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ABSTRACT 
Link analysis algorithms have been extensively used in Web 
information retrieval. However, current link analysis algorithms 
generally work on a flat link graph, ignoring the hierarchal 
structure of the Web graph. They often suffer from two problems: 
the sparsity of link graph and biased ranking of newly-emerging 
pages. In this paper, we propose a novel ranking algorithm called 
Hierarchical Rank as a solution to these two problems, which 
considers both the hierarchical structure and the link structure of 
the Web. In this algorithm, Web pages are first aggregated based 
on their hierarchical structure at directory, host or domain level 
and link analysis is performed on the aggregated graph. Then, the 
importance of each node on the aggregated graph is distributed to 
individual pages belong to the node based on the hierarchical 
structure. This algorithm allows the importance of linked Web 
pages to be distributed in the Web page space even when the 
space is sparse and contains new pages.  Experimental results on 
the .GOV collection of TREC 2003 and 2004 show that 
hierarchical ranking algorithm consistently outperforms other 
well-known ranking algorithms, including the PageRank, 
BlockRank and LayerRank. In addition, experimental results 
show that link aggregation at the host level is much better than 
link aggregation at either the domain or directory levels.  

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval; H.3.3 [Information Interfaces and Presentation]: 
Hypertext/Hypermedia; 

General Terms: Algorithms, Performance, 
Experimentation. 

Keywords: Link Analysis, Hierarchical Web graph, 
Hierarchical Random Walk Model. 

1. INTRODUCTION 
Link analysis algorithms play key roles in Web search systems. 
They exploit the fact that the Web link structure conveys the 
relative importance of Web pages. For example, Google’s 
PageRank [24] is a widely applied algorithm, which can be 
described as the stationary probability distribution of a certain 
random walk on the Web link graph - the graph whose nodes are 

the individual Web pages and directed edges are the hyperlink 
between pages. However, the existing link analysis algorithms 
often suffer from two problems: sparsity of link-graph and biased 
ranking of newly-emerging pages [10][14]. The first problem is 
caused by the fact that the link distribution of the Web graph 
generally satisfies the power law [15] and the sparse link matrix 
makes most of the pages unable to obtain any importance ranking 
at all [11][16]. Additionally, such link distribution makes the 
distribution of PageRank scores follow a power law [28]. The 
second problem implies that a newly emerging Web page has too 
few in-links to obtain a reasonable importance scores [10]. 
We suggest in this paper using the inherent hierarchical structure 
of the Web, which is embedded in URLs, to solve the problems. 
For example, in URL http://www.cs.berkeley.edu/Research/ 
Projects/, we might expect to find some project-related 
information about research in the computer science department of 
UC Berkeley. In [26], Simon argued that all the system is likely to 
be organized as a hierarchical structure. The World Wide Web is 
a good example of the hierarchical organization [5]. From a local 
view of the Web, a Web site is organized as a hierarchical 
structure where the hierarchical information is represented by the 
directory structure. From a global view of the WWW, the whole 
Web is also organized as a hierarchical structure, in which the 
first level provides the top-level domains (such as berkeley.edu). 
Subsequently, the following levels contain the virtual hosts, the 
virtual folders and the Web pages. Furthermore, as discussed in 
[13][23], the link structure of Web is closely related to such 
hierarchical structure too.   

In this paper, we take the link structure of the Web as well as the 
hierarchical structure of the Web into consideration in page 
importance calculation. Different from the traditional flat link 
graph, we construct a new Web-link graph which consists of two 
layers, i.e. the upper-layer graph and lower-layer graph, as shown 
in Figure 1.  A novel random walk model is defined, which 
assumes that a user seeks for information by starting from the 
upper-layer and either random jump to another upper-layer node 
or follows the hierarchical links down to the lower-layer. Based 
on this random walk model, we propose a new link analysis 
algorithm called Hierarchical Rank to calculate the importance of 
the Web pages. This algorithm allows the importance of a 
supernode that is computed at the upper-layer graph to be 
propagated down to the Web pages in the lower-layer graph. We 
show that the link distribution in the upper-layer graph is much 
denser than that in general link graph. By exploiting this fact, the 
propagation step can solve the new page issue more satisfactorily. 
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TREC 2003 and 2004. The experiment results show that our 
hierarchical rank consistently outperforms existing ranking 
algorithms at the flat link graph. Furthermore, we demonstrate 
that the aggregation at host level works much better than other 
two aggregation level, i.e. domain level and directory level.  

