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ABSTRACT
One key to cross-language information retrieval is how to
efficiently resolve the translation ambiguity of queries given
their short length. This problem is even more challeng-
ing when only bilingual dictionaries are available, which is
the focus of this paper. In the previous research of cross-
language information retrieval using bilingual dictionaries,
the word co-occurrence statistics is used to determine the
most likely translations of queries. In this paper, we pro-
pose a novel statistical model, named “maximum coher-
ence model”, which estimates the translation probabilities of
query words that are consistent with the word co-occurrence
statistics. Unlike the previous work, where a binary de-
cision is made for the selection of translations, the new
model maintains the uncertainty in translating query words
when their sense ambiguity is difficult to resolve. Further-
more, this new model is able to estimate translations of
multiple query words simultaneously. This is in contrast
to many previous approaches where translations of individ-
ual query words are determined independently. Empirical
studies with TREC datasets have shown that the maximum
coherence model achieves a relative 10% - 40% improvement
in cross-language information retrieval, comparing to other
approaches that also use word co-occurrence statistics for
sense disambiguation.
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H.3.3 [Information storage and Retrieval]: Information
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maximum coherence model, co-occurrence statistics, cross-
language information retrieval

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’05, August 15–19, 2005, Salvador, Brazil.
Copyright 2005 ACM 1-59593-034-5/05/0008 ...$5.00.

1. INTRODUCTION
To overcome the language barrier in cross-language infor-

mation retrieval (CLIR), either queries or documents are
translated into the language of their counterparts. Usu-
ally it is simpler and more efficient to translate queries than
to translate documents because queries are generally much
shorter than documents. Given its short length, how to
disambiguate translations of a query has become a challeng-
ing problem in cross-language information retrieval. Many
approaches, such as statistical translation models [7, 11,
22] and relevance language models [12, 13, 14, 17], rely on
parallel bilingual corpora for query translation disambigua-
tion. Often, they learn an association between the words
in the language of queries and the language of documents
from a bilingual corpus, and apply the association to dis-
ambiguate translations of queries. However, it is usually
not only time consuming but also expensive to acquire large
parallel bilingual corpora, particularly for minor languages.
Due to the increasing availability of machine readable dic-
tionaries, much of the research effort in CLIR has been put
into the dictionary-based approaches.

The simplest approach toward dictionary-based CLIR is
to use all the translations of query words provided by the
dictionary equally [5, 6]. This amounts to no sense disam-
biguation for query words. Other approaches try to resolve
the translation ambiguity by measuring the coherence of a
translation word to the entire query. Typically, the coher-
ence score of a translation word is computed using word
co-occurrence statistics. Given a query, a translation of a
query word is assigned with a high coherence score when
it co-occurs frequently with the translations of other query
words. The selection of translation words are then deter-
mined by their coherence scores: in approaches [2, 5, 6, 8,
10, 12], for each query word, only the translation with the
highest coherence score is selected; in approaches [15, 16], a
translation word is selected when its coherence score exceeds
a certain threshold. In both approaches, a selection strategy
is used, namely for each query word, a binary decision has
to be made as to which translation(s) of the word should
be used for the translation of the query. Given the short
length of queries and the large variance existing in mapping
information across different languages, such binary decisions
are usually difficult, if not impossible, to make. We call this
problem “translation uncertainty problem”. Another prob-
lem with the selection-based approaches is that the transla-



tion of one query word is usually determined independently
from the translations of others, which we call “translation
independence assumption”. This assumption is reflected in
the calculation of coherence scores. Usually, the coherence
score of a translation word is computed as the sum of simi-
larities to all the translations of query words provided by the
dictionary. As a result, coherence scores are estimated inde-
pendently from the choice of translations for query words,
which leads the selection of translations for different query
words to be independent.

