some variable v at the end of the program, we traverse the trace
backwards till the definition of v is found and include the defining statement in
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Fig. 1. The path taken by the program on input x = 6 is {112131415161719110111114115152
6212113114215253637292102112153546412213214315455161}. The precise dynamic slice for the use
of z by the only execution of statement 16 is {16, 14, 13, 12, 4, 15, 3}.

the dynamic data slice. If v is defined in terms of value of another variable w, we
resume the traversal of the trace starting from the point where traversal had
stopped upon finding the definition of v and so on. Note that since definitions
we are interested in will always appear earlier than the uses, we never need to
traverse the same part of the trace twice during a single slice computation.

In essence, this algorithm performs partial preprocessing for extracting dy-
namic dependences relevant to a slicing request as part of the slice computa-
tion. It is possible that two different slicing requests involve common dynamic
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dependences. In such a situation, the demand-driven algorithm will recover the
common dependences from the trace during both slice computations. To avoid
this repetitive work, we can cache the recovered dependences. Therefore, at
any given point in time, all data dependences that have been computed so far
can be found in the cache. Therefore, when a dependence is required during a
slice computation, the cache is first checked to see if the dependence is already
known. If the dependence is cached, we can directly access it; otherwise, we
must recover it from the trace. Thus, at the cost of maintaining a cache, we can
avoid repeated recovery of same dependences from the execution trace.

We will refer to the two versions of this demand-driven algorithm, that is,
without caching and with caching, as no preprocessing without caching (NPwoC)
and no preprocessing with caching (NPwC) algorithms.

As an illustration of this algorithm, let us reconsider the example of Figure 1.
When the NP algorithm is used, initially the flow graph does not contain any dy-
namic data dependence edges. Now let us say the slice for z at the only execution
of statement 16 is computed. This will cause a single backward traversal of the
trace through which the data dependence edges (161, 143), (143, 132), (132, 122),
(132, 153), (153, 31), (153, 152), (152, 31), (152, 151), (151, 31), and (151, 41) are ex-
tracted. When caching is used, in addition to obtaining the slice, these edges
are added to the program flow graph. Now if the slice for the use of x in the 2nd
instance of statement 10 is computed, it first traverses along the dependence
edges (102, 92), (102, 152), and then all the dependences from 152 are already
present in the graph and thus the trace in not reexamined.

3.3 Limited Preprocessing

While the NP algorithm described above addresses the space problem of the FP
algorithm, this comes at the cost of increased time for slice computations. The
time required to traverse a long execution trace is a significant part of the cost
of slicing. While the FP algorithm traverses the trace only once for all slicing
requests, the NP algorithm often traverses the same part of the trace multiple
times, each time recovering different relevant data dependences for a different
slicing request.

In light of the above discussion, we can say that the NP algorithm does too
little preprocessing leading to high slicing costs while the FP algorithm does
too much preprocessing leading to space problems. For example, during our
experiments we found that a run of the FP over a trace of around one hundred
million statements for 126.gcc is expected to generate a graph of five gigabytes.
Therefore, next we propose an algorithm that strikes a balance between pre-
processing and slicing costs. In this precise algorithm, we first carry out limited
preprocessing of the execution trace aimed at augmenting the trace with sum-
mary information that allows faster traversal of the augmented trace. Then, we
use demand-driven analysis to compute the slice using this augmented trace.
We refer to this algorithm as the limited preprocessing (LP) algorithm.

This algorithm speeds up trace traversal as follows: the trace is divided into
trace blocks by terminating blocks at function call/return boundaries or the
points where the sizes of the blocks reach a predefined threshold. At the end
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of each trace block, we store a summary of all downward exposed definitions
of variable names and memory addresses in the order of occurrences and their
indices to the trace block. During the backward traversal for slicing, when
looking for a definition of a variable or a memory address, we first look for its
presence in the summary of downward exposed definitions. If a definition is
found, its index is used to seek to the corresponding point in the trace block and
then the rest of the trace block is traversed. Otherwise, the whole trace block
is skipped.

The time of traversing the trace mainly depends on the number of compar-
isons being performed. Since the summary information contains only downward
exposed definitions, the number of checks performed to locate the definition be-
ing sought is smaller when the summary information is used in contrast with
using the trace itself. Thus, if the block is skipped, the net effect is fewer com-
parisons between the address of the variable whose definition is being sought
and addresses defined within the trace block. On the other hand, if the block
is not skipped as a whole, it can be partly skipped using the indices. So the
number of comparisons does not increase in either case, which means the effect
of LP is always positive.

