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ABSTRACT 
This paper is an experimental follow up to our earlier paper [1] 
that investigated the TCP simultaneous-send problem which 
arises in infrastructure mode 802.11 wireless local area networks. 
In particular it was observed that for file transfer traffic, 802.11 
wireless nodes have a sustained supply of packets to send and 
hence experience a relatively high rate of MAC contention. We 
showed that for TCP, this resulted in competition among data and 
ACK packets for channel access which caused considerable 
deterioration in flow throughput.  Simulations of TCP ACK 
skipping as an alleviation to the problem, showed improvements 
as high as 100% when MAC retries were disabled. There were 
gains in other scenarios too albeit more moderate.  

We evaluate the same TCP simultaneous-send problem with real 
world experiments on a wireless-cum-wired network testbed 
called ORBIT [2] at WINLAB, Rutgers University. ORBIT makes 
it feasible to conduct controlled and reproducible experiments in a 
wireless network scenario. The same network setup scenarios 
evaluated in simulations were considered here., particularly – 
scenarios with and without MAC retries, multiple TCP flows and 
multiple skipped ACKs.  However not all scenarios could be 
reproduced in experiments for logistical reasons. In all, the 
experimental results confirm the original hypothesis on the 
detrimental effects of simultaneous-send and corroborate the 
advantages of ACK skipping, However the percentage gains in 
TCP throughput are far more moderate as compared to those 
observed in NS simulations. A reason could be differing TCP 
implementations, particularly with not all TCP optimizations 
implemented in NS. We share the experiences and challenges 
faced, particularly given that this work is among the first of its 
kind for testbed evaluation of transport protocols over wireless 
networks.   

Categories and Subject Descriptors 
C.4 [Performance of Systems] :Measurement techniques 
C.2.1[Computer-Communication Networks]: Network 
Architecture and Design - wireless communication 
C.2.5 [Local and Wide Area Networks]: TCP protocol 
performance over 802.11 wireless networks 

General Terms 
Measurement, Performance, Experimentation 

Keywords 
Wireless networking, Experimental evaluation, full-fledged 
wireless network testbed, controlled wireless environment, TCP, 
802.11 MAC, DCF, skipped ACKs, delayed ACKs, simultaneous-
send 

1. INTRODUCTION 
802.11 wireless networks are now widely deployed in offices, 
homes and hotspots, supporting channel rates up to 54 Mbps. 
They operate in the Infrastructure mode where packets between 
any pair of nodes are relayed through an access point (AP). The 
Distributed Coordination Function (DCF) mode of MAC access is 
typically used in infrastructure networks, where all nodes 
including the AP have the same priority for channel access. 
Majority of the traffic in today’s networks constitute TCP flows 
employed by applications including email, file transfer, web 
browsing and database access that require reliable end-to-end 
transport. 
Numerous research papers have been published in the area of 
wireless networks. Most of them test performance and new 
protocols with network simulators such as NS[3] and OPNET[4]. 
These tools are excellent sandboxes to check correctness and 
understand the detailed operation of  protocols. However just this 
not sufficient. These higher layer simulation tools fail to capture 
the operation characteristics of the protocol in real systems 
particularly in wireless networks because of the difficulty in 
representing the physical medium. NS does not implement the 
physical layer of the network stack  nor does it implement the 
characteristics of the physical medium. Further it supports just the 
basic features of MAC protocols such as IEEE 802.11, hence 
making it essential to evaluate protocols by real world 
experimentation.  
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This said, experimentation in wireless network scenarios poses 
distinct challenges. The inherent broadcast nature of  wireless 
links makes them vulnerable to environmental factors such as 
materials composing the floor, ceiling and furniture, opening and 
closing of doors and even movement of people. Hence 
experimental results obtained in one indoor environment are 
rarely reproduced elsewhere. The ORBIT testbed [2] serves to 
alleviate this problem. The testbed operated remotely, facilitates a 
controlled and hence reproducible environment. It currently 
contains a grid of 64 high-end nodes with multiple wired and 
wireless interfaces. The two wired interfaces are used to network 
nodes in separate control and data planes. The wireless interfaces 
support 802.11 a/b/g networks. Each node runs Debian linux. The 
nodes are setup so that the user may reimage nodes with her 
choice of kernel and requisite software. The grid is a convenient 
tool to conduct wireless as well as wired experiments.  We 
evaluate TCP throughput in a 802.11b Infrastructure network 
under a variety of traffic scenarios such as single/multiple flows, 
with/without MAC retries, and short-lived/long-lived  
transmissions.  
There are several papers that report on experimental evaluation of 
protocols for wireless networks, such as Ramjee et. al’s Ack 
Regulator [5] and Paul et. al’s AIRMAIL [6]. These are for 
protocols over cellular networks (WWANs), and were tested over 
proprietary systems. Those that exist for 802.11 wireless networks  
[9] are difficult to reproduce in a generic setup. To the best of our 
knowledge ours is among the first experimental evaluations of 
transport protocols over a full fledged open-access wireless 
network testbed for IEEE 802.11 networks., that is in turn 
becoming the de facto sandbox for experimentation. 
The rest of this paper is organized as follows. In Section 2 we 
review the TCP simultaneous-send problem presented in [1]. 
Section 3 presents the experimental setup on the ORBIT testbed. 
Results, analysis and comparison to NS results are presented in 
Section 4 and we conclude in Section 5. 

