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ABSTRACT
Deploying advanced automated testing techniques, such as
model-based testing, relies upon the development of rigorous
models. Our extensive experience in trying to develop and
deploy model-based testing within a large industrial setting
has led us to the conclusion that developing requirement
models is essential for good model-based testing practice.
However, not only are requirements specifications generally
incomplete, but it is also difficult to get system architects
and designers to produce requirements with the rigor needed
for automation. Hence, incentives are needed that tend
towards the development of rigorous requirement models.
To this end, we introduce the Mint tool that enables and
helps automate the early detection of errors during require-
ments development and appraisal. The paper describes and
discusses at length the semantic interpretation of scenario-
based requirements and the various types of pathologies that
can be detected. We also introduce a UML 2.0 profile for
applying domain specific communication semantics that can
be used to determine the relevance of these pathologies.

1. INTRODUCTION
Like many other large industrial organisations Motorola

is looking to reduce the cost and time required for the de-
velopment of systems and software. In general, experience
has shown that during the development of telecommunica-
tion software as much as 40-75% of the resources are spent
on testing [2, 6]. Also, recent studies indicate that 50% of
test failures are caused by defects found in the requirements
[15], and these defects can cost as much as one-hundred
times more to fix in the development phase than if they
were fixed in the requirements or design phase [3]. There-
fore, great effort is expended conducting Formal Technical
Reviews (FTRs) [14], or appraisals, as a means of discov-
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ering such defects earlier on in the software lifecycle. To
date, however, appraisals generally rely upon manual analy-
sis, with few, if any, tools for enabling the automated detec-
tion of defects. As a consequence, early defect discovery is
becoming a key focal point in reducing development costs.

To address these issues Motorola Labs has been focused
on introducing automation and reuse into the testing pro-
cess. Automation is enabled by the development of abstract,
yet rigorous models, throughout the development process,
and reuse generally through the use of standards and com-
mon frameworks. As part of this automation strategy we
have developed the automatic test generation tool, ptk [3],
that processes scenario-based requirement specifications to
generate conformance and load tests. These scenario-based
specifications are typically used to define part or all of the
system requirements. However, even though it is common
for system architects and designers to use scenario-based no-
tations, they typically do not contain the rigor needed for
machine processing. We also found that architects and de-
signers were reluctant to invest the extra effort needed to de-
velop rigorous models, as the benefit of automated test gen-
eration did not immediately justify the extra effort within
their project scope. To address this issue we developed Mint,
a tool [3] that would automatically discover potential defects
within scenario-based specifications, in a user-friendly man-
ner. With this tool we are providing the capability to reduce
the effort required in appraising requirement specifications,
hence, providing a strong incentive for the system architects
and designers to develop the rigorous models needed for au-
tomation.

This paper introduces the Mint tool as a means for au-
tomating the discovery of defects found within requirements
and architecture specifications, defined using Message Se-
quence Charts (MSCs) [8] or UML 2.0 Sequence Diagrams
[16]. Some of these defects have been described before such
as non-local choice, and race conditions, but the others to
our knowledge are new, such as non-local ordering, false-
underspecification, and blocking condition classifications.

We also introduce a UML 2.0 profile that allows users to
specify domain specific communication semantics that can
be considered by Mint during the analysis of requirements
and architecture specifications. This profile came about be-
cause in practice some of the defects detected with respect to
the UML standard semantics are not defects with respect to



the semantics of the target platform. Hence, the classifica-
tion of defects has to be adapted for the particular semantics
that are expected in practise. The profile gives the user a
simple mechanism for rigorously incorporating the appro-
priate semantics into their requirements model. It is also
possible to use this profile to infer resolutions for certain
types of pathology. In some cases it is possible to auto-
matically correct semantically inconsistent requirements by
imposing constraints derived from the UML profile. Or to
provide the practitioner with a range of solutions depending
on which aspects of the profile they wish to adopt. We give
an example from an industrial case study in Section 4.4 that
illustrates how the UML profile can be used in this way. Fi-
nally, we describe some initial evaluations of Mint, where it
has been applied to real scenarios.

2. MSC/UML 2.0 SEQUENCE DIAGRAM SE-
MANTICS

For the purposes of this paper we will treat UML 2.0 Se-
quence Diagrams (SDs) [16] as equivalent to Message Se-
quence Charts (MSCs) [8] in terms of graphical notation,
and semantics. In practice the two languages are syntac-
tically and semantically the same for most constructs, dif-
fering only in terminology, for example, MSC instances are
SD lifelines, and MSC inline expressions are SD combined
fragments.

