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Abstract

We study routing and scheduling in packet-switched networks. We assume an adversary that
controls the injection time, source, and destination for each packet injected. A set of paths for
these packets is admissible if no link in the network is overloaded. We present the first on-line
routing algorithm that finds a set of admissible paths whenever this is feasible. Our algorithm
calculates a path for each packet as soon as it is injected at its source using a simple shortest
path computation. The length of a link reflects its current congestion. We also show how our
algorithm can be implemented under today’s Internet routing paradigms.

When the paths are known (either given by the adversary or computed as above) our goal
is to schedule the packets along the given paths so that the packets experience small end-
to-end delays. The best previous delay bounds for deterministic and distributed scheduling
protocols were exponential in the path length. In this paper we present the first deterministic
and distributed scheduling protocol that guarantees a polynomial end-to-end delay for every
packet.

Finally, we discuss the effects of combining routing with scheduling. We first show that some
unstable scheduling protocols remain unstable no matter how the paths are chosen. However, the
freedom to choose paths can make a difference. For example, we show that a ring with parallel
links is stable for all greedy scheduling protocols if paths are chosen intelligently, whereas this
is not the case if the adversary specifies the paths.

1 Introduction

Two of the most important problems in the control of packet-switched networks are routing and
scheduling. The goal of routing is to assign a path to a packet from its source to its destination.
The goal of scheduling is to deal with the contention that occurs when two or more packets wish
to cross a link simultaneously. Each link must have a scheduler that resolves this contention by
deciding which packet to advance.

The scheduling problem typically assumes that the paths of the packets are given as part of
the input. The goal is then to schedule the packets along their paths in such a way that they
all reach their destinations in a short time. Much recent work has focused on the Adversarial
Queueing Model, e.g. [7, 2, 8]. We follow their convention and assume that all packets are unit
size and each link processes one packet per time step. In this Adversarial Queueing Model, the
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adversary chooses the injection time, source, destination, and route for each packet injected. A
sequence of injections is called (w, r)-admissible for a window size w and injection rate r < 1, if
in any time interval of T ≥ w the total number of packets injected into the network whose paths
pass through any link e is at most Tr. These paths are also called (w, r)-admissible. Previous work
has examined the performance of a number of simple scheduling protocols in this model. A packet
scheduling protocol is said to be universally stable if it guarantees bounded buffer sizes and packet
transmission delays for any (w, r)-admissible injections. In [2] it was proved that several natural
protocols (Longest-In-System, Shortest-In-System, Furthest-To-Go) are universally stable, whereas
several others (First-In-First-Out, Last-In-First-Out, Nearest-To-Go) are not.

In this paper we study both routing and scheduling. The adversary no longer specifies the route
of each packet; it merely specifies the source and destination. However, we are guaranteed that
(w, r)-admissible paths for the injections do exist. The problem is now two-fold. We first need to
find some (W,R)-admissible paths, possibly for a different window size W and a different R < 1.
These admissible paths combined with a universally stable scheduling scheme, such as the ones
in [2] or the one presented in Section 3 of this paper, result in a universally stable protocol for
routing and scheduling.

1.1 Source Routing for Stability

Our result. In Section 2 of the paper we present the first online algorithm for assigning admissible
routes to packets. If the adversary can assign (w, r)-admissible routes, then our algorithm finds
a set of (W,R)-admissible routes where R ∈ (r, 1) is of our choice and W ≥ w is determined by
the choice of R. Hence, if the parameter of merit is the window size w, then our algorithm is a
W/w-approximation algorithm (modulo a small increase in the rate). Moreover, our algorithm is
online in that it assigns routes to packets as soon as they are injected into the network. Hence it can
also be regarded as a W/w-competitive algorithm for this problem. This is the first approximation
algorithm/competitive algorithm for this problem. Once the routes are chosen, we can use any
“good” scheduling protocol in the Adversarial Queueing Model.

Our algorithm is based on the ε-approximation algorithm for fractional maximum multicom-
modity concurrent flow given by Garg and Könemann [10], which in turn builds upon the work of
Plotkin, Shmoys, and Tardos [13] and Young [18]. In the maximum multicommodity concurrent
flow problem, the demands for each commodity remain constant as the algorithm progresses. In
our setting, the demands between source-destination pairs correspond to the packets injected by
the adversary, which can change over time. Even though the algorithm of Garg and Könemann [10]
is an offline algorithm that assigns fractional paths to a fixed set of commodities, in our setting we
are able to convert it into an online algorithm that assigns an integral path to each packet as soon
as it is injected.

Implementation under Internet routing paradigms. At a high level, our algorithm works
as follows. Each link maintains a measure of congestion that represents how many packets have
been routed through it in the recent past. Packets are then routed on shortest paths with respect
to this congestion measure. Hence we need a mechanism for distributing congestion information
from the links to the source nodes. We also need a mechanism by which a source node can inform
a link whenever it routes a packet through that link.

The first requirement could be satisfied by something akin to the OSPF (Open Shortest Path
First) link state flooding protocol. (See e.g. [11].) This is a protocol that is used for flooding link
state information to the nodes in a network so that packets may be routed along shortest paths.
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The second requirement may be satisfied by the MPLS (Multi-Protocol Label Switching) protocol
that is gaining increasing acceptance in the Internet. (See e.g. [15].) With this protocol a source
node can compute an explicit route to each destination and then distribute a label for the route to
each of the links that comprise the route. In combination with this label distribution the source
can also specify how much traffic it is going to send on the route.

In Section 2 we first assume that this control information is transmitted instantaneously and
does not contribute to the congestion in the network. We then consider a model in which the
control information is transmitted in-band through the network and must contend with the data
traffic.

