
Experimental Evaluation of the TCP Simultaneous-Send
Problem in 802.11 Wireless Local Area Networks

Sumathi Gopal

WINLAB, Rutgers University
73, Brett Road

Piscataway, NJ 08854-8048
001 609 720 1202

sumathi@winlab.rutgers.edu

Dipankar Raychaudhuri
WINLAB, Rutgers University

73, Brett Road
Piscataway, NJ 08854-8048

001 732 445 0877

ray@winlab.rutgers.edu

ABSTRACT
This paper is an experimental follow up to our earlier paper [1]
that investigated the TCP simultaneous-send problem which
arises in infrastructure mode 802.11 wireless local area networks.
In particular it was observed that for file transfer traffic, 802.11
wireless nodes have a sustained supply of packets to send and
hence experience a relatively high rate of MAC contention. We
showed that for TCP, this resulted in competition among data and
ACK packets for channel access which caused considerable
deterioration in flow throughput. Simulations of TCP ACK
skipping as an alleviation to the problem, showed improvements
as high as 100% when MAC retries were disabled. There were
gains in other scenarios too albeit more moderate.

We evaluate the same TCP simultaneous-send problem with real
world experiments on a wireless-cum-wired network testbed
called ORBIT [2] at WINLAB, Rutgers University. ORBIT makes
it feasible to conduct controlled and reproducible experiments in a
wireless network scenario. The same network setup scenarios
evaluated in simulations were considered here., particularly –
scenarios with and without MAC retries, multiple TCP flows and
multiple skipped ACKs. However not all scenarios could be
reproduced in experiments for logistical reasons. In all, the
experimental results confirm the original hypothesis on the
detrimental effects of simultaneous-send and corroborate the
advantages of ACK skipping, However the percentage gains in
TCP throughput are far more moderate as compared to those
observed in NS simulations. A reason could be differing TCP
implementations, particularly with not all TCP optimizations
implemented in NS. We share the experiences and challenges
faced, particularly given that this work is among the first of its
kind for testbed evaluation of transport protocols over wireless
networks.

Categories and Subject Descriptors
C.4 [Performance of Systems] :Measurement techniques
C.2.1[Computer-Communication Networks]: Network
Architecture and Design - wireless communication
C.2.5 [Local and Wide Area Networks]: TCP protocol
performance over 802.11 wireless networks

General Terms
Measurement, Performance, Experimentation

Keywords
Wireless networking, Experimental evaluation, full-fledged
wireless network testbed, controlled wireless environment, TCP,
802.11 MAC, DCF, skipped ACKs, delayed ACKs, simultaneous-
send

1. INTRODUCTION
802.11 wireless networks are now widely deployed in offices,
homes and hotspots, supporting channel rates up to 54 Mbps.
They operate in the Infrastructure mode where packets between
any pair of nodes are relayed through an access point (AP). The
Distributed Coordination Function (DCF) mode of MAC access is
typically used in infrastructure networks, where all nodes
including the AP have the same priority for channel access.
Majority of the traffic in today’s networks constitute TCP flows
employed by applications including email, file transfer, web
browsing and database access that require reliable end-to-end
transport.
Numerous research papers have been published in the area of
wireless networks. Most of them test performance and new
protocols with network simulators such as NS[3] and OPNET[4].
These tools are excellent sandboxes to check correctness and
understand the detailed operation of protocols. However just this
not sufficient. These higher layer simulation tools fail to capture
the operation characteristics of the protocol in real systems
particularly in wireless networks because of the difficulty in
representing the physical medium. NS does not implement the
physical layer of the network stack nor does it implement the
characteristics of the physical medium. Further it supports just the
basic features of MAC protocols such as IEEE 802.11, hence
making it essential to evaluate protocols by real world
experimentation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGCOMM’05 Workshops, August 22–26, 2005, Philadelphia, PA, USA.
Copyright 2005 ACM 1-59593-026-4/05/0008...$5.00.

