
26 July/August 2005 QUEUE rants: feedback@acmqueue.com

IAN FOSTER, ARGONNE NATIONAL LABORATORY and
UNIVERSITY OF CHICAGO
STEVEN TUECKE, UNIVA

Enterprise
Distributed
ComputingFO

CU
S

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1080862.1080874&domain=pdf&date_stamp=2005-07-01

 QUEUE July/August 2005 27 more queue: www.acmqueue.com

 Describing the Elephant:
The Different Faces
of IT as
Service

Different Faces Different Faces Different
In a well-known fable, a group of blind

men are asked to describe an elephant.
Each encounters a different part of the
animal and, not surprisingly, provides

a different description.
We see a similar degree of confusion in the IT

industry today, as terms such as service-oriented architec-
ture, grid, utility computing, on-demand, adaptive enterprise,
data center automation, and virtualization are bandied
about. As when listening to the blind men, it can be dif-
fi cult to know what reality lies behind the words, whether
and how the different pieces fi t together, and what we
should be doing about the animal(s) that are being
described. (Of course, in the case of the blind men, we did
not also have marketing departments in the mix!)

Our goal in this article is to provide, in effect, a
description of the elephant. More specifi cally, we describe
what we see as a major technology trend that is driving
many related efforts—namely, the transformation from
vertically integrated silos to horizontally integrated,
service-oriented systems. We explain how various popular
terms relate to this overarching trend and describe the
technology required to realize this transformation.

THE NEED FOR HORIZONTAL INTEGRATION
Your IT department is asked to develop a new application
for computing valuations of customer stock portfolios.
They start the process of requirements analysis, design,
development, hardware acquisition, deployment, and
testing. Some months later, the new application is ready:
a fi nely tuned, vertically integrated stack of specialized
application and management software running on a dedi-
cated set of servers.

Terms such as grid, on-demand,
and service-oriented architecture
are mired in confusion, but there is
an overarching trend behind them all.

28 July/August 2005 QUEUE rants: feedback@acmqueue.com

Over time, this application becomes more popular,
and major bursts of demand lead to overload. While there
is considerable excess server capacity throughout the
enterprise, it cannot be brought to bear on these bursts,
because other application stacks have those servers locked
up. (The servers used by each application run quite differ-
ent software—perhaps even different operating systems—
and are statically confi gured to perform a single task. And
no one wants their servers touched by anyone else, as any
change might destabilize their applications.) Thus, the IT
department must continue to install additional servers to
increase capacity.

This organization of IT resources as a set of more-or-
less independent silos, each responsible for a distinct
enterprise function or application, is commonplace.
Indeed, it is a natural consequence of both decentral-
ization and the proprietary resource virtualization,
workload management, and application builders used
to construct applications today. This isolation is also
becoming increasingly untenable, however, as a result of
business imperatives both to reduce capital and opera-
tion expenses and to respond more rapidly to business
demands. It is not uncommon for individual silos to be
idle 90 percent of the time
because of the need to
provide excess capacity for
occasional peak loads. Fur-
thermore, each distinct silo
needs specialized opera-
tions skills.

In seeking solutions to
these problems, we need
not look far into the past.
Not long ago, the main-
frame provided both a
convenient set of abstrac-
tions to which applications
could code and powerful
resource management
functions that allowed
many applications to share

available resources within that mainframe, all while
maintaining appropriate qualities of service. Mainframes
would commonly serve dozens of applications effectively
while running at close to 100 percent capacity. In effect,
centralized IT architectures were decoupled vertically and
integrated horizontally, thus allowing reuse of function
within applications and economies of scale in terms of
resource usage. Furthermore, all applications were acces-
sible within a uniform environment.

