
A Multiagent System Manages Collaboration in Emergent Processes

John Debenham
Faculty of Information Technology,

University of Technology, Sydney, NSW Australia
debenham@it.uts.edu.au

Abstract

Emergent processes are non-routine, collaborative busi-
ness processes whose execution is guided by the knowledge
that emerges during a process instance. They may involve
informal interaction, and so there is a limit to the extent to
which the processes can be “managed”. Thecollaboration
however can be managed. Managing collaboration needs
an intelligent agent that is guided not by a process goal,
but by observing the performance of the other agents. Each
agent hasprocess knowledge— that is information either
generated by the individual users or is extracted from the
environment, andperformance knowledge— that describes
how the other agents, together with their ‘owners’, perform
— including how reliable they are. The integrity of the infor-
mation derived from past observations decays in time, and
so they have an inference mechanism that can cope with in-
formation of decaying integrity. An agent is described that
achieves this by using ideas from information theory.

1. Introduction

Emergent processes are business processes that are not pre-
defined and aread hoc. These processes typically take place
at the higher levels of organisations [9], and are distinct
from production workflows [5]. Emergent processes are op-
portunistic in nature whereas production workflows are rou-
tine [3]. How an emergent process will terminate may not
be known until the process is well advanced. The tasks
involved in an emergent process are typically not prede-
fined and emerge as the process develops. Those tasks may
be carried out by collaborative groups as well as by indi-
viduals [15] and may involve informal meetings, business
lunches and so on. Further, the goal of an emergent pro-
cess instance may mutate as the instance matures. So unlike
“lower-order” processes, the goal of an emergent process in-
stance may not be used as a focus for the process manage-
ment system. An emergent process may have a fixed goal
such as “maximize profits” — but it is unlikely that a pro-

cess management agent, or a human agent, will have an ex-
ecutable plan to achieve such a goal.

The term “business process management” [14] is
generally used to refer to the simpler class of work-
flow processes [5], although there are notable exceptions
[11]. From the management perspective, emergent pro-
cesses are “knowledge-driven”. Aknowledge-driven
processis guided by its “process knowledge” and “per-
formance knowledge”.Process knowledgeis informa-
tion either generated by the individual users or is extracted
from the environment, and includes background infor-
mation. Performance knowledgedescribes how the other
agents together with their ‘owners’ perform, includ-
ing how reliable they are.

In so far as the process goal gives direction to goal-
driven processes, the continually evolving process knowl-
edge gives direction to knowledge-driven processes. So
plan-based agent architectures such as BDI [17] are not di-
rectly suitable. To manage knowledge-driven process with
such an architecture would require machinery to manage
the mutations of the process goal. The agent architecture
described here manages the collaboration in the processes,
and not the processes themselves. This architecture is based
on information theory.

2. Process Management

Following [5] a business processis “a set of one or more
linked procedures or activities which collectively realise a
business objective or policy goal, normally within the con-
text of an organisational structure defining functional roles
and relationships”. Implicit in this definition is the idea that
a process may be repeatedly decomposed into linked sub-
processes until those sub-processes are activities which are
atomic pieces of work. [viz [5] “Anactivity is a description
of a piece of work that forms one logical step within a pro-
cess.”].

A particular process is called a (process)instance. An in-
stance may require that certain things should be done; such

Process Goal
(what we believe we

are trying
to achieve over all)

Performance
Knowledge

(knowledge of
how effective
activities are)

Process
Knowledge

(knowledge of
what has been

achieved so far)

Now-Goal
(what to try to
achieve next)

Activity
(what to do

next)

Decompose
(in the context of the
process knowledge)

Do it —
(until termination
condition
satisfied)

New Performance
Knowledge

New Process
Knowledge

Add to

Revise

Select

Add to

Figure 1. Knowledge-driven processes.

things are called tasks. Three classes of business process are
defined in terms of their management properties.

• A task-driven processhas a unique decomposition into
a — possibly conditional — sequence of activities.
Each of these activities has a goal and is associated
with a task that “always” achieves this goal.

• A goal-driven processhas a process goal, and achieve-
ment of that goal is the termination condition for the
process. The process goal may have various decompo-
sitions into sequences of sub-goals where these sub-
goals are associated with (atomic) activities and so
with tasks. Some of these sequences of tasks may work
better than others, and there may be no way of know-
ing which is which [15]. The possibility of task failure
is a feature of goal-driven processes.