In this paper, we propose a novel statistical model, named
“maximum coherence model”. It estimates the transla-
tion probabilities of query words by maximizing the overall
coherence of the corresponding query, which we call “maxi-
mum coherence principle”. In particular, the proposed model
explicitly addresses the two problems mentioned above: to
resolve the translation uncertainty problem, the maximum
coherence model maintains the uncertainty in translating
queries through the estimation of translation probabilities
for query words; to drop the translation independence as-
sumption, the new model estimates the translation prob-
abilities for all query words simultaneously. To speed up
the computation, a quadratic programming technique is em-
ployed to efficiently solve the related optimization problem.
Our empirical studies with TREC datasets have shown that
the maximum coherence model outperforms the selection-
based approaches with relative improvements ranging from
10% to 40%.

The rest of the paper is structured as follows: Section
2 briefly reviews the related work in selection-based ap-
proaches for query translation disambiguation. Section 3
describes our maximum coherence model, and the proce-
dure for solving the related optimization problem. Section 4
presents the experimental results. Section 5 concludes this
work.

2. RELATED WORK
One of the major factors that can potentially degrade the

effectiveness of dictionary-based cross-language information
retrieval is the ambiguity in translating query words [3, 8].
In the efforts to resolve this translation ambiguity, several
recent studies [2, 5, 6, 8, 10, 12, 15, 16] have suggested
the strategy of translation selection by exploiting word co-
occurrence patterns. Usually a similarity measurement be-
tween two translation words is defined in the form of word
co-occurrence statistics. With the word similarities, we can
then measure the coherence of a translation word with re-
gard to a query. Only translation words with high coherence
scores will be selected for the translation of the query.

Ideally, for each query word, we should select the trans-
lation(s) that is consistent with the selected translations for
other query words. Apparently, this becomes a “chicken-
egg” problem since the selection of translations for one word
is determined by the translations selected for other words.
Thus, due to the computational concern, most selection-
based approaches [1, 8, 9] adopted an approximate solution.
For each query word, it selects the translation that is most
consistent with all the translations provided by the dictio-
nary for all query words, including both the selected and
the unselected translations. Typically, a translation selec-
tion strategy can be formulated into the following algorithm:

Approximate Translation Selection Algorithm

1. Given a query qs = {qs
1 , qs

2, · · · , qs
ms} in the source lan-

guage , for each query word qs
i , look up the dictionary

for the set of all translation Si = {wt
i,j}

2. For each set Si

(a) For each translation wt
i,j in Si, define the sim-

ilarity measurement between the word wt
i,j and

the set Si′(i
′ �= i) as the sum of the similarities

between wt
i,j and each word in the set Si′ , i.e.,

sim(wt
i,j , Si′) =

�
∀wt

i′,l
∈Si′

sim(wt
i,j , w

t
i′,l) (1)

(b) Compute the coherence score for wt
i,j as

f(wt
i,j) =

�
∀i′ �=i

sim(wt
i,j , Si′) (2)

(c) Select the word qt
i in Si with the highest coher-

ence score

qt
i = arg max

wt
i,j

f(wt
i,j) (3)

The definition of similarity between two words in the above
algorithm can take various forms of co-occurrence statistics,
such as Dice similarity (as in [1]), mutual information (as in
[15, 16]) or its variants (as in [8, 9]). In addition to select-
ing the most likely translation for each query word, other
selection-based approaches have been tried, such as select-
ing the best N translations [6] and selecting translations by
a predefined threshold [15, 16].

Apparently the above approximate algorithm is not ideal.
In particular, the coherence score for a translation is com-
puted with regard to both selected and unselected transla-
tions. As a result of such an approximation, translation of
different query words are determined independently, which
leads to the translation independence problem as discussed
in the introduction section. In the proposed model, by for-
mulating the problem of translation selection into a quadratic
programming problem, we are able to efficiently estimate
the translations for all query words simultaneously. Fur-
thermore, in contrast to the selection-based approaches that
make binary decision for each translation, the new model
employs soft probabilities for representing both selected and
unselected translations. This is particularly useful when bi-
nary decisions are hard to make, for instance, all the trans-
lations of a query word have very similar coherence scores.

3. MAXIMUM COHERENCE MODEL
The essential idea of the maximum coherence model is

to learn a set of translation probabilities for query words
from word co-occurrence statistics that maximizes the over-
all coherence of the corresponding query. This is referred
as “maximum coherence principle”. In the following subsec-
tions, we will first describe the proposed statistical model
and the definition of the overall coherence for a query, fol-
lowed by a description of the procedure that solves the re-
lated optimization problem efficiently.