Relation to previous work. Routing and scheduling as a combined problem has been studied
in the past. For example, Aiello et al. presented a distributed algorithm [1] motivated by the
Awerbuch-Leighton multicommodity flow algorithm [5]. In [9] Gamarnik gave a solution based on an
approximation algorithm for static routing. However, both these algorithms require a dependence
between how a packet is routed and how it is scheduled. Hence, their routing schemes only work
in association with their specific scheduling schemes, but not with generic scheduling algorithms.
Neither routing algorithm can be used to provide packets with admissible paths at injection time.
Using networking terminology, these routing algorithms correspond to active routing [17], where
intermediate routers need to actively participate in determining routes for each individual packet.
In contrast, our algorithm corresponds to source routing, where the entire path of a packet is known
at the source.

1.2 Deterministic Distributed Scheduling with Polynomial Delays

In Section 3 of the paper we study the scheduling problem in isolation assuming that (w, r)-
admissible paths are given. In recent years, a number of scheduling algorithms have been proposed
that guarantee network stability, i.e. the number of packets in the network remains bounded and the
end-to-end delay experienced by packets remains bounded. For example, the Longest-In-System
protocol that always gives priority to the packet injected into the system earliest, was shown in
[2] to guarantee a delay bound of O(w/(1 − r)dmax), where dmax is the maximum length of a path
assigned to any packet. Note however, that this bound is exponential in dmax. It has been an open
problem whether or not any deterministic, distributed scheduling protocol has a polynomial delay
bound in the Adversarial Queueing Model. Indeed, [2] remarked that “it is of considerable interest
to determine whether such a protocol exists”.

A randomized protocol based on Longest-In-System can guarantee that each packet experiences
a delay of poly(w, 1/(1 − r), dmax, logm) with high probability [2], where m is the number of links
in the network. In essence, for most of the time the protocol is successful and keeps all delays
small. However, even if the failure probability is small, if the algorithm is run for an extended
period of time then the algorithm is likely to make some random choices that are bad. This causes
packets to violate the delay bound. Moreover, if one packet violates the delay bound then other
packets injected along the same path at similar times are also likely to violate the delay bound.
Hence, all of the packets that make up a single file transfer could be excessively delayed. Although
this randomized protocol can be derandomized in a centralized manner it seems hard to convert it
into a deterministic, distributed protocol. This is because the “success condition” involves packets
injected at multiple source nodes and hence it cannot be verified locally.
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Our result. In Section 3 we present the first deterministic, distributed scheduling protocol with a
polynomial delay bound. It guarantees that all packets reach their destination within poly(w, 1/(1−
r),m) steps of their injection. We start by presenting a randomized protocol in which the “success
condition” can be verified at the source nodes independently. This allows us to derandomize the
protocol in a distributed fashion.

1.3 The Effects of Combining Source Routing with Scheduling

In the final part of the paper we consider the following question: Is it possible for unstable scheduling
protocols to become stable if paths can be chosen by a routing algorithm as opposed to being
dictated by the adversary? We first present a network and a sequence of packet injections such
that regardless of how the routes for these packets are chosen, many greedy protocols (including
FIFO) remain unstable. Thus, we cannot hope to achieve stability using FIFO even if we have
the freedom to choose routes. However, we also present an example in which the ability to select
the routes does make a difference. We show that in a “ring” with multiple parallel links, if we are
allowed to choose the routes intelligently then we can ensure that all greedy scheduling protocols
are stable. However, if the adversary dictates the routes then many scheduling protocols (including
FIFO) are unstable.

1.4 Other Related Work

Much traditional work on routing focuses on the problem of routing flows online, e.g. [3, 4]. Each
flow requests a bandwidth from a source to a destination and we must choose a path for each
accepted flow without violating any link capacity. The goal is to maximize the on-line acceptance
rate. However, this work does not consider packet-level behavior.

The problem of choosing routes for a fixed set of packets was studied by Srinivasan and Teo [16]
and Bertsimas and Gamarnik [6]. For example, [16] presents an algorithm that minimizes the
congestion and dilation of the routes up to a constant factor. This result complemented the paper
of Leighton, Maggs and Rao [12] which showed that packets could be scheduled along a set of paths
in time O(congestion+dilation).

2 Source Routing for Stability

For convenience we use the following weaker notion of admissibility in this section. We say that
a set of packet paths is weakly (w, r)-admissible if we can partition time into windows of length w
such that for each window in the partition and each link e, the number of paths that pass through
e and correspond to packets injected during the window is at most wr. However, this distinction
is not important due to Lemma 1. Moreover, all of the delay bounds that have been derived in the
past for the Adversarial Queueing Model apply to weakly (w, r)-admissible paths.

Lemma 1 If a set of paths is (w, r)-admissible then it is also weakly (w, r)-admissible. Conversely,
weak (w, r)-admissibility implies (w′, r′)-admissibility for some w′ ≥ w and r′ ∈ [r, 1).

Proof: Suppose the injections are weakly (w, r)-admissible. We show that they are (w′, r′)-
admissible for r′ = (1 + r)/2 and w′ = 4wr/(1 − r). For any T ≥ w′, let T be in the range
of [nw, (n + 1)w) where n is an integer at least 4r/(1 − r). Due to weak admissibility and our
choices of n, T and r′, the number of injections during T steps for any link e is at most,

(n+ 2)rw ≤ nw(1 + r)/2 ≤ Tr′.
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The other direction is trivial.

We assume an adversary that injects weakly (w, r)-admissible packets into the network1. Our
aim is to choose weakly (W,R)-admissible routes for these packets where R ∈ (r, 1) is of our choice
and W ≥ w is determined by the choice of R.

