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ABSTRACT

In an interactive classification application, a user may find
it more valuable to develop a diagnostic decision support
method which can reveal significant classification behavior
of exemplar records. Such an approach has the additional
advantage of being able to optimize the decision process
for the individual record in order to design more effective
classification methods. In this paper, we propose the Sub-
space Decision Path method which provides the user with
the ability to interactively explore a small number of nodes
of a hierarchical decision process so that the most signif-
icant classification characteristics for a given test instance
are revealed. In addition, the SD-Path method can pro-
vide enormous interpretability by constructing views of the
data in which the different classes are clearly separated out.
Even in cases where the classification behavior of the test
instance is ambiguous, the SD-Path method provides a di-
agnostic understanding of the characteristics which result in
this ambiguity. Therefore, this method combines the abili-
ties of the human and the computer in creating an effective
diagnostic tool for instance-centered high dimensional clas-
sification.
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1. INTRODUCTION

High dimensional data is a challenge to subspace based
classification methods such as the decision tree because of
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the large number of combinations of dimensions (or sub-
spaces) which have classification power. The basic limita-
tion of such methods is that they try to create a succint
summary of small number of discriminatory subspaces from
an exponential number of possibilities. The particular pat-
tern which is most suitable for the classification of a given
record is specific to that record and could be present in one of
many partially overlapping subspace clusters. The succint
summary may fail to capture such instance-specific charac-
teristics. This incompleteness in data characterization may
result in the particular structure of the tree to be more or
less suited to particular kinds of test instances. We note
that this incompleteness problem extends to most classifica-
tion models such as rule based systems, neural networks, or
bayesian methods in which the aim is to create a summarized
and efficiently usable model of the relationship between the
feature and class variables [3], rather than providing com-
prehensive exploratory ability for individual test instances.

In this paper, we propose an open-ended and test-instance
specific hierarchical decision process in which the primary
aim is to provide diagnostic ability. We note that this scheme
is not intended as an alternative to current batch-processing
methods, which are relevant to classifying large numbers
of test instances. This approach is more suitable for cases
where detailed diagnostic information is required about in-
dividual test instances during the classification process. We
note that most previous interactive approaches [2] create a
decision tree on the entire data set, and is therefore not
suited to test-instance specific diagnosis.

This paper is organized as follows. The quantification
of instance-specific subspaces is discussed in section 2. In
section 3, we will utilize this quantification to develop the
subspace decision path method. The empirical results are
presented in section 4, and the conclusions are discussed in
section 5.

2. SUBSPACE DISCRIMINATION

In order to identify an appropriate quantification of the
level of separability of the different classes in subspaces, we
need a technique which is particularly sensitive to the class
discrimination behavior in the locality of a given point, and
is also amenable to the determination of arbitrarily shaped
patterns. One way of intuitively characterizing the discrim-
ination in a subspace is to quantify the difference in class
distribution at each point in the space. To this effect, we
use the method of kernel density estimation.

In kernel density estimation, we find a continuous estimate
of the density of a set of points. Let us assume that we have



a data set D with N points and dimensionality d. The set of
points in D are denoted by X ... Xn. Let us further assume
that the k classes in the data are denoted by C;...Ck. The
number of points belonging to the class C; is n;, so that
Zf:l n; = N. We assume that the data set associated with
the class 7 is denoted by D;. The probability density at a
given point is determined by the sum of the smoothed values
of the kernel functions Kj(-) associated with each point in
the data set. Thus, the density estimate of the data set D
at the point z is defined as follows:

f@,D) = (1/n)- Y Kn(z—Xi) (1)

The kernel function is a smooth unimodal distribution such
as the gaussian function:

Koo — X) = 1/(v3r - h) - e e 2)

We note that the kernel function is dependent on the use
of a parameter h which is the level of smoothing. The ac-
curacy of the density estimate depends upon this width A,
and several heuristic rules have been proposed for estimat-
ing the bandwidth. The widely used Silverman rule [4] sets
h=1.06-0- N~ where o2 is the variance of the N data
points.