As illustrated in fi gure 1, the move to distributed,
low-cost, and often heterogeneous collections of servers,
despite the many benefi ts, has nonetheless led to this
centralized IT architecture disintegrating into isolated
silos. The challenge now is to reintegrate, so that the
benefi ts of vertical decoupling and horizontal integra-
tion can be achieved in the more complex modern
distributed enterprise IT environment. In this context,
vertical decoupling means that we standardize interfaces
among application components, workload management
systems, and physical resources so that different com-
ponents can be assembled dynamically to meet applica-
tion needs. Horizontal integration means that we adopt
uniform management interfaces so that large numbers of
resources, distributed over what used to be distinct silos,
can be allocated, used, monitored, and managed in a
common and automated manner, improving utilization
and reducing operations costs.

To see what these ideas can mean in practice, consider
how we would implement the previously described port-
folio valuation application in a horizontally integrated
world. We would code our application to a workload
management interface that allows us to defi ne the

 Describing the Elephant:
The Different Faces
of IT as
Service

h/w

wm

app app app…

wm

app app app…

h/w

wm

h/w

wm

h/w

wm

wm

app app app

…

h/w h/w…

(a) centralization (b) disintegration (c) integration

Evolution of Enterprise IT Architecture

grid infrastructure

FIG 1FIG 1

Enterprise
Distributed
ComputingFO

CU
S

The boxes represent applications (app), workload
management (wm) functions, and hardware (h/w).

 QUEUE July/August 2005 29 more queue: www.acmqueue.com

activities to be performed and our performance require-
ments for those activities. The workload manager that
implements this interface would then use common grid
infrastructure mechanisms (deployed on all enterprise
hardware) to discover available resources and deploy
application components onto those resources. As load
increases, new resources could be automatically (and tem-
porarily) allocated to, and used by, the application. Thus,
the “application” is totally decoupled from the underly-
ing “hardware.”

THE BLIND MEN REPORT
We now turn to the various terms mentioned in the
introduction and examine how each relates to the goal of
horizontal integration.

The term grid is one that we have been particularly
involved in promulgating, although it has also caught
the fancy of many marketers in recent years. According to
one defi nition, a grid is “a system that uses open, general-
purpose protocols to federate distributed resources and
to deliver better-than-best-effort qualities of service.”1
This use of the term is inspired by the electric power grid,
which as a technology both: (a) implements standards for
electric power transmission that allow for the decoupling
of consumer and provider; and (b) links diverse provid-
ers into a managed utility. By analogy, grid technologies
enable: (a) on-demand access to computing capabili-
ties; and (b) the federation of distributed resources and
the management of those distributed resources to meet
end-user requirements.2 Thus, grid is a big-picture term
used to describe solutions relating to the fl exible use of
distributed resources for a variety of applications—as well
as a term that emphasizes the importance of standards to
interoperability.

We use the term grid infrastructure to refer to a par-
ticularly important aspect of the grid space—namely, a
horizontal infrastructure integration layer. The term grid
is also often applied to other layers of the stack: for exam-
ple, to characterize an application or workload manager
that has been structured to make effi cient and fl exible use
of distributed and/or shared resources.

The related term utility computing is often used to
denote both a separation between service provider and
consumer and the ability to negotiate a desired quality of
service from the provider—two properties typically associ-
ated with utilities such as electricity. The provider may
be an organization’s IT department or an external utility
provider, and the service may be storage, computing, or
an application. (For example, Sun offers a pay-as-you-go
“computing utility” service, at $1 per CPU-hour, while

salesforce.com offers a customer relationship manage-
ment application as a service.)

On-demand is a broad term used to denote tech-
nologies and systems that allow users or applications to
acquire additional resources to meet changing require-
ments. Thus, we may have on-demand computing, stor-
age, bandwidth, and applications. The meaning overlaps
signifi cantly with utility computing: storage utility and
on-demand storage have similar meanings.

The terms utility, on-demand, and grid overlap sig-
nifi cantly in meaning. All have a connotation of IT as
service, meaning that they involve providing access to
physical resources or other services over the network
via some standardized protocol. Utility and on-demand
can be thought of as specialized use cases for grid (see
fi gure 2)—although certainly many of today’s utility and
on-demand products do not yet use grid infrastructure.
Indeed, an inhibitor to adoption of utility/on-demand
computing is the lack of standards for horizontal infra-
structure integration. In the absence of standard mecha-
nisms for discovering, negotiating access to, confi guring,
and managing remote resources, utility/on-demand ser-
vices often involve complex manual confi guration. This
discourages software vendors and end users from develop-
ing software that depends on the use of those services.

