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 Describing the Elephant: 
The Different Faces 
of IT as 
Service 

Different Faces Different Faces Different
In a well-known fable, a group of blind 

men are asked to describe an elephant. 
Each encounters a different part of the 
animal and, not surprisingly, provides 

a different description.
We see a similar degree of confusion in the IT 

industry today, as terms such as service-oriented architec-
ture, grid, utility computing, on-demand, adaptive enterprise, 
data center automation, and virtualization are bandied 
about. As when listening to the blind men, it can be dif-
fi cult to know what reality lies behind the words, whether 
and how the different pieces fi t together, and what we 
should be doing about the animal(s) that are being 
described. (Of course, in the case of the blind men, we did 
not also have marketing departments in the mix!)

Our goal in this article is to provide, in effect, a 
description of the elephant. More specifi cally, we describe 
what we see as a major technology trend that is driving 
many related efforts—namely, the transformation from 
vertically integrated silos to horizontally integrated, 
service-oriented systems. We explain how various popular 
terms relate to this overarching trend and describe the 
technology required to realize this transformation.

THE NEED FOR HORIZONTAL INTEGRATION
Your IT department is asked to develop a new application 
for computing valuations of customer stock portfolios. 
They start the process of requirements analysis, design, 
development, hardware acquisition, deployment, and 
testing. Some months later, the new application is ready: 
a fi nely tuned, vertically integrated stack of specialized 
application and management software running on a dedi-
cated set of servers.

Terms such as grid, on-demand, 
and service-oriented architecture 
are mired in confusion, but there is 
an overarching trend behind them all.
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Over time, this application becomes more popular, 
and major bursts of demand lead to overload. While there 
is considerable excess server capacity throughout the 
enterprise, it cannot be brought to bear on these bursts, 
because other application stacks have those servers locked 
up. (The servers used by each application run quite differ-
ent software—perhaps even different operating systems—
and are statically confi gured to perform a single task. And 
no one wants their servers touched by anyone else, as any 
change might destabilize their applications.) Thus, the IT 
department must continue to install additional servers to 
increase capacity.

This organization of IT resources as a set of more-or-
less independent silos, each responsible for a distinct 
enterprise function or application, is commonplace. 
Indeed, it is a natural consequence of both decentral-
ization and the proprietary resource virtualization, 
workload management, and application builders used 
to construct applications today. This isolation is also 
becoming increasingly untenable, however, as a result of 
business imperatives both to reduce capital and opera-
tion expenses and to respond more rapidly to business 
demands. It is not uncommon for individual silos to be 
idle 90 percent of the time 
because of the need to 
provide excess capacity for 
occasional peak loads. Fur-
thermore, each distinct silo 
needs specialized opera-
tions skills.

In seeking solutions to 
these problems, we need 
not look far into the past. 
Not long ago, the main-
frame provided both a 
convenient set of abstrac-
tions to which applications 
could code and powerful 
resource management 
functions that allowed 
many applications to share 

available resources within that mainframe, all while 
maintaining appropriate qualities of service. Mainframes 
would commonly serve dozens of applications effectively 
while running at close to 100 percent capacity. In effect, 
centralized IT architectures were decoupled vertically and 
integrated horizontally, thus allowing reuse of function 
within applications and economies of scale in terms of 
resource usage. Furthermore, all applications were acces-
sible within a uniform environment.

As illustrated in fi gure 1, the move to distributed, 
low-cost, and often heterogeneous collections of servers, 
despite the many benefi ts, has nonetheless led to this 
centralized IT architecture disintegrating into isolated 
silos. The challenge now is to reintegrate, so that the 
benefi ts of vertical decoupling and horizontal integra-
tion can be achieved in the more complex modern 
distributed enterprise IT environment. In this context, 
vertical decoupling means that we standardize interfaces 
among application components, workload management 
systems, and physical resources so that different com-
ponents can be assembled dynamically to meet applica-
tion needs. Horizontal integration means that we adopt 
uniform management interfaces so that large numbers of 
resources, distributed over what used to be distinct silos, 
can be allocated, used, monitored, and managed in a 
common and automated manner, improving utilization 
and reducing operations costs.