Before starting the discussion of the proposed model, we
would like to introduce the notations that is used throughout
this paper. Similar to other CLIR papers, “source language”



refers to the language of queries, and “target language”
refers to the language of documents. In order to differentiate
the source language from the target language, a superscript
s is used for any variable related to the source language and
a superscript t is used for any variable related to the target
language. Let a query of the source language be denoted
by qs = {qs

1, q
s
2 , · · · , qs

ms}, where ms is the number of dis-
tinct words in qs. Let mt be the total number of distinct
translations provided by the dictionary for all the words in
query qs. Let matrix T represent the part of the bilingual
dictionary related to query qs, i.e., T = [tk,j ]ms×mt . An
element tk,j in T is 1 if the j-th word of the target language
appears as a translation in the dictionary for the k-th word
in the source language and 0 otherwise. Also we use rk to
denote the set of translations provided by the dictionary for
a word ws

k in the query qs.

3.1 Modelling the Uncertainty in Query
Translation

To address the problem of translation uncertainty, the new
model introduces translation probabilities to capture the un-
certainty in translating queries.

Let pk,j denote the probability of translating a word ws
k in

the source language into a word wt
j in the target language,

given the context of query qs. It is defined as

pk,j = Pr(wt
j |ws

k,qs) (4)

which satisfies �
∀j,ws

j∈rk

pk,j = 1

pk,j ≥ 0

By aggregating the translation probabilities for all the words
in qs, we can define a matrix for translation probabilities:

P = [pk,j ]ms×mt

With the translation probabilities pk,j , we can now define
a statistical retrieval model for CLIR [11, 13]. In particular,
we estimate Pr(dt|qs), i.e., the probability for a document
dt in the target language to be relevant to a query qs in the
source language. By the Bayes’ law, this probability can be
approximated as

Pr(dt|qs) =
Pr(qs|dt) · Pr(dt)

Pr(qs)
∼ Pr(qs|dt)

The last step is based on the assumption that document
prior Pr(dt) follows a uniform distribution.

Taking the logarithm of Pr(dt|qs), we have

log Pr(dt|qs) ∼ log Pr(qs|dt)

∼
�
wt

Pr(wt|qs) log Pr(wt|dt)

=
�
wt

�
ws

Pr(wt|ws) Pr(ws|qs) log Pr(wt|dt)

(5)

Here Pr(wt|dt) is a monolingual language model for docu-
ment dt in the target language; Pr(wt|ws) is the probability
for translating query word ws into wt; and Pr(ws|qs) is a
monolingual language model for query qs in the source lan-
guage, which can also be seen as the weight assigned to the
query word ws. For the sake of simplicity, we assume equal
weights for all query words in the source language .

3.2 Maximum Coherence Model
The crucial part of our model is to determine the transla-

tion probabilities for a given query. To this end, we propose
the maximum coherence model that automatically learns
translation probabilities for query words from word co-occur-
rence statistics. The key of this learning procedure is to first
define the overall coherence for a query, and then efficiently
identify the set of translation probabilities that maximizes
the overall coherence measurement. Using the translation
probabilities introduced in the previous subsection, we can
now define a probabilistic measurement for the overall co-
herence for a query qs, i.e.,

Co(qs;T) =
�

∀k ,ws
k

∈qs

∀k′,ws
k′∈qs

�
∀j ,wt

j
∈r

k

∀j′,wt
j′ ∈r

k′

pk,j · st
j,j′ · pk′,j′ (6)

where sj,j′ is a similarity measurement between word wt
j

and wt
j′ that can be derived from word co-occurrence statis-

tics. In the previous studies of selection-based approaches,
several metrics have been used for similarity sj,j′ , including
the mutual information [8, 16], or the Dice similarity [1, 2].
In this paper, we adopt the mutual information metric for
similarity measurement, which is defined as

st
j,j′ = MI(wt

j , w
t
j′)

= Pr(wt
j , w

t
j′) × log

Pr(wt
j , w

t
j′)

Pr(wt
j) × Pr(wt

j′)
(7)

Pr(wt
j) is the unigram probability for word wt

j , and Pr(wt
j , w

t
j′)

is the joint probabilities for word wt
j and wt

j′ to co-occur
in same documents. Both probabilities can be acquired by
simply counting the term frequency of single words and the
frequency of co-occurrence between two words.