2.1 The Basic Routing Protocol

We first assume that control information is communicated instantaneously. Whenever a source
node chooses a route for a packet, this information is instantaneously transmitted to all the links
on the route. Whenever the congestion on a link changes, this fact is instantaneously transmitted
to all the source nodes. Later on we relax these assumptions. As mentioned in the Introduction, the
algorithm is based on the Garg-Könemann offline approximation algorithm for fractional maximum
concurrent flow. However, in our setting we can convert it into an online algorithm that chooses
integral paths for the packets.

Find routes.
1 Initialize c(e) = δ, ∀e
2 for the ith window, i = 1, . . . , t
3 for each packet injected during ith window
4 p← least congested route under c (i.e. shortest path with respect to c)
5 c(e)← c(e)(1 + µ/w), ∀e ∈ p

Figure 1: Procedure to find routes for packets injected during one phase.

Protocol. We route every packet injected along the path whose total congestion is the smallest
under the current congestion function c(·), i.e. we route along shortest paths with respect to c(·).
Initially, the congestion along every link is set to δ where δ is defined in (2). For every link e along
the chosen route, its congestion c(e) is updated to c(e)(1 + µ/w) where µ is defined in (1). We
reset the congestion of every link to its initial value of δ at the beginning of each phase. A phase
terminates in t windows of w steps, where t is an integer defined in (3). Figure 1 illustrates the
procedure for one phase. The values of µ, δ and t are defined as follows. Let m be the number of
links in the network. For any R ∈ (r, 1) of our choice, let

µ = 1−
(

r

R

)1/3

(1)

δ =

(

1− rµ

m

)1/rµ

(2)

t =

⌊

1− rµ

rµ
ln

1− rµ

mδ

⌋

+ 1 (3)

Our objective is to show,

Theorem 2 For all packets injected during one phase, at most twR of their routes chosen by our
procedure go through the same link. In other words these routes are weakly (tw,R)-admissible.

1In fact, as will be seen later, we only need to assume that the adversary can choose fractional paths that are
weakly (w, r)-admissible.
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Analysis. To prove Theorem 2 let us examine an integer program formulation for routing the set
of packets injected during a window of w time steps. Let Pj be the set of possible routes for the
jth packet, and let variable xj(p) ∈ {0, 1} indicate whether or not route p ∈ Pj is chosen for packet
j. The following linear relaxation of the integer program (LP) has an optimal solution λ ≥ 1 since
the injections are (w, r)-admissible. We present both the primal and the dual.

Primal
maxλ

s.t.
∑

p∈Pj
xj(p) ≥ λ ∀j

∑

j

∑

p:e∈p,p∈Pj
xj(p) ≤ rw ∀e

xj(p) ≥ 0 ∀j,∀p ∈ Pj

Dual
min

∑

e rw · c(e)
s.t.

∑

e∈p c(e) ≥ z(j) ∀j,∀p ∈ Pj
∑

j z(j) ≥ 1

c(e) ≥ 0 ∀e
z(j) ≥ 0 ∀j

For any non-negative congestion function c(·), let D =
∑

e c(e) be the total congestion of all links.
For packet j let qj be the least congested path in terms of c. We use α =

∑

j

∑

e∈qj c(e) to represent
the total congestion of these least congested paths. It can be shown that the dual is equivalent to,

min
c

rw ·D/α.

The congestion found at the end of window i by our protocol (see Figure 1) defines a valid solution
to this reformulated dual for window i. We exploit this connection to prove Theorem 2. The key
here is to bound the total link congestion since the link congestion increases only when a path goes
through it. In particular, the following three lemmas show that the total link congestion is no more
than 1 at the end of a phase. Let ci(e), Di and αi represent the values of c(e), D and α at the end
of the ith window.

Lemma 3 Di/αi ≥ 1/rw for 1 ≤ i ≤ t.

Proof: Since the injections are (w, r)-admissible, the primal LP for window i has maxλ ≥ 1. Since
the congestion ci found by our protocol defines a dual solution, our lemma follows from duality.

Lemma 4 Di ≤ Di−1

1−rµ .

Proof: It suffices to show Di ≤ Di−1 + αi · µ/w since Di/αi ≥ 1/rw by Lemma 3. Let cij be
the congestion function after routing the jth packet injected during the ith window and let Dij

be defined in terms of cij . Suppose path pj is chosen for the jth packet injected during the ith
window. By definition we have,

Dij =
∑

e

cij(e)

=
∑

e/∈pj

ci,j−1(e) +
∑

e∈pj

ci,j−1(e)(1 + µ/w)

= Di,j−1 +
∑

e∈pj

ci,j−1(e) · µ/w.
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Now we repeatedly apply the recurrence above. We also observe that the congestion function c only
increases. Hence, if qj is the least congested path for j under ci then

∑

e∈pj ci,j−1(e) is necessarily
no more than

∑

e∈qj ci(e). (We emphasize that pj and qj may be two different paths. The path pj
is least congested with respect to ci,j−1 and qj is least congested with respect to ci.) We have,

Di = Di−1 +
∑

j

∑

e∈pj

ci,j−1(e)µ/w

≤ Di−1 + αi · µ/w.

Lemma 5 Dt ≤ 1.

Proof: By definition D0 = mδ where m is the number of links in the network. By applying
Lemma 4, we have,

Dt ≤
mδ

(1− rµ)t

=
mδ

1− rµ

(

1 +
rµ

1− rµ

)t−1

≤ mδ

1− rµ
e

rµ(t−1)
1−rµ

≤ 1.

The second inequality follows from 1 + x ≤ ex for x ≥ 0. The last inequality follows from the
definition of t in (3).