To see what these ideas can mean in practice, consider 
how we would implement the previously described port-
folio valuation application in a horizontally integrated 
world. We would code our application to a workload 
management interface that allows us to defi ne the 
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activities to be performed and our performance require-
ments for those activities. The workload manager that 
implements this interface would then use common grid 
infrastructure mechanisms (deployed on all enterprise 
hardware) to discover available resources and deploy 
application components onto those resources. As load 
increases, new resources could be automatically (and tem-
porarily) allocated to, and used by, the application. Thus, 
the “application” is totally decoupled from the underly-
ing “hardware.”

THE BLIND MEN REPORT 
We now turn to the various terms mentioned in the 
introduction and examine how each relates to the goal of 
horizontal integration.

The term grid is one that we have been particularly 
involved in promulgating, although it has also caught 
the fancy of many marketers in recent years. According to 
one defi nition, a grid is “a system that uses open, general-
purpose protocols to federate distributed resources and 
to deliver better-than-best-effort qualities of service.”1 
This use of the term is inspired by the electric power grid, 
which as a technology both: (a) implements standards for 
electric power transmission that allow for the decoupling 
of consumer and provider; and (b) links diverse provid-
ers into a managed utility. By analogy, grid technologies 
enable: (a) on-demand access to computing capabili-
ties; and (b) the federation of distributed resources and 
the management of those distributed resources to meet 
end-user requirements.2 Thus, grid is a big-picture term 
used to describe solutions relating to the fl exible use of 
distributed resources for a variety of applications—as well 
as a term that emphasizes the importance of standards to 
interoperability.

We use the term grid infrastructure to refer to a par-
ticularly important aspect of the grid space—namely, a 
horizontal infrastructure integration layer. The term grid 
is also often applied to other layers of the stack: for exam-
ple, to characterize an application or workload manager 
that has been structured to make effi cient and fl exible use 
of distributed and/or shared resources.

The related term utility computing is often used to 
denote both a separation between service provider and 
consumer and the ability to negotiate a desired quality of 
service from the provider—two properties typically associ-
ated with utilities such as electricity. The provider may 
be an organization’s IT department or an external utility 
provider, and the service may be storage, computing, or 
an application. (For example, Sun offers a pay-as-you-go 
“computing utility” service, at $1 per CPU-hour, while 

salesforce.com offers a customer relationship manage-
ment application as a service.)

On-demand is a broad term used to denote tech-
nologies and systems that allow users or applications to 
acquire additional resources to meet changing require-
ments. Thus, we may have on-demand computing, stor-
age, bandwidth, and applications. The meaning overlaps 
signifi cantly with utility computing: storage utility and 
on-demand storage have similar meanings. 

The terms utility, on-demand, and grid overlap sig-
nifi cantly in meaning. All have a connotation of IT as 
service, meaning that they involve providing access to 
physical resources or other services over the network 
via some standardized protocol. Utility and on-demand 
can be thought of as specialized use cases for grid (see 
fi gure 2)—although certainly many of today’s utility and 
on-demand products do not yet use grid infrastructure. 
Indeed, an inhibitor to adoption of utility/on-demand 
computing is the lack of standards for horizontal infra-
structure integration. In the absence of standard mecha-
nisms for discovering, negotiating access to, confi guring, 
and managing remote resources, utility/on-demand ser-
vices often involve complex manual confi guration. This 
discourages software vendors and end users from develop-
ing software that depends on the use of those services.

Also related is the term data center automation, com-
monly used to refer to products that enable the coordi-
nated management of resources within an enterprise: for 
example, to keep a large number of machines up to date 
with the latest patches. The goal is the automation of 
operations on applications that are typically not modifi ed 
for distributed execution. This task typically uses special-
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ized underlying management infrastructure, but it could 
be facilitated by a common grid infrastructure.

The term cluster (sometimes Beowulf cluster, after an 
early project) denotes a nonshared-memory, multi-CPU 
system constructed from commodity parts. The relatively 
low cost of clusters makes them excellent powerplants 
for grid/utility/on-demand computing systems, particu-
larly as better integration reduces their space, power, and 
administration costs, and virtual machine technology 
facilitates more flexible provisioning. 