The savings of LP can be affected by two factors:

—Definition Redundancy, which is the ratio between the number of definitions
that are not in the summary and the total number of definitions in the trace
blocks. The higher the ratio is, the fewer comparisons are required in the
summaries, the more savings LP can get when the trace blocks are partially
or fully skipped. If it is 0, which means all the definitions in the trace block
are downward exposed and then stored in the summary, LP has no benefit.

—Skipping Rate, which is the rate of trace blocks being skipped. Higher skip-
ping rate implies more savings.

Both of these factors are influenced by the size of trace block. Larger trace
blocks have a high definition redundancy but very likely low skipping rate dur-
ing the traversal. Smaller trace blocks have low definition redundancy and a
good chance of being skipped. According to our experiments, function bound-
aries and the threshold of 200 trace entries (each entry corresponds to a single
basic block) makes a good division criterion for most of the traces.

4. IMPRECISE DYNAMIC DATA SLICING

One goal of our work is to compare the precision and cost of the above precise
slicing algorithms with that of imprecise dynamic data slicing algorithms. For
this purpose, we also implemented the two imprecise algorithms proposed by
Agrawal and Horgan [1990] (Algorithms I and Algorithms II). In this section, we
explain our extended designs of these two imprecise algorithms. The extensions
were necessary because Agrawal and Horgan [1990] does not discuss handling
of pointers.

4.1 Algorithm I

The first algorithm proposed by Agrawal and Horgan [1990] uses a static de-
pendence graph in which all executed nodes are marked so that during slicing
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when the graph is traversed, nodes that are not marked as executed are avoided
as they cannot be part of the slice.

We used an enhanced version of this algorithm for our work. As pointed
out in Mock et al. [2002], the conservative nature of pointer analysis in C pro-
grams can cause severe imprecision in static program slicing when call-by-
reference semantics, functions pointers and dynamically allocated heap objects
are extensively used. Therefore, two enhancements are used to address this
problem.

Data Dependences. Instead of using conservative pointer analysis to build
the dependence graph we extract sets of addresses that are dynamically
read/written by each load/store statement during program’s execution. If a store
writes to an address that is also read by a load, and the load is reachable from
the store, then a backward data dependence edge is introduced from the load to
the store. This enhancement is useful due to extensive use of pointers to heap
data in C programs.

Dynamic Call Sites. We determine the dynamic set of call sites that are
exercised for each function. When a store and a load, that respectively write
and read from the same address, belong to different procedures, then the above
information is used to compute interprocedural reachability. In the example
code fragment shown below function f() contains two calls to function g();
however, let us assume that the first call is executed and the second is not
executed. Under this condition the store before the first call reaches the load
in g() while the store before the second call does not reach the load in g().
Therefore, a single data dependence (L, S1) is introduced. However, if we do not
consider dynamic call site information during identification of interprocedural
dependences, we would in addition introduce a dependence edge (L, S2). This
enhancement is useful when C programs make use of function pointers.

void f() {
...

S1: v = ...

g(&v);
...

S2: v = ...

if (...) g(&v);
...

}

void g(int *p) {
...

L: ... = ∗p
...

}

The preprocessing step of this algorithm makes backward pass over the ex-
ecution trace to construct the program’s data dependence graph in which exe-
cuted nodes are marked, edges are introduced between each function and sub-
set of relevant call sites, and data dependence edges are introduced using the
dynamically extracted information for loads and stores. The computation of a
dynamic slice is straightforward. Starting at the statement at which a vari-
able (address) is read, a backward pass over the dependence graph gives the
dynamic slice.
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4.2 Algorithm II

This algorithm is different from the first algorithm in one important respect,
the manner in which data dependence edges are computed. Instead of using
the dynamic sets of addresses read/written by load/store statements, the data
dependences among statements that are actually exercised are determined. An
edge is introduced from a load to a store if during execution, at least once, the
value stored by the store is indeed read by the load. This method is clearly more
precise than Algorithm I. This is because when dependence edges are added by
Algorithm II from a load to store simply because they reference a common
address, it is possible that such an edge represents a false dependence edge
when at no time during the execution the load reads a value written by the store.
This can happen due to presence of intervening stores to the same address.
In Algorithm II, such false edges are never introduced. Another consequence
of directly capturing all data dependences is that, unlike Algorithm I which
uses dynamic call site set for each function to perform interprocedural slicing,
we no longer require any additional dynamic information for interprocedural
slicing. This is because dependences that are directly captured and added to
the dependence graph by Algorithm II include both intra and interprocedural
dependences.