It is not within the scope of this paper to give a full de-
scription of all the constructs in MSC or SDs, but we will
cover the common constructs that are used in this paper.
Within a SD events on a lifeline occur linearly down the
page, unless a special construct such as a co-region is used
(see Figure 5), which means that the events inside are un-
ordered. Lifelines are asynchronous with other lifelines, so
that an event on one lifeline that is visually lower than an
event on another lifeline is not necessarily temporally later.

Messages are asynchronous, latency is assumed to be ar-
bitrary and there are no queuing semantics associated with
message channels. This means, for example, message over-
taking is possible. A message is regarded as a pair of events,
a send event and a receive event. In accordance with the ITU
TTCN-2 standard [10] we use the notation !m and ?m for
the send/receive pair for message m.

Inline constructs can be used to compose behaviours, this
includes the constructs SEQ for weak sequential composi-
tion, PAR for parallel composition, ALT for choice, and LOOP

for iteration, besides others. The alternative construct de-
notes mutually exclusive alternatives, which are delineated
by dotted horizontal lines. Figure 4 shows an alternative
construct with two operands. SDs can also refer to other
SDs by using an inline reference, or by using the reference
construct.

The traces of a SD are given by constructing all possible
interleavings of the events from the processes in the diagram
(after inlining referenced diagrams) that are consistent with
the implied temporal ordering defined by the diagram. So,
a send must happen before its receive partner, and an event
higher on a lifeline must happen before one below, unless a
special construct is used. One non-obvious behaviour is that
fragments (i.e. a section of a SD) are weakly composed, so
for example, an event above a reference could occur before,
during, or after the reference. The order is dependent on
the implied orders in the diagram, and not the visual order.
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Figure 1: Resolvable Blockinig Condition
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Figure 2: Irresolvable Blockinig Condition

Unrelated events can be ordered by using a general-order
arrow between them. We also treat conditions as a synchro-
nisation barrier between lifelines, this is non-standard, but
is a useful means of ordering unrelated events. An exam-
ple of an MSC with general-order arrow, and a condition is
shown in Figure 4. For the complete definition of the MSC
language see the ITU MSC-2000 standard [8].

A basic SD represents a set of traces that can be defined
solely in terms of a single partial order on the events in
the diagram. This partial order is known as the causal or-
der. The traces of a basic diagram are precisely the set of
total orders on the events in the diagram that are an ex-
tension of the causal order. Hence, for any trace T of SD
S, an event e1 can occur earlier in the trace than another
event e2 if and only if e1 6> e2, where < is the causal or-
der of S. Diagrams containing the alternative construct, for
example, are not basic diagrams since each alternative re-
quires a separate partial order to define its trace semantics.
Similarly diagrams containing unbounded iteration are not
basic. Examples of diagrams that are basic are any that
only contain messages, internal actions, states, continuation
symbols, process creation and destruction and the parallel
construct. Note this categorisation is not complete.

A consequence of alternative and loop constructs in UML
2.0 Sequence Diagrams is that the general property checking
problem is undecidable for arbitrary SDs [1].

3. PATHOLOGIES IN REQUIREMENTS
Automated test generation relies on the initial require-

ments SDs being semantically consistent. This is equally
important when requirements scenarios are used for devel-
oping architecture models. For these reasons Motorola has
developed a tool, Mint, to automatically detect pathologies
in MSC and UML 2.0 Sequence Diagrams.

The current tool detects a variety of pathologies that make
a SD semantically inconsistent. In a distributed environ-
ment each lifeline in a SD should completely describe the
expected behaviour for the associated process. It is possi-
ble within a SD to specify global behaviour that may not
be a result of the concurrent local behaviour from each
process. Certain kinds of global behaviour may only be
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Figure 4: Non-local Ordering

achieved through implicit access to some global state that
might not exist in a distributed environment. Below we list
the pathologies detected by the current Mint tool:

• Blocking conditions. These are a form of race condi-
tion. They describe a discrepancy between the mes-
sage ordering specified in the requirements scenario
and the order that events can occur in practice.

• Non-local choice. These pathologies occur where in-
dependent processes must take non-deterministic mu-
tually exclusive actions without sufficient coordination
to guarantee exclusivity.