23

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1080148.1080153&domain=pdf&date_stamp=2005-08-22

This said, experimentation in wireless network scenarios poses
distinct challenges. The inherent broadcast nature of wireless
links makes them vulnerable to environmental factors such as
materials composing the floor, ceiling and furniture, opening and
closing of doors and even movement of people. Hence
experimental results obtained in one indoor environment are
rarely reproduced elsewhere. The ORBIT testbed [2] serves to
alleviate this problem. The testbed operated remotely, facilitates a
controlled and hence reproducible environment. It currently
contains a grid of 64 high-end nodes with multiple wired and
wireless interfaces. The two wired interfaces are used to network
nodes in separate control and data planes. The wireless interfaces
support 802.11 a/b/g networks. Each node runs Debian linux. The
nodes are setup so that the user may reimage nodes with her
choice of kernel and requisite software. The grid is a convenient
tool to conduct wireless as well as wired experiments. We
evaluate TCP throughput in a 802.11b Infrastructure network
under a variety of traffic scenarios such as single/multiple flows,
with/without MAC retries, and short-lived/long-lived
transmissions.
There are several papers that report on experimental evaluation of
protocols for wireless networks, such as Ramjee et. al’s Ack
Regulator [5] and Paul et. al’s AIRMAIL [6]. These are for
protocols over cellular networks (WWANs), and were tested over
proprietary systems. Those that exist for 802.11 wireless networks
[9] are difficult to reproduce in a generic setup. To the best of our
knowledge ours is among the first experimental evaluations of
transport protocols over a full fledged open-access wireless
network testbed for IEEE 802.11 networks., that is in turn
becoming the de facto sandbox for experimentation.
The rest of this paper is organized as follows. In Section 2 we
review the TCP simultaneous-send problem presented in [1].
Section 3 presents the experimental setup on the ORBIT testbed.
Results, analysis and comparison to NS results are presented in
Section 4 and we conclude in Section 5.

2. PROBLEM DESCRIPTION
The 802.11 MAC may be operated in one of two modes –
Distributed Coordination function (DCF) and Point Coordination
Function (PCF). This paper considers the DCF mode. Here all
nodes including the Access Point (AP) have equal priority for
channel access. Channel contention happens on a per-packet
basis. A node waiting to transmit a packet, first senses the
channel to be idle for a certain duration (called DIFS [15]), then
selects a backoff slot randomly, based on a uniform distribution in
a contention window (CW). The packet is transmitted if the
channel is still idle in the selected slot. Otherwise, the node waits
till the channel is idle again, backs off only for the requisite slots
before attempting to transmit. The node learns of a successful
transmission when it receives an acknowledgement (MAC-ACK)
from the destination.
We evaluate the likelihood of MAC failure when nodes operating
in DCF mode have a consistent supply of packets to send, causing
them to persistently contend for channel access. Throughput
derivations of 802.11 MAC have typically assumed Poisson
packet arrival per backoff slot [8]. Instead, suppose there are
(N+1) nodes with a continuous supply of packets that causes them
to contend for the channel far more consistently. A transmission is

successful only if no other node transmits in the same backoff
slot. This likelihood of all nodes selecting independent slots is

 





 −







 −






 −

CW
NCW

CW
CW

CW
CW

K
21*1









−−

−= NCWNCW
CW

)(*)!1(
)!1(

Hence the likelihood of at least two nodes selecting the same slot
is









−−

−− NCWNCW
CW

)(*)!1(
)!1(1 (1)

This is the likelihood of a failed transmission for nodes having a
consistent supply of packets to send.
In this paper we evaluate TCP behavior in 802.11 DCF mode of
operation. TCP is based on a sliding window protocol that enables
several successive data segments to be transmitted before
receiving an acknowledgement (TCP ACK) for an earlier
segment. TCP generates data packets in bursts proportional to the
increase in congestion window size (cwnd). When ACK-
bunching happens there are bigger bursts. Thus several packets
may arrive at the wireless interface in the TCP sender node,
causing a consistent supply of packets to transmit. With no loss of
generality, we may assume that the number of TCP ACKs
produced is approximately proportional to the number of data
segments. Hence we may expect a consistent supply of packets
available to transmit in the MAC layer, even when nodes are
relaying TCP ACKs.
When there is a single TCP flow, the likelihood of same slot
selection is simply (1/CW)*(1/CW)*CW. If the previous
transmission was not a failure, CW=CWmin=32 and the
likelihood is 3%. Otherwise, CW doubles (binary random
backoff) and that likelihood halves to 1.5%. For N=3 (3 TCP
flows), and CW=32, likelihood of same slot selection, and hence
MAC failures is 17.6% from Equation (1).
In particular, we analyze the scenario where the mobile nodes are
TCP data sources uploading files to remote receivers (via the
access point (AP)) as depicted in Figure 1. Because of two way
traffic involved in a TCP flow due to data and ACK segments
traversing in opposite directions, a single TCP flow constitutes
two contending wireless nodes in an 802.11 DCF Infrastructure
network. One contending nodes is always the AP. In our case,
the AP relays TCP ACKs from the remote TCP receiver to the
mobile node.
As explained earlier, the nature of TCP traffic causes the 802.11
MAC to often have a continuous supply of packets to send. This
increases the likelihood of two or more nodes selecting the same
backoff slot. Hence TCP data and ACK packets compete for
channel access causing MAC transmission failures. The problem
is particularly significant with a single TCP flow.
With reference to the network in Figure 1, the AP and TCP source
node often transmit to each other in the same backoff slot. Neither
node detects the packets, since the hardware implementation
prevents them from sending and listening at the same time. This is
the simultaneous-send problem. With no channel errors, disabled