The preprocessing step of this algorithm makes one backward pass through
the execution trace to recover the exercised data dependences and adds them
to the dynamic dependence graph. The computation of a dynamic slice requires
a simple backward traversal over the data dependence graph.

4.3 Examples

The differences between the imprecise and precise algorithms discussed are
illustrated through an example in Figures 2 and 3. Examples are given to il-
lustrate progressively improving precision of dynamic data slices as we go from
Algorithm I to Algorithm II and from Algorithm II to the precise algorithm (e.g.,
FP).

5. EXPERIMENTAL EVALUATION

5.1 Implementation

For our experimentation we used the Trimaran system [Trimaran 1997] that
takes a C program as its input and produces a lower level intermediate rep-
resentation (IR) which is actually the machine code for an EPIC style archi-
tecture. This intermediate representation is used as the basis for slicing by
our implementations of the algorithms. In other words, when slicing is per-
formed, we compute the slices in terms of a set of statements from this IR. Our
implementation supports computation of data slices for C programs. The key
cause of imprecision in approximate data slices is the presence of pointers in C
programs.

In the low-level IR, the usage of registers and presence of memory references
has been made explicit by the introduction of load and store statements. An in-
terpreter for the IR is available which is used to execute instrumented versions

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.



Tradeoffs of Dynamic Data Slicing Algorithms • 645

Fig. 2. For input x = 7, the program follows the path: {11213141516112113114115152627191101
111152536312213214215354161}. (a) shows the memory data dependence edges introduced using
dynamic set of addresses referenced by loads and stores using dotted edges; (b) shows that Al-
gorithm I marks the nodes that are executed and during slicing only marked nodes are vis-
ited. The dynamic data slice for z at statement 16 contains {1,3,4,9,10,12,13,14,15,16}. Dur-
ing backward traversal of data dependence edges the edge (13,8) is not explored by this al-
gorithm and statement 8 is not added to the dynamic data slice because statement 8 is not
marked.

of the IR for obtaining execution traces consisting of both the control flow trace
(sequence of basic blocks executed) and memory trace (sequence of memory
addresses referenced). In our implementation we read the execution trace in
blocks and buffer it to reduce the I/O cost. Some of the programs we use make
use of longjmps which makes it difficult to keep track of the calling environ-
ment when simulating the call stack. We handle this problem by instrumenting
the program to explicitly indicate changes in calling environment as part of the
trace. This additional information in the trace is used during traversal of the
trace.

To achieve a fair comparison among the various dynamic data slicing algo-
rithms, we have taken great care in implementing them. Different dynamic
slicing algorithms that are implemented share code whenever possible and use
the same basic libraries.
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Fig. 3. (a) Again consider the execution of the program for input x = 7. Algorithm II captures the
actual data dependence edges exercised at runtime. Therefore in comparison to Algorithm I: even
though *bound and *step are aliases, the data dependence edge (15,1) is not added because the value
of *step used in 15 comes from 3; and the data dependence edge (14,10) is not added as the path
from 10 to 14 is not followed during this execution. The dynamic data slice of z at statement 16 is
{3,4,12,13,14,15,16} which contains 3 less statements, 1, 9 and 10, than the slice computed by Algo-
rithm I; (b) To show the difference of Algorithm II and precise dynamic slicing we use the input, x =
6. The path taken by the program is {1121314151617191101111141151526212113114215253637292
102112153546412213214315455161}. The data dependence edge (14,10) is introduced because the
path from 10 to 14 is exercised. The dynamic slice for Algorithm II is {3,4,9,10,12,13,14,15,16} while
precise algorithm produces the slice {3,4,12,13,14,15,16} with 2 fewer statements. This is because
the precise algorithm considers statement instances among which dependences exist and thus does
not traverse the data dependence edge (14,10) as the value of z at 14 only depends upon the value
of y at 13.