The rest of this paper is organized as follows. In Section 2, we 
review the recent works on the link analysis and Web graph 
analysis. Then, we present the characteristics about the Web 
graph in Section 3. In Section 4, we propose our hierarchical 
ranking algorithm to take the link structure and hierarchical 
structure into consideration. Our experimental results are 
presented in Section 5. Finally, we summarize our main 
contributions and discuss the future works in Section 6.  

 
Figure 1. Hierarchical Structure of a Web Graph 

2. PREVIOUS WORK 
There are two types of works in recent research area, one is 
working on “link analysis”, and the other is working on “Web 
structure analysis”.  

2.1 Previous Work on Link Analysis  
The link analysis technology has been widely used to analyze the 
Web pages’ importance, such as HITS [20] and PageRank [7][24]. 
PageRank is a core algorithm of Google which measures the 
importance of Web pages. It models the users’ browsing 
behaviors as a random surfing model, which assumes that a user 
either follows a link from the current page or jumps to a random 
page in the graph. The PageRank of a page pi is then computed by 
the following equation: 
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where ε is a dampening factor, which is usually set between 0.1 
and 0.2; n is the number of nodes in G; and out-degree(pj) is the 
number of the edges leaving page pj, i.e., the number of 
hyperlinks in page pj. The PageRank could be computed by an 
iterative algorithm and corresponds to the primary eigenvector of 
a matrix derived from adjacency matrix of the available portion of 
the Web. Some extended link analysis algorithms to PageRank 
and HITS are proposed recently, such as [4][8][9][17]. But most 
of these works only consider the “flat” Web link structure and 
assign the same weight to the hyperlink. In [18], the author 
divides the Web graph into different blocks. According to the 
hyperlink that links between the different blocks or among the 
same block, they assign the different weight to the hyperlinks to 
compute the PageRank and evaluate the performance for search.  

Recently, there are also several works to consider the aggregated 
graph analysis. A. Z. Broder et al. [6] proposed an efficient 
PageRank approximation on the aggregated graph. Y. Asano [1] 
proposes to find the directory-based site and then to efficiently 
find the Web community.  Recently, Wu et al. [27] proposed a 
two-layer Layered Markov Model for decentralized Web ranking. 
In our experiments presented later in the paper, Wu et. al’s  
algorithm is compared as the name “LayerRank”. Since the 
algorithm pays much attention on the intra-link and does not 
consider the inter-link when computing the importance of the 
page layer, its performance is not better than the PageRank. As 
we discussed, the above algorithms only consider the individual 
Web pages as the elements while the inherent hierarchical 
structure of the Web are not taken into account. In this paper, we 
propose a combination of the host structure and the link analysis 
and show that this integration could improve the performance of 
ranking results.  

2.2 Previous Work on Web Graph Structure  
There are many research works on exploiting the hierarchical 
structure of the Web. Nadav et al. [12] proposed that hyperlinks 
tend to exhibit a “locality” that is correlated to the hierarchical 
structure of URLs, and that many features of the organization of 
information in the Web are predictable from the knowledge of the 
hierarchical structure. Kamvar et al. [19] proposed to utilize the 
hierarchical structure of the Web graph to accelerate the 
computation of PageRank.  
There also exists some work that model the Web by considering 
the hierarchical structure of the Web. A hierarchical model of the 
Web was previously suggested by Laura et. al [21]. In their model, 
every page that enters the graph is assigned a constant value for 
the abstract “region” the page belongs to; the page is allowed to 
link only to other pages in the same region. Nadav et al. [13] 
described a Web-graph model to integrate the link structure and 
the explicit hierarchical structure together, which reflects a social 
division by the organization.  

3. HIERARCHICAL WEB GRAPH 
We first list the key terminologies used in the following 
discussion through an example URL: 
http://cs.stanford.edu/research/ index.htm, as shown in Table 1.  