24

MAC retries and a single TCP flow, simultaneous-send is the sole
cause of packet losses. For multiple nodes, the same-slot selection
phenomenon also manifests as collisions where two or more
nodes transmit in the same MAC backoff slot, and a third listener
hears a combined garbed signal. If MAC retries are enabled,
simultaneous-send problem is not experienced at the transport
layer. Instead, packet losses now occur due to MAC queue
overflow from TCP bursts. While we could confirm this latter
problem in NS simulations with trace files, it is far more
challenging to do so in kernel implementations of TCP. Writing to
trace files introduces significant computational overhead that
interferes in the proper operation of the experiment. Instead it
requires complicated logging procedures, that are beyond the
scope of this paper.
It was demonstrated in [1] about how skipping TCP ACKs
alleviated the simultaneous-send problem. The reasoning was that
with no MAC retries, the number of ACK segments competing for
channel access reduced, hence reducing MAC contention. For the
case with MAC retries, ACK skipping controlled the growth of
the TCP congestion window while in slow start, reducing packet
bursts and hence minimizing MAC queue overflows. The NS
simulations showed drastic throughput improvement with and
without MAC retries. It was a 100% gain with a single flow, no
MAC retries and 1 ACK skip. For the case with MAC retries, and
the case with a single flow saw 30% improvement. However with
multiple ACK skips gain in TCP throughput dropped
significantly, particularly when no MAC retries were used. This
may be due to ACK-starving of the TCP sender and also due to
packet losses from burstier TCP.
Ack skipping is similar to delayed ACKs of TCP. With the latter,
the receiver delays sending an ACK so that its own data may be
piggybacked. With ACK-skipping, a specific number of ACKs are
skipped irrespective of the time lag between them. We use ACK
skipping here, since the effect of reduced TCP control traffic is
more easily tracked with this rather than with delayed ACKs.
Results in this paper of the same experiments in the ORBIT
wireless testbed, show more moderate but consistent improvement
in TCP throughput with ACK skipping. The highest gain is about
35% over when there is no ACK skipping.

3. EXPERIMENTAL SETUP
All experiments were conducted on the ORBIT wireless testbed

[2]. It was comprised of 64 nodes placed in a square grid of 8
rows and 8 columns as depicted in Figure 2. Each node had
multiple wired and wireless network interfaces. One wired

interface was reserved for the control plane that enabled the grid
to be operated remotely. The grid supported complete remote
access and was supplemented by elaborate data logging and
collection servers so that measurements did not interfere with the
experiments. Each ORBIT radio node had a 1GHz VIA C3
processor, two experimenter-accessible 100BaseT Ethernet
interfaces (for data and control). Every node had a dual-band
(802.11a/b/g) radio interface that had either of Atheros-based or
Intel-based chipsets. Some nodes had an additional radio interface
with a Cisco Aironet 350 series-based PCMCIA 802.11b card.
The nodes ran Debian Linux with 2.6.10 kernel version. The

control plane enabled nodes to be reimaged with new kernels as
desired by the experimenter.
All experiments were carried out in an 802.11b Infrastructure
network, so as to match those in the NS simulations. Despite the
WiFi interoperability standard for 802.11, the network cards
differed significantly in other features they provided. For
example, of the three wireless cards supported in the ORBIT
testbed, the Cisco cards alone supported change in MAC retries.
Similarly for setting up access points and sniffers. Only the
Atheros cards could be operated in the “Master” and “Monitor”
modes required for access point and sniffing operations
respectively. Since our experiments involved disabling MAC
retries, we need to used Cisco cards for the client nodes. However
the Atheros card interface had to be used for AP setup. It was
hence not possible to disable MAC retries completely.
Both layer 2 and layer 3 settings were required to establish the
wireless infrastructure network in the grid. Manual entries in
routing tables of end nodes had to be made to ensure packet
routing via the AP and IP forwarding had to be enabled in the
node that was set up as AP. The infrastructure network depicted in
Figure 1 was setup in the grid as shown in Figure 2. Wireless
nodes were selected so that they were equidistant from the AP.
The distance between AP and wireless nodes was approximately 2
meters. There was no other interfering traffic, or noise of channel
fading during the experiments. Hence in all experiments, packet
losses were attributed in full to MAC transmission failures.