5.2 Benchmark Characteristics

The programs used in our experiments include 008.espresso from the
Specint92 suite, 130.li, 134.perl, 099.go and 126.gcc from the Specint95
suite, and 181.mcf, 197.parser, 255.vortex, 256.bzip2 and 300.twolf from
the Specint2000. Other Specint2000 benchmarks could not be compiled by the
version of Trimaran we were using. The attributes of the programs, including
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Table III. Benchmark Characteristics

Lines of Num. of
Program C Code Funcs

008.espresso 14,850 361
099.go 29,629 372
130.li 7,741 357
126.gcc 207,483 2001
134.perl 27,044 277
181.mcf 2,412 26
197.parser 11,391 324
255.vortex 67,213 923
256.bzip2 4,650 74
300.twolf 20,474 191

Executed Statement Instances Trace Size (Bytes)
Program (1) (2) (3) (1) (2) (3)

008.espresso 1,142,979 37,512,537 20,203,629 4,665,571 124,988,145 79,512,147
099.go 117,503,888 120,467,852 62,271,885 500,000,788 500,000,747 250,000,022
126.gcc 103,156,356 112,037,569 104,650,291 500,000,391 500,000,757 500,000,215
130.li 122,017,736 21,590,453 109,323,294 581,574,086 99,999,705 500,000,365
134.perl 32,729,474 55,416,461 111,023,934 132,807,387 250,000,192 500,000,438
181.mcf 92,544,144 130,563,056 96,323,797 499,900,970 503,974,383 385,120,404
197.parser 95,262,111 93,255,888 75,900,041 499,999,827 399,999,920 327,168,069
255.vortex 84,244,903 84,245,034 118,109,212 499,999,684 417,064,840 584,079,792
256.bzip2 95,303,451 90,512,339 57,778,596 364,989,398 348,221,994 202,512,817
300.twolf 101,547,297 159,734,018 154,502,097 499,992,542 634,520,369 621,538,455

the number of lines of C code and the number of functions are given in
Table III. Each of the programs was executed on three different inputs and
execution traces for the three inputs were collected. The number of statements
executed and the sizes of execution traces for these program runs are also given
in Table III.

The system used in our experiments is a 2.2 GHz Pentium 4 Linux worksta-
tion with 1.0 GB RAM and 1.0 GB of swap space.

5.3 Precise Slicing Algorithms

In order to study the behaviors of the proposed precise dynamic data slicing
algorithms, we computed the following slices. We collected execution traces
on three different input sets for each benchmark. For each execution trace,
we computed 25 different data slices. These data slices were performed for
the latest executions of 25 distinct values loaded using load statements by the
program; that is, these slices were computed with respect to the end of program’s
execution (@ End).

5.3.1 Slice Sizes. Let us first examine the sizes of slices. In Table I, in
the introduction, the precise dynamic slice sizes of the programs on the first
input were given and it was observed that the number of statements in the
dynamic slice is a small fraction of the statically distinct statements that are
actually executed. Thus, they are more likely to help in focusing the user or
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Table IV. Precise Dynamic Slice Sizes for Additional Inputs

Program Statements PDDS(2) Statements PDDS(3)
@ End Executed(2) AVG MIN MAX Executed(3) AVG MIN MAX

008.espresso 22,897 448 4 1,443 19,356 227 2 1,229
099.go 56,051 4,982 2 6,934 46,497 1,268 2 5,178
126.gcc 136,269 1,268 2 10,702 194,162 7,359 2 15,388
130.li 8,462 21 2 232 8,854 19 2 323
134.perl 15,327 98 2 611 22,897 151 2 599
181.mcf 2,171 157 2 363 2,095 136 2 292
197.parser 3,210 94 2 222 3,321 87 2 233
255.vortex 74,395 1,632 4 5,681 74,405 1,317 4 8,575
256.bzip2 8,064 479 2 1,345 7,018 408 2 1,056
300.twolf 15,184 1,098 4 2,438 19,629 1,457 2 2,681

PDDS stands for precise dynamic data slices.

algorithm on a small range of executed statements. In Table IV, the precise
dynamic data slice sizes for the other two program inputs for @ End are given.
As we can see, similar observations hold for different inputs for each of the
benchmarks. Thus, dynamic slicing is effective across different inputs for these
benchmarks.

5.3.2 Slice Computation Times. Next, we consider the execution times of
FP, NPwoC, NPwC, and LP algorithms. Our implementation of the LP algo-
rithm does not use caching. Figures 4, 5, 6, 7 and 8 show the cumulative exe-
cution time in seconds as additional slices are computed one by one. The three
graphs for each benchmark correspond to the three different inputs. These
graphs include both the preprocessing times and slice computation times. From
these figures, we note that:

—For those algorithms which perform preprocessing, the time at which the
first slice is available is relatively high for them since preprocessing must be
performed before the slice is computed.