Table 1. Terminology  

Term Example: 
cs.stanford.edu/research/index.htm 

Domain 
Host 
Directory 
Page 

stanford.edu 
cs.stanford.edu 
cs.stanford.edu/research/ 
cs.stanford.edu/research/index.htm 

As mentioned in Section 1, the Web is organized as a hierarchical 
structure.  In this paper, we propose a two-layer model of the Web.  
The upper-layer graph is an aggregated link graph which consists 
with supernodes and superedges, in which each supernode (such 
as domain, host and directory) aggregates the pages from the 
same supernode and superedges among supernodes are also 
aggregated from the underlying links of pages. The lower-layer 
graph is the hierarchical tree structure, in which each node is the 
individual Web page in the supernode, and the edges are the 
hierarchical links between the pages. (See Figure 1). 
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Within the hierarchical structure, the Web contains the Web pages, 
the directories, the hosts as well as the domains. Thus, the whole 
Web graph could be abstracted according to a hierarchical 
structure, such as a page level, a directory level, a host level and a 
domain level. According to the different levels, the hyperlinks at 
each level can be divided into two types: intra-links and inter-
links. For example, when we construct the abstract Web graph at 
the directory level, the Web pages in the same directory are 
organized as a super node and the hyperlinks that link two Web 
pages in the directory are called intra-links. Likewise, the 
hyperlinks that link two Web pages in different super nodes are 
called the inter-links. Furthermore, the hyperlink of a page could 
be two types: one is inlink that link to the page and the other is 
outlink that links from the page. According to the analysis in 
[18][22], the intra-link plays less value than the inter-link when 
computing the PageRank at different level. However, the work 
still does not exploit the hierarchical structure inherent in the Web 
graph.  
To investigate the hierarchical structure of the Web in detail, we 
gather the following statistics. We take all the hyperlinks in 
the .GOV collection, and count how many of the links are “Intra-
link” and “Inter-link” at different abstract level.  

Table 2. Link Distribution over .GOV Collection at Different 
Abstraction Levels 

Level Intra-Link Inter-Link 
Domain 7,342,031   (97%) 227,322      (3%) 

Host 6,506,578   (86%) 1,062,775   (14%) 

Directory 2,956,566   (39%) 4,612,787   (61%) 

Page 0                 ( 0% ) 7,569,353   (100%) 

As shown in Table 2, the percentage of the intra-link and the 
inter-link at four different levels is different. Take the result of the 
host level as an example, there are about 86% of all links were 
intra-links to a host, which tend to show a high degree of locality 
[13].  
Another observation is interesting.  We have also found that when 
links are inter-links between two different hosts, they tend to link 
to the top level of the host. These structure features of the Web 
have also shown up in other ways [19], allowing very high levels 
of compression for the link graph and enabling a block-oriented 
approach to accelerate the convergence of PageRank.  
Based on the analysis, we construct a two-layer model of the Web, 
which is described in detail as follows. 

3.1 Two-Layer Hierarchical Graph 
Construction 
We use the G=(V, E) to represent the directed graph of the Web, 
where the V and E refer to the vertex and edge set respectively. If 
a page p is represented by a graph vertex, we will use p to refer to 
the page as well as to the vertex.  
Let S={S1, S2, …, Sm} be a partition on the vertex set of G (by 
definition, this is also a partition of all the pages in the Web ). We 
define the following types of directed graphs.  
Upper-layer graph. An upper-layer graph contains m vertices 
called supernodes, one for each element of the partition.  
Supernodes are linked to each other using directed edges called 
superedges. Superedges are created based on the following rule: 

there is a directed superedge jiE ,  from Si to Sj if there is at least 

one page in Si that links to some page in Sj. Furthermore, the 
upper-layer graph is a weighted graph where the weight of the 
edges from Si to Sj  is the number of the links from pages in Si to 
pages Sj.
Lower-layer graph. In order to capture the essence of the 
structure within a supernode, we represent all the individual pages 
{p0, p1, …, pn} in a supernode S with a hierarchical tree structure 
by considering the URL properties. Thus, all the pages in one 
supernode are organized by the URL relationship. For example, a 
supernode begins with a unique root node, which is entry page of 
supernode. Then the pages in the first level provide the children 
nodes of the root page, and so on. The structure in Figure 2 is 
generated by this method at the level of the host.  