We are now ready to prove Theorem 2.
Proof of Theorem 2: Consider any link e. For every w paths routed though e, the congestion of
e is increased by a factor at least 1 + µ. Initially, c0(e) = δ. Since Dt ≤ 1, ct(e) ≤ 1. Hence, the
total number of paths that are routed through e in a phase is at most w log1+µ 1/δ. It suffices to
show that this quantity is no more than wtR.

w log1+µ 1/δ

wtR
≤ ln 1/δ

ln(1 + µ)
· rµ

1− rµ
· 1

ln 1−rµ
mδ

· 1
R

=
r

R
· µ

ln(1 + µ)(1− rµ)2

≤ r

R
· (1− µ)−3

= 1.

The first inequality and the first equality follow from the definitions of t and δ respectively.
The second inequality follows from the fact that r < 1 and ln(1+µ) ≥ µ− µ2/2. The last equality
follows from the definition of µ. Our proof is complete.
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Find routes.
1 Initialize c(e) = δ, ∀e
2 for ith window, i = 1, . . . , t
3 for each packet injected during ith window
4 p← least congested route under c
5 c(e)← c(e)(1 +Ni(e) · µ/w).

Figure 2: Procedure to find routes for packets injected during one phase with fewer updates.

2.2 Routing with Less Frequent Updates

In this section we show that Theorem 2 still holds even if the congestion function c is updated less
frequently. In particular, we only update the congestion at the end of each window, not for each
packet injection. Hence the source nodes only need to communicate with the links at the end of
each window. For this new protocol we redefine µ to be

1

m

(

1−
(

r

R

)1/3
)

. (4)

Suppose Ni(e) packets are routed through link e during the ith window, then we update c(e) to
c(e)(1 +Ni(e) · µ/w). See Figure 2.

We prove that Theorem 2 remains true. We first show that Lemma 4 still holds. As before, we
show Di ≤ Di−1 + αi · µ/w. For any packet j injected during the ith window, let pj be the path
chosen for j.

Di =
∑

e

ci(e)

=
∑

e

ci−1(e)(1 +Ni(e) · µ/w)

= Di−1 +
∑

e

ci−1(e)Ni(e) · µ/w

= Di−1 +
∑

j

∑

e∈pj

ci−1(e) · µ/w

≤ Di−1 + αi · µ/w

Hence Dt ≤ 1. Now, for every mw paths routed through e, the congestion on e is increased by a
factor at least 1 +mµ. Therefore the congestion on any link at the end of a phase is at most,

mw log1+mµ 1/δ

wtR
≤ ln 1/δ

ln(1 +mµ)
· rµ

1− rµ
· 1

ln 1−rµ
mδ

· 1
R

=
r

R
· mµ

ln(1 +mµ)(1− rµ)2

≤ r

R
· (1−mµ)−3

= 1,

with the revised definition of µ in (4).
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2.3 Implementation Using In-band Signaling

In the previous sections we assumed that sources can communicate with the links on their chosen
routes via instantaneous setup messages. In turn, we also assumed that the links can instanta-
neously broadcast their congestion to the sources. In this section, we first extend our result in
Section 2.2 to the case where each of these communications takes τ time steps. We then give
an upper bound on τ for which the communication may be carried out in-band using packets
transmitted through the network.

Assume without loss of generality that w > 2τ (since admissibility for a small window implies
admissibility for a large window). Each source only updates the link congestion at the end of
every window. Since the congestion does not change during a window, all the packets for a given
source-destination pair (s, t) are routed along the same path p. At the end of window [w(i− 1), wi)
a control packet is sent along path p that contains the number of (s, t)-packets injected during
window [w(i − 1), wi). This packet takes time τ to traverse the path. Hence, at time wi+ τ , each
link can update its congestion due to all the packets injected during [w(i − 1), wi). Then by time
wi+ 2τ ≤ w(i+ 1) this new congestion can be distributed via control packets to all the sources.

Note that at the end of window [wi,w(i + 1)), every link has updated its congestion according
to the injections in window [w(i − 1), wi). The exact form of this update is as follows. Let Ni(e)
be the number of packets routed through e that were injected during [w(i − 1), wi). Let ci(e) be
the congestion of e at the end of window [w(i − 1), wi). We update ci(e) by,

ci+1(e) = ci(e) + ci−1(e)Ni(e) · µ/w,
for

µ =
1

2m

(

1−
(

r

R

)1/3
)

. (5)

To show that Theorem 2 remains true, we observe,

Di+1 =
∑

e

ci+1(e)

=
∑

e

ci(e) + ci−1Ni(e) · µ/w

= Di +
∑

e

ci−1(e)Ni(e) · µ/w

= Di +
∑

j

∑

e∈pj

ci−1(e) · µ/w

≤ Di + αi,i+1 · µ/w.
Here αi,i+1 is the sum of the congestion along the paths chosen for packets injected during [w(i −
1), wi) with respect to ci+1(e). This is sufficient to imply Dt ≤ 1. Note also that for every 2mw
(non-control) packets routed through a link, the congestion function of the link increases by at
least a factor 1 + 2mµ. The remainder of the analysis follows through for the revised definition of
µ in (5).