• A knowledge-driven processmay have a process goal,
but the goal may be vague and may mutate [3]. Muta-
tions are determined by the knowledge generated dur-
ing the process. At each stage in the performance of
a knowledge-driven process, the “next goal” is iden-
tified using the process knowledge. So in so far as
the process goal gives direction to goal-driven — and
task-driven — processes, the process knowledge gives
direction to knowledge-driven processes. A simpli-
fied view of knowledge-driven process management is
shown in Fig. 1.

The complete representation, never mind the mainte-
nance, of the process knowledge may be complex. However,
in a process management system, or in an Electronic Institu-
tion [4], much of that knowledge may be readily available.
Performance knowledge is not difficult to capture, represent
and maintain. For example, measurements of how long an-
other agent took to complete a sub-process, and measure-
ments of how reliable the other agents are.

3. Emergent Process Management System

In the system described here each human player is assisted
by an agent. As emergent processes may involve informal
interaction between players, there is a limit to the extent
to which the processes themselves can be “managed”. This
is in contrast to task-driven processes, or production work-
flow, where a management system prescribeswhat should
happen next— agents are “asked” to do things and are “ex-
pected” to comply. For emergent process thecollaboration
can be managed. The questions that an emergent process
agent considers include: “who to ask to assist”, “who can I
rely on”, “who works well with who”, “who do I want to
build a relationship with”. The answers to these questions
are inferred by observing the dynamics of the collaboration
between the agents. So an agent for emergent process man-
agement needs to be able to observe and evaluate the col-
laboration — what appears to work and what does not —
and has to make sense out of this diverse information.

The act of an agentjoining a real or virtual group for
some purpose is fundamental to collaboration. Another act
is one agentdelegatingresponsibility for a sub-process to
another. The product of group activity, or process delega-
tion, is some information being generated, and so to the
act of information being passedfrom one agent to another.
The system aims to implement these three types of act in-
telligently. It consists of the set of agents{Xi}n

i=0 — the
description following is written from the point of view of
agentX0 that interacts with the othern agents. In the text,
the agentXω is “an other” agent — i.e.ω 6= 0.

The agent architecture extends the agent described in [2].
It is driven by the contents of a knowledge base that repre-
sents the agent’s world model represented in probabilistic
first-order logic. The system attempts to manage the collab-
oration using the information that is generated both by and
because of it. To achieve this, it draws on ideas from in-
formation theory. As with the agent described in [2],X0

makes assumptions about: the way in which the integrity of
information will decay, and some of the preferences that its
collaborators may have for some agreements over others. It
also assumes that unknown probabilities can be inferred us-
ing maximum entropy inference[12], ME, which is based on
random worlds [7]. The maximum entropy probability dis-
tribution is “the least biased estimate possible on the given

information; i.e. it is maximally noncommittal with regard
to missing information” [10]. In the absence of knowledge
about the other agents’ allegiances,X0 assumes that the
“maximally noncommittal” model is the correct model on
which to base its reasoning.

X0 decides what to do — such as what message to send
— on the basis of its past observations, the current integrity
of which is expressed as degrees of belief.X0 uses this in-
formation to calculate, and continually revise, probability
distributions for that which it does not know. One such dis-
tribution, over the set of all possible actions, expressesX0’s
belief in the suitability to herself of performing that action.
Other distributions attempt to predict the behavior of an-
other agent — such as what agreements she might accept.
X0 is purely concerned with the other agents’ behaviors —
what they actually do — and not with assumptions about
their motivations. This somewhat detached stance is ap-
propriate for emergent process management in which each
agent represents the interests of it owner, whilst at the same
time attempting to achieve social goals.

4. Emergent Process AgentX0

X0 operates in an information-rich environment that in-
cludes the Internet. One source ofX0’s information is the
signals received fromXω. These include proposals from
Xω to X0, the acceptance or rejection byXω of X0’s pro-
posals, and information thatXω sends toX0. Incoming in-
formation is augmented byX0 with sentence probabilities
that represent the strength of her belief in its truth. IfXω re-
fused to assistX0 two days ago then what isX0’s belief now
in the proposition thatXω will assist her now? Perhaps it is
around 0.1. For simplicity, a linear model is used to model
the integrity decay of these beliefs, and when the probabil-
ity of a decaying belief approaches its maximum entropy
value the belief is discarded.

4.1. Interaction Protocol

An agreementis a pair of commitmentsδX0:Xω
(x0, xω) be-

tween an agentX0 and another agentXω, wherex0 is X0’s
commitment andxω is Xω ’s commitment.A = {δi}D

i=1 is
the agreement set — ie: the set of all possible agreements.
If the context is clear then the subscript “X0 : Xω” is omit-
ted. These commitments may involve multiple issues — not
simply a single issue such as time to complete a task. The
set ofterms, T , is the set of all possible commitments that
could occur in an agreementa ∈ A.