2. PROBLEM DESCRIPTION 
The 802.11 MAC may be operated in one of two modes – 
Distributed Coordination function (DCF) and Point Coordination 
Function (PCF). This paper considers the DCF mode. Here all 
nodes including the Access Point (AP) have equal priority for 
channel access. Channel contention happens on a per-packet 
basis. A  node waiting to transmit a packet, first senses the 
channel to be idle for a certain duration (called DIFS [15]), then 
selects a backoff slot randomly, based on a uniform distribution in 
a contention window (CW). The packet is transmitted if the 
channel is still idle in the selected slot. Otherwise, the node waits 
till the channel is idle again, backs off only for the requisite slots 
before attempting to transmit. The node learns of a successful 
transmission  when it receives an acknowledgement (MAC-ACK) 
from the destination.  
We evaluate the likelihood of MAC failure when nodes operating 
in DCF mode have a consistent supply of packets to send, causing 
them to persistently contend for channel access. Throughput 
derivations of 802.11 MAC have typically assumed Poisson 
packet arrival per backoff slot [8]. Instead, suppose there are 
(N+1) nodes with a continuous supply of packets that causes them 
to contend for the channel far more consistently. A transmission is 

successful only if no other node transmits in the same backoff 
slot.  This likelihood of all nodes selecting independent slots is 
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This is the likelihood of a failed transmission for nodes having a 
consistent supply of packets to send. 
In this paper we evaluate TCP behavior in 802.11 DCF mode of 
operation. TCP is based on a sliding window protocol that enables 
several successive data segments to be transmitted before 
receiving an acknowledgement (TCP ACK) for an earlier 
segment.  TCP generates data packets in bursts proportional to the 
increase in congestion window size (cwnd).  When ACK-
bunching happens there are bigger bursts. Thus several packets 
may arrive at the wireless interface in the TCP sender node, 
causing a consistent supply of packets to transmit. With no loss of 
generality, we may assume that the number of TCP ACKs 
produced is approximately proportional to the number of data 
segments. Hence we may expect a consistent supply of packets 
available to transmit in the MAC layer, even when nodes are 
relaying TCP ACKs.   
When there is a single TCP flow, the likelihood of same slot 
selection is simply (1/CW)*(1/CW)*CW. If the previous 
transmission was not a failure, CW=CWmin=32 and the 
likelihood is 3%.  Otherwise, CW doubles (binary random 
backoff) and that likelihood halves to 1.5%.  For N=3 (3 TCP 
flows), and CW=32, likelihood of same slot selection, and hence 
MAC failures is 17.6% from Equation (1). 
In particular, we analyze the scenario where the mobile nodes are 
TCP data sources uploading files to remote receivers (via the 
access point (AP)) as depicted in Figure 1. Because of two way 
traffic involved in a TCP flow due to data and ACK segments 
traversing in opposite directions, a single TCP flow constitutes 
two contending wireless nodes in an 802.11  DCF Infrastructure 
network.   One contending nodes is always the AP. In our case, 
the AP relays TCP ACKs from the remote TCP receiver to the 
mobile node.  
As explained earlier, the nature of TCP traffic causes the 802.11 
MAC to often have a continuous supply of packets to send. This 
increases the likelihood of two or more nodes selecting the same 
backoff slot. Hence TCP data and ACK packets compete for 
channel access causing MAC transmission failures. The problem 
is particularly significant with a single TCP flow.  