—In very few cases the FP runs to completion, more often it runs out-of-memory
(OoM) even with 1 GB of swap space available to the program and therefore
no slices are computed. Clearly, this latter situation is unacceptable. This
is not surprising when one considers the estimated graph sizes for these
program runs given in Table V (the estimates are based upon the number of
dynamic data dependences).

When we consider the other precise algorithms, that is, NPwoC, NPwC and
LP algorithms, we find that:

—They all successfully compute all of the slices. We will show the memory
consumptions for these algorithms are much smaller than the FP’s.

—For the NPwoC algorithm there is a linear increase in the cumulative exe-
cution time with the number of slices. This is to be expected as each slicing
operation requires some traversal of the execution trace.

—For NPwC that uses caching, the cumulative execution time increases less
rapidly than NPwoC, which does not use caching, for some programs but not
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Fig. 4. Data slicing times for 008.espresso and 099.go. (OoM—out of memory, this algorithm
could not be run).

for others. This is because in some cases dependences are found in the cache
while in other cases they are not present in the cache. In fact, when there are
no cache hits, due to the time spent on maintaining the cache, NPwC runs
slower than NPwoC. Since the impact of caching was minimal for the first
input, we did not run the NPwC version on the other two inputs.
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Fig. 5. Data slicing times for 126.gcc and 130.li.

—The limited preprocessing in the LP algorithm indeed pays off. The LP cu-
mulative execution time rises much more slowly than the NPwoC and NPwC
curves. Since limited preprocessing requires only a single forward traversal
of the trace, its preprocessing cost is small in comparison to the savings it
provides during slice computations. The execution times of the LP algorithm
are 1.09 to 3.19 times less than the NP algorithm for the first input set (see
Table VI). This is not surprising when one considers the percentage of trace
blocks that are skipped by the LP algorithm (see Table VII).
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Fig. 6. Data slicing times for 134.perl and 181.mcf.

5.4 The Effect of Varying Trace Block Size in LP

During the discussion of the LP algorithm, we mentioned that changing the size
of the trace block can affect the definition redundancy and the skipping rate and
thus the savings obtained using the LP algorithm. In our implementation, we
divided the trace at points corresponding to function boundaries and further
we limited the maximum trace block size to 200 trace entries where each entry
corresponds to a single basic block. In this section, we justify this choice by
showing that for most programs this choice was a good one.
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Fig. 7. Data slicing times for 197.parser and 255.vortex.

Let C be the cost of traversing the trace without the summary augmenta-
tion. When LP is used, the cost of traversing the trace is reduced by an amount
determined by the two characteristics: the skipping rate Sr; and definition re-
dundancy Dr. This reduced cost of traversing the augmented trace can be ap-
proximated as follows. The cost of traversing the part of the trace that is not
skipped can be considered to be roughly unchanged. The cost of the part of the
trace that is skipped is the function of definition redundancy. Thus, the reduced
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Fig. 8. Data slicing times for 256.bzip2 and 300.twolf.

cost can be approximated by:

Costnot−skipped + Costskipped
= (1 − Sr) · C + Sr · C · (1 − Dr)
= C · (1 − Sr · Dr)

Therefore, to minimize the cost, we need to maximize Sr · Dr. To show our
current choice of trace block size is good for most of the traces, we varied the
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Table V. Estimated Full Graph Sizes

Size (MB)
Program (1) (2) (3)

008.espresso 26.4 755.5 409.3
099.go 2,366.6 2,276.5 1,076.2
126.gcc 4,931.4 5,064.7 5,055.9
130.li 1,808.6 316.2 1,614.3
134.perl 1,975.8 5,629.2 8,977.5
181.mcf 1,571.6 2,892.1 3,470.7
197.parser 1,312.4 1,285.9 1,040.8
255.vortex 2,010.8 2,034.3 2,850.8
256.bzip2 2,169.4 2,119.8 1,001.2
300.twolf 3,746.4 6,475.5 5,188.5