 
Figure 2. Hierarchical Structure of a Supernode 

4. HIERARCHICAL RANKING  
4.1 Hierarchical Random Walk Model 
According to the inherent hierarchical structure of the Web, we 
first consider a surfing model that considers both the link structure 
and the hierarchical structure of the Web.  
The hierarchical random walk model is as follows:  
1. At the beginning of each browsing session, a user randomly 
selects the supernode.   
2. After the user finished reading a page in a supernode, he may 
select one of the following three actions with a certain probability:  

(a). Going to another page within current supernode, following 
the hierarchical link structure of the supernode. 
(b). Jumping to another supernode that is linked by current 
supernode.  
(c). Ending the browsing. 

According to the hierarchical random walk model, we can apply a 
two-stage computation of the hierarchical rank: first stage 
calculates the importance of supernodes according to the surfing 
behaviors among the supernodes and second stage calculates the 
importance of pages according to the surfing behaviors inside a 
supernode.  
In the first stage, a user selects a supernode randomly, and jumps 
to another supernode randomly according to the superedges. The 
supernode surfing behavior in our model is exactly the same as 
the inter-page surfing behavior in PageRank. Thus, we can obtain 
the importance of supernodes by performing the PageRank 
algorithm on the supernode-level weighted graph. 
In the second stage, we deal with page-level surfing inside a 
supernode. Since the interest of any page can be traced back to 
the root of the supernode, and the interest will dissipate when 
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propagating among pages inside a supernode, it is analogously 
like a Dissipative Heat Conductance (DHC) model [29] to 
describe the behaviors of users. In the DHC model, we place a 
single heat source with temperature SIi at the root of each 
supernode Si, where SIi is the importance of the supernode Si. The 
heat dissipates when it propagates alone with the tree structure 
inside the supernode Pj. If we keep temperature of the entry point 
constant, the temperature will converge after propagation for a 
time. The final temperature of each page gives the importance of 
that page. We give details in the following sections. 

4.2 Calculating Supernode Importance  
We represent the upper-layer graph as a matrix. Suppose that the 
Web contains m supernodes, the m×m adjacency matrix is denoted 
by A and the entries A[i, j] stands for the weighted link from 
supernode i to supernode j.  The adjacency matrix A is used to 
compute the importance of each supernode Si, denoted as SIi. In 
an “ideal” form, SIi can be calculated by the sum of the 
importance of all the hosts that point to host i:  

∑ ∈
⋅=

Elj ji
ji

ijASISI
:

],[  
(2)

However, in practice, many supernodes have no in-links (or the 
weight of them is 0), and the eigenvector of the above equation is 
mostly zero. Therefore, the basic equation (3) is modified to 
obtain a “random walk model” to deal with this issue. When 
browsing a supernode, with the probability 1-ε, a user randomly 
chooses one of the links on the current supernode and jumps to 
the supernode it links to. With a probability ε, the user “resets” by 
jumping to another supernode uniformly from the collection of 
supernodes. Therefore, the supernode importance formula is 
modified as Equation (4):  

∑ ∈
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Or in a matrix form:  

SIAεe
n
εSI )1( −+=  (4)

where er  is the vector of all 1’s, and ε (0<ε<1) is a parameter. In 
our experiment, we also set ε to 0.15.   

4.3 Calculating Page Importance 

 
Figure 3.  Hierarchical Weight Structure 

After obtaining the importance of a supernode, the intuitive 
method for assigning the importance to a page is the method 
proposed in [14], in which the importance of the pages in the 
supernode is equal to the importance of the supernode they belong 
to. Here we propose that the pages’ importance scores should be 
calculated according to the importance of the supernode as well as 
the hierarchical structure in the supernode. In this section, we 

introduce a Dissipative Heat Conductance (DHC) model to 
compute the importance of the pages in a hierarchical structure. 