Also related is the term data center automation, com-
monly used to refer to products that enable the coordi-
nated management of resources within an enterprise: for
example, to keep a large number of machines up to date
with the latest patches. The goal is the automation of
operations on applications that are typically not modifi ed
for distributed execution. This task typically uses special-

utility

on-demand

grid

View of the Relationship among
Grid, Utility, and On-Demand Computing

FIG 2FIG 2

30 July/August 2005 QUEUE rants: feedback@acmqueue.com

ized underlying management infrastructure, but it could
be facilitated by a common grid infrastructure.

The term cluster (sometimes Beowulf cluster, after an
early project) denotes a nonshared-memory, multi-CPU
system constructed from commodity parts. The relatively
low cost of clusters makes them excellent powerplants
for grid/utility/on-demand computing systems, particu-
larly as better integration reduces their space, power, and
administration costs, and virtual machine technology
facilitates more flexible provisioning.

Other terms tend to have both broader and more
parochial definitions. Thus, IBM talks about an on-demand
business as “an enterprise whose business processes—inte-
grated end-to-end across the company and with key
partners, suppliers, and customers—can respond with
speed to any customer demand, market opportunity or
external threat.” Hewlett-Packard’s term adaptive enterprise
has a similar connotation, denoting “an organization that
adapts to market conditions so that it can respond to and
address changes in their market, its environment, and/or
its industry to better position itself for survival and profit-
ability.”

Also relevant is outsourcing, in which a third party
offers to run all or part of an enterprise’s IT operations.
Outsourcing is more a financial strategy than an IT
architecture: in many outsourcing deals, IT staff change
employers but applications remain hosted on the same
silos. If outsourcing firms have the opportunity to modify
applications, however, then their focus on efficient
operations can make horizontal integration attractive as
a means of reducing hardware costs. In addition, suc-
cessful realization of utility approaches can enable more
dynamic outsourcing of resources to meet varying work-
load demand.

Another recent term is software as service. In this
approach, the Web is used to provide many customers
with access to functions (customer relationship man-
agement in the case of salesforce.com) that have been
specifically designed for this mode of use. Software as
service is thus an approach to writing applications and
exposing interfaces to users (e.g., through Web browsers).

This approach can make good business sense because
the software-as-service vendor can achieve economies of
scale. The software-as-service vendor has a high degree of
control over its application and is thus a prime candidate
for the adoption of horizontal infrastructure integration
strategies.

No discussion of big-picture concepts would be com-
plete without introducing SOA (service-oriented architecture)
and Web services. These two terms denote a set of archi-
tectural principles and an implementation technology,
respectively, that play an important role in realizing IT as
service—and, as we discuss later, horizontal integration.

SOA denotes an approach to designing systems that
facilitates the realization of the IT-as-service and hori-
zontal integration goals mentioned earlier. A service is a
self-contained implementation of some function(s) with
a well-defined interface specifying the message exchange
patterns used to interact with the function(s). An SOA,
then, is a set of services. SOAs thus seek to achieve the
clean separation of interface and implementation needed
to realize other desirable properties such as interoperabil-
ity, location transparency, and loose coupling between
service and client. (For a discussion of the merits of loose
coupling, see Kendall et al.’s classic paper.3)

Web services are a set of technologies for realizing
service-oriented architectures. While not the only tech-
nology that can be used for this purpose—for example,
CORBA and DCOM have been used in the past—Web
services have technical advantages over prior approaches
and are being widely adopted.

Web services are defined by a core set of technical
specifications that codify mechanisms for describing the
set of messages (i.e., interface) that can be used to interact
with a service (WSDL) and for encoding messages to/from
services (SOAP). Other specifications define how to secure
access to services (WS-Security), address services (WS-
Addressing), manipulate state (WS-Resource Framework),
deliver notifications (WS-Notification), and so forth. The
use of XML to describe service interfaces and encode mes-
sages facilitates integration of applications and distributed
systems from independently defined and loosely con-
nected services.