We note that the value of the density f(z,D) may dif-
fer considerably from f(x,D;) because of the difference in
distributions of the different classes. Correspondingly, we
define the accuracy density A(x,C;, D) for the class C; as
follows:

k

i=1

We note that the above expression always lies between 0 and
1. The higher this value, the greater the relative density of
C; compared to the other classes. We further note that the
sum of the accuracy values over the different classes is equal
to one.

k

> Ax,Ci,D) =1 (4)

i=1

Another related measure is the interest density at a given
point x. The interest density of the class C; at x is denoted
by Z(z,C;, D), and is defined in an analogous way to the
accuracy density. In this case, the interest density is the
ratio of the density of the class C; to the overall density of the
data. Therefore, we define the interest density Z(x, C;, D) for
the class C; as follows:

I(l’,C“D) :f(z,’Dl)/f(x,D) (5)

The class C; is over-represented at x, when the interest
density is larger than one. The interest density is more
revealing from a statistical perspective than the accuracy
density, since it is not biased by the initial distribution of
classes. The dominant class at the coordinate z is denoted
by CM(z,D), and is equal to argmax;cq, 4 Z(,Ci, D).
Correspondingly, the maximum interest density at z is de-
noted by ZM(z,D) = max;eq1,..x3Z(2,Ci, D). Both the
interest and accuracy density are valuable quantifications of
the level of dominance of the different classes. The interest
density is more effective at comparing among the different
classes at a given point, whereas the accuracy density is

more effective at providing an idea of the absolute accuracy
at a given point.

So far, we have assumed that all of the above computa-
tions are performed in the full dimensional space. However,
we can also project the data onto the subspace F in or-
der to perform this computation. Such a calculation would
quantify the discriminatory power of the subspace E at .
In order to denote the use of the subspace E in any com-
putation, we will superscript the corresponding expression
with E. Thus the density in a given subspace F is denoted
by f¥(-,-), the accuracy density by AF(,-,-), and the in-
terest density by Z¥(-,-,-). Similarly, the dominant class is
defined using the subspace-specific interest density at that
point, and the accuracy density profile is defined for that
particular subspace. An example of the accuracy density
profile (of the dominant class) in a 2-dimensional subspace
is illustrated in Figure 2(a). The test instance is also la-
beled in the same figure in order to illustrate the relation-
ship between the density profile and test instance. We note
that for large data sets estimated using the kernel density
technique, the interest density profiles would have exactly
the same shape as the accuracy density profiles, except that
they are scaled differently.

The subspace specific determination of the interest den-
sity Z%(t,C;, D) at the test instance ¢ is quite valuable, since
it can be used to determine those characteristics which are
most revealing about the class behavior of ¢. In order to
do so, one may wish to find those projections of the data in
which the interest density value ZMF (t, D) is the maximum.
It is quite possible that in some cases, different subspaces
may provide different information about the class behavior
of the data; these are the difficult cases in which a test in-
stance may be difficult to classify accurately. In such cases,
the user may need to isolate particular data localities in
which the class distribution is further examined by a hier-
archical exploratory process.

3. THE EXPLORATORY PROCESS

In this section, we discuss methods for exploratory con-
struction of decision paths. For a given test example, the
end user is provided with unique options in exploring various
characteristics which are indicative of its classification. To
this effect, we use the subspace determination process dis-
cussed in the previous section. The subspace determination
process finds the appropriate local discriminative subspaces
for a given test example. These are the various possibilities
(or branches) of the decision path which can be utilized in
order to explore the regions in the locality of the test in-
stance. In each of these subspaces, the user is provided with
a visual profile of the accuracy density. This profile pro-
vides the user with an idea of which branch is likely to lead
to a region of high accuracy for that test instance. This vi-
sual profile can also be utilized in order to determine which
of the various branches are most suitable for further explo-
ration. Once such a branch has been chosen, the user has
the option to further explore into a particular region of the
data which has high accuracy density. This process of data
localization can quickly isolate an arbitrarily shaped region
in the data containing the test instance. This sequence of
data localizations creates a path (and a locally discrimina-
tory combination of dimensions) which reveals the underly-
ing classification causality to the user.

In the event that a decision path is chosen which is not



Algorithm SubspaceDecisionPath(Test Inst.: t, Data: D,
MaxDim: |, MazBranchFactor: bmaz, MinIRatio: irmin )
begin
PATH= {D};
while not(termination) do
begin
Pick the last node £ indicated in PATH;
E={FE1...Eq{} =
ComputeClassifSubspaces(L, t, I, bmaz, i"min);

for each E; ConstructDensityProfile(E;, L, t);

if (zoom-in (user-specified)) then

begin

User specifies choice of branch F;;
User specifies accuracy den. thresh. A\ for zoom-in;
{ p(£',C;) is accuracy significance of class

C; in L' with respect to £ }
(L', p(L',C1)...p(L,Ck)) = IsolateData(L,t, \);
Add £’ to the end of PATH;

end;

else begin (retreat))