Table VI. Cumulative Times: NP vs LP

NP/LP
Program (1) (2) (3)
008.espresso 2.67 3.43 2.65

099.go 1.13 1.31 2.09
126.gcc 1.43 1.833 1.58
130.li 1.95 1.25 1.53
134.perl 3.19 1.25 1.14
181.mcf 1.55 1.62 1.91
197.parser 1.59 1.20 1.09
255.vortex 1.54 1.33 1.18
256.bzip2 1.24 1.20 2.85
300.twolf 2.64 2.56 2.06
Average 1.89 1.70 1.81

Table VII. Trace Blocks Skipped by LP

% Blocks Skipped
Program (1) (2) (3)
008.espresso 96.6 97.15 98.68

099.go 57.52 65.38 91.7
126.gcc 90.43 97.63 89.39
130.li 99.02 99.51 99.70
134.perl 92.42 98.99 98.26
181.mcf 84.39 86.26 90.13
197.parser 78.56 80.48 76.33
255.vortex 96.95 92.95 94.81
256.bzip2 44.24 35.7 76.95
300.twolf 90.11 88.21 78.80
Average 83.02 84.23 89.48

trace block size to see how it affects Sr, Dr, and Sr · Dr. Figure 9 shows these
results. Along the x-axis 1X refers to our current setting of maximum block
size (200 entries) while 1/2X is half of the current setting, 2X is the double
of this setting and so on. From the graphs in Figure 9 we observe the following.
For many benchmarks (e.g., 300.twolf, 197.parser, 126.gcc etc.), the current
setting corresponds to maximum value of Sr · Dr. This implies that the current
setting works perfectly for these traces. We can also see that the chosen trace
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Fig. 9. The effect of varying block size in LP for input (1).
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block size did not give the best savings for some benchmarks. This is to be
expected as it is not possible to find a unique trace block size which is best for
all programs because the trace characteristics of programs vary. However, the
chosen setting performs quite well across all the benchmarks.

5.5 LP vs. Imprecise Algorithm II

In this section, we compare the performance and the memory consumption of
our best precise dynamic slicing algorithm, the LP algorithm, with Agrawal
and Horgan’s Algorithm II. We do not include data for Algorithm I because as
shown by the data presented in Table I, Algorithm I is extremely imprecise
even in comparison to Algorithm II.

Before describing the results it is important to understand the differences be-
tween the LP algorithm and Algorithm II. The LP algorithm solves the memory
problem by demand-driven construction of relevant part of the precise dynamic
dependence graph. Algorithm II solves the same problem by constructing an
imprecise dynamic dependence graph where the instances of statements among
which data dependences exist are not remembered. This approximation greatly
reduces the size of the graph which is constructed in a single pass over the trace.
Thus, all the preprocessing is carried out once in the beginning and then slices
can be computed very quickly by traversing this graph.

A question that may arise is whether the performance of Algorithm II can
be further improved by applying the demand-driven approach and limited pre-
processing used by the LP algorithm. Since the approximate dynamic depen-
dence graph constructed by Algorithm II is already small, there is no point in
building it in a demand-driven fashion. Moreover, given the approach taken
by Algorithm II, the demand-driven construction of the approximate dynamic
dependence graph will only further slow down Algorithm II. This is because
Algorithm II constructs the complete approximate dynamic dependence graph
in a single pass over the trace. If demand-driven approach is used, to extract
subsets of dependences from the trace, the entire trace may have to be traversed
for extracting these dependences. Thus, repeated passes over the trace would
have to be carried out to extract different subsets of dependences which will
further slow down Algorithm II. On the other hand, the LP algorithm has to
build the precise data dependence graph in a demand-driven fashion because
the complete graph is too large. Furthermore, since Algorithm II traverses the
trace only once, there is no point in augmenting the trace with summary infor-
mation because such augmentation itself would require a complete traversal of
the trace.

5.5.1 Memory Consumption. The dependence graph constructed is the
only thing which needs to be kept in memory for slice computations. Therefore,
we study the constructed graph sizes as the indicator of memory consumption
for the two algorithms; that is, the partial dynamic data dependence graph for
the LP algorithm and the approximate data dependence graph for Algorithm II.
Table VIII compares the graph sizes for input(1). In the column LP, we take the
maximum graph size constructed across the 25 slicing computations for each
benchmark. In the column Algo.-II, we give the approximate dependence graph
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Table VIII. Memory Consumption LP vs. Algo.-II

Program LP (Byte) Algo.-II (Byte)