• Non-local ordering. These occur when events on sepa-
rate life-lines are ordered with constructs that can not
force the ordering to occur in practice. For example,
if a general-ordering arrow is used between events on
separate life-lines.

• False-underspecification. These occur where the local
order for a process is weaker than the implied global
order for the whole scenario. Therefore, the behaviour
for an individual process can not be inferred from the
specification of the process alone.

The first three pathologies are the most serious and should
be corrected unless there are certain properties of the imple-
mentation. Examples of properties that allow the patholo-
gies to be ignored include buffering semantics, which are
covered in Section 4. The last pathology is less serious, so
although it should be avoided, it does not prevent a correct
implementation of the requirements.

3.1 Blocking conditions

Blocking conditions are a form of race condition. We pre-
fer the term blocking condition because this is closer to the
process behaviour when such pathological specifications are
implemented.

Definition 3.1 (Blocking condition). Let S be a ba-
sic MSC/UML SD with causal ordering <, as defined by ITU
MSC semantics [8]. There is a blocking condition with ?y
if there exists an event x 6=!y, which occurs earlier in the
causal order than ?y (i.e. x <?y), but does not occur earlier
in the causal order than !y, (i.e. x 6<!y).

Blocking conditions occur because an instance has no con-
trol over when it receives messages, only when it can send
them. For example, Figures 1 and 2 illustrate two examples
of blocking conditions. In Figure 1, it is straightforward
to implement the behaviour of each instance as a separate
process. The implementation of P would send x before y,
and the implementation of Q would receive x before y. The
problem occurs when these processes are running concur-
rently — message y could overtake message x in transit,
and arrive first. In this case process Q would be blocked
with the receipt of y, when it was expecting message x.

In practice, certain assumptions can be made about the
behaviour of processes, for example, a fixed message latency,
which would avoid a problem with the implementation of
the MSC on the left. Therefore, we call this type of block-
ing condition a resolvable blocking condition. In practice,
within Motorola and DaimlerChrysler, such an example as
Figure 1 has not been problematic, due to properties of the
implementations that are used.

With the MSC Figure 2, however, there is also a block-
ing condition, but this case is one that has proven to be
problematic in practice, and we therefore call it an irresolv-
able blocking condition. With this example message x, and
message y can be sent in either order, but there is no pos-
sible way to enforce that message x arrives before message
y, without adding additional co-ordination. Another simple
way of avoiding this case is to use a co-region for messages
on instance Q, which specifies that messages x and y could
be received in any order.

Definition 3.2 (Resolvable and Irresolvable). A
blocking condition between event x and ?y is resolvable if
there exists an event w which occurs earlier in the causal
order than x (i.e. w < x), and then w also occurs earlier
than !y (i.e. w <!y), or w is on the same instance as !y.
Consequently, a blocking condition that is not resolvable is
said to be irresolvable.

3.2 Non-local pathologies
Non-local pathologies occur when the behaviour of pro-

cess A depends on some aspect of the run-time behaviour of
process B which is not observable by A. Non-local patholo-
gies fall into two categories, non-local choice and non-local
ordering. Informally, non-local choice occurs where a choice
of paths taken by B is not observable by A, but neverthe-
less affects the permitted behaviour of A. Non-local ordering
occurs where A must wait for some event on B that is not
observable to A.

We define these concepts more precisely. In the following,
a trace prefix is simply a prefix of some trace in the MSC.
An event x in a trace is not observable by instance A if x
occurs on some instance other than A. Two traces t1 and
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Figure 5: An example of a false-underspecification.

t2 are observably identical to an instance A if the traces t′1
and t′2, obtained by removing all events not observable by
A from t1 and t2 respectively, are equal.

Definition 3.3 (Non-local pathology). Let x be an
active event on instance A. A non-local pathology occurs if
there are valid trace prefixes t1 and t2 such that t1 and t2
are observably identical to A, but t1x is a valid trace prefix
whereas t2x is not.

Definition 3.4 (Non-local choice/ordering). Let
x be an active event on instance A, and let t1 and t2 be trace
prefixes that are observably identical to A, such that t1x is
a valid trace prefix, whereas t2x is not. Then x is prevented
by non-local ordering if there is some sequence of events
w unobservable by A such that t2wx is a valid trace prefix.
Otherwise x is prevented by non-local choice.