4.3.1 Constructing Weighted Tree Structure 
Several factors could affect the calculation of the page’s 
importance, such as whether a page is an index page or a content 
page, as well as the number of external links from the outside of 
the supernodes. We formulate a hierarchical tree structure of the 
supernode as a directed weighted tree structure as shown in Figure 
3. In the weighted tree structure, each edge is from to the parent 
node to its child nodes and also the edge is weighted by the 
properties of the Web pages.   
Here a function is given to calculate the weight of page related to 
his parent page. Given a page pj in the supernode Si, the weight 

that the page pjω j to its parent node is calculated as:  

 )()1( )( jjj pindexθplinkθω −+⋅=              (5)    

Index is used to assign different weights to the index pages and 
other pages. Here we also use the hierarchical rule to judge 
whether the page is a index page or not. If the URL of the page 
contains the characteristics, such as index, default or the URL is 
ended with “/”, the page is the index page.   

⎪⎩

⎪
⎨
⎧

=
page is other jpifα

page is index jpif
pindex j     

     1
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The parameter α is a factor between 0 and 1. Its importance is 
explained later. 
Link is defined to calculate the percentages of the inlinks that the 
page pj has. Formally, the function is defined as follows:  
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where β is the factor to give the inter-link and the intra-link with 
the different weight. IIL(pj) is the number of the intra-hyperlink to 
the page pj, while OIL(pj) is the number of inter-hyperlink to the 
page pj.

4.3.2 Calculating Page Importance by DHC 
Based on the hierarchical weighted structure, a page’s importance 
in a supernode can be calculated recursively from the root page 
down to the bottom pages by using DHC algorithm. Actually, in 
this paper, we use the equations 8, which is simplifications of 
DHC, to calculate the page’s importance based on the hierarchical 
weight structure. Each page pj gets a value wij that shows how 
important the page pj is in the supernode Si. 

∏ ∈
×=

root}to from nodes {  np kij
jk

ωγw  (8)

where the parameter γ  is a heat dissipative factor.  

Thus, we get a matrix Wm×n that each entry wij is value of page pj 
importance in supernode Si. Obviously, if page pj does not belong 
to supernode Si, wij is equal to 0. Here the weight of root page is 
set to 1.  
Finally, the importance of a page pj on the whole Web graph, 
denoted as PIj, is calculated as follows: 

ijij wSIPI ×=  (9)
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Or in a matrix form:  

WSIPI ⋅=  (10)
where the page pj belongs to supernode Si, SIi is the importance of 
the supernode Si. The importance of the root page is equal to the 
importance of supernode. An example is shown in Figure 4. 

 
Figure 4.  Example of Page Importance Calculation 

5. EXPERIMENTS 
We designed the experiment on the TREC .GOV dataset. The 
queries of the topic distillation in TREC 2003 and TREC 2004 are 
used in our experiments.  

5.1 TREC .GOV Data Set 
Table 3.  TREC .GOV Dataset   

 TREC 2003 TREC 2004 
Number of Queries 50 75 

Relevant Pages/Query 10.32 21.32 
P@10 0.112 0.2053 BM2500 MAP 0.1285 0.1517 

The collection of TREC .GOV consists of 1,247,753 Web pages 
from a fresh crawl of the Web pages made in early 2002. Among 
them, 1,053,372 are text/html, which are used in our experiment. 
There are totally 7,569,353 hyperlinks in the collection. In the 
experiment, we used BM2500 [25] as the relevance weighting 
function. The mean average precision on TREC 2003 is 0.1285 
and the P@10 is 0.112. Compared with the best result of TREC 
2003 anticipants (with MAP of 0.1543 and P@10 of 0.1280), this 
baseline is reasonable. While the performance of BM2500 on 
TREC 2004 is that the mean average precision and the P@10 are 
0.1517 and 0.2053, respectively. Details are shown in Table 3.  

5.2 Evaluation Metrics 
In order to measure the retrieval performance of different ranking 
algorithms, we take P@10 and Means Average Precision (MAP) 
as the evaluation metrics which is widely used in TREC and the 
details could be found in [3].   
As we discussed in Section 1, the sparseness problem and new 
pages problem are two major problems in current link analysis. 
We also compare the effectiveness of different ranking algorithms 
on solving the two problems by KDist [19] distance. Consider two 
partially ordered lists of web pages τ1 and τ2, KDist(τ1, τ2) is the 
probability that τ1’ and τ2’ disagree on the relative ordering of a 
randomly selected pair of distinct nodes. In this work, we just 
compared the lists containing the same sets of Web pages, so that 
KDist is identical to Kendall’s τ  distance.  