User specifies data set £’ on PATH to backtrack to;
Delete all data pointers occuring after £ on PATH;
end;

{ Calculate cum. dominance of each class C; along
PATH in order to provide the user a measure of its
significance }

for each class C; do
CD(PATH,C;) =1 —mceparn,c2p)(1 —p(L,Ci));
Output CD(PATH,C;);

end;
end

Figure 1: The Subspace Decision Path Method

strongly indicative of any class, the user has the option to
backtrack to a higher level node and explore a different path
of the tree. In some cases, different branches may be indica-
tive of the test example belonging to different classes. These
are the “ambiguous cases” in which a test example could
share characteristics from multiple classes. Many standard
modeling methods may classify such an example incorrectly,
though the subspace decision path method is much more
effective at providing the user with an intensional knowl-
edge of the test example because of its exploratory approach.
This can be used in order to understand the causality behind
the ambiguous classification behavior of that instance.

The overall algorithm for decision path construction is il-
lustrated in Figure 1. The input to the system is the data
set D, the test instance t for which one wishes to find the
diagnostic characteristics, a maximum branch factor bmaz,
and a minimum interest density ¢7min. In addition, we in-
put the maximum dimensionality [ of any subspace utilized
in data exploration. The value of [ = 2 is especially in-
teresting because it allows for the use of visual profile of
the accuracy density. We note that even though it is natu-
ral to use 2-dimensional projections because of their visual
interpretability, the data exploration process along a given
path reveals a higher dimensional combination of dimensions
which is most suitable for the test instance. The branch fac-
tor bmaez 18 the maximum number of possibilities presented
to the user, whereas the value of ir,,:, is the corresponding
minimum interest density of the test instance in any sub-
space presented to the user. The variable PATH consists of
the pointers to the sequence of successively reduced train-
ing data sets which are obtained in the process of interactive

decision tree construction. We initialize the list PATH to a
single element which is the pointer to the original data set
D. At each point in the decision path construction process,
we determine the subspaces E; ... Ey, which have the great-
est interest density (of the dominant class) in the locality of
the test instance t. This process is accomplished by the pro-
cedure ComputeClassifSubspaces and is described in detail
in a later section. Once these subspaces have been deter-
mined, the density profile is constructed for each of them by
the procedure ConstructDensityProfile. We note that even
though one subspace may have higher interest density at the
test instance than another, the true value of a subspace in
separating the data locality around the test instance is often
a subjective judgement which depends both upon the inter-
est density of the test instance and the spatial separation
of the classes. Such a judgement requires human intuition
which can be harnessed with the use of the visual profile
of the accuracy density profiles of the various possibilities.
These profile provides the user with an intuitive idea of the
class behavior of the data set in various projections. If the
class behavior across different projections is not very consis-
tent (different projections are indicative of different classes),
then such a node is not very revealing of valuable informa-
tion. In such a case, the user may choose to back track
by specifying an earlier node on PATH from which to start
further exploration.

On the other hand, if the different projections provide
a consistent idea of the class behavior, then the user uti-
lizes the density profile in order to isolate a small region
of the data in which the accuracy density of the data in
the locality of the test instance is significantly higher for
a particular class. This is achieved by the procedure Iso-
lateData. This isolated region may be a cluster of arbitrary
shape depending upon the region covered by the dominating
class. However, the use of the visual profile helps to main-
tain the interpretability of the isolation process in spite of
the arbitrary contour of separation. A detailed description
of this process will be provided in a later section. The proce-
dure returns the isolated data set £’ along with a number of
called the accuracy significance p(L',C;) of the class C;. The
pointer to this new data set £’ is added to the end of PATH.
At that point, the user decides whether further exploration
into that isolated data set is necessary. If so, the same pro-
cess of subspace analysis is repeated on this node. In the
following subsections, we will provide further descriptions of
the individual procedures in decision path construction.

3.1 Determination of Subspace Alternatives

In the previous section, we discussed how the kernel den-
sity method can be used in order to analyze the discrimi-
nation behavior of the data in different subspaces. In this
section, we will discuss the actual details of the procedure
ComputeClassifSubspaces. This determines the alternative
subspaces at a given node. The input to the procedure is
the test instance t, the data set £, the branch factor byqz,
the minimum interest density rmin, and the maximum di-
mensionality [ of the subspaces in which the classification
behavior is to be determined. Since, we utilize visual profiles
in order to provide the user an understanding of the data,
the natural choice of [ is 2, though higher dimensional sub-
spaces containing significant classification patterns are also
discovered by the sequence of hierarchical decisions made by
the user.