An example of non-local choice is shown in Figure 3. After
receiving message x, C makes a decision on whether to send
w or not. C should send w if and only if message z and not
message y is sent between A and B. However, this choice of
messages by instance A is not observable to C.

Non-local orderings only occur when general ordering ar-
rows are used, or when Mint uses condition symbols as syn-
chronising events. In figure 4, C should not send message n
until B has received message m, however C has no way of
observing ?m. Similarly, B cannot send message q until C
has received message p, but B cannot observe ?p.

3.3 False-underspecification
A false-underspecification occurs when two events on a

single lifeline are drawn to be unordered, but when consid-
ering the complete specification they are actually ordered.
A false underspecification is shown in Figure 5.

In Figure 5 the co-region on instance P implies that the
events !x and ?z are unordered, but considering the implied
orders of the whole specification !x must occur before ?z.
This is easily correct by removing the co-region.

Definition 3.5 (False-underspecification). A false-
underspecification occurs between two events on the same
lifeline that can occur in any order when considering the
lifeline alone, but when considering all the lifelines they are
ordered.

3.4 Implementation
Mint internally constructs a partial-order graph for each

basic SD, where the partial-order graph represents the causal
order. Given a non-basic SD, a set of partial-order graphs
representing the whole diagram is constructed. Each partial-
order graph is then analyzed for pathologies and a table of
pathologies found is generated.

CommunicationContext

<<metaclass>>
Lifeline

<<metaclass>>
StructuredClassifier

<<stereotype>><<stereotype>>
CommsConstrained

0..1 0..1

Figure 7: Communication context and communica-
tion constrained stereotypes.

4. COMMUNICATION SEMANTICS
Practitioners often construct scenario specifications based

on domain knowledge that is not explicitly contained within
the model. Frequently, practitioners are not even aware
that they are implicitly building these assumptions into the
model, for example, assumptions are often made about com-
munication channel semantics etc. This causes unnecessary
errors to be reported by the Mint tool, which users find
frustrating since they regard these errors as ‘bogus’.

In this section, we introduce a means of defining com-
munication constraints, thereby, allowing the introduction
of domain specific semantics that can be considered when
analysing scenario specifications. This allows the Mint tool
to deduce that certain pathologies may be caused by a gap
in the semantic model. Mint can then suggest enhancements
to the model that will resolve these pathologies.

We define these communication constraints using a simple
UML 2.0 profile [16] — referred to as the Communication
constraint UML Profile (CUP). In doing so, constraints can
be applied to UML diagrams that allow the user to define
domain specific communication semantics, which in some
cases will avoid blocking conditions. Each communication
constraint refines the causal order of a sequence diagram
to produce a new partial order that defines the sequence
diagram semantics. Hence we are able to constrain the be-
havioural semantics for sequence diagrams purely within a
partial order theoretic framework. This has the beneficial
side effect of allowing the earlier results on automated test
generation from SDs [4] to generalise to SDs with CUP se-
mantics.

Initially, we allow users to define communication con-
straints by adding specific semantics to UML 2.0 Architec-
ture Diagrams that are considered when analysing SDs. We
introduce <<CommunicationContext>>, a stereotype that can
be applied to classifiers, which encapsulates both architec-
tural constraints and behavioural operations that can be
specified using SDs — see Figure 7. In doing so, it provides
a binding between constraints and a partial model for anal-
ysis purposes. Note that the application of communication
constraints with other forms of UML behaviour definition,
such as state machines, is outside the scope of this paper.
Next we introduce <<CommsConstrained>>, a stereotype for
SDs that defines those objects, and their associated parts, to
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Figure 6: Communication channel stereotype.

which some communication constraints have been applied.
If no communication constraints have been applied to a spe-
cific object then this stereotype will not apply. Next we
introduce two types of communication constraints:

1. communication channels – specialised channel seman-
tics for connectors that impact the communication of
events between objects, and

2. communication buffers – specialised buffer semantics
for ports.

4.1 Communication channels
Communication channels are typically represented using

connectors or interfaces within an UML 2.0 Architecture Di-
agram. Hence, we allow the definition of specialised commu-
nication channels through the definition of a channel stereo-
type — see Figure 6. Initially, we have defined four types of
channel semantics within CUP as follows:

1. synchronous channels, with stereotype <<synchronous>>

2. asynchronous channels, with stereotype <<asynchronous>>

3. channels that act with FIFO semantics, with stereo-
type <<FIFO>>

4. channels that act with token-ring semantics, with stereo-
type <<TokenRing>>

4.1.1 Asynchronous channels
The <<asynchronous>> stereotype represents asynchronous

communication channels. That is, the stereotype imposes
no order on the delivery of messages that are transmitted
along such a channel. Hence, where messages are transmit-
ted along asynchronous channels the semantics of a SD is
given by the usual partial order semantics.