To ensure that the transmission time of the control packets is upper bounded, the scheduling
protocol always gives priority to control packets. Observe that a total of at most n2 +mn control
packets can be sent out during one window, where m is the number of links and n is the number of
nodes in the network. If we let τ = n3 +mn2, the transmission of a control packet takes at most τ
time steps. Without loss of generality we assume that w ≥ 2τ and w(1−r)/2 ≥ n2+mn. The latter
condition ensures that together with the control packets the injections are (w, (1+r)/2)-admissible.
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3 A Scheduling Protocol with Polynomial Delay Bounds

In this section we assume that (w, r)-admissible paths are known (either given by the adversary
or computed as in Section 2). Hence, in order to achieve network stability we can use any of
the scheduling protocols that are known to be stable for Adversarial Queueing. However, the
best previous delay bounds known for distributed, deterministic protocols are exponential in the
maximum packet path length. In this section we present a deterministic, distributed scheduling
protocol with a polynomial delay bound.

In [2] a randomized protocol was presented for which the delay bound is O(dmax
ε logm) with

high probability, where ε = 1− r and dmax is the length of the longest simple path in the network.
This protocol is hard to derandomize because its success depends on a condition that can only be
checked globally. In this section we first present a new randomized protocol and then show how to
derandomize it in a distributed manner. The key idea of this protocol is that the conditions that
determine the “success” of the protocol only depend on packets that share the same initial link.
This allows derandomization in a distributed manner.

Our new randomized protocol is defined in terms of two parameters M and T which are defined
below. We partition time into intervals of length M , which we call M -intervals. We save up all
packets that are injected into the network during each M -interval and then schedule these packets
during the next M -interval. We give each packet a deadline for every link on its path. Our goal is
to make sure that no more than T packets have a deadline for link e during any time interval of
length T . If this condition holds then we are able to bound the end-to-end delay experienced by a
packet.

Randomized protocol. For a packet p injected during an M -interval [(γ − 1)M,γM) for an
integral γ, let us suppose its path is e0, e1, . . . , edp . We define a deadline τpk for p at link ek as
follows. We choose the initial deadline τp0 uniformly at random from [γM + T, (γ +1)M − dmaxT ).
We then define the remaining deadlines inductively by τpk+1 = τpk + T . Our protocol always gives
priority to the packet with the smallest deadline at each link. We define M and T such that,

T =
36m

ε3
log(2Mm2), (6)

M ≥ max

{

1− ε/2

ε/6
(dmax + 1)T,w

}

. (7)

These properties are satisfied for,

M = O

(

dmaxm

ε4
log

m

ε
+ w

)

.

When a packet meets its deadlines, it reaches its destination within 2M steps.

Analysis. Our objective is to show that all packets injected during a given M -interval meet all
their deadlines with a constant probability. Lemma 6 gives a sufficient condition for all deadlines
to be met. For any packet p and link e let Xp,e

[t,t+T ) = 1 if e is the kth link on packet p’s path and

τpk lies in the time interval [t, t+ T ). Let Xp,e
[t,t+T ) = 0 otherwise.

Lemma 6 If
∑

pX
p,e
[t,t+T ) ≤ T for all t and all links e, then all packets meet all their deadlines.

10



Proof: Suppose not. Let p be a packet that misses its kth deadline τpk and suppose that no
deadline earlier than τpk is missed. Then p has arrived at its kth link ek by time τpk − T . (This is
true regardless of whether ek is the initial link of p or not.) By our assumption that τpk is the first
deadline that is missed, all the packets with deadlines for ek that are earlier than τpk − T + 1 meet
those deadlines. Therefore, the only packets that block packet p in the interval [τpk −T +1, τpk ] have
deadlines in the interval [τpk − T + 1, τpk ]. By the assumption in the statement of the lemma there
are at most T − 1 such packets (excluding p). Therefore packet p is served by link ek at time τpk or
earlier. This is a contradiction.

Given Lemma 6 we show,

Lemma 7 Consider packets injected during an M -interval, [(γ − 1)M,γM). The number of dead-
lines from these packets on any link e during any interval [t, t + T ) is at most T with a constant
probability.

Proof: We use a Chernoff bound to prove the number of deadlines is small. Let Sγ
e0,e be the set of

packets injected into the network during the interval [(γ − 1)M,γM) that have e0 as their initial
link and that have link e on their path. The expected number of deadlines is,

E







∑

p∈Sγ
e0,e

Xp,e
[t,t+T )






≤ |Sγ

e0,e|
M − (dmax + 1)T

T.

When |Sγ
e0,e| is large, the expectation is large and the argument is straightforward. However, for

small |Sγ
e0,e| a direct application of the Chernoff bound may not suffice. To rectify this, let us define

a new quantity,

βγ
e0,e =

M

M − (dmax + 1)T
max{|Sγ

e0,e|/M, ε/3m}.

The quantity β has the following properties.

1. βγ
e0,e ≥ ε/3m;

2.
∑

e0 β
γ
e0,e ≤ M

M−(dmax+1)T ((1 − ε) +mε/3m) ≤ 1−ε/2
1−2ε/3 (1− 2ε/3) ≤ 1− ε/2.

The second property follows from the requirement of M in (7) and the admissibility of the paths.
Our lemma follows if we show that the following holds with constant probability,

∑

p∈S
γ
e0,e

Xp,e

[t,t+T ) ≤ (1 + ε/2)βγ
e0,e

T, ∀e0, e and ∀[t, t+ T ). (8)

If the above holds, the number of deadlines on link e in the interval [t, t + T ) is at most (1 +
ε/2)

∑

e0 β
γ
e0,eT , which is less than T due to the second property of β. We have,

Pr







∑

p∈Sγ
e0,e

Xp,e
[t,t+T ) > (1 + ε/2)βγ

e0 ,eT






≤

∏

pE[(1 + ε/2)
Xp,e

[t,t+T ) ]

(1 + ε/2)(1+ε/2)βγ
e0 ,e

T

≤ exp(−ε2βγ
e0,eT/12)

≤ 1

2Mm2
. (9)
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The first inequality is due to a Chernoff bound. The second inequality holds sinceE[
∑

p∈Sγ
e0,e

Xp,e
[t,t+T )]

≤ βγ
e0,eT and 1 + x ≤ ex for x ≥ 0. The third inequality follows from the definition of T in (6)

and the fact that βγ
e0,e ≥ ε/3m. By taking a union bound over all links e0, e and all intervals

[t, t + T ) ⊆ [γM, (γ + 1)M), we have that the number of deadlines from all packets on e during
[t, t+ T ) is at most T with probability at least 1/2.