Many source
TCP ACKs

N2

N1

N3 W3

W2

W1

TCP data

TCP data

TCP data

TCP ACK

TCP ACK

TCP ACK

AP

Figure 1: Network setup

AP M
3

 W2

 M1

 W3

 M2

 W1

Figure 2: Experimental setup on the ORBIT grid; Wi are
wired nodes; Mi are wireless nodes in Infrastructure mode

deliver TCP data to Wi via the AP

25

TCP implementation in the kernel (version 2.6.10) was modified
to incorporate ACK skipping. We ensured that this modification
in TCP behavior did not interfere with regular error control
mechanism of TCP. ACKs were not skipped when duplicate
ACKs were to be sent, or a received data packet was out of order.
Further, ACK skipping was set to start only after TCP operation
reached steady-state. It is important to mention that, although the
kernel modification was a single line, one had to be very careful
to avoid introducing sub-optimality. For example, a single print
statement to log skipped ACKs reduced TCP throughput to a
100th of its previous value. This was due to the expensive per-
packet file-write overhead in kernel operation. TCP segment sizes
were set to 1000 bytes using TCP socket options.
Flows between multiple node pairs were overlapped by trial and
error with the help of various scripts and calculated delays, in
order to produce simultaneous flows. 6 long and 6 short flows
were carried out back to back during each test run. An average of
these was obtained to cancel any channel capture effects that were
reported to occur from variation in card sensitivity [7] . Each data
point in the graph was an averaged value of test runs of multiple
flows.
The physical rate was fixed at 11 Mbps. Fixing rates was yet
another feature that not all wireless cards supported. They
typically had autorate selection mechanisms built in that overran
manual rate fixation [7]. To our advantage, Cisco cards allowed
rate fixation. The RTS/CTS feature was turned off. These settings
could be modified using the iwconfig tool.
Unlike in a simulator, status parameters in real network interfaces
were difficult to be tracked. These parameters we desired to track
included interface queue size, MAC contention rate, link quality
etc. The ORBIT grid incorporated facilities to track several layer 1
and layer 2 parameters at runtime, although those options have
not been availed in this work.
The following parameters were considered for experiments just
like in the NS simulations: 1. Length of TCP flow 2. MAC retries
3. Number of ACKs skipped 4. Number of simultaneous flows.
To reflect short-lived and long lived TCP flows, we used data
transfers of 100kB and 6MB respectively. Long-lived TCP
connections tested the stability of the protocol adaptation and
confirmed its validity, while short-lived TCP connections
supplied a view of TCP operation during its transient state.
Finally, the default retry limit is set to 16 in Atheros and Cisco
cards. In the 802.11 network, a failed MAC transmission is known
only by the lack of a returning MAC ACK.

4. RESULTS AND ANALYSIS
Figures 3-6 present results from the experiments. Graphs from
NS simulations reported in [1] are included in the Appendix for
comparison. . First it is important to notice that the TCP
throughput obtained with no adaptation was itself significantly
higher than in simulations. This could be from differing TCP and
802.11 implementations. However, we identify that the primary
reason for this discrepancy is from the implementation of the
interface queue in NS2. With the default of 50 packets, TCP
packets were lost while in slow-start due to MAC queue
overflows. This caused timeouts in TCP that significantly
degraded overall throughput. This phenomenon did not happen
while operating real-world TCP, as the operating system in the

node acted as an intermediary between the TCP socket buffer and
the interface queue in the network card. The OS delivered a
packet from the TCP send-socket-buffer to the network interface
queue, only when the interface driver set a memory availability
flag. If the TCP socket buffer was full, no new bytes were

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 (M

bp
s)

1flow 2flow s 3flow s

0AckSkip

1AckSkip

2AckSkip

3AckSkip

Figure 3: Short-lived TCP flow WITH MAC retries

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1 f low 2 f low 3 flow

0AckSkip
1AckSkip
2AckSkip
3AckSkip

Figure 4: Long-lived TCP flow with MAC retries

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 (M

bp
s)

1flow 2flows 3flows

0AckSkip

1AckSkip

2AckSkip

3AckSkip

Figure 5: Short-lived TCP flow NO MAC retries

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Th
ro

ug
hp

ut
 (M

bp
s)

1 f low 2 f low 3 f low

0AckSkip

1AckSkip

1AckSkip

0AckSkip

Figure 6: Long-lived TCP flow NO MAC retries

26

accepted from the application (the send() function returned an
error in the application operating the TCP socket).
Since base throughputs in NS simulations differed from those in
testbed experiments, we compare patterns in gains achieved rather
than the actual gains themselves.