008.espresso 665,092 122,540
099.go 36,525,944 258,948
130.li 11,861,832 44,732
126.gcc 10,923,816 731,008
134.perl 2,384,492 94,384
181.mcf 13,924,752 9,992
197.parser 12,687,840 12,008
255.vortex 1,367,988 314,908
256.bzip2 45,178,868 10,208
300.twolf 16,805,772 70,256

Table IX. IDDS-II vs. PDDS: Inputs (2) and (3)

IDDS-II/PDDS(2) IDDS-II/PDDS(3)
Program AVG STD MIN MAX AVG STD MIN MAX

008.espresso 3.67 11.70 1 60.95 119.42 337.49 1 1,561.5
099.go 222.55 829.78 1 4,124 16.07 36.08 1 162.5
126.gcc 285.79 899.84 1 4,167.25 519.54 1,757.12 1 6,533.5
130.li 20.09 47.94 1 178.5 2.66 4.42 1 21.50
134.perl 56.56 158.13 1 737 37.13 136.43 1 703
181.mcf 1.27 0.53 1 3.47 1.18 0.27 1 2.10
197.parser 3.12 6.60 1 31.25 1.15 0.17 1 1.55
255.vortex 43.22 89.3 1 384.24 157.60 610.64 1 3,123.60
256.bzip2 29.91 68.40 1 273.57 43.27 87.78 1.40 268
300.twolf 2.90 6.97 1 34.46 4.28 8.84 1 33.11

Average 66.91 211.92 2 999.47 90.23 297.92 1.04 1,241.04

PDDS stands for precise dynamic data slices;
IDDS stands for imprecise dynamic data slices;

size, which is fixed for a given input for each benchmark. From this table, we
can observe:

—Both of these algorithms consume very small amount of memory compared
to the FP algorithm. Thus, memory is not a problem for these algorithms.

—The partial dependence graph constructed in the LP is larger than the ap-
proximate dependence graph in the Algorithm II, which is a static graph.

5.5.2 Slice Sizes. The data presented in the introduction already showed
that precise dynamic slices are much smaller than the imprecise dynamic slices
computed using Algorithm II. In Table IX, similar data for the two additional in-
puts is given. As we can see, the same observation holds across these additional
inputs.

We have already compared the slice sizes of LP and Algorithm II. How-
ever, since the results of such comparisons are dependent upon the variables
for which slicing is performed, we also developed a slice-independent approach
for comparing the algorithms by simply comparing the dynamic data depen-
dence graphs constructed by them and measuring the imprecision in these data
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Table X. Slice Independent Comparison of Algorithms

Number of Dynamic Memory Dependences
Input (1) Input (2) Input (3)

Program Algo.-II Precise
Algo.−II Algo.-II Precise

Algo.−II Algo.-II Precise
Algo.−II

008.espresso 374,329 0.21 14,414,220 0.09 6,686,934 0.14
099.go 148,995,060 0.07 114,054,794 0.08 42,549,505 0.09
126.gcc 35,378,836 0.24 74,601,341 0.11 38,311,969 0.23
130.li 310,899,820 0.03 6,175,836 0.30 37,056,110 0.25
134.perl 22,114,062 0.13 6,853,213 0.68 13,566,847 0.69
181.mcf 33,673,831 0.15 41,460,615 0.12 24,614,417 0.15
197.parser 10,878,165 0.64 10,645,290 0.63 8,753,145 0.64
255.vortex 68,276,853 0.14 69,647,039 0.13 91,038,138 0.14
256.bzip2 122,559,274 0.06 106,810,886 0.07 108,751,941 0.02
300.twolf 39,193,823 0.19 58,070,415 0.23 56,123,952 0.22

dependence graphs that is introduced by Algorithm II. This method is motivated
by the fact that the imprecision in dynamic dependence graph constructed by
Algorithm II is the root cause of resulting imprecision in the dynamic data slices
computed by this algorithm.

The number of dynamic data dependences recovered by the precise algorithm
is exact. However, when the imprecise algorithm is used, the imprecision is
introduced in the dynamic data dependence graph in form of false dependences.
Therefore, if we compute the equivalent number of dynamic data dependences
introduced by the imprecise algorithm, they will be higher than those for the
precise algorithm. The greater the number of false dependences, the greater is
the degree of imprecision.

Let us say statement S is executed many times and some of its instances are
dependent upon values computed by statement T and others on values com-
puted by statement U . The LP algorithm makes each instance of S dependent
upon a single instance of either T or U . Algorithm II introduces twice the num-
ber of dependences as the LP algorithm because it makes each instance of S
dependent upon both T and U .