Remarks. To prove Lemma 7 a condition weaker than (8) would be sufficient. It would suffice
to show that the number of deadlines on any e during any [t, t+T ) is at most (1+ ε/2)

∑

e0 β
γ
e0,eT .

Indeed, this would even allow T and M to be a factor of m smaller, as in [2]. However, such a
weaker condition only allows derandomization in a centralized manner.

We emphasize that the condition (8) depends only on sets of packets that are injected into one
particular initial link. Therefore we can choose the deadlines for a packet simply by considering the
other packets that are injected at the same initial link. Hence, we can carry out a derandomization
independently at each initial link and obtain a distributed, deterministic protocol. This is in contrast
to the randomized protocol of [2] in which the success condition depends on packets that are injected
across all initial links in the network.

Derandomization. We use the method of conditional expectations to derandomize the protocol
for each M -interval. (See e.g. [14].) In summary,

Theorem 8 Our derandomized protocol is distributed and guarantees a delay bound of 2M =
poly(m,w, 1/ε) for every packet.

Proof: Let Sγ
e0,e = {p0, p1, . . . , pℓ}. For i ≤ ℓ, let g(δ0, δ1, . . . , δi) be equal to

∑

e,t

Pr





∑

p∈S
γ
e0,e

Xp,e

[t,t+T )
> (1 + ε/2)βγ

e0,e
T |τp0

0 = δ0, . . . , τ
pi
0 = δi



 ,

where t is summed over the range [γM, (γ + 1)M − T ). By a calculation similar to the Chernoff
calculation of (9), the value of g(·, . . . , ·) is upper bounded by the following function h,

h(δ0, δ1, . . . , δi) =
∑

e,t

∏

p exp(
ε
2E[Xp,e

[t,t+T )|τ
p0
0 = δ0, . . . , τ

pi
0 = δi])

(1 + ε/2)(1+ε/2)βγ
e0 ,eT

.

For fixed δ0, . . . , δi−1, the definition of conditional expectation implies that there exists an initial
deadline δi for the packet pi such that h(δ0, δ1, . . . , δi−1) ≥ h(δ0, δ1, . . . , δi−1, δi). If we always choose
the initial deadline so that this inequality is satisfied then,

g(δ0, δ1, . . . , δℓ) ≤ h(δ0, δ1, . . . , δℓ))

≤ h(∅)
≤ exp(−ε2βγ

e0,eT/12),

The third inequality follows from (9). We have chosen the parametersM and T so that exp(−ε2βγ
e0,eT/12)

is less than 1. In addition, since g(δ0, δ1, . . . , δℓ) involves no randomness every term of g is either
0 or 1. The above inequalities imply that g(δ0, δ1, . . . , δℓ) is less than 1 and so condition (8) fails
with probability zero. Hence, with probability one all deadlines are met and all packets reach their
destinations in time 2M .
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Figure 3: Network G for which FIFO and NTG are unstable even if we are allowed to choose routes.

It remains to show that we can calculate h(δ0, . . . , δi). If j ≤ i then,

E[X
pj ,e
[t,t+T )|τ

p0
0 = δ0, . . . , τ

pi
0 = δi]

is equal to 0 or 1 depending on whether or not the initial deadline δj causes packet pj to have a
deadline for link e during [t, t+ T ). If j > i then,

E[X
pj ,e
[t,t+T )|τ

p0
0 = δ0, . . . , τ

pi
0 = δi] = E[X

pj ,e
[t,t+T )],

which is equal to the probability, over all possible choices of the initial deadline, that packet pj
has a deadline for link e during the interval [t, t + T ). (Recall that the initial deadline has at
most M choices and all subsequent deadlines are chosen deterministically.) This probability is
solely dependent on whether or not the path for packet pj passes through link e. Hence, for fixed
δ0, . . . , δi−1 we can choose the value of δi that minimizes h(δ0, δ1, . . . , δi−1, δi).

4 Instability in Combined Routing and Scheduling

In [2] it was shown that if the packet routes are given by the adversary then the FIFO and Nearest-
to-Go (NTG) scheduling protocols can be unstable even if the packet paths are admissible. (FIFO
always gives priority to the packet that arrived at the link earliest. NTG always gives priority
to the packet that has the smallest number of hops remaining to its destination.) However, the
examples given in [2] do not lead to instability if we are allowed to route packets on paths other
than the ones chosen by the adversary.

We therefore have a natural question. If we are allowed to choose the routes, can we guarantee
that FIFO and NTG are stable? In this section we show that the answer to this question is
negative. We present examples in which regardless of how we choose the routes, the FIFO and
NTG scheduling protocols create instability.

Theorem 9 There exists a network G such that FIFO creates instability under some (w, r)-
admissible injections regardless of how packets are routed.

Proof: Network G is shown in Figure 3. We break the packet injections into phases. We inductively
assume that at the beginning of phase j a set S of s packets with destination u0 is in the queue of
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e0. We show that at the beginning of phase j + 1 more than s packets with destination u1 are in
the queue of e1. By symmetry this process repeats indefinitely and the number of packets in the
network grows without bound. For the basis of the induction, we inject a large burst of packets at
source node v0 with destination node u0, which is allowed by a large window w. From now on all
the injections are at rate r with burst size one. In general the sequence of injections in phase j is
as follows.