5.3 Experimental Methods 
We describe four existing ranking methods to compare with our 
proposed hierarchical ranking algorithm.  

5.3.1 PageRank  
We implemented the PageRank algorithm based on the link 
matrix deduced from traditional page level link analysis.  

5.3.2 Weighted PageRank (WeightRank) 
In [18], the authors divide the whole graph into blocks. Then the 
hyperlinks between the different blocks and the hyperlinks among 
the same blocks are assigned different weights when computing 
the important of the Web pages. Their experiments verified that 
the host level could achieve the higher performance than the 
domain level and the directory level. In this paper, we also 
compare with the host level partition.  

5.3.3 Two-Layer PageRank (LayerRank) 
As we reviewed in Section 2, a two-layered ranking algorithm [27] 
was proposed. One layer is host-layer PageRank and the other 
layer is document-layer PageRank inside a host. Then, a weighted 
product between them is applied to obtain the final global ranking 
for all the Web pages.  

5.3.4 Block-Level PageRank (BlockRank) 
We also conduct an experiment to compare with the block-level 
PageRank [12], which divide the whole Web page into different 
semantic blocks. Then the PageRank algorithm is performed on 
the block-level.   

5.3.5 Hierarchical Ranking 
Hierarchical ranking corresponds to our proposed algorithm, 
which interpolates the link structure and the hierarchical structure 
together. Three level abstractions are proposed to partition the 
Web space into a domain level, a host level and a directory level.  
Accordingly, we define corresponding ranking as DomainRank, 
HostRank and DirectoryRank, respectively.  
In the following test, we chose the top 2000 results according to 
the BM2500 score. Then we combine the relevance with the 
importance as follows:  

λ⋅frelevance(p)+(1-λ)⋅fimportance(p) (11)
The function f can be score-based or the order-based of the page p 
in the results. The score-based function is the relevance score or 
the importance score, while the order-based function is the page’s 
position in the list which is sorted by relevance score or by 
importance score.  
For each ranking method, we both evaluate the two functions on 
the TREC 2003 and take the higher performance function as the 
combining method.  

5.4 Experimental Results 
Several parameters for our experiments are fixed in the following 
experiments, i.e. θ=0.6, α=0.6, β=0.4 and γ=0.8. We used the 
score-based linear combination for the hierarchical 
ranking．Through tuning on TREC 2003 for the best p@10 
precision, we set the combining parameter λ to 0.85, 0.6 and 0.73 
for DomainRank, HostRank and DirectoryRank, respectively. For 
the methods of PageRank, LayerRank, WeightRank and 
BlockRank, we take the parameters that achieve the best 
performance on these ranking. 

5.4.1 Performance at Different Hierarchical Levels 
The partitioned Web graph could be aggregated into different 
abstraction levels, the domain, host, and directory levels, which 
correspond to three ranking algorithms: DomainRank, HostRank 
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and DirectoryRank, respectively. We make the comparison on 
TREC 2003 and TREC 2004 to show which level gives a higher 
performance for each algorithms. Figure 5 shows that the host-
level abstraction is the best choice for the hierarchical link 
analysis. The performance decreased at the directory-level link 
analysis since the navigation links within the host do affect the 
performance of link analysis. Additionally, the domain-level link 
analysis also can not achieve the high performance. By 
observation on the link data, some useful inter-links between the 
hosts which are recommendation hyperlink, cannot take into 
account when computing the DomainRank. So the rest 
experiments are all conducted at the host level. That is, we 
compare other algorithms with the HostRank. 

0
0.05

0.1
0.15

0.2
0.25

0.3

P@10 MAP P@10 MAP

TREC2003 TREC2004

Pr
ec

is
io

n

Domain Host Directory  
Figure 5. Performance of Different Levels 

5.4.2 Overall Performance 
As can be seen in Figure 6, all ranking algorithms achieve higher 
performance than the baseline of relevance function, which 
confirms that the link analysis on the TREC data could work well.  