Using the matrix notation, the expression for the overall
coherence can be simplified as

Co(qs;T) = eT PSPT e (8)

where e = [1, 1, . . . , 1]T and S = [st
j,j′ ]mt×mt . Based on the

principle of maximum coherence, the optimal set of trans-
lation probabilities is acquired by maximizing the overall
coherence Co(qs;T), i.e.,

max
P

eT PSPT e (9)

s.t.
�

∀j,wt
j∈rk

pk,j = 1 for all k

pk,j ≥ 0 for all k

To avoid unstable results, similar to logistic regression [18]
and support vector machine [4], a regularizer is introduced
into the above objective function, which is expressed as

Trace(PPT 1) (10)

where 1 is a matrix whose elements are all 1. Trace(PPT 1) =�
k,k′
�

j pk,jpk′,j , i.e., the sum of all elements in PPT .
Similar to the uninformative priors used in the Bayesian
learning, the goal of this regularizer is to reflect our prior
knowledge of translation probabilities — without context,
we assume that all translations provided by a bilingual dic-
tionary are equally likely to be selected. By combining the
regularizer with the coherence measurement, we now have a



regularized optimization problem, i.e.,

max
P

eT PSPT e − Cp · Trace(PPT 1) (11)

s.t.
�

∀j,wt
j∈rk

pk,j = 1 for all k

pk,j ≥ 0 for all k

where Cp is a constant that balances the contribution be-
tween the coherence measurement and the regularizer. It
is determined empirically in our experiments. Note that,
in the above formalization, the translation probabilities for
all query words are estimated simultaneously through the
computation of P. This is in contrast to the selection-based
approaches, in which the selection of translations for indi-
vidual query words are determined independently.

3.3 Solving the Optimization Problem
The optimization problem in (11) is in fact a standard

quadratic programming (QP) problem [19]. To write it in
an explicit QP form, we define

Pms×mt =

�
����

pT
1

pT
2

...
pT

ms

�
���� Tms×mt =

�
����

tT
1

tT
2

...
tT

ms

�
���� (12)

qmsmt×1 =

�
����

p1

p2

...
pms

�
���� qmsmt×1 =

�
����

t1

t2

...
tms

�
���� (13)

Amsmt×msmt = 1 ⊗ S (14)

Ems×msmt = diag(tT
1 , tT

2 , . . . , tT
ms ) (15)

H = A − Cp1ms×ms ⊗ Imt×mt(16)

where ⊗ represents kronecker product. It is easy to derive
that

eT PSPT e = qT Aq (17)

Trace(PPT 1) = qT (1ms×ms ⊗ Imt×mt)q (18)

Using Equation (12) - (18), the optimization problem in (11)
can be rewritten in a standard form of the QP problem

max
q

qT Hq (19)

s.t. Eq = 1ms×1 (20)

0 ≤ q ≤ q (21)

The quadratic programming is a well studied optimization
problem and can be solved efficiently. In our experiment,
we use the QP package in MATLAB [21].

3.4 Computational Concerns
For the QP problem formulated in (19), the problem size

appears to be large because the number of variables in vector
q is msmt, i.e., the product between the number of unique
query words and the number of distinct translation words
provided by the dictionary. But, notice that in the con-
straint (21), q, i.e., the upper bound of translation proba-
bilities, is a concatenation of translation vectors ti obtained
from dictionary T. Given that most query words only have
a few translations, most of the elements in the bilingual dic-
tionary T will be zeros. As a result, most elements in the

upper bound vector q are zeros, which leads to the zero
values for the corresponding translation probabilities in q.
Hence, the number of non-zero translation probabilities in q
is no more than the total number of translations provided by
the bilingual dictionary for the query words, which is usually
much smaller than the product msmt. Thus, the computa-
tion cost of the maximum coherence model is modest for
real CLIR practice, if not overestimated.