(1) For the first s steps, we inject a set X of rs packets at node v0 with destination u1. These
packets are completely held up at e0 by the packets in S. We also hold up packets in S at
f0 by injecting rs packets at w0 with destination u0. These newly injected packets get mixed
with those of S into the set S′. At the end of the first s steps, rs packets from S′ are at f0.
Note that packets in X will be routed through either f0 or f ′

0.

(2) For the next rs steps, we inject a set Y of r2s packets at node v0 with destination u1. These
packets are held up at e0 by the packets in X. We also inject packets at w0 with destination
u′0 at rate r. These packets delay the packets from X that are routed through f ′

0. Hence, at
most rs/(r+1) packets of X cross f ′

0. (This only happens if packets in X are routed through
f ′
0, which is not necessarily the case.) Note that no packet from X crosses f0 in these steps,
since the packets in S′ have priority. Hence, at the end of these rs steps, a set X ′ ⊆ X of at
least r2s/(r + 1) packets are still at w0.

(3) For the next |X ′| + |Y | steps the packets in X ′ and Y move forward, and merge at v1.
Meanwhile, we inject packets at v1 with destination u1 at rate r. We end with at least
r(|X ′|+ |Y |) packets at v1 with destination u1. This number is at least r3s+ r3s/(r + 1).

This ends phase j. For r ≥ 0.9 we have r3 + r3/(r + 1) > 1. It is easy to verify that the injections
during phase j are admissible. The inductive step is complete.

Injections similar to the above can be used to prove the instability of NTG on network G at
any rate r > 1/

√
2. The induction hypothesis of phase j now does not require the packets in S to

be initially in the queue of e0, but to cross e0 in the first s steps of the phase. Hence, subphase
(3) is no longer required. Furthermore, after subphase (2) both sets Y and X ′ contain at least r2s
packets, since single-link injections have higher priority than the packets in X. It follows that the
system is unstable since 2r2s > s.

5 Stability of a Ring with Parallel Links

In this section we consider source routing on a ring with c parallel links. Consider a decomposition of
the network into c disjoint single rings. We propose a deterministic on-line source-routing algorithm
that routes each packet along one of these rings and guarantees that the routing is admissible. In
[2] it was shown that the single ring is stable under any greedy scheduling policy (i.e. one that
always schedules a packet whenever packets are waiting). Hence, we conclude that the ring with c
parallel links is stable under any greedy scheduling policy if our source-routing algorithm is used.

Note that the 4-ring with 2 parallel links was shown to be unstable under a greedy protocol
such as FIFO when the packet paths are given by the adversary [2]. This shows that freedom of
routing can make a difference in network stability since we have a network that is unstable under
FIFO if the adversary can dictate the routes but is stable under FIFO if we can choose the routes
intelligently.
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5.1 Definitions

Consider a ring with n nodes and c parallel directed links from node i to node i+ 1( mod n). The
parallel links connecting neighboring nodes are uniquely labeled 1, . . . , c. We denote the cycle of
n links labeled j as the jth single ring. Note that, if j 6= j′, the jth and the j′th single rings are
link disjoint. We assume that the injections are (w, r)-admissible. For convenience we sometimes
denote 1 − r by ε. We propose a source-routing algorithm that finds weakly (W,R)-admissible
paths along these single rings, where,

W =

⌈

3

rε2
ln

nc

β

⌉

, (10)

R = 1− ε2, (11)

for some β < 1.

5.2 Randomized Algorithm

Let us first study the following randomized routing algorithm. Each time a packet is injected, one
of the c single rings is randomly chosen, uniform and independently, and the packet is routed along
it. Since the injections are (w, r)-admissible, in any W -interval at most crW packets are injected
that must cross the parallel links from any node i to i+ 1( mod n). Hence, the expected number
of packets routed along any link of the ring is at most rW . Using a Chernoff bound we can upper
bound the probability of more than (1 + ε)rW = RW packets being routed along any link in the
W -interval. Let P = p0, p1, . . . , pℓ be the set of packets injected in a W -interval. For each packet
pj, let X

pj
e be the random variable denoting whether pj is routed along link e. Let Xe be the

number of packets routed along link e in the W -interval. From a Chernoff bound we have that,

Pr[Xe > (1 + ε)rW ] ≤
∏

pj∈P E[(1 + ε)X
pj
e ]

(1 + ε)(1+ε)rW

≤ [eε/(1 + ε)(1+ε)]rW

≤ e(ε−(1+ε) ln(1+ε))rW

≤ (e−ε2/3)rW

≤ β

nc
.

The last two inequalities follow from the fact that ε < 1 and the definition ofW in (10), respectively.
We can now bound the probability of any link having more than (1 − ε2)W packets routed along
it. We use E to denote the set of links in the ring.

Pr[max
e∈E

Xe > (1 + ε)rW ] ≤
∑

e∈E

Pr[Xe > (1 + ε)rW ]

≤ |E| β
nc

= β

Hence, since β < 1, there is a positive probability of routing all the packets in such a way that
no link has congestion more than RW . By choosing a very small β (e.g., O(1/n)) we could
show that this randomized algorithm guarantees that the routing is weakly (W,R)-admissible with
high probability. This can be used to show the stability of any greedy scheduling protocol in a
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probabilistic sense (i.e., there is a value C such that the probability of having more than kC packets
in the system at any given time is exponentially small in k).

However, in the rest of the section we only need β < 1. We will derandomize the proposed
algorithm, and all we need for this process to work is to have a feasible routing with the required
properties. This is guaranteed for any β < 1.