0

0.05

0.1

0.15

0.2

0.25

P@10 MAP P@10 MAP

TREC 2003 TREC 2004

Pr
ec

is
io

n

BM2500 BlockRank PageRank LayerRank WeightRank HostRank
 

Figure 6. Performance of Different Ranking on TREC  
In the topic distillation task of TREC 2003, our proposed 
HostRank algorithm significantly outperforms BM2500, 
BlockRank, PageRank, LayerRank and WeightRank on average 
precision by 57.4%, 25.5%, 36.2%, 46.0%, and 33.1%, 
respectively. Also, on the measure of P@10, HostRank 
significantly outperforms BM2500, BlockRank, PageRank, 
LayerRank and WeightRank by 46.4%, 12.3%, 22.4%, 43.9%, 
and 15.5%, respectively.  
In the topic distillation task of TREC 2004, our proposed 
HostRank algorithm significantly outperforms BM2500, 
BlockRank, PageRank, LayerRank and WeightRank on average 
precision by 14.3%, 5.9%, 4.6%, 11.8%, and 5.7%, respectively. 
Meanwhile, on the measure of P@10, HostRank significantly 
outperforms BM2500, BlockRank, PageRank, LayerRank and 
WeightRank by 21.4%, 14.0%, 16.9%, 20.6%, and 16.1%, 
respectively.  

From results on the queries of topic distillation task of TREC 
2003 and 2004. Our proposed hierarchical ranking algorithm 
consistently achieves highest performance than the well-known 
link analysis algorithms. Integrating the hierarchical structure and 
the link structure of the Web exactly improve the performance of 
retrieval. LayerRank algorithm, which performs two-layer 
PageRank calculation, can not achieve better performance than 
PageRank and WeightRank. Since the algorithm pays much 
attention on the intra-links of the host while these hyperlinks 
contain less information. WeightRank algorithm can also acquire 
higher performance than the PageRank and LayerRank algorithms. 
By assigning different weight to the intra- and inter-links of the 
Web graph, the effect by the navigation link can be leveraged to 
some extent. BlockRank algorithm can achieve higher 
performance than PageRank, WeightRank and LayerRank for the 
method provide more semantic link graph than on the page level. 

Table 4.  P-value for Different Ranking Results 

  Block 
Rank 

Page 
Rank 

Layer 
Rank 

Weight
Rank 

Host 
Rank 

P@10 0.015 0.041 0.028 0.021 0.003 TREC
2003 MAP 0.041 0.097 0.021 0.027 0.002 

P@10 0.324 0.335 0.433 0.292 0.006 TREC
2004 MAP 0.162 0.164 0.552 0.458 0.028 

To understand whether these improvements are statistically 
significant, we performed t-tests and the results are shown in 
Table 4. Compared to the baseline BM2500, all the t-test results 
show that HostRank significantly improves the search results.  

5.4.3 Ranking on Sparseness Data    
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 Figure 7. KDist of Sparse Link Graph  
(The lower value shows the higher performance) 

The density of a link graph can have a significant impact on the 
performance of link analysis. To show the performance of our 
ranking function, we conducted an experiment to simulate the 
phenomenon of the sparseness of link graph and compare the 
performance about four rank algorithms: PageRank, WeightRank, 
LayerRank and HostRank.  
In Figure 7 we empirically analyze how KDist between ranking 
orders on the sparse link graph and the whole link graph evolves 
when the density of link graph becomes from slight to strong. In 
this experiment, we randomly select 20%, 40%, 60%, 80% and 
100% of the whole hyperlinks to represent different degree of 
how tightly the link graph is. The results show that the degree of 
how tightly the link graph is has different impact on the final 
ranking of the different link analysis algorithms. When the link 
graph becomes denser, the ranking orders of all link analysis 
algorithms tend to the final orders. As seen from the Figure 7, the 
KDist of HostRank algorithm is below that of the other algorithm, 
which means that the sparseness has the least impact on the 
ranking order of the HostRank algorithm.  
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Figure 8. Performance of Sparse Link on TREC 2003 
We also conduct the experiments by utilizing the different ranking 
to show the performance on retrieval. As seen in Figure 8, the 
HostRank both achieve the highest performance and least impact 
on the sparse link graph. P@10 of HostRank is decreased about 
1% when the hyperlink number changed from 100% to 20% on 
TREC 2003, while P@10 of other three algorithms is decreased 
about 2%.  
5.4.4 Ranking of New Pages 
As we mentioned in Section 1, our methods can alleviate the new 
pages biased problem [10]. To show the performance of our 
ranking function, we conducted an experiment to simulate the 
phenomenon of the new pages and compare the performance 
about four rank algorithms: PageRank, WeightRank, LayerRank 
and HostRank.  