4.1.2 Synchronous channels
The <<synchronous>> stereotype represents synchronous

communication channels. A channel can belong to this stereo-
type only when the channel latency is negligible with respect
to the system. Suppose that a message m is sent between
processes A and B along a synchronous channel; then no
other event connected to A or B is capable of occurring
between !m and ?m.

The causal order for a SD is affected by synchronous chan-
nels. Let S be a SD and < be the standard causal order
defined by the partial order semantics for S. This semantics
assumes all messages are asynchronous.

Define a new partial order <SC to be the transitive closure
of the following binary relation <sc.

• x <sc y if x < y

• if m is transmitted over a synchronous channel and if
x < ?m then x <sc !m, and if x >!m then x >sc ?m,
where x 6=!m

The partial order <SC defines the causal order for a SD
containing synchronous and asynchronous channels.

4.1.3 FIFO channels
The <<FIFO>> stereotype represents channels that pre-

serve the order in which messages are transmitted.
Let S be a SD and let < be the standard causal order

defined by the partial order semantics for S. Define a par-
tial order <FIFO to be the transitive closure of the following
binary relation <fifo.

• x <fifo y if x < y

• ?m <fifo?n where m and n are messages transmitted
along the same FIFO channel, and !m <!n

The partial order <FIFO defines the causal order for a SD
containing FIFO channels and asynchronous channels.

The FIFO and synchronous causal orders are different.
This can be seen from the example shown in Figure 2. In
this example we will allow x to be sent along an asyn-
chronous channel, and vary the semantics for y. Consider
when first we constrain y to be sent along a synchronous
channel. In this case we have ?x <SC!y. Next consider when
we constrain y to be sent along a FIFO channel. In this
case ¬(?x <FIFO!y). When a SD contains a mixture of asyn-
chronous, synchronous and FIFO channels, the causal order
is defined by taking the transitive closure of the union of
<SC and <FIFO. That is the causal order is defined as the
transitive closure of the binary relation <1 defined by:

• x <1 y if x < y
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Figure 8: Communication buffer stereotype.

• x <1 !m if there is some message m transmitted along
a synchronous channel where x <?m

• ?m <1?n where m and n are messages transmitted
along the same FIFO channel, and !m <!n

With the above definition of <FIFO we can no longer use
Definition 3.1 to define blocking conditions for FIFO chan-
nels. For example FIFO semantics would resolve the block-
ing condition in Figure 1. By this we mean FIFO communi-
cation will force the SD events to always occur in practise in
the order given by <FIFO, so that no process will be blocked
by any other. However according to Definition 3.1 ?x and
?y still cause a blocking condition with respect to <FIFO.
Hence Definition 3.1 no longer captures the concept of one
process being blocked by another during execution in the
case of FIFO channels. Definition 4.1 characterizes blocking
conditions for FIFO semantics.

Definition 4.1. Receive events ?m and ?n connected to
the same process are FIFO-blocked if ?m <FIFO?n, and it is
not the case that !m <FIFO!n. For any non-message event x,
then x and ?n are FIFO-blocked if x <FIFO?n, but it is not
the case that x <FIFO!n.

It is possible to use an alternative partial order to char-
acterise those parts of the behaviour that can cause FIFO-
blocking. We will denote this new partial order by <F. The
events of an SD with FIFO semantics will always correctly
occur in practise if and only if the partial order <F has no
blocking events in the sense of Definition 3.1. Thus we can
preserve the theoretical structure for blocking events by us-
ing <F rather than <FIFO.

Define <F to be the transitive closure of the binary rela-
tion <f defined as:

• When messages m and n are sent between processes
P and Q along a FIFO channel, ?m <?n and !m <!n,
then we define ?m <f !n.

• Whenever x < y we define x <f y.

Proposition 4.2. Let S be a SD with FIFO behavioural
semantics as defined by <FIFO. S contains no FIFO-blocking
conditions if and only if <F has no blocking conditions in
the sense of Definition 3.1.