4. EXPERIMENTS AND DISCUSSIONS
The goal of this experiment is to examine the effective-

ness of the proposed model for cross-language information
retrieval. In particular, three research questions will be ad-
dressed in this empirical study:

1. Is the proposed maximum coherence model effective for
cross-language information retrieval? To obtain a com-
prehensive view, we compare the maximum coherence
model to existing selection-based approaches using dif-
ferent types of queries and documents.

2. How important is it for a query disambiguation algo-
rithm to include translation uncertainty in its analy-
sis? To address this question, we will examine the im-
portance of including translation uncertainty in cross-
language information retrieval through case studies.

3. How important is it to remove the translation indepen-
dence assumption for cross-language information re-
trieval ? To address this question, we will examine
the impact of the translation independence assump-
tion on cross-language information retrieval through
case studies.

4.1 Experiment Setup
All our experiments are retrieval of English documents

using Chinese queries. The document collections used in this
experiment are from TREC ad hoc test collections, including

AP88-89 164,835 documents from Associated Press(1988,
1989)

WSJ87-88 83,480 documents from Wall Street Journal (1987,
1988)

DOE1-2 226,087 documents from Department of Energy
abstracts 1

In addition to the homogeneous collections listed above,
we also tested the proposed model against heterogeneous
collections that are formed by combining multiple homoge-
neous collections. In particular, two heterogeneous collec-
tions are created: collection AP88-89 + WSJ87-88, and col-
lection AP89 + WSJ87-88 + DOE1-2. In a heterogeneous
collection, words are more likely to carry multiple senses
than words from a homogeneous collection, which will in-
crease the difficulty for an automatic algorithm to disam-
biguate the senses of query words using the pairwise word
similarities. The SMART system [20] is used to process doc-
ument collections. Each document is first parsed into tokens

1DOE1-2 collection is not used as one of the homogeneous
datasets in our experiments because DOE1-2 collection pro-
vides no relevant documents for a majority of the queries
used in this experiment. It is only used to create heteroge-
neous collections by combining with the other two homoge-
neous collections.



with stop words removed, and then tokens are stemmed us-
ing the Porter algorithm. Finally, each document is repre-
sented as a bag of stemmed words. Since our goal is to illus-
trate the advantage of the proposed statistical model, we did
not apply more sophisticated procedures for text analysis in
our experiment, such as phrase identification.

Our queries come from a manual Chinese translation of
TREC-3 ad hoc topics (topic 151-200). To fully examine
the effectiveness of the proposed model, we test it against
both the long Chinese queries and the short Chinese queries.
A short Chinese query is created by translating the “title”
field of an English query into Chinese; a long Chinese query
is formed by combining the Chinese translations of both the
“title” field and the “description” field in an English query.
The average length of short Chinese queries is 9.64 Chinese
characters, and 30.72 Chinese characters for long queries.
Since most of its words in a short query are highly rele-
vant to the topic of the query, we would expect that query
disambiguation approaches based on word similarities will
work well. In contrast, a long query usually include words
either irrelevant or only slightly relevant to its topic. As
a result, even a translation word that is coherent with the
translations of many query words may not necessarily be a
good candidate for selection. Hence, a long query usually
poses a more challenging problem than a short query for a
translation disambiguation algorithm based on word simi-
larity information. Finally, the relevance judgments for the
original English queries are used as the relevance judgments
for their Chinese translations.

The Chinese-English dictionary used in our experiments
comes from Linguistic Data Consortium (LDC, http://www.-
ldc.upenn.edu), which consists of translations for 53061 Chi-
nese words. Since our experiments do not involve the process-
ing of English phrases, for any English phrase that is the
translation of a Chinese word, we simply treat it as a bag of
words.

To evaluate the effectiveness of the proposed method, we
implement two baseline models that use translation selection
methods. The first baseline model selects the most likely
translation for each query word, which we call “BESTONE”.
The details of this model has been described in section of re-
lated work. The second model, which we call “ALLTRANS”,
makes no efforts for translation disambiguation by simply
including all the translations provided by the dictionary for
query words into the final query translation. Finally, for
easy reference, we use the abbreviation “MAXCO” for our
maximum coherence model. The constant Cp for the regu-
larizer is set to be 4

(mt)2

�
j,j′ st

j,j′ based on our empirical

experience.