Table 5.  KDist Measurement on Ranking of New Pages   
(The lower value shows the higher performance) 

Method  KDist Method KDist 
LayerRank 0.072 PageRank 0.044 

WeightRank 0.053 HostRank 0.0159 

First, we randomly select 10,000 pages with different rank values 
as the test pages. Then, we remove 90% of the hyperlinks that 
linked to the 10,000 pages. In this way, we constructed a new 
Web graph with the remaining hyperlinks. We performed four 
algorithms on the modified Web graph and then measured the 
KDist to show the effect on the new pages. The results are shown 
in Table 5.  
The average distance KDist is 0.0159 for the HostRank in 
the .GOV dataset. Notice that it is lower. This means that the 
ordering induced by HostRank on the partial graph is very close 
to HostRank on the full graph and the new pages could also get its 
more approximate ranking by the HostRank algorithm.  

5.5 Parameter Tuning 
In this section, the experiments are conducted on the 50 queries of 
topic distillation at TREC 2003 to show how the parameters affect 
the performance of our proposed hierarchical ranking algorithms.  

5.5.1 Combining Parameters Selection 
We conduct several experiments on the queries of topic 
distillation at TREC 2003 by host level ranking algorithm to show 
the performance on different parameters. Each parameter is tuned 
independently.  

In Equation 6, the parameter α is used to show a trade-off 
between the index page and the non-index page. As shown in 
Figure 9-1, when we set α to 0.6, the hierarchical rank could 
achieve the highest performance.   

Meanwhile, we also perform the experiment to show the different 
weight on the performance between intra-inlink and inter-inlink. 
As shown in Figure 9-2, experimental result also verifies that 
inter-inlink should give higher weight than intra-inlink and the 
ranking could get the highest performance when β  in equation 7 
is set to 0.4.  
In Equation 5, we linearly combine the link function and index 
function by the parameter θ. As shown in Figure 9-3, the 
combination parameter is set to 0.6, which implies that the index 
function is more important than the link function which is also 
confirmed by the experiment in Section 5.5.2.  

The last experiment is on tuning the parameter γ in the Equation 8. 
As shown in Figure 9-4, the hierarchical rank could achieve the 
highest performance when the heat dissipative factor is set to 0.8. 
Lower or higher value could not achieve the higher performance. 
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Figure 9. Performance of Different Propagation Parameters 

5.5.2 Comparison on Individual Parameters 
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Figure 10.  Performance of Individual Parameters 
As described in Equation 5, 6, and 7, there are three factors that 
affect the calculation of a pages’ importance: the depth of the 
pages in the tree structure (Level), the in-link distribution of the 
pages (InLink) and whether the page is an index page (Index). In 
this section, we conduct experiments on the queries of topic 
distillation track at TREC 2003 to show how the parameters affect 
the performance of hierarchical ranking algorithm individually. 
The baseline method directly sets the importance of the host to the 
pages in the host. We denote its method as “None”.  
As shown in Figure 10, these features have impacts on the 
performance of retrieval. The factor of whether a page is an entry 
page is the most important in the topic-distillation task. Then the 
level of the page also shows great improvement on the 
performance. The in-link feature shows little improvement, which 
also testify that the intra-links are less valuable for link analysis.  
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6. CONCLUSIONS AND FUTURE WORK 
Considering both the hierarchical structure and the link structure 
of the Web, we proposed a Hierarchical Random Walk Model, 
which approximates the behaviors of the users’ surfing the Web. 
Based on the model, we presented a hierarchical ranking 
algorithm to calculate the importance of Web pages. The ranking 
algorithm can significantly improve the performance of Web 
search, efficiently alleviate the sparse link problem and assign the 
reasonable rank to the newly-emerging Web pages.  
In this work, we only perform the experiments on the 
TREC .GOV collection, which might be different in the other 
domain. In future work, we will conduct the experiments on the 
large scale Web collection to evaluate our algorithms.  
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