Notice that the <F ordering does not change the local or-
dering of events within a process. Since local orderings are
preserved, the only difference <F makes is to assert that
FIFO channels only transmit a message after any current
messages in the channel have been received. This additional

assumption does not alter any pathological behaviour in the
scenario that is due to the presence of blocking conditions.
Figure 9 illustrates the <F ordering for Figure 10. In this
example the FIFO ordering resolves the blocking condition
between ?a and ?c, the blocking condition between ?b and
?d, but not the blocking condition between !b and ?c. To
resolve the later blocking condition will require lazy buffers,
Section 4.3. In Figure 9 orderings that are additional to
those imposed by <FIFO are shown by the dotted arrows.

The main advantage of using <F is that it provides a
straightforward way of detecting blocking conditions when
there is a mixture of asynchronous, synchronous and FIFO
channels. All blocking conditions can be detected by testing
the union of <F and <SC with respect to Definition 3.1.

A B C

a
b

c
d

Figure 9: FIFO blocking resolution.

4.1.4 Token-ring channels
The <<TokenRing>> stereotype represents a token ring

connection. Token-rings are a common network architec-
ture used, for example, by the MOST bus in the automotive
industry. A token ring channel can be associated with other
token ring channels to denote a token ring network. Having
the ability to define a token ring channel means that after
a message has been sent, no other message is sent until the
first message is received. By enforcing this semantics the set
of possible blocking errors is reduced. This is because cer-
tain event pairs that would be blocking under the standard
semantics are benign within the token-ring semantics.

A token ring channel is defined based upon the intuition
that a message event cannot happen if the token is taken
— it must wait for the receiving process to free the token.
Hence, it could be defined as follows. Let S be a SD and let
< be the standard causal order given by the partial order
semantics for S. Define a partial order <TK to be the tran-
sitive closure of the following binary relation <tk. For any
active event x, y and message m,

• ?m <tk x if !m < x



• x <tk y if x < y

The partial relation <TK defines the causal order for a SD
with token ring communication semantics.

4.2 Constraints on message semantics
Messages in UML diagrams can be defined as synchronous

or asynchronous. When a message is defined to be syn-
chronous this implies that the message must be transmitted
along a synchronous channel. When a message is defined as
asynchronous that does not constrain the message to be sent
along any particular type of channel. It simply implies no
constraint on the channel transmission semantics. Therefore
it is not inconsistent to transmit an asynchronous message
along a synchronous or FIFO channel. In the Mint tool,
where a message is synchronous this will be interpreted as
imposing suitable stereotypes on the interacting processes.
In particular, it will force the creation of a synchronous chan-
nel between the processes if one is not already present.

4.3 Communication buffers
In this section communication channel semantics are ex-

tended to include behaviour associated with buffers. In par-
ticular, we refine the behaviour of ports that define interac-
tion points for objects within UML 2.0. Ports are typically
used as connection points for channels. In doing so, commu-
nication over connectors (or communication channels) can
be further refined. As illustrated in Figure 8, we introduced
the concept of a buffer which must be associated with a port.
Because a buffer itself can have a defined behaviour and/or
architecture we allow for cases where multiple connections
and buffers are needed. However, initially we define two
types of specialised buffer semantics:

1. FIFO buffers, with stereotype
<<FIFO_Buffer>>

2. Lazy FIFO buffers with the stereotype
<<Lazy_FIFO_Buffer>>

FIFO buffers are standard, and we do not discuss them fur-
ther here for reasons of space.

Processes may keep received events in buffers and only
consume them when necessary with respect to the FIFO
causal ordering. This assumes the processes are communi-
cating via FIFO channels. When buffers are accessed in this
way we refer to them as FIFO lazy buffers — lazy buffers
for short. This means that when a message is sent to a com-
municating process with such a buffer it is automatically
placed in the lazy buffer, and will only be consumed when
that is correct with respect to the causal order. For exam-
ple, if we apply lazy buffering semantics to the specification
illustrated in Figure 10, the blocking condition between !b
and ?c would be resolved. In this case when B finds ?a in
it’s input buffer it will be removed and message b is sent.
Note that in this case ?c could also be in the buffer, and if
so, will not be removed from the buffer until b has been sent.
The lazy buffer semantics asserts that a receive event ?x is
not removed from the input buffer for process P if there are
any events connected to P that are ordered prior to x by the
FIFO causal ordering and that have not yet occurred. Fig-
ure 10 illustrates an example of a specification containing a
blocking condition reported as irresolvable by the Mint tool.