The overall subspace determination procedure uses a roll-
up mechanism analogous to [1] in which the accuracy den-
sity is computed at the test instance ¢ in different subspaces.
The set of discriminatory subspaces is maintained in F. The
set of all k-dimensional candidate projections is denoted by
Sk. The value of S; is the set of all 1-dimensional projec-
tions {1,...d}. The algorithm starts by initializing F to
the bymaee 1-dimensional subspaces which have the highest
interest density at the test instance ¢. In each iteration, the
set Sy is generated from the set Sy_1 in an iterative mech-
anism in which we join the candidates in S; with the set of
all singleton subspaces in S;. Those subspaces SS which
have interest density IMSS(t, L) higher than any subspace
in F are retained. This process is continued until we de-
termine the (at most) bmaz most discriminatory subspaces
with dimensionality at most [, and interest density greater
than irmin. For lower dimensionalities such as [ = 2, the
above procedure can be executed relatively efficiently since
the density needs to be calculated only at the test instance t.
This can be achieved in a single scan of the data in order to
calculate the additive kernel density value at ¢ for the differ-
ent 1-dimensional and 2-dimensional candidate subspaces.
We further note that even though each node contains only
2-dimensional candidates, the final combination of dimen-
sions is determined by the path decided by the user.

3.2 Construction of Visual Density Profiles

Once the most discriminatory subspaces have been deter-
mined at a given node, we construct the visual profile of
the accuracy density in these projections in the procedure
ConstructDensityProfile. We proceed in two steps. In order
to construct the visual profile, we compute the accuracy of
the dominant class at a set of discrete grid points. Each
attribute range is divided into a set of ¢ intervals. The in-
tersection of these interval divisions form the grid points at
which the accuracy density values are computed. The sur-
face plot of these density values provides a good idea of the
regions most closely related to the test instance which have
high accuracy density. An example of such a profile is illus-
trated' in Figure 2(a). Tt is clear that the test instance is
located in a region with high elevation of the accuracy pro-
file. This is because the subspace was specifically selected in
order to expose those subspaces in which the test instance
has high accuracy.

However, the real value of a subspace can only be judged
based on the behavior of the entire profile and the spatial
separation of this elevation with other regions. This is be-
cause the accuracy or interest density at ¢ does not provide
a complete understanding of the class behavior with respect
to the remaining data set. For example, consider the sub-
spaces F1 and FE3. The subspace Ei; may have a higher
value of ZMP1 (¢, £) (AMPF1(t, L)) than the corresponding
value ZMP2(t, L) (AMP2(t,L£)). However, the true dis-
criminatory power can only be distinguished by using the
overall spatial distributions of the different classes. In such
cases, the intuition of the human is very useful in determin-
ing whether a small data locality around the test instance
shows a significantly higher accuracy density than the re-
maining data. In such cases, it may be desirable to isolate
the particular data locality for further exploration.

n all future accuracy profiles, we will assume that the class
for which the accuracy density is displayed is the dominant
one.

3.3 Isolation of Local Data Segments

An easy way of isolating smaller segments of the data is
for the user to specify an accuracy density threshold A. Such
a choice can be made relatively easily by the user, once the
visual profiles of the data are directly available to him. All
data points in the locality of the test instance ¢ which have
accuracy density above A can then be utilized in order to
determine the visual profile. We note that even though the
choice of the data isolation parameter A\ depends upon the
user, it should be chosen such that the interest ratio of the
accuracy value of A\ should be at least 1. Therefore, if the
data set £ contains a total of |£| points out of which « belong
to the dominant class, then the default value of X is given
by «/|L]. The actual value of A may then be modified by
the user so that a well defined local region around the test
instance can be clearly distinguished. Such a judgement can
be effectively made only by human perception and intuition.
This is one of the advantages of an exploratory approach
which is able to incorporate human feedback and intuition
into the classification process.

In order to find the data points in the locality of the test
instance which have accuracy density above A\, we define the
concept of accuracy connectivity between two data points.
Let Q(t, E) be the dominant class at the test instance ¢ in
subspace E. We assume that the accuracy density of this
dominant class at test instance ¢ in subspace E is above the
user specified threshold A.

DEFINITION 3.1. A data point © € D is said to be accu-
racy connected to test instance t in subspace E at threshold
A, if there exists a path P connecting x to t, such that for
any point y € P, A¥(y,Q(t, E), D) > \.