We computed the equivalent number of dynamic memory dependences (i.e.,
data dependences between a store and a load operation) present in the dynamic
data dependence graphs constructed for Algorithm II and LP algorithm. The re-
sults of this computation are given in Table X. As we can see, the number of
dynamic memory dependences for Algorithm II are several times that of the
number of dynamic memory dependences for the LP algorithm. For example,
for the first input set, 126.gcc’s execution produces a dynamic data depen-
dence graph containing 35378836 memory dependences for Algorithm II and
8632906 memory dependences for the precise algorithm. Thus, imprecision of
Algorithm II leads to a 4.1-fold increase in the number of dynamic memory
dependences.

5.5.3 Execution Times. The cumulative execution times for Algorithm II
for slices computed at the end of execution were shown in Figures 4, 5, 6, 7
and 8. Table XI shows the preprocessing and slice computation times of these
two algorithms. When we compare the execution times of the two algorithms,
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Table XI. Preprocessing + Slicing Times: Algo. II vs. LP for Input (1) @ End

Program Algorithm II LP LP/Algo. II

008.espresso 25.15 + 0.11 7.83 + 33.98 1.66
099.go 12,671.8 + 5.37 893.92 + 24,766.14 2.02
126.gcc 33,014.1 + 11.46 727.82 + 17,556.48 0.55
130.li 2,725.32 + 3.43 858.08 + 4,493.45 1.96
134.perl 631.32 + 0.76 190.18 + 996.82 1.88
181.mcf 906.61 + 0.04 420.4 + 3,962.58 4.83
197.parser 1,195.3 + 0.04 466.98 + 2,506.86 2.48
255.vortex 16,234 + 2.48 534.56 + 4,187.60 0.29
256.bzip2 1,786.02 + 0.25 447.18 + 4,273.15 2.64
300.twolf 1,375.53 + 0.34 407.8 + 1,579.89 1.44

we observe the following:

—The total time (i.e., sum of preprocessing and slicing times) taken by LP is
0.29 to 4.83 times the total time taken by Algorithm II.

—The latency of producing the results of the first slice using LP is 2.15 to 21.97
times smaller than that of producing the first slice using Algorithm II.

On examining the graphs in Figures 4, 5, 6, 7 and 6, we notice that, if we
compute only a small number of slices, then the precise LP algorithm in fact
outperforms Algorithm II even in terms of the runtime performance. This is be-
cause Algorithm II requires that all preprocessing be performed before slicing
can begin while LP performs much less preprocessing. For each program, there
is a number L such that if at most L slices are computed, LP algorithm out-
performs Algorithm II. The value of L is higher for execution runs with longer
traces as the length of the trace determines the preprocessing time for Algo-
rithm II. For the slicing of gcc @ End, we can compute all 25 slices precisely
using LP algorithm in time which is less than the time it takes for Algorithm
II to carry out preprocessing. On the other hand, for espresso @ End, we can
compute around 10 slices using LP algorithm in the same amount of time as it
takes Algorithm II to carry out preprocessing.

6. CONCLUSIONS

In this article, we have shown that a careful design of a dynamic slicing al-
gorithm can greatly improve its practicality. We designed and studied three
different precise dynamic data slicing algorithms: FP, NP, and LP. We made
the use of demand-driven analysis (with and without caching) and trace aug-
mentation (with trace block summaries) to achieve practical implementations
of precise dynamic data slicing. We demonstrated that the precise LP algorithm
which first performs limited preprocessing to augment the trace and then uses
demand-driven analysis performs the best. In comparison to the imprecise Al-
gorithm II, it runs faster when a small number of slices are computed. Also, the
latency of computing the first slice using LP is 2.15 to 21.97 times less than the
latency for obtaining the first slice by Algorithm II.

In conclusion, this article shows that while imprecise dynamic slicing al-
gorithms could be very imprecise, a carefully designed precise dynamic data
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slicing algorithm such as the LP algorithm is practical as it provides precise
dynamic data slices at reasonable space and time costs. We would like to point
out that one limitation of our work is that we generated slicing requests in a
synthetic manner. It is possible that slicing requests generated in context of
various applications of dynamic slicing differ. Thus, a future direction of work
would be to take our LP algorithm and carry out more extensive comparisons
of precise and imprecise slices in context of specific applications.
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