An agent may have a real-valuedutility function: U :
T → <, that induces an ordering onT . For such an
agent, for any agreementδ = (x0, xω) the expression
U(xω) − U(x0) is called thesurplusof δ, and is denoted
by L(δ) whereL : T × T → <. For example, the values of

the functionU may expressed in units of time. It may not
be possible to specify the utility function either precisely or
with certainty. This is addressed in Sec. 5.

The agents communicate using sentences in a first-order
languageC: Delegate(·), Join(·), Accept(·), Reject(·),
Inform(·) and Quit(·). Delegate((X0, ρ), (Xω, Gi))
means “X0 proposes to recompenseXω with ρ if Xω

agrees to take responsibility for an individual goalGi”.
Join((X0, ρ), (Xω, Gi)) means “X0 proposes to recom-
penseXω with ρ if Xω agrees to contribute to coopera-
tive goalGj”. Accept(δ) means “the sender accepts your
proposed agreementδ”. Reject(δ) means “the sender re-
jects your proposed agreementδ”. Inform((X0, Ik), Xω)
means “X0 offers informationIk to Xω”. Quit(·) means
“the sender quits — the interaction ends”. So for these pred-
icates, and in this discussion, an agreementδ has the form
((X0, ρ), (Xω, Gi)).

The communication predicates described in the previous
paragraph introduce a number of concepts. In the interest of
brevity these are only described here informally. The notion
of one agent recompensing another [i.e.ρ] refers to both the
informal “thanks, I owe you one”, and to the formal “take
the rest of the day off”, or some sum of money. Anindi-
vidual goal has the form of: informationIk will be sent
to agentXr by time t. An cooperative goalhas the form
of: the assembly of informationIk will be coordinated by
agentX0 by time t. The expression of the information re-
quires someontology— that is not described here.

4.2. Agent Architecture

X0 uses the languageC for external communication, and the
languageL for internal representation. One predicate inL
is: Accd(((X0, ρ), (Xω, Gi))). The proposition(Accd(δ) |
It) means: “X0 will be comfortable accepting the delega-
tion agreementδ with agentXω given thatX0 knows infor-
mationIt at timet”. The idea is thatX0 will accept delega-
tion agreementδ if P(Accd(δ) | It) ≥ α for some threshold
constantα. The precise meaning thatX0 gives toAccd(δ) is
described in Sec. 5. SimilarlyAccj for Join(·) agreements.
The probability distributionP(Aggd((X0, ρ), (Xω, Gi)))
is agentX0’s estimate of the probability that agentXω will
agree to theDelegate agreementδ [or Aggj(·) for Join(·)
agreements] — it is estimated in Sec. 6.

Each incoming messageM from sourceS received at
time t is time-stamped and source-stamped,M[S,t], and
placed in anin box, X , as it arrives.X0 has aninformation
repositoryI, a knowledge baseK and abelief setB. Each
of these three sets contains statements in a first-order lan-
guageL. I contains statements inL together with sentence
probability functions of time.It is the state ofI at timet
and may be inconsistent. At some particular timet,Kt con-
tains statements thatX0 believes are true at timet, such as

∀x(Accept(x) ↔ ¬Reject(x)). The belief setBt = {βi}
contains statements that are each qualified with agiven sen-
tence probability, B(βi), that representsX0’s belief in the
truth of the statement at timet. The distinction between the
knowledge baseK and the belief setB is simply thatK con-
tains unqualified statements andB contains statements that
are qualified with sentence probabilities.K andB play dif-
ferent roles in the method described in Sec. 4.3;Kt ∪ Bt is
required by that method to be consistent.

X0’s actions are determined by its “strategy”. Astrat-
egy is a functionS : K × B → A whereA is the set of
actions. At certain distinct times the functionS is applied
to K andB and the agent does something. The set of ac-
tions,A, includes sendingDelegate(·), Join(·), Accept(·),
Reject(·), Inform(·) andQuit(·) messages toXω. The way
in which S works is described in Secs. 6. Two “instants of
time” before theS function is activated, an “import func-
tion” and a “revision function” are activated. The import
function I : (X × It−) → It clears the in-box, using its
“import rules”. An import rule takes a messageM , written
in languageC, and from it derives sentences written in lan-
guageL to which it attaches decay functions, and adds these
sentences together with their decay functions toIt− to form
It. These decay functions are functions of the message type,
the time the message arrived and the source from which it
came — an illustration is given below. Animport rulehas
the form:P(S | M[Xω,t]) = f(M,Xω, t) ∈ [0, 1], whereS
is a statement,M is a message andf is the decay function.
Then the belief revision functionR : It− → (It×Kt×Bt)
deletes any statements inIt− whose sentence probability
functions have a value that is≈ 0.5 at timet. From the re-
maining statementsR selects a consistent set of statements,
instantiates their sentence probability functions to timet,
and places the unqualified statements from that set inKt —
the qualified statements, together with their sentence prob-
abilities, are placed inBt.