With reference to the network in Figure 1, the AP and TCP source 
node often transmit to each other in the same backoff slot. Neither 
node detects the packets, since the hardware implementation 
prevents them from sending and listening at the same time. This is 
the simultaneous-send problem. With no channel errors, disabled 
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MAC retries and a single TCP flow, simultaneous-send is the sole 
cause of packet losses. For multiple nodes, the same-slot selection 
phenomenon also manifests as collisions where two or more 
nodes transmit in the same MAC backoff slot, and a third listener 
hears a combined garbed signal.   If MAC retries are enabled, 
simultaneous-send problem is not experienced at the transport 
layer. Instead, packet losses now occur due to MAC queue 
overflow from TCP bursts. While we could confirm this latter 
problem in NS simulations with trace files, it is far more 
challenging to do so in kernel implementations of TCP. Writing to 
trace files introduces significant computational overhead that 
interferes in the proper operation of the experiment. Instead it 
requires complicated logging procedures, that are beyond the 
scope of this paper.  
It was demonstrated in  [1] about how skipping TCP ACKs 
alleviated the simultaneous-send problem. The reasoning was that 
with no MAC retries, the number of ACK segments competing for 
channel access reduced, hence reducing MAC contention. For the 
case with MAC retries, ACK skipping controlled the growth of 
the TCP congestion window while in slow start,   reducing packet 
bursts and hence minimizing MAC queue overflows.  The NS 
simulations showed drastic throughput improvement with and 
without MAC retries. It was a 100% gain with a single flow, no 
MAC retries and 1 ACK skip.  For the case with MAC retries, and 
the case with a single flow saw 30% improvement.  However with 
multiple ACK skips gain in TCP throughput dropped 
significantly, particularly when no MAC retries were used. This 
may be due to ACK-starving of the TCP sender and also due to 
packet losses from burstier TCP.  
Ack skipping is similar to delayed ACKs of TCP. With the latter, 
the receiver delays sending an ACK so that its own data may be 
piggybacked. With ACK-skipping, a specific number of ACKs are 
skipped irrespective of the time lag between them.  We use ACK 
skipping here, since the effect of reduced TCP control traffic is 
more easily tracked with this rather than with delayed ACKs. 
Results in this paper of the same experiments in the ORBIT 
wireless testbed, show more moderate but consistent improvement 
in TCP throughput with ACK skipping. The highest gain is about 
35% over when there is no ACK skipping.  

3. EXPERIMENTAL SETUP 
All experiments were conducted on the ORBIT wireless testbed 

[2]. It was comprised of 64 nodes placed in a square grid of 8 
rows and 8 columns as depicted in Figure 2. Each node had 
multiple wired and wireless network interfaces. One wired 

interface was reserved for the control plane that enabled the grid 
to be operated remotely. The grid supported complete remote 
access and was supplemented by elaborate data logging and 
collection servers so that measurements did not interfere with the 
experiments. Each ORBIT radio node had a 1GHz VIA C3 
processor, two experimenter-accessible 100BaseT Ethernet 
interfaces (for data and control). Every node had a dual-band 
(802.11a/b/g) radio interface that had either of Atheros-based or 
Intel-based chipsets. Some nodes had an additional radio interface 
with a Cisco Aironet 350 series-based PCMCIA 802.11b card.  
The nodes ran Debian Linux with 2.6.10 kernel version. The 