Other terms tend to have both broader and more 
parochial definitions. Thus, IBM talks about an on-demand 
business as “an enterprise whose business processes—inte-
grated end-to-end across the company and with key 
partners, suppliers, and customers—can respond with 
speed to any customer demand, market opportunity or 
external threat.” Hewlett-Packard’s term adaptive enterprise 
has a similar connotation, denoting “an organization that 
adapts to market conditions so that it can respond to and 
address changes in their market, its environment, and/or 
its industry to better position itself for survival and profit-
ability.”

Also relevant is outsourcing, in which a third party 
offers to run all or part of an enterprise’s IT operations. 
Outsourcing is more a financial strategy than an IT 
architecture: in many outsourcing deals, IT staff change 
employers but applications remain hosted on the same 
silos. If outsourcing firms have the opportunity to modify 
applications, however, then their focus on efficient 
operations can make horizontal integration attractive as 
a means of reducing hardware costs. In addition, suc-
cessful realization of utility approaches can enable more 
dynamic outsourcing of resources to meet varying work-
load demand.

Another recent term is software as service. In this 
approach, the Web is used to provide many customers 
with access to functions (customer relationship man-
agement in the case of salesforce.com) that have been 
specifically designed for this mode of use. Software as 
service is thus an approach to writing applications and 
exposing interfaces to users (e.g., through Web browsers). 

This approach can make good business sense because 
the software-as-service vendor can achieve economies of 
scale. The software-as-service vendor has a high degree of 
control over its application and is thus a prime candidate 
for the adoption of horizontal infrastructure integration 
strategies.

No discussion of big-picture concepts would be com-
plete without introducing SOA (service-oriented architecture) 
and Web services. These two terms denote a set of archi-
tectural principles and an implementation technology, 
respectively, that play an important role in realizing IT as 
service—and, as we discuss later, horizontal integration.

SOA denotes an approach to designing systems that 
facilitates the realization of the IT-as-service and hori-
zontal integration goals mentioned earlier. A service is a 
self-contained implementation of some function(s) with 
a well-defined interface specifying the message exchange 
patterns used to interact with the function(s). An SOA, 
then, is a set of services. SOAs thus seek to achieve the 
clean separation of interface and implementation needed 
to realize other desirable properties such as interoperabil-
ity, location transparency, and loose coupling between 
service and client. (For a discussion of the merits of loose 
coupling, see Kendall et al.’s classic paper.3) 

Web services are a set of technologies for realizing 
service-oriented architectures. While not the only tech-
nology that can be used for this purpose—for example, 
CORBA and DCOM have been used in the past—Web 
services have technical advantages over prior approaches 
and are being widely adopted. 

Web services are defined by a core set of technical 
specifications that codify mechanisms for describing the 
set of messages (i.e., interface) that can be used to interact 
with a service (WSDL) and for encoding messages to/from 
services (SOAP). Other specifications define how to secure 
access to services (WS-Security), address services (WS-
Addressing), manipulate state (WS-Resource Framework), 
deliver notifications (WS-Notification), and so forth. The 
use of XML to describe service interfaces and encode mes-
sages facilitates integration of applications and distributed 
systems from independently defined and loosely con-
nected services.

Technologies for building Web services are by now 
reasonably mature, with many companies offering good 
commercial Web services stacks, and Apache providing 
a solid open source stack. It is important to recognize, 
however, what these systems do and do not do. They do 
provide tooling for developing Web services, typically 
in Java or C#, and containers for hosting those services. 
They do not, for the most part, address the question of 
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how to provide a common set of abstractions and inter-
faces for effective use of IT resources—a key requirement 
for realizing horizontal integration. The development of 
these abstractions and interfaces is well under way, but 
not yet fully completed, as we discuss later.