5.3 Off-line Routing

We will now derandomize the above algorithm so that all the packets are deterministically routed
and no link has congestion more than (1 − ε2)W . To do this, we use the method of conditional
probabilities, as we did in Section 3. Unfortunately, to apply this method directly we need to know
from the beginning the set P of packets to be routed. We achieve this as follows. We divide time
into intervals of W steps, and hold all the packets injected in one W -interval until its last step.
Then, all these packets are routed in that last step, when all of them are known.

Let P = p0, p1, . . . , pℓ be the set of packets injected in a W -interval. Let γpj denote the single
ring chosen to route packet pj. For i ≤ ℓ let,

g(δ0, δ1, . . . , δi) = Pr[max
e∈E

Xe > (1 + ε)rW |γp0 = δ0, . . . , γpi = δi].

Since g(·, . . . , ·) is difficult to calculate directly, we define another function h(·, . . . , ·) by,

h(δ0, δ1, . . . , δi) =
∑

e∈E

∏

pj∈P E[(1 + ε)X
pj
e |γp0 = δ0, . . . , γpi = δi]

(1 + ε)(1+ε)rW
,

which can be easily computed. For this, it is enough so observe that, when computing h(δ0, δ1, . . . , δi),
for each packet pj,

• if j ≤ i, then

– if e is in the δjth single ring and it is in the path from the source to the destination of

pj , then E[(1 + ε)X
pj
e |γp0 = δ0, . . . , γpi = δi] = 1 + ε.

– Otherwise, E[(1 + ε)X
pj
e |γp0 = δ0, . . . , γpi = δi] = (1 + ε)0 = 1.

• if j > i, then

– if e could be in the path from the source to the destination of pj , then E[(1+ε)X
pj
e |γp0 =

δ0, . . . , γpi = δi] = (1 + ε)1/c.

– Otherwise, E[(1 + ε)X
pj
e |γp0 = δ0, . . . , γpi = δi] = (1 + ε)0 = 1.

We have that, g(δ0, δ1, . . . , δi) ≤ h(δ0, δ1, . . . , δi). Also, for fixed δ0, . . . , δi−1, the definition of
conditional expectation implies that the single ring δi can be chosen such that h(δ0, δ1, . . . , δi−1) ≥
h(δ0, δ1, . . . , δi−1, δi). If we always choose the single rings so that this inequality is satisfied then,

g(δ0, δ1, . . . , δℓ) ≤ h(δ0, δ1, . . . , δℓ)) ≤ h(∅) ≤ β.

In this expression, the left-hand-side involves no randomness and so it is either 0 or 1. However,
since β < 1, it has to be less than 1 and so there must be a probability zero of failure. Hence, no
link has congestion more than (1− ε2)W , and the routing is weakly (W,R)-admissible.
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5.4 On-line Routing

Now we want to route packets as soon as they are injected. This does not allow us to directly
use the above derandomization process, since we will not necessarily know the set P by the time
we need to route the first packets. This is needed to compute the different values of the function
h(·, . . . , ·). However, we will deal with this problem by making pessimistic assumptions about the
packets that have not been injected yet.

First consider two packets, pk and pl, such that their paths do not overlap, and the destination
node of pk is the source node of pl. Replace these packets by one single packet whose source node is
that of pk and its destination node is that of pl. Observe that, for fixed δ0, . . . , δi, if k > i and l > i,
the value of h(δ0, . . . , δi) does not change by the replacement (see above). This can be generalized
to the replacement of any number of packets.

Then, this allows us to use the following trick. Initially we assume a set P (0) of packets that
consists of crW ghost packets going from node i to node i+ 1( mod n), for each i. The value h(∅)
is computed for this set P (0).

Now, assume that i − 1 packets have been already injected and routed. (That is, the values
δ0, δ1, . . . , δi−1 are fixed and h(δ0, δ1, . . . , δi−1) is computed.) When the ith packet pi is injected,
we remove one ghost packet from the set P (i−1) for each hop that pi crosses. These ghost packets
are replaced by the packet pi to obtain a new set P (i). The existence of the appropriate ghost
packets is guaranteed by the initial ghost packets we put in P (0) and the fact that the injections
are (w, r)-admissible. As we saw previously, this does not change the value of h(δ0, δ1, . . . , δi−1).
Then, route the packet pi (choose and fix δi) so that h(δ0, δ1, . . . , δi−1) ≥ h(δ0, δ1, . . . , δi−1, δi).

By repeating this process, at the end of the W -interval we have that

g(δ0, δ1, . . . , δℓ) ≤ h(δ0, δ1, . . . , δℓ)) ≤ h(∅) ≤ β,

where ℓ is the number of packets injected during the W -interval. We now remove all the remaining
ghost packets. This process eliminates any remaining randomness in g(δ0, δ1, . . . , δℓ), and can
never increase its value, since it only removes packets. Then, since g(δ0, δ1, . . . , δℓ) = 0 involves
no randomness and β < 1, g(δ0, δ1, . . . , δℓ) = 0 and no link has congestion more than (1 − ε2)W .
Hence, the routing is weakly (W,R)-admissible.

6 Conclusions

In this paper we have presented source routing algorithms for packet-switched networks and we
have described the first distributed, deterministic scheduling protocol with a polynomial delay
bound. There is much still to be explored in the study of combined routing and scheduling. For
example, different packets are often associated with different delay requirements. Some of them
may be delay-sensitive whereas others may be delay-tolerant. The problem of scheduling these
packets on given routes in order to meet these delay requirements has been studied before. The
ability to choose the routes would add an additional dimension to the problem and may even make
scheduling easier.
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