control plane enabled nodes to be reimaged with new kernels as 
desired by the experimenter.  
All experiments were carried out in an 802.11b Infrastructure 
network, so as to match those in the NS simulations. Despite the 
WiFi interoperability standard for 802.11, the network cards 
differed significantly in other features they provided. For 
example, of the three wireless cards supported in the ORBIT 
testbed,  the Cisco cards alone supported change in MAC retries.  
Similarly for setting up access points and sniffers. Only the 
Atheros cards could be operated in the “Master” and “Monitor”  
modes required for access point and sniffing operations 
respectively. Since our experiments involved disabling MAC 
retries, we need to used Cisco cards for the client nodes. However 
the Atheros card interface had to be used for AP setup.  It was 
hence not possible to disable MAC retries completely.  
Both layer 2 and layer 3 settings were required to establish the   
wireless infrastructure network in the grid. Manual entries in 
routing tables of end nodes had to be made to ensure packet 
routing via the AP and IP forwarding had to be enabled in the 
node that was set up as AP. The infrastructure network depicted in 
Figure 1 was setup in the grid as shown in Figure 2. Wireless 
nodes were selected so that they were equidistant from the AP. 
The distance between AP and wireless nodes was approximately 2 
meters. There was no other interfering traffic, or noise of channel 
fading during the experiments. Hence in all experiments, packet 
losses were attributed in full to MAC transmission failures.  
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TCP implementation in the kernel (version 2.6.10) was modified 
to incorporate ACK skipping. We ensured that this modification 
in TCP behavior did not interfere with regular error control 
mechanism of TCP. ACKs were not skipped when duplicate 
ACKs were to be sent, or a received data packet was out of order.  
Further, ACK skipping was set to start only after TCP operation 
reached steady-state. It is important to mention that, although the 
kernel modification was a  single line, one had to be very careful 
to avoid introducing sub-optimality. For example, a single print 
statement to log skipped ACKs reduced TCP throughput to a 
100th of its previous value. This was due to the expensive per-
packet file-write overhead in kernel operation.  TCP segment sizes 
were set to 1000 bytes using TCP socket options.  
Flows between multiple node pairs were overlapped by trial and 
error with the help of various scripts and calculated delays, in 
order to produce simultaneous flows.  6 long and 6 short flows 
were carried out back to back during each test run. An average of 
these was obtained to cancel any channel capture effects that were 
reported to occur from variation in card sensitivity [7] . Each data 
point in the graph was an averaged value of test runs of multiple 
flows.  
The physical rate was fixed at 11 Mbps. Fixing rates was yet 
another feature that not all wireless cards supported. They 
typically had autorate selection mechanisms built in that overran 
manual rate fixation [7].  To our advantage, Cisco cards allowed 
rate fixation. The RTS/CTS feature was turned off. These settings 
could be modified using the iwconfig tool.  
Unlike in a simulator, status parameters in real network interfaces 
were difficult to be tracked. These parameters we desired to track 
included interface queue size, MAC contention rate, link quality 
etc. The ORBIT grid incorporated facilities to track several layer 1 
and layer 2 parameters at runtime, although those options have 
not been availed in this work.  
The following parameters were considered for experiments just 
like in the NS simulations: 1. Length of TCP flow 2. MAC retries 
3. Number of ACKs skipped 4. Number of simultaneous flows.   
To reflect short-lived and long lived TCP flows, we used data 
transfers of  100kB and 6MB respectively.  Long-lived TCP 
connections tested the stability of the protocol adaptation and 
confirmed its validity, while short-lived TCP connections 
supplied a view of TCP operation during its transient state.  
Finally, the default retry limit is set to 16 in Atheros and Cisco 
cards. In the 802.11 network, a failed MAC transmission is known 
only by the lack of a returning MAC ACK.  

4. RESULTS AND ANALYSIS 
Figures 3-6 present results from the experiments.  Graphs  from 
NS simulations reported in [1] are included in the Appendix for 
comparison. . First it is important to notice that the TCP 
throughput obtained with no adaptation was itself significantly 
higher than in simulations. This could be from differing TCP and 
802.11 implementations. However, we identify that the primary 
reason for this discrepancy is from the implementation of the 
interface queue in NS2. With the default of 50 packets, TCP 
packets were lost while in slow-start due to MAC queue 
overflows. This caused timeouts in TCP that significantly 
degraded overall throughput. This phenomenon did not happen 
while operating real-world TCP, as the operating system in the 

node acted as an intermediary between the TCP socket buffer and 
the interface queue in the network card. The OS delivered a 
packet from the TCP send-socket-buffer to the network interface 
queue, only when the interface driver set a memory availability 
flag. If the TCP socket buffer was full, no new bytes were 
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Figure 3: Short-lived TCP flow WITH MAC retries 
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Figure 4: Long-lived TCP flow with MAC retries 
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Figure 5: Short-lived TCP flow NO MAC retries 
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accepted from the application (the send() function returned an 
error in the application operating the TCP socket).  
Since base throughputs in NS simulations differed from those in 
testbed experiments, we compare patterns in gains achieved rather 
than the actual gains themselves.  