In Figure 2(b), we have imposed an accuracy threshold by
utilizing a hyperplane which is superposed on the accuracy
density profile. In this case, the tiny island containing the
test instance is the region from which the relevant data set is
isolated. We note that even though the visual representation
is quite interpretable, the minimum bounding rectangles of
the various isolated regions may be used in order to provide a
rough idea of the relevant parameters in the corresponding
dimensions. This does not compromise the quality of the
exploration process, since the actual isolation of the data
is done using the arbitrarily shaped regions, whereas the
use of MBRs is only a posterior step in order to maximize
interpretability.

We use the grid discretization of the data in order to make
an approximate computation of whether the test instance is
accuracy connected to the data points. This discretization
automatically separates out the subspace into rectangular
regions. A grid rectangle is said to have accuracy larger
than A if the center of the rectangle has accuracy density
larger than A. The first step is to find the unique grid
rectangle containing the test instance. Starting from this
rectangle, we keep searching for adjacent rectangles with
accuracy density above the threshold A, until all such rect-
angles have been determined. T'wo rectangles are said to be
adjacent if they share one side. Finally, all the data points
that lie in these rectangles are returned as the data points
which are locally relevant to the test instance ¢, and are
used for further exploration in subsequent iterations of the
SubspaceDecisionPath algorithm.

The procedure also returns the accuracy significance p(L',C;)
for the class C; of the user-defined split. Let I; and I} be the



number of instances of class C; in £ and £’ respectively.
Then, we define the accuracy significance of the isolated
data set £’ with respect to class C; as follows:

S(L,C) = (/1L = L1/ G/IED - (1 = 2N

6

We note that this significance factor is the number of stan-
dard deviations by which the class fraction of C; in the iso-
lated data set £ is larger than the data set £. Correspond-
ingly, the significance factor of class C; is defined as follows:

p(L',C;) = max{0,2 - B(s(L',C)) — 1} (7)

Here ®(:) is the cumulative normal distribution function.
The value of p is non-zero only when the isolated data set
L’ contains a larger proportion of class C; than the original
data set £. By approximating the significance factor with a
normal distribution, we are able to quantify the probabilistic
level of significance that the isolated data set is significantly
more indicative of a particular class.

3.4 Termination

Since the aim of this paper is to provide the user with
open-ended exploratory ability, the final decision of termi-
nation is dependent upon the user. At the same time, we
wish to provide the user with some intuitive guidance as to
when termination should take place. In this section, we will
discuss the behavior of the visual profiles as well as some
statistical measures which provide evidence of termination.
We note that isolation of data localities results in successive
refinement such that the locality around the test instance
is increasingly dominated by a particular class. This can
also be perceived in the visual density profile of the data at
the lower levels of the decision path. In such cases, the test
instance occurs on a plateau of high accuracy density in the
visual profile. Examples of such accuracy density profiles
are illustrated in Figures 2(c) and 2(d). In these cases, the
test instances have accuracy densities 98.0% and 99.0% re-
spectively in the corresponding projections. It is also clear
from Figures 2(c) and 2(d) that the region in the immediate
locality of the test instance is flattened out at the accuracy
density of the test instance. This behavior is the result of
successive data isolations which are akin to a visual magni-
fication of the data locality with the use of carefully chosen
subspaces. Our empirical results illustrate the interesting
phenomenon that even though only the small number of
subspaces on the decision path are used for isolation of data
locality, all the subspaces on the lower nodes of the PATH
start exhibiting this behavior. This is because of the inter-
attribute correlations of the different attributes all of which
provide consistent information about the class behavior.

A better statistical measure of the level of significance
of a given path is obtained by computing the cumulative
dominance level of each class C; along PATH. Let Lo ... L,
be the nodes along PATH. Then, we define the cumulative
dominance CD(PATH,C;) for the class i as follows:

CD(PATH,C;) =1 —mj_1(1 — p(L;,C:)) (8)

The larger this value, the greater the cumulative dominance
of C; along PATH. A user may choose to stop exploration
along this path, when the cumulative dominance of some
class C; exceeds a pre-defined threshold. Unlike a decision
tree, the user may also traverse multiple paths of the decision
process by back-tracking instead of terminating when a path
has been successfully explored.