Where lazy buffers are used the definition of blocking con-
dition must change as follows:

Definition 4.3. Receive events ?m and ?n connected to
the same process are lazy-blocked if ?m <FIFO?n, and it is
not the case that !m <FIFO!n. For any non-message event
x belonging to a process without lazy buffering, then x and
?n are lazy-blocked if x <FIFO?n, but it is not the case that
x <FIFO!n.

This property does not apply when x is a timing con-
straint, which is not regarded as a causal event in this dis-
cussion. Timing events are regarded as modality events.
That is, they characterise some property of the execution
trace of the system that can only be determined at runtime.
Note that this definition no longer considers the case, where
!x <?m for messages x and m.

A B C

a
b

c
d

Figure 10: Lazy buffer example.

As in the case of FIFO ordering, we can use an alter-
native partial order semantics when we are only interested
in detecting blocking conditions, which allows us to use the
same definition for blocking across all CUP constraints. This
makes the process of detecting blocking conditions straight-
forward whichever mix of communications constraints are
present. We are only concerned with constructing a single
partial order to represent all relevant constraints and testing
whether that contains any blocking conditions in the sense
of Definition 3.1.

For a sequence diagram S with causal order < define the
lazy buffer ordering <LB as the transitive closure of the bi-
nary relation <lb defined as:

• When !x and y belong to the same process define !x >lb

y iff !x >FIFO y.

• Define ?x >lb y iff y is a receive event and y belongs
to the same process and ?x >FIFO y.

• When x and y are events belonging to different pro-
cesses, x <FIFO y and there is no event z where x <FIFO

z <FIFO y, then define x <lb y.

Proposition 4.4. Let S be a SD with lazy buffering. Then
S contains lazy-blocking conditions if and only if <LB con-
tains blocking conditions in the sense of Definition 3.1.

4.4 Automatic Pathology Resolution
Where Mint detects a blocking condition, it can suggest

ways of attaching FIFO channels, token-ring channels, buffers
and lazy—buffers to processes in order to avoid the pathol-
ogy. For the example in Figure 10, Mint can suggest the
channel semantics be modified as shown in Figure 11 in or-
der to resolve the pathology. By using the CUP profile these
solutions can also be presented to the user in a familiar nota-
tion, which will be more appealing where some UML toolset
is being applied.
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Figure 11: UML Architecture Diagram to modify buffer semantics.

The same principle can be applied if a pathology can
be resolved by introducing channel semantics for, say, syn-
chronous channels, or FIFO channels (without lazy buffers).
Where Mint detects a pathology it can construct a range of
possible modifications to the channel semantics via the CUP
profile that resolves the pathology. The practitioner can now
make an informed choice about which of these semantics are
appropriate as a solution.

Figure 13 describes an anonymized example from a case
study where several blocking conditions are contained in a
single scenario. This example can be viewed as multiple
interacting threads that represent different features within
one scenario. Altogether there are seven blocking conditions
in the scenario. Receive event ?f is in a blocking condition
with each of ?a, !b, !c and !d. The remaining three blocking
conditions occur between each of ?b, ?i and ?j. We can see
that the blocking condition between ?f and each of !b, !c and
!d can be resolved by introducing a lazy-buffer to process B.
The blocking condition between ?a and ?f is not resolved
by this lazy-buffer, and is irresolvable by any of the CUP
semantics.

The race between ?a and ?i can be resolved either by
introducing a FIFO channel or token-ring communication
between B and D. The final blocking condition caused by
?j is not resolvable through any of the CUP communication
semantics and will require some other mechanism to resolve
it. For example it may be that the scenario author may
wish to enclose ?i and ?j in a coregion. The partial reso-
lution outlined above can be automatically constructed by
Mint and presented to the user as an architecture diagram
Figure 12, together with a report on the remaining blocking
conditions that remain.
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Figure 12: UML Architecture Diagram for Figure
13

5. MINT EVALUATION
Mint currently implements the above pathology checks for

MSCs and UML 2.0 Sequence Diagrams. Mint can be used
as a standalone tool, but it does not include graphical ed-
itors. For graphical editing Mint has been used with the
Telelogic Tau MSC editor, and TauG2 for editing UML 2.0
Sequence Diagrams [17], and the ESG editor for MSCs. The
input for Mint is the standard textual representation of an
MSC. Almost all of the MSC-2000 language, and UML 2.0
Sequence Diagrams language is supported. That is mes-
sages, action boxes, inline expressions, references, and so
on. Features not supported include lifeline decomposition,
gates, exceptions, and other obscure features which are not
commonly used by engineers or supported in some of the
editors.