Technologies for building Web services are by now
reasonably mature, with many companies offering good
commercial Web services stacks, and Apache providing
a solid open source stack. It is important to recognize,
however, what these systems do and do not do. They do
provide tooling for developing Web services, typically
in Java or C#, and containers for hosting those services.
They do not, for the most part, address the question of

 Describing the Elephant:
The Different Faces
of IT as
Service

Enterprise
Distributed
ComputingFO

CU
S

 QUEUE July/August 2005 31 more queue: www.acmqueue.com

how to provide a common set of abstractions and inter-
faces for effective use of IT resources—a key requirement
for realizing horizontal integration. The development of
these abstractions and interfaces is well under way, but
not yet fully completed, as we discuss later.

The term service-oriented infrastructure describes the use
of SOA approaches to the problem of resource manage-
ment. Exposing resources as services is an important step
forward in that it enables a more uniform treatment of
diverse components. As we discuss in the grid infrastruc-
ture section later, however, the larger goal of horizontal
integration requires more than just the adoption of Web
services technologies, which if applied without coordina-
tion results in an unstructured mix of partially overlap-
ping, vendor-specifi c Web services interfaces to resources.
We also require commonality of abstractions and inter-
faces across the broad array of components, so that, for
example, a workload manager can allocate, reserve, and
manage computing, storage, and network resources from
different vendors in common ways.

HORIZONTAL INTEGRATION
We now turn to the nuts and bolts of how service-ori-
ented and horizontally integrated systems are architected
and constructed, and the technologies available for build-
ing them.

We structure this discussion around fi gure 3, which
expands on fi gure 1 to show the principal layers involved
in a horizontally integrated, service-oriented enterprise IT
architecture. In brief, applications use workload managers to
coordinate their access to physical resources. An appli-
cation and its workload
manager are not, as is the
case in vertically integrated
silos, tightly bound to a
single physical resource (or
set of physical resources).
Instead, they bind dynami-
cally to resources (i.e., are
provisioned) via a common
grid infrastructure layer.
The resources themselves
may implement various
virtualization approaches
to enhance the fl exibility
with which they serve their
users.

APPLICATION
Enterprise applications

span a broad spectrum: they may be coarse- or fi ne-
grained, batch or interactive, compute- or data-intensive,
transactional or not. They may be implemented in a
variety of ways: indeed, application development and
development tools, service-oriented or otherwise, have
become a huge industry. The primary concern in this
article is not how applications are developed but rather
how an application’s execution requirements are mapped
to physical resources. In the mainframe era, the operating
system handled this task. In today’s loosely coupled clus-
ters and distributed systems, operating systems no longer
provide the necessary support. Thus, application mapping
functions must be embedded directly into applications
or—a more modular approach—be provided by separate
workload managers, as discussed in the next section.

The term grid application is often used to refer to
applications that have been adapted to use a distributed
infrastructure. Such applications have typically been
parallelized and written to accommodate the dynamic
addition and removal of physical resources. Application
programming environments that help programmers write
such applications include vendor products from Data
Synapse and United Devices; the Message Passing Inter-
face library; workfl ow systems; and open source systems
such as Condor and Nimrod.

WORKLOAD MANAGEMENT
The workload manager has emerged as an important
product category in enterprise IT. There are a number of
such systems, each specialized to different execution task
granularities, transaction characteristics, and performance

management of the resources…
through discovery, reservation,
provisioning, monitoring…
to provide end-to-end QoS…
for multiple workload types…

isolation of resources to simplify
provisioning and decommissioning

scheduling of varied (coarse- or
fine-grained) tasks on behalf of
multiple applications

grid infrastructure

workload managers

virtualization

resources
(compute, storage, network)

application server/middleware

application

Architecture Stack

FIG 3

32 July/August 2005 QUEUE rants: feedback@acmqueue.com

requirements. For example, batch schedulers such as
those from Altair, Platform, Sun, and United Devices—
and open source systems such as Condor—run relatively
coarse-grained tasks in domains such as digital rendering,
engineering analysis, and drug design. Other applications,
such as trading applications in financial services, require
support for workloads consisting of many fine-grained
transactional tasks and may use workload managers from
Data Synapse, Gigaspaces, Platform, or others. Yet other
applications require support for workflow, data flow, and/
or orchestration: via, for example, BPEL (Business Process
Execution Language). Oracle’s 10G database harnesses
clustered computers for database applications.