The term service-oriented infrastructure describes the use 
of SOA approaches to the problem of resource manage-
ment. Exposing resources as services is an important step 
forward in that it enables a more uniform treatment of 
diverse components. As we discuss in the grid infrastruc-
ture section later, however, the larger goal of horizontal 
integration requires more than just the adoption of Web 
services technologies, which if applied without coordina-
tion results in an unstructured mix of partially overlap-
ping, vendor-specifi c Web services interfaces to resources. 
We also require commonality of abstractions and inter-
faces across the broad array of components, so that, for 
example, a workload manager can allocate, reserve, and 
manage computing, storage, and network resources from 
different vendors in common ways.

HORIZONTAL INTEGRATION
We now turn to the nuts and bolts of how service-ori-
ented and horizontally integrated systems are architected 
and constructed, and the technologies available for build-
ing them. 

We structure this discussion around fi gure 3, which 
expands on fi gure 1 to show the principal layers involved 
in a horizontally integrated, service-oriented enterprise IT 
architecture. In brief, applications use workload managers to 
coordinate their access to physical resources. An appli-
cation and its workload 
manager are not, as is the 
case in vertically integrated 
silos, tightly bound to a 
single physical resource (or 
set of physical resources). 
Instead, they bind dynami-
cally to resources (i.e., are 
provisioned) via a common 
grid infrastructure layer. 
The resources themselves 
may implement various 
virtualization approaches 
to enhance the fl exibility 
with which they serve their 
users. 

APPLICATION
Enterprise applications 

span a broad spectrum: they may be coarse- or fi ne-
grained, batch or interactive, compute- or data-intensive, 
transactional or not. They may be implemented in a 
variety of ways: indeed, application development and 
development tools, service-oriented or otherwise, have 
become a huge industry. The primary concern in this 
article is not how applications are developed but rather 
how an application’s execution requirements are mapped 
to physical resources. In the mainframe era, the operating 
system handled this task. In today’s loosely coupled clus-
ters and distributed systems, operating systems no longer 
provide the necessary support. Thus, application mapping 
functions must be embedded directly into applications 
or—a more modular approach—be provided by separate 
workload managers, as discussed in the next section.

The term grid application is often used to refer to 
applications that have been adapted to use a distributed 
infrastructure. Such applications have typically been 
parallelized and written to accommodate the dynamic 
addition and removal of physical resources. Application 
programming environments that help programmers write 
such applications include vendor products from Data 
Synapse and United Devices; the Message Passing Inter-
face library; workfl ow systems; and open source systems 
such as Condor and Nimrod.

WORKLOAD MANAGEMENT
The workload manager has emerged as an important 
product category in enterprise IT. There are a number of 
such systems, each specialized to different execution task 
granularities, transaction characteristics, and performance 

management of the resources…
through discovery, reservation, 
provisioning, monitoring…
to provide end-to-end QoS…
for multiple workload types…

isolation of resources to simplify 
provisioning and decommissioning

scheduling of varied (coarse- or 
fine-grained) tasks on behalf of 
multiple applications

grid infrastructure

workload managers

virtualization

resources
(compute, storage, network)

application server/middleware

application

Architecture Stack

FIG 3
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requirements. For example, batch schedulers such as 
those from Altair, Platform, Sun, and United Devices—
and open source systems such as Condor—run relatively 
coarse-grained tasks in domains such as digital rendering, 
engineering analysis, and drug design. Other applications, 
such as trading applications in financial services, require 
support for workloads consisting of many fine-grained 
transactional tasks and may use workload managers from 
Data Synapse, Gigaspaces, Platform, or others. Yet other 
applications require support for workflow, data flow, and/
or orchestration: via, for example, BPEL (Business Process 
Execution Language). Oracle’s 10G database harnesses 
clustered computers for database applications.

The term grid is often applied to workload managers 
that target shared and/or distributed resources. Indeed, 
most existing grid products are concerned with facilitat-
ing the writing of parallel or distributed applications and 
with managing the execution of these decomposed appli-
cations on distributed resources. As we discuss in the next 
section, however, a true grid able to support a range of 
applications on shared resources needs something more.

GRID INFRASTRUCTURE
Enterprises that want to support a range of applications 
on shared resources face the problem that different appli-
cations and their associated workload managers do not 
integrate at the infrastructure level. Instead, each relies 
on a proprietary infrastructure management function. 
Thus, the enterprise with a variety of application require-
ments ends up with a collection of silos, each consisting 
of a distinct application, workload manager, and set of 
resources—the situation depicted in figure 1.