4.2 Comparison to Selection-basedApproaches
Table 1 lists the average precision across 11 recall points

for both the homogeneous collections and the heterogeneous
collections. As indicated in Table 1 the proposed model (i.e.,
“MAXCO”) is able to outperform the two baseline mod-
els for both short queries and long queries across all four
different collections. Furthermore, we plot the precision-
recall curves for both the short queries and the long queries
in Figure 1 and Figure 2, respectively. As illustrated in
Figure 1 and 2, for all four collections, the precision-recall
curves of the maximum coherence model always stay above
the curves of the other two models. Based on these results,
we conclude that the maximum coherence model performs

substantially better than the other two selection-based ap-
proaches for cross-language information retrieval.

A further examination of results in Table 1 gives rise to
the following observations:

1. In general, the retrieval accuracy for heterogeneous
collections appears to be worse than that for homo-
geneous collections. In particular, a substantial de-
crease in the average precision is observed for all three
methods when the collection of DOE1-2 is included in
the heterogeneous collection. This result is in accor-
dance with our previous analysis, i.e., words from het-
erogeneous collections are more likely to have multiple
senses, thus resulting in higher translation ambiguity.

2. A better retrieval is achieved for short queries than for
long queries. The degradation in performance between
long queries and short queries is more significant for
heterogeneous collections than for homogeneous col-
lections. Again, this is consistent with our previous
analysis: long queries are usually more difficult to dis-
ambiguate for algorithms based on word similarities.
Despite of the general belief in monolingual IR that
long queries are less ambiguous than short ones, long
queries are generally more challenging for translation
disambiguation. This is because long queries tend to
include more words that are either irrelevant or only
slightly relevant to their topics, which makes the esti-
mation of coherence scores for translation candidates
unreliable. In fact, among the three methods, the
simple method “ALLTRANS” appears to be relatively
more robust than the other two. This is because the
“ALLTRANS” method does not employ any strategy
for query translation disambiguation.

3. The “BESTONE” method does not consistently out-
perform the “ALLTRANS” method. In fact, for the
long queries, the “ALLTRANS” method performs bet-
ter than the “BESTONE” method across full differ-
ent collections. Similar to the previous analysis, this
phenomenon can be attributed to the fact that long
queries are rather noisy and likely to include irrelevant
words. This result indicates that the the “BESTONE”
method can be sensitive to the noises present in queries.
Given that a significant amount of noise can be present
in queries, it is important to maintain the uncertainty
of translation in the retrieval process. Note that our
results appear to be inconsistent with the finding in [8].
However, the setup of our experiments is rather differ-
ent from theirs. For example, we did not identify Eng-
lish phrases in our text processing, which have shown
to be an important factor in CLIR [3, 8]. Although
phrase analysis is important to CLIR, a generic prob-
abilistic model is beneficial to CLIR of any languages,
particularly when linguistic resources are scarce.

4.3 The Necessity of Including Translation
Uncertainty

To demonstrate the uncertainty in query translation, in
Figure 3, we list the translation probabilities for three Chi-
nese words that are estimated by the maximum coherence
model. As we can see, a significant variance exists in the
distribution of translation probabilities across different Chi-
nese words. The first example in the figure shows an almost
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Figure 1: Comparison of CLIR performance on homogeneous datasets using both short and long queries.
The upper two figures are for AP88-89 dataset, and the lower two are for WSJ87-88 dataset. The left two
figures are for short queries, and the right two are for long queries.
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Figure 2: Comparison of CLIR performance on heterogeneous datasets using both short and long queries.
The upper two figures are for AP88-89 + WSJ87-88, and the lower two are for AP89 + WSJ87-88 + DOE1-2
dataset. The left two figures are for short queries, and the right two are for long queries.