The term grid is often applied to workload managers
that target shared and/or distributed resources. Indeed,
most existing grid products are concerned with facilitat-
ing the writing of parallel or distributed applications and
with managing the execution of these decomposed appli-
cations on distributed resources. As we discuss in the next
section, however, a true grid able to support a range of
applications on shared resources needs something more.

GRID INFRASTRUCTURE
Enterprises that want to support a range of applications
on shared resources face the problem that different appli-
cations and their associated workload managers do not
integrate at the infrastructure level. Instead, each relies
on a proprietary infrastructure management function.
Thus, the enterprise with a variety of application require-
ments ends up with a collection of silos, each consisting
of a distinct application, workload manager, and set of
resources—the situation depicted in figure 1.

The solution to this problem is to introduce a com-
mon horizontal layer that defines and implements a
consistent set of abstractions and interfaces for access to, and
management of, shared resources. We refer to this horizon-
tal resource integration layer as grid infrastructure. This is
what enables the horizontal integration across diverse
physical resources that we require to decouple application
and hardware. This grid infrastructure layer is the focus of
Globus software,5 discussed later.

A grid infrastructure must provide a set of technical
capabilities, as follows:
• Resource modeling. Describes available resources, their

capabilities, and the relationships between them to
facilitate discovery, provisioning, and quality of service
management.

• Monitoring and notification. Provides visibility into the
state of resources—and notifies applications and infra-
structure management services of changes in state—to
enable discovery and maintain quality of service. Log-
ging of significant events and state transitions is also
needed to support accounting and auditing functions.

• Allocation. Assures quality of service across an entire set
of resources for the lifetime of their use by an applica-
tion. This is enabled by negotiating the required level(s)
of service and ensuring the availability of appropriate
resources through some form of reservation—essen-
tially, the dynamic creation of a service-level agreement.

• Provisioning, life-cycle management, and decommis-
sioning. Enables an allocated resource to be configured
automatically for application use, manages the resource
for the duration of the task at hand, and restores the
resource to its original state for future use.

• Accounting and auditing. Tracks the usage of shared
resources and provides mechanisms for transferring cost
among user communities and for charging for resource
use by applications and users.

A grid infrastructure must furthermore be structured
so that the interfaces by which it provides access to these
capabilities are formulated in terms of equivalent abstrac-
tions for different classes of components. For example, a
client should be able to use the same authorization and
quality-of-service negotiation operations when accessing
a storage system, network, and computational resource.
Without this uniformity, it becomes difficult for workload
managers and other management systems to combine
collections of resources effectively and automatically for
use by applications.

These considerations make the definition of an effec-
tive grid infrastructure a challenging task. Many of the
standards and software systems needed to realize this
goal, however, are already in place.

VIRTUALIZATION
The resource mapping and management functions
defined by grid infrastructure provide convenient and
powerful abstractions of underlying physical resources.
Implementing those abstractions in an effective, effi-
cient, and uniform manner, however, can be difficult
if resources do not provide appropriate isolation and

 Describing the Elephant:
The Different Faces
of IT as
Service

Enterprise
Distributed
ComputingFO

CU
S

 QUEUE July/August 2005 33 more queue: www.acmqueue.com

control functions. Indeed, the lack of such functions in
commodity resources has been a significant obstacle to
the successful realization of IT as a service.