4.1 Case of enabled MAC retries
The Atheros cards had a default MAC retry setting of 16 that
could not be changed. Hence that value was used even with Cisco
cards. On the other hand, the maximum retries used in NS
simulations was 8.
Just as in simulations, ACK skipping consistently improved TCP
throughput (in this case with MAC retries) even with multiple
simultaneous flows. MAC retransmissions were tracked by means
of standalone sniffers. These sniffers comprised of Atheros cards
in monitor mode and the tcpdump software. The particular gain
patterns for short lived and long lived flows differed from those of
NS simulations. This was probably due to the NS2 phenomenon
of interface queue overflows during TCP slow start, that did not
occur in real experiments. The throughput gain in real
experiments seemed to come directly from reduced MAC
contention due to fewer TCP ACK packets.
Long lived flows saw consistent throughput gain even with 3
skipped ACKs, whereas the gain dropped with such high ACK
skips for short-lived flows. This could be because short-lived
flows spent a higher percentage of their operation in slow start
mode. In this mode, increase in TCP congestion window was
proportional to the actual number of incoming ACK segments,
even if they were cumulative ACKs. In the congestion-avoidance
mode on the other hand, increase in congestion window was
proportional to the number of data segments acknowledged. With
three or more ACKs skipped, short-lived flows experienced ACK
starving and hence had subdued throughput.
Overall, ACK skipping helped the case with MAC retries. Both
short-lived and long-lived flows gain from this adaptation.

4.2 Case of disabled MAC retries
We reiterate that it was not possible to produce the case when
MAC retries were completely disabled in the wireless
infrastructure network, as this feature was not supported in
Atheros cards that were used for AP. However MAC retries could
be disabled in non-AP wireless nodes where Cisco cards were
used. For the traffic scenario considered, this meant that MAC
retries were disabled for TCP data segments, while the TCP ACK
segments that were relayed by the AP enjoyed MAC retries. This
was also confirmed with a standalone sniffer (Described above).
In liu of this, results from simulations and experiments for this
case cannot be compared.
From these results we infer that ACK skipping was more
favorable for long lived rather than for short-lived flows, when
MAC retransmissions were available only for TCP ACK packets.

4.3 Other Observations
The graphs indicate that for the default case with no ACK skips,
TCP throughput was better with no MAC retries for TCP data
segments than with MAC retries. This could be because link layer
retransmissions produce variations in RTT for TCP, reducing its

performance. This could possibly imply that TCP does a far better
job handling MAC congestion by itself rather than with link layer
retransmissions. This observation requires further study.
There was much better channel utilization with multiple
simultaneous flows that with a single flow. This can be explained
as due to the 802.11 backoff overhead. The 802.11 DCF backoff
mechanism caused an average overhead of 300ms. With a few
flows this overhead reduced as contention slots were staggered.
When the likelihood of same slot selection was still reasonably
small, there was a throughput improvement. However as the
number of flows increased, the likelihood of same slot selection
also increased, resulting in more MAC failures and subsequent
degradation in throughput.

5. CONCLUSION
In this paper we have investigated TCP behavior in a 802.11b
wireless Infrastructure network by means of experiments in a
wireless network testbed. We have compared results obtained with
similar experiments done in NS2 simulator. We conclude that
TCP ACK skipping indeed improves TCP performance in real-life
wireless LANs. Although the original goal was to explore the
simultaneous-send problem reported in [1], several other insights
were also obtained. The NS2 simulations showed the
simultaneous-send problem manifest when MAC retries were
disabled. However we were unable to reproduce the NO MAC
retries case. Unlike in the NS2 simulator, various status indicators
cannot be tracked in real experimentation. Instead the
simultaneous-send phenomenon was observed using standalone
network sniffers.
In summary, results in this paper corroborate the simultaneous-
send problem where TCP data and ACK packets compete for
channel access in 802.11 WLANs and cause significant
throughput degradation.
This study has also lead to several other key insights, namely:
1. Its very important to confirm transport protocol performance
observations, and validity of new protocols for wireless networks,
with real-life implementations and testing on real testbeds.
2. However, simulating the protocols in event-driven simulators
such as NS, is also important, since they provide means to track
protocol states while in operation, without affecting the operating
plane. In real testbed scenarios, measuring protocol status in real
time could significantly downgrade protocol performance as our
experience with logging ACK sequence numbers in the kernel
showed.
3. Last but not the least, we reiterate the importance of evaluating
higher layer protocols in controlled and reproducible
environments such as the ORBIT testbed. Simulators for these
protocols fail to completely capture all phenomena associated
with operating higher layer protocols over wireless links with
medium access protocols.