Table 1: 11-point average precision for both short and long queries on TREC datasets
(The last two columns list the relative improvements of our maximum coherence model over the other two methods)

BESTONE ALLTRANS MAXCO (M-B)/B (M-A)/A
Short Queries
AP88-89 0.2381 0.2241 0.2959 +24.28% +32.04%
WSJ87-88 0.1966 0.2129 0.2560 +30.21% +20.24%
AP88-89 + WSJ87-88 0.2253 0.2209 0.2772 +23.04% +25.49%
AP89 + WSJ87-88 + DOE1-2 0.1739 0.1829 0.2172 +24.90% +18.75%
Long Queries
AP88-89 0.1749 0.1803 0.2096 +19.84% +16.25%
WSJ87-88 0.1478 0.1727 0.2116 +43.17% +22.52%
AP88-89 + WSJ87-88 0.1433 0.1665 0.1947 +35.87% +16.94%
AP89 + WSJ87-88 + DOE1-2 0.1122 0.1411 0.1576 +40.46% +11.69%

Figure 3: Examples of translation probabilities esti-
mated by the maximum coherence model.

uniform distribution over all translations, while the third
one illustrates a very skewed distribution. Meanwhile, the
second example provides a distribution that is neither uni-
form nor totally skewed. These three examples illustrate the
“translation uncertainty problem”, which we have addressed
in previous sections. Furthermore, the diversity in the dis-
tribution of translation probabilities makes it difficult for
a selection-based approach to perform well over all differ-
ent cases. For example, the “BESTONE” method is able
to work well for the third example but will fail in the first
one. On the other hand, the “ALLTRANS” method would
be perfect for the first example but not for the third one.
Base on the above analysis, we conclude that it is important
to capture the translation uncertainty and the diversity of
translation uncertainty in a probabilistic model.

4.4 The Impact of Translation Independence
Assumption on Query Disambiguation

To illustrate the impact of the translation independence
assumption on query translation disambiguation, consider
the example in Figure 4. This query consists of four Chinese
words, and the English translations for each Chinese are pro-
vided by the dictionary are listed in the second column. For
the purpose of illustration, the original English query is also
included at the bottom of the figure. The English trans-
lations selected by the “BESTONE” method are listed in
the third column, marked by small crosses. The translation
probabilities from Chinese words to their English transla-
tions estimated by the maximum coherence model are listed
in the last column.

Comparing to the original English query, we see that the
“BESTONE” method makes incorrect translation selection
for both the first and the second Chinese words. For the
first one, the correct English translation should be “inde-

Figure 4: An example of query translation, using the
“BESTONE” method and the maximum coherence
model. (English words in italicized font are removed
as stop words.)

pendent”, instead of “stand (alone)” 2. The better trans-
lation for the second Chinese word should be “publish” in-
stead of “press”. One reason for such mistakes is that in the
“BESTONE” method, the coherence score of a translation is
computed based on all the English translations provided by
the dictionary for the Chinese words in the query. Thus, the
coherence score of one translation word is completely inde-
pendent from the selection of other translations. Since both
“stand” and “press” are common in English, their overall
coherence scores turn out to be larger than the coherence
scores of other words, which lead them to be selected by
the “BESTONE” method. In contrast, in the maximum
coherence model, the estimation of translation probabilities
for one word is dependent on the estimation of translation
probabilities for other words. As a result, the maximum
coherence model is able to adjust the mistakes by assign-
ing significant amounts of probability mass to the correct
translations. For example, for the first Chinese word, the
maximum coherence model is able to assign a probability to
the correct English translation “independent” comparable to
the probability assigned to the translation “stand (alone)”.

2“alone” is removed as a stop word and does not count in
the translation. It is listed only for clarity purpose.



5. CONCLUSIONS
In this paper, we propose a novel statistical model for

cross-language information retrieval, named “maximum co-
herence model”. It utilizes word co-occurrence statistics
for estimating translation probabilities that are effective for
query disambiguation. Compared to the selection-based ap-
proaches, the merits of the maximum coherence model are
twofold: 1) It preserves the translation uncertainty through
the estimation of translation probabilities; 2) It estimates
the translations for all query words simultaneously. Em-
pirical results under various scenarios have shown that the
proposed model is able to perform substantially better than
the existing selection-based approaches.

In the future, we plan to improve the robustness of the
maximum coherence model with regard to the query noises,
which has led to significant degradation in the retrieval ac-
curacy in our experiments.
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