The solution to this problem is to introduce a com-
mon horizontal layer that defines and implements a 
consistent set of abstractions and interfaces for access to, and 
management of, shared resources. We refer to this horizon-
tal resource integration layer as grid infrastructure. This is 
what enables the horizontal integration across diverse 
physical resources that we require to decouple application 
and hardware. This grid infrastructure layer is the focus of 
Globus software,5 discussed later.

A grid infrastructure must provide a set of technical 
capabilities, as follows:
•  Resource modeling. Describes available resources, their 

capabilities, and the relationships between them to 
facilitate discovery, provisioning, and quality of service 
management.

•  Monitoring and notification. Provides visibility into the 
state of resources—and notifies applications and infra-
structure management services of changes in state—to 
enable discovery and maintain quality of service. Log-
ging of significant events and state transitions is also 
needed to support accounting and auditing functions.

•  Allocation. Assures quality of service across an entire set 
of resources for the lifetime of their use by an applica-
tion. This is enabled by negotiating the required level(s) 
of service and ensuring the availability of appropriate 
resources through some form of reservation—essen-
tially, the dynamic creation of a service-level agreement.

•  Provisioning, life-cycle management, and decommis-
sioning. Enables an allocated resource to be configured 
automatically for application use, manages the resource 
for the duration of the task at hand, and restores the 
resource to its original state for future use.

•  Accounting and auditing. Tracks the usage of shared 
resources and provides mechanisms for transferring cost 
among user communities and for charging for resource 
use by applications and users.

A grid infrastructure must furthermore be structured 
so that the interfaces by which it provides access to these 
capabilities are formulated in terms of equivalent abstrac-
tions for different classes of components. For example, a 
client should be able to use the same authorization and 
quality-of-service negotiation operations when accessing 
a storage system, network, and computational resource. 
Without this uniformity, it becomes difficult for workload 
managers and other management systems to combine 
collections of resources effectively and automatically for 
use by applications.

These considerations make the definition of an effec-
tive grid infrastructure a challenging task. Many of the 
standards and software systems needed to realize this 
goal, however, are already in place. 

VIRTUALIZATION
The resource mapping and management functions 
defined by grid infrastructure provide convenient and 
powerful abstractions of underlying physical resources. 
Implementing those abstractions in an effective, effi-
cient, and uniform manner, however, can be difficult 
if resources do not provide appropriate isolation and 
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control functions. Indeed, the lack of such functions in 
commodity resources has been a significant obstacle to 
the successful realization of IT as a service.

The broader availability of virtualization technologies 
represents an important step forward in this regard. Such 
technologies implement a layer on resources that both 
provides flexible control of the physical resource abstrac-
tion (with respect to performance, for example) and, at 
the same time, supports multiple virtual instances on the 
same physical resource with good isolation. While such 
virtualization technologies have been available for a long 
time on mainframes and other high-end server platforms, 
they are only now becoming widely available on the com-
modity hardware and operating systems that have been 
increasingly adopted by enterprises.

Execution virtualization technologies such as those 
provided by the open source Xen and the proprietary 
VMware, Microsoft Virtual Server, and Virtual Iron 
make it possible for the grid infrastructure to request the 
creation of a virtualized execution environment with 
specified operating system image, resource allocations, 
and isolation properties.6 Virtual machine–based systems 
such as J2EE and .NET can play a similar role, although 
because they deliver an entirely new resource abstraction, 
they can be applied only to applications written to that 
abstraction. Communication virtualization technologies 
(e.g., VLANs, VPNs) and storage virtualization functions 
(logical volume managers, etc.) provide similar functions 
for communications and storage, respectively.

To be truly useful within a horizontally integrated 
infrastructure, virtualization technologies must provide 
interfaces to their isolation, control functions at appro-
priate levels, and employ common abstractions. Not all 
virtualization solutions meet these requirements today. 
For example, storage is arguably the area that has made 
the most progress in terms of virtualization standards, 
particularly at the lower layers of the stack. Many storage 
vendors, however, still provide proprietary, vertically inte-
grated storage management stacks, and thus there are still 
substantial silos around storage—both in terms of differ-
ent vendors’ storage silos, as well as storage management 
interfaces being distinct from the management interfaces 
of other resource types. 