When running Mint a report is given of each pathology
detected, and its line and column number in the textual
file. With the TauG2 graphical editor navigation is provided
from the error message to the event causing the error in the
diagram by clicking on the error message.

Mint is relatively new and still undergoing evaluation with
a number of Motorola engineering groups. Recently it has
been applied in a case study of UML 2.0 Sequence Dia-
gram specifications for part of a communications protocol
stack. Mint was applied to approximately a hundred and
fifty SDs and detected numerous pathologies. After filtering
pathologies that can be automatically resolved by Mint us-
ing the CUP profile those remaining fell into the following
categories:

• 6 diagrams containing multiple non-local choice condi-
tions

• 2 diagrams containing multiple non-local choice condi-
tions between break and loop constructs

• 5 diagrams containing multiple resolvable blocking con-
ditions caused by loop constructs

• 1 diagram containing an irresolvable blocking condi-
tion

• 1 diagram containing multiple resolvable blocking con-
ditions between different parallel constructs

The Mint tool is also undergoing trial within Daimler-
Chrysler’s Research and Technology group. They applied
the tool to eighty-one MSCs and found thirteen patholo-
gies which were confirmed by manual inspection. Quite a
number of other pathologies were also found, however, these
were not considered to be relevant due to the differences
in communication semantics between DaimlerChrysler’s and
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Figure 13: Industrial Case Study Example

Motorola’s target systems. The work on communication se-
mantics currently being undertaken, and described in Sec-
tion 4, will enable Mint to tailor its analyses to a given
scenario and remove such irrelevant pathology reports.

In summary Mint appears to be successful at detecting
semantic inconsistencies in industrial size case studies, and
has been found valuable by groups who have used it.

6. RELATED WORK
Here we summarise some software tools related to Mint

and ptk.

• MESA [11] - was originally developed by Stefan Leue
et al, at the University of Waterloo, and is now main-
tained at the University of Freidburg. MESA provides
an MSC editor, and can detect non-local choice, timing
consistency, and can also generate Promela for Spin [5]
process modeling. MESA is mainly a research vehicle,
and is currently only available for non-commercial use.

• UBET [12] - was developed in Bell Research Labs, and
Lucent Technologies. UBET provides an MSC editor,
and can graphically highlight race conditions and tim-
ing violations in an MSC. The user is able to select
different queuing semantics for these checks. UBET
also can be used to generate test scripts in MSC and
process models in Promela, the language of the Spin
verification tool.

7. CONCLUSION
During deployment of requirements based test genera-

tion technology we found that requirements and architec-
ture teams were reluctant to develop rigorous specifications,
since they saw no direct benefit. Hence, ptk [4] was deployed
within testing teams who would take the original require-
ments and rework them into a more rigorous form and then
use these for test generation, with good results. In some
cases we found that our test-centric approach lead to ptk
being used as a graphical scripting tool. As a result, the
technology within ptk was not being used to its full poten-
tial to generate larger and more accurate test suites than

could be achieved by manual development of test scripts.
Furthermore, focusing exclusively on testing meant that the
benefits of a more integrated process were not being realised.

To counter these problems we altered our strategy to pro-
vide technologies, such as requirements validation and the
detection of feature interactions [13]. This change was in-
tended to give requirements and architecture teams incen-
tives for constructing more rigorous models, through re-
duced appraisal costs, which would then enable automated
test generation. Pursuing this approach we found that re-
quirements are almost always incomplete, or partial, mean-
ing that only a subset of all possible required system be-
haviours is specified.

Having only partial requirements has implications on the
type of analysis that can be conducted on requirements, as
detailed in Section 3. Hence, we developed Mint, a tool for
the automated discovery of pathologies, or potential defects,
during appraisals of partial requirements specifications. Ini-
tial evaluations of Mint have been promising and have lead
to the identification of defects very early in the requirements
process. We are currently continuing to evaluate Mint and
are intending to both expand the tool’s repertoire of pathol-
ogy types and improve the reporting of complex errors to
users.
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