6. ACKNOWLEDGEMENTS
We would like to thank Faiyaz Ahmed and all the members in the
ORBIT team at WINLAB, Rutgers University, for their immense
help that made this work possible. We would also like to thank
Vinay Iyengar for his help with data collection and presentation.

27

7. APPENDIX

8. REFERENCES
[1] Gopal, S.; Paul, S.; Raychaudhuri, D., “Investigation of the

TCP Simultaneous-Send Problem in 802.11 Wireless Local
Area Networks”, IEEE International Conference on
Communication (ICC) 2005, Seoul, South Korea, 16-20 May
2005

[2] ORBIT: Open Access Research Testbed for Next-Generation
Wireless Networks www.orbit-lab.org

[3] Network Simulator – 2 (NS2): http://www.isi.edu/nsnam/ns/
[4] OPNET simulator: http://www.opnet.com/
[5] M C Chan and Ramchandran Ramjee:TCP/IP performance

over 3G wireless link with rate and delay variation ACM
mobicom 2002

[6] E. Ayanoglu, S. Paul, T. F. LaPorta, K. K. Sabnani, and R.
D. Gitlin. AIRMAIL: A link-layer protocol for wireless
networks. 1:47–60, February 1995.

[7] Haris Kremo, “IEEE 802.11 Medium Access Protocol: An
Experimental Case Study”, MS thesis, WINLAB, Rutgers
University. April 2005

[8] Kamerman, A.; Aben, G., “Net throughput with IEEE 802.11
wireless LANs”, IEEE WCNC. Sept 2000. Volume 2

[9] Garcia, M. Choque, J. Sanchez, L. Munoz, L. “An
experimental study of Snoop TCP performance over the
IEEE 802.11b WLAN”, The 5th International Symposium on
Wireless Personal Multimedia Communications, Oct 2002.

[10] Kherani, A.A.; Shorey, R.; “Performance improvement of
TCP with delayed ACKs in IEEE 802.11 wireless LANs”,
Wireless Communications and Networking Conference,
March 2004, Volume 3

[11] Eitan Altman, Tania Jiménez “Novel Delayed ACK
Techniques for Improving TCP Performance in Multihop
Wireless Networks” Personal Wireless Communications 03,
Venice Italy.

[12] Shugong Xu; Tarek Saadawi; Myung Lee; “On TCP over
wireless multi-hop networks”, IEEE Military
Communications Conference, Oct 2001.

[13] Wu, H.; Peng, Y.; Long, K.; Cheng, S.; Ma, J;
“Performance of reliable transport protocol over IEEE
802.11 wireless LAN: analysis and enhancement”,
INFOCOM 2002.

[14] IEEE 802.11, 1999 Edition (ISO/IEC 8802-11: 1999) Part
11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications

0

0.5

1

1.5

2

2.5

3

Th
ro

ug
hp

ut
 (M

bp
s)

1 flow 2 flows 3 flows

0 ACK skip
1 ACK skip
2 ACK skips
3 ACK skips

NS result: Short-lived TCP flow with MAC retries

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Th
ro

ug
hp

ut
 (M

bp
s)

1 flow 2 flows 3 flows

NS Result: Long-lived TCP flow with MAC retries

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

Th
ro

ug
hp

ut
 (M

bp
s)

1 flow 2 flows 3 flows

0 ACK skip
1 ACK skip
2 ACK skips
3 ACK skips

NS Result: Short-lived TCP flow; NO MAC retries

0

0.5

1

1.5

2

2.5

Th
ro

ug
hp

ut
 (M

bp
s)

1 f low 2 f low s 3 f low s

0 A C K skip
1 A CK skip
2 A C K skip
3 A C K skip s

NS result: Long-lived TCP flow NO MAC retries

28