Table 1: Accuracy of SD-Path Method

Data Correct | Indeter. | Incorr. C4.5
Set (SDP) | (SDP) | (SDP) | (Corr.)
Tonos. 20 0 0 18
Segmen. 19 1 0 16
Glass 19 1 0 17
Ecoli 19 1 0 16

4. EMPIRICAL RESULTS

In this section, we will provide a detailed discussion and
understanding of the advantages of the instance-centered ex-
ploratory approach developed in this paper. The ionosphere
data set from the UCI machine learning repository contains
34 attributes and two classes corresponding to “g” or “b”
depending upon the quality of radar returns from the at-
mosphere. In Figure 2(e), we have illustrated the accuracy
density of the dominant class label in the highest interest
density subspace. The corresponding accuracy densities of
the test instance ranged from between 93% to 96% for all
the different subspaces found. All of the branches had the
same dominant class label corresponding to “g”. Figure 2(e)
illustrates the visual profile of one of these branches, which
shows particularly high level of discrimination in its data
locality. The accuracy density value of the dominant class
label at the test instance is 95.8%. In order to obtain a fur-
ther idea of the local behavior of the data around this test
instance, we decided to explore into the data locality which
was accuracy connected to the test instance at a threshold
of 75.0%. The isolated data was the island region containing
the test instance in Figure 2(e). Note that this region has
a somewhat irregular shape which cannot be characterized
easily in closed form, but could be understood more easily
in this visual representation. Upon expanding this region
further, we found that all the branches again corresponded
to “g” with accuracy density values between 98% and 99%.
An example of such a branch is illustrated in Figure 2(f).
An interesting characteristic of this profile is that the region
in the immediate locality of the test is somewhat flattened
out at a high accuracy rate. This kind of behavior is true
for all branches at that level. This shows that the process
of successive data isolations has resulted in a smaller and
more refined locality around the test instance in which the
user can clearly perceive a consistently high concentration
of a particular class. If all of the projections corresponding
to the different branches exhibit this behavior for the same
class C;, then it is likely that the test instance belongs to C;.

In order to determine the effectiveness of the SD-Path
method, we also tested the overall accuracy of the approach.
In each case, we predicted a class label, if it was found to con-
verge to the same value using three separate decision paths.
If the class label was found to be inconsistent on three sepa-
rate paths, then we labeled the corresponding test instance
as indeterminate. we further note that while we also present
the results in comparison to the traditional C4.5 classifier,
it is important to understand that our classifier is not an
alternative to traditional batch classifiers which can classify
a large number of test instances. Rather, it is only intended
as a diagnosis tool for individual test instances. This is par-
ticularly useful for test instances containing conflicting clas-
sification charactersitics in different dimensions. Therefore,
the only purpose of these comparisons is to illustrate that
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Figure 2: Results of SD-Path Method

the exploratory classifier is consistently more robust than a
traditional classifier because of the use of human interven-
tion in the process.

In Table 1, we have illustrated the accuracy of the SD-
Path method on a number of data sets from the UCI machine
learning repository. In each case, we ran the exploratory SD-
Path approach over a set of 20 examples and found that in
most cases, the SD-Path method was able to obtain consis-
tent results over the different paths. In the same table, we
have also illustrated the effectiveness of the C4.5 method.
It is clear that the SD-Path method is much more accurate
than the C4.5 technique. This is partially because of the
fact that the SD-Path method is able to exploit both the
local behavior of the test instance as well as the intuition of
the user during the classification process. Another interest-
ing observation from Table 1 is that in each case, none of
the test instances were classified inaccurately, though some
were considered indeterminate by the SD-Path method. The
reason for this indeterminate behavior was the fact that the
test instances shared characteristics from multiple classes.
This is evidence of the anamolous behavior of the test in-
stance rather than a limitation of the SD-Path method. In
fact, this diagnosis helps the user understand the various
combinations of dimensions which reveal this contradicting
behavior.

S. CONCLUSIONS AND SUMMARY

In this paper, we discussed the subspace decision path
method, an effective exploratory instance-based approach
for decision path construction for high dimensional data
sets. The advantage of this method is that it effectively
combines the data mining process with human interaction
in order to provide good understanding of the classification

characteristics of a given test instance. Since the process
uses test-instance specific local subspace characteristics of
the data, it is much more flexible and concise than a deci-
sion tree construction process. Our empirical tests illustrate
that this flexibility also results in a significantly more accu-
rate classification process. The ability to explore multiple
paths of an instance-specific process provides the user with
multiple perspectives of the important characteristics in the
instance. Even in cases where the classification behavior
of the instance is poorly defined, the subspace decision path
method is able to provide insight into the different character-
istics of the test instance which have contrasting behavior.
Such information is of great value in a number of business
applications in which the causality of the classification pro-
cess provides valuable information to the end-user.
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