Furthermore, resource allocation control functions 
must be exposed through the grid infrastructure layer to 
allow workload managers to manage end-to-end quali-
ties of services across collections of resources. It is not 
sufficient for virtualization managers to make localized 
decisions concerning changes in resource allocation, as is 
done by many current virtualization products.

THE ROLE OF STANDARDS AND OPEN SOURCE
An effective grid infrastructure must implement manage-
ment capabilities in a uniform manner across diverse 
resource types—and, if we are to avoid vendor lock-in, it 
should do so in a manner that does not involve commit-
ment to any proprietary technology.

As was the case with the Internet and Web, both stan-
dards and open source software have important roles to 
play in achieving these goals. Standards enable interop-
erability among different vendor products, while open 
source software allows enterprises to proceed with deploy-
ments now, before all standards are available. In the case 
of the Internet and Web, standards have been developed 
over a period of years within bodies such as the IETF and 
W3C; concurrently with these activities, open source 
systems such as BSD Unix and the Apache Web server 
have spurred Internet and Web adoption, respectively, 
stimulating an explosion of innovation around common 
standards that has brought amazing results.

We see a similar synergistic relationship between 
standards and open source software in the case of grid. 
The standardization of interfaces for resource modeling, 
monitoring, notification, allocation, provisioning, and 
accounting functions is proceeding within bodies such 
as the Global Grid Forum (Open Grid Services Architec-
ture), OASIS (WS-Resource Framework, WS-Notification, 
and WS Distributed Management), and DMTF (Common 
Information Model). Concurrently with these efforts, 
open source software is implementing not only final-
ized standards but also other interfaces needed to build 
usable systems. The availability of this software allows 
enterprises and ISVs to develop grid solutions now—and 
accelerates the definition and adoption of standards by 
reducing barriers to their adoption.

At a more fundamental level, the Web services core 
standards and software are reasonably solid, with such 
broadly adopted specifications as WSDL, SOAP, and WS-
Security available from myriad IT vendors, as well as in 
open source form from Apache and other sources. Profiles 
defined by the WS-Interoperability organization promote 
interoperability among tools and services provided by 
different vendors.

At higher levels, good-quality open source software is 
available and playing an important role in the evolution 
and adoption of standards. For example, the Globus Tool-
kit that we have been involved in developing implements 
a wide range of functionality, primarily at the grid infra-
structure level, relating to security, execution manage-
ment, data management, and monitoring and discovery, 
as well as the core Web services mechanisms referred to 
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earlier. It was originally developed and applied within 
research and education settings, but the establishment of 
Univa Corporation as a source of commercial support and 
services is accelerating enterprise adoption.

SUMMARY
We have argued that SOA, grid, on-demand, utility 
computing, software as service, and other related terms 
all represent different perspectives on the same overall 
goal—namely, the restructuring of enterprise IT as a hori-
zontally integrated, service-oriented architecture. If suc-
cessfully realized, that goal will see in-house, third-party, 
and outsourced applications all operating in a uniform 
environment, with on-demand provisioning of both 
in-house and outsourced hardware resources—and also, 
of course, high degrees of security, monitoring, auditing, 
and management.

This Holy Grail of open, standards-based, autonomi-
cally managed software and dynamically provisioned 
hardware has certainly not yet been achieved. That does 
not mean, however, that enterprises cannot start today to 
create horizontally integrated, service-oriented infrastruc-
tures. Solid Web services products allow for the creation 
of service-oriented applications. Mature commercial and 
open source virtualization and workload management 
products and open source grid infrastructure software 
provide what is needed to create horizontally integrated 
infrastructure to sit behind those applications. Integra-
tion remains more of an exercise for the customers (or 
their services vendors) than is desirable, but that situation 
should change as independent software vendors start 
to grid-enable their products. Meanwhile, progress on 
further standards is accelerating as experience is gained 
with deployments and pressure builds from end users for 
interoperable solutions. Q
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