4.1 Case of enabled MAC retries 
The Atheros cards had a default MAC retry setting of 16 that 
could not be changed. Hence that value was used even with Cisco 
cards. On the other hand, the maximum retries used in NS 
simulations was 8. 
Just as in simulations, ACK skipping consistently improved TCP 
throughput (in this case with MAC retries) even with multiple 
simultaneous flows. MAC retransmissions were tracked by means 
of standalone sniffers. These sniffers comprised of Atheros cards 
in monitor mode and the tcpdump software. The particular gain 
patterns for short lived and long lived flows differed from those of 
NS simulations. This was probably due to the NS2 phenomenon 
of interface queue overflows during TCP slow start, that did not 
occur in real experiments. The throughput gain in real 
experiments seemed to come directly from reduced MAC 
contention due to fewer TCP ACK packets.   
Long lived flows saw consistent throughput gain even with 3 
skipped ACKs, whereas the gain dropped with such high ACK 
skips for short-lived flows. This could be because short-lived 
flows spent a higher percentage of their operation in slow start 
mode. In this mode, increase in TCP congestion window was 
proportional to the actual number of incoming ACK segments, 
even if they were cumulative ACKs. In the congestion-avoidance 
mode on the other hand, increase in congestion window was 
proportional to the number of data segments acknowledged. With 
three or more ACKs skipped, short-lived flows experienced ACK 
starving and hence had subdued throughput.  
Overall, ACK skipping helped the case with MAC retries. Both 
short-lived and long-lived flows gain from this adaptation. 

4.2 Case of disabled MAC retries 
We reiterate that it was not possible to produce the case when 
MAC retries were completely disabled in the wireless 
infrastructure network, as this feature was not supported in 
Atheros cards that were used for AP. However MAC retries could 
be disabled in non-AP wireless nodes where Cisco cards were 
used. For the traffic scenario considered, this meant that MAC 
retries were disabled for TCP data segments, while the TCP ACK 
segments that were relayed by the AP enjoyed MAC retries. This 
was also confirmed with a standalone sniffer (Described above). 
In liu of this, results from simulations and experiments for this 
case cannot be compared.  
From these results we infer that ACK skipping was more 
favorable for long lived rather than for short-lived flows, when 
MAC retransmissions were available only for TCP ACK packets.  

4.3 Other Observations 
The graphs indicate that for the default case with no ACK skips, 
TCP throughput was better with no MAC retries for TCP data 
segments than with MAC retries. This could be because link layer 
retransmissions produce variations in RTT for TCP, reducing its 

performance. This could possibly imply that TCP does a far better 
job handling MAC congestion by itself rather than with link layer 
retransmissions. This observation requires further study. 
There was much better channel utilization with multiple 
simultaneous flows that with a single flow. This can be explained 
as due to the 802.11 backoff overhead. The 802.11 DCF backoff 
mechanism caused an average overhead of 300ms. With a few 
flows this overhead reduced as contention slots were staggered. 
When the likelihood of same slot selection was still reasonably 
small, there was a throughput improvement. However as the 
number of flows increased, the likelihood of same slot selection 
also increased, resulting in more MAC failures and subsequent 
degradation in throughput.   

5. CONCLUSION 
In this paper we have investigated TCP behavior in a 802.11b 
wireless Infrastructure network by means of experiments in a 
wireless network testbed. We have compared results obtained with 
similar experiments done in NS2 simulator. We conclude that 
TCP ACK skipping indeed improves TCP performance in real-life 
wireless LANs. Although the original goal was to explore the 
simultaneous-send problem reported in [1], several other insights 
were also obtained. The NS2 simulations showed the 
simultaneous-send problem manifest when MAC retries were 
disabled. However we were unable to reproduce the NO MAC 
retries case. Unlike in the NS2 simulator, various status indicators 
cannot be tracked in real experimentation. Instead the 
simultaneous-send phenomenon was observed using standalone 
network sniffers.  
In summary, results in this paper corroborate the simultaneous-
send problem where TCP data and ACK packets compete for 
channel access in 802.11 WLANs and cause significant 
throughput degradation.  
This study has also lead to several other key insights, namely:  
1. Its very important to confirm transport protocol performance 
observations, and validity of new protocols for wireless networks, 
with real-life implementations and testing on real testbeds.  
2. However, simulating the protocols in event-driven simulators 
such as NS, is also important, since they provide means to track 
protocol states while in operation, without affecting the operating 
plane. In real testbed scenarios, measuring protocol status in real 
time could significantly downgrade protocol performance as our 
experience with logging ACK sequence numbers in the kernel 
showed.  
3. Last but not the least, we reiterate the importance of evaluating 
higher layer protocols in controlled and reproducible 
environments such as the ORBIT testbed. Simulators for these 
protocols fail to completely capture all phenomena associated 
with operating higher layer protocols over wireless links with 
medium access protocols. 
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