X0 uses three things to construct proposals: an esti-
mate of the likelihood thatXω will accept any agreement
[Sec. 6], an estimate of the likelihood thatX0 will, in hind-
sight, feel comfortable accepting any particular agreement
[Sec. 5], and an estimate of whenXω may quit and leave
the interaction — see [2].

4.3. Inference

X0 employs maximum entropy inference and minimum rel-
ative entropy inference to derive expectations of future per-
formance from prior, sparse observations. LetG be the set
of all positive ground literals that can be constructed using
the symbols inL. A possible worldis a valuation function
V : G → {>,⊥}. V denotes the set of all possible worlds,
andVK denotes the set of possible worlds that are consis-
tent with a knowledge baseK [7].

A random world for K is a probability distribu-
tion WK = (pi) over VK = (Vi), where WK ex-
presses an agent’s degree of belief that each of the possible
worlds is the actual world. Thederived sentence probabil-
ity of any σ ∈ L, with respect toa random worldWK is
(∀σ ∈ L):

PWK(σ) ,
∑

n

{ pn : σ is> in Vn } (1)

A random worldWK is consistentwith the agent’s beliefs
B if: (∀β ∈ B)(B(β) = PWK(β)). That is, for each belief
its derived sentence probability as calculated using Eqn. 1
is equal to its given sentence probability.

Theentropyof a discrete random variableX with proba-
bility mass function{pi} is [12]: H(X) = −

∑
n pn log pn

where:pn ≥ 0 and
∑

n pn = 1. LetW{K,B} be the “max-
imum entropy probability distribution overVK that is con-
sistent withB”. Given an agent withK andB, maximum
entropy inferencestates that itsderived sentence probabil-
ity for any sentence,σ ∈ L, is:

(∀σ ∈ L)P(σ) , PW{K,B}(σ) (2)

Using Eqn. 2, the derived sentence probability for any be-
lief, βi, is equal to its given sentence probability. So the term
sentence probabilityis used without ambiguity.

If X is a discrete random variable taking a finite number
of possible values{xi} with probabilities{pi} then theen-
tropy is the average uncertainty removed by discovering the
true value ofX, and is given byH(X) = −

∑
n pn log pn.

The direct optimization ofH(X) subject to a number,θ,
of linear constraints of the form

∑
n pngk(xn) = gk for

given constantsgk, wherek = 1, . . . , θ, is a difficult prob-
lem. Fortunately this problem has the same unique solution
as themaximum likelihood problemfor the Gibbs distribu-
tion. The solution to both problems is given by:

pn =
exp

(
−

∑θ
k=1 λkgk(xn)

)
∑

m exp
(
−

∑θ
k=1 λkgk(xm)

) (3)

n = 1, 2, · · · where the constants{λi} may be calculated
using Eqn. 3 together with the three sets of constraints:
pn ≥ 0,

∑
n pn = 1 and

∑
n pngk(xn) = gk. The dis-

tribution in Eqn. 3 is known asGibbs distribution.
Given a prior probability distributionq = (qi)n

i=1 and a
set of constraints, theprinciple of minimum relative entropy
chooses the posterior probability distributionp = (pi)n

i=1

that has the least relative entropy with respect toq:

arg min
p

n∑
i=1

pi log
pi

qi
(4)

and that satisfies the constraints. The principle of minimum
relative entropy is a generalization of the principle of max-

imum entropy. If the prior distributionq is uniform, the rel-
ative entropy ofp with respect toq differs from −H(p)
only by a constant. So the principle of maximum entropy
is equivalent to the principle of minimum relative entropy
with a uniform prior distribution.

5. Acceptability of a Proposal.

Why wouldX0 accept aDelegate(·) or aJoin(·) proposal?
Each deal,δ = ((X0, ρ), (Xω, Gi)), contains provision for
an incentiveρ. However it is more realistic [16] to assume
that the agents in an emergent process management system
are benevolent [8] — that is, they will accept a responsi-
bility for a process if they believe that they can achieve the
process goal. SoX0 needs machinery to estimate the prob-
ability that if it takes responsibility for goalGi then it will
achieve it. Sec. 6 considers the converse problem: that is,
how X0 estimates the probability distribution over all pos-
sible responses thatXω will respond in various ways.