The broader availability of virtualization technologies
represents an important step forward in this regard. Such
technologies implement a layer on resources that both
provides flexible control of the physical resource abstrac-
tion (with respect to performance, for example) and, at
the same time, supports multiple virtual instances on the
same physical resource with good isolation. While such
virtualization technologies have been available for a long
time on mainframes and other high-end server platforms,
they are only now becoming widely available on the com-
modity hardware and operating systems that have been
increasingly adopted by enterprises.

Execution virtualization technologies such as those
provided by the open source Xen and the proprietary
VMware, Microsoft Virtual Server, and Virtual Iron
make it possible for the grid infrastructure to request the
creation of a virtualized execution environment with
specified operating system image, resource allocations,
and isolation properties.6 Virtual machine–based systems
such as J2EE and .NET can play a similar role, although
because they deliver an entirely new resource abstraction,
they can be applied only to applications written to that
abstraction. Communication virtualization technologies
(e.g., VLANs, VPNs) and storage virtualization functions
(logical volume managers, etc.) provide similar functions
for communications and storage, respectively.

To be truly useful within a horizontally integrated
infrastructure, virtualization technologies must provide
interfaces to their isolation, control functions at appro-
priate levels, and employ common abstractions. Not all
virtualization solutions meet these requirements today.
For example, storage is arguably the area that has made
the most progress in terms of virtualization standards,
particularly at the lower layers of the stack. Many storage
vendors, however, still provide proprietary, vertically inte-
grated storage management stacks, and thus there are still
substantial silos around storage—both in terms of differ-
ent vendors’ storage silos, as well as storage management
interfaces being distinct from the management interfaces
of other resource types.

Furthermore, resource allocation control functions
must be exposed through the grid infrastructure layer to
allow workload managers to manage end-to-end quali-
ties of services across collections of resources. It is not
sufficient for virtualization managers to make localized
decisions concerning changes in resource allocation, as is
done by many current virtualization products.

THE ROLE OF STANDARDS AND OPEN SOURCE
An effective grid infrastructure must implement manage-
ment capabilities in a uniform manner across diverse
resource types—and, if we are to avoid vendor lock-in, it
should do so in a manner that does not involve commit-
ment to any proprietary technology.

As was the case with the Internet and Web, both stan-
dards and open source software have important roles to
play in achieving these goals. Standards enable interop-
erability among different vendor products, while open
source software allows enterprises to proceed with deploy-
ments now, before all standards are available. In the case
of the Internet and Web, standards have been developed
over a period of years within bodies such as the IETF and
W3C; concurrently with these activities, open source
systems such as BSD Unix and the Apache Web server
have spurred Internet and Web adoption, respectively,
stimulating an explosion of innovation around common
standards that has brought amazing results.

We see a similar synergistic relationship between
standards and open source software in the case of grid.
The standardization of interfaces for resource modeling,
monitoring, notification, allocation, provisioning, and
accounting functions is proceeding within bodies such
as the Global Grid Forum (Open Grid Services Architec-
ture), OASIS (WS-Resource Framework, WS-Notification,
and WS Distributed Management), and DMTF (Common
Information Model). Concurrently with these efforts,
open source software is implementing not only final-
ized standards but also other interfaces needed to build
usable systems. The availability of this software allows
enterprises and ISVs to develop grid solutions now—and
accelerates the definition and adoption of standards by
reducing barriers to their adoption.

At a more fundamental level, the Web services core
standards and software are reasonably solid, with such
broadly adopted specifications as WSDL, SOAP, and WS-
Security available from myriad IT vendors, as well as in
open source form from Apache and other sources. Profiles
defined by the WS-Interoperability organization promote
interoperability among tools and services provided by
different vendors.

At higher levels, good-quality open source software is
available and playing an important role in the evolution
and adoption of standards. For example, the Globus Tool-
kit that we have been involved in developing implements
a wide range of functionality, primarily at the grid infra-
structure level, relating to security, execution manage-
ment, data management, and monitoring and discovery,
as well as the core Web services mechanisms referred to

34 July/August 2005 QUEUE rants: feedback@acmqueue.com

earlier. It was originally developed and applied within
research and education settings, but the establishment of
Univa Corporation as a source of commercial support and
services is accelerating enterprise adoption.

SUMMARY
We have argued that SOA, grid, on-demand, utility
computing, software as service, and other related terms
all represent different perspectives on the same overall
goal—namely, the restructuring of enterprise IT as a hori-
zontally integrated, service-oriented architecture. If suc-
cessfully realized, that goal will see in-house, third-party,
and outsourced applications all operating in a uniform
environment, with on-demand provisioning of both
in-house and outsourced hardware resources—and also,
of course, high degrees of security, monitoring, auditing,
and management.

This Holy Grail of open, standards-based, autonomi-
cally managed software and dynamically provisioned
hardware has certainly not yet been achieved. That does
not mean, however, that enterprises cannot start today to
create horizontally integrated, service-oriented infrastruc-
tures. Solid Web services products allow for the creation
of service-oriented applications. Mature commercial and
open source virtualization and workload management
products and open source grid infrastructure software
provide what is needed to create horizontally integrated
infrastructure to sit behind those applications. Integra-
tion remains more of an exercise for the customers (or
their services vendors) than is desirable, but that situation
should change as independent software vendors start
to grid-enable their products. Meanwhile, progress on
further standards is accelerating as experience is gained
with deployments and pressure builds from end users for
interoperable solutions. Q

ACKNOWLEDGMENTS
We are grateful to Greg Astfalk, Stuart Feldman, and Vas
Vasiliadis for comments on a draft of this article. Ian
Foster’s work is supported in part by the Mathematical,
Information, and Computational Sciences Division sub-

program of the Office of Advanced Scientific Computing
Research, U.S. Department of Energy, under Contract W-
31-109-Eng-38, and by the National Science Foundation.

REFERENCES
1. Foster, I. 2002. What is the grid? A three-point check-

list; http://www-fp.mcs.anl.gov/~foster/Articles/
WhatIsTheGrid.pdf.

2. Foster, I., Kesselman, C., Nick, J.M., and Tuecke, S. Grid
services for distributed systems integration. IEEE Com-
puter 35 (6): 37-46.

3. Kendall, S.C., Waldo, J., Wollrath, A., and Wyant, G.
1994. A note on distributed computing. Sun Microsys-
tems, Technical Report TR-94-29.

4. Booth, D., Haas, H., McCabe, F., Newcomer, E., Cham-
pion, M., Ferris, C., and Orchard, D. 2003. Web services
architecture. W3C, working draft; http://www.w3.org/
TR/2003/WD-ws-arch-20030808/.

5. Foster, I. 2005. A Globus primer; www.globus.org/
primer.

6. Rosenblum, M., and Garfinkel, T. 2005. Virtual
machine monitors: Current technology and future
trends. IEEE Computer (May): 39-47.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

IAN FOSTER is associate director of the mathematics and
computer science division of Argonne National Laboratory
and the Arthur Holly Compton Professor of Computer
Science at the University of Chicago. He created the Distrib-
uted Systems Lab at both institutions, which has pioneered
key grid concepts, developed the widely deployed Globus
software, and led the development of grid applications
across the sciences. He is also cofounder and chief open
source strategist at Univa Corporation. Foster graduated
with a B.S. in computer science from the University of
Canterbury, New Zealand and a Ph.D. in computer science
from Imperial College, United Kingdom.
STEVEN TUECKE is CEO of Univa Corporation. He
cofounded the Globus Alliance with Ian Foster and Carl
Kesselman, where he was responsible for managing the
architecture, design, and development of Globus software,
as well as the grid and Web services standards that underlie
it. He began his career in 1990 as a software engineer for
Foster in the mathematics and computer science division at
Argonne National Laboratory, where he helped create the
Distributed Systems Laboratory. Tuecke graduated with a B.A
in mathematics and computer science from St. Olaf College.
©2005 ACM 1542-7730/05/0700 $5.00

 Describing the Elephant:
The Different Faces
of IT as
Service

Enterprise
Distributed
ComputingFO

CU
S