The proposition(Accd((X0, ρ), (Xω, Gi)) | It) was in-
troduced in Sec. 4.2. This section describes how the agent
estimatesP(Accd(δ) | It) — i.e. the probability thatX0 at-
taches to the truth of this proposition for variousδ. This is
described for delegations only —Join(·) is dealt with sim-
ilarly.

X0 forms its future expectations on the basis of past ob-
servations, including the expectations that it has about it-
self. Sec. 6 following describes howX0 forms its expecta-
tions about a collaborator. The same approach is used esti-
mateP(Accd((X0, ρ), (Xω, Gi)) | It) — the integrity of
past observations is continually discounted, new observa-
tions are fed in using minimum relative entropy inference
— Eqn. 4. This yields a probability distribution over all pos-
sible outcomes that could occur ifX0 were to commit to a
Delegate(·) proposal.X0 then uses this distribution to de-
cide whether or not to commit on the basis of the simple cri-
terion:P(Accd((X0, ρ), (Xω, Gi)) | It) > α for some per-
sonal ‘comfort factor’α. The details of how this probabil-
ity distribution is derived is the same as forAggd(·) — this
is described following.

6. Interaction

X0 interacts with its collaborators{Xi}n
i=1. It is assumed

that goals are initially triggered externally to the system. For
example,X0’s ‘owner’ may have an idea that she believes
has value, and triggers an emergent process to explore the
idea’s worth. The interaction protocol is simple, ifX0 sends
a Delegate(·) or aJoin(·) message toXω then an interac-
tion has commenced and continues until one agent sends an
Accept(·) or aQuit(·) message. This assumes that agents
respond in reasonable time which is fair in an essentially co-
operative system.

To support the agreement-exchange process,X0 has do
two different things. First, it must respond to proposals re-
ceived fromXω — that is described in Sec. 5. Second,
it must construct proposals, and possibly information, to
send toXω — that is described now. Maximum entropy in-
ference is used to ‘fill in’ missing values with the “maxi-
mally noncommittal” probability distribution. To illustrate
this suppose thatX0 proposes to delegate a process toXω.
This process involvesXω delivering — using anInform(·)
message —u chapters for a report in so-many daysv.
This section describes machinery for estimating the prob-
abilities P(Aggd((X0, u), (Xω, Gv)) where the predicate
Aggd((X0, u), (Xω, Gv)) means “Xω will acceptX0’s del-
egation proposal((X0, u), (Xω, Gv))”.

X0 assumes the following two preference relations for
Xω, andK contains:
κ11 : ∀x, y, z((x < y) →
(Aggd((X0, y), (Xω, Gz)) → Aggd((X0, x), (Xω, Gz))))
κ12 : ∀x, y, z((x < y) →
(Aggd((X0, z), (Xω, Gx)) → Aggd((X0, z), (Xω, Gy))))
As noted in Sec. 4.3, these sentences conveniently reduce
the number of possible worlds. The two preference relations
κ11 andκ12 induce a partial ordering on the sentence proba-
bilities in theP(Aggd((X0, u), (Xω, Gv))) array. There are
fifty-one possible worlds that are consistent withK.

Suppose thatX0 has the following historical data on
similar dealings withXω. Three months agoXω asked for
ten days to deliver four chapters. Two months agoX0 pro-
posed one day to deliver three chapters andXω refused. One
month agoXω asked for eight days to deliver two chapters.
B contains:
β11 : Aggd((X0, 4), (Xω, G10));
β12 : Aggd((X0, 3), (Xω, G1)) and
β13 : Aggd((X0, 2), (Xω, G8)),
and assuming a 10% decay in integrity for each month:
P(β11) = 0.7, P(β12) = 0.2 andP(β13) = 0.9

Eqn. 3 is used to calculate the distributionW{K,B}
which shows that there are just five different probabil-
ities in it. The probability matrix for the proposition
Aggd((X0, u), (Xω, Gv)) is:

v � u 1 2 3 4 5
11 0.9967 0.9607 0.8428 0.7066 0.3533
10 0.9803 0.9476 0.8330 0.7000 0.3500
9 0.9533 0.9238 0.8125 0.6828 0.3414
8 0.9262 0.9000 0.7920 0.6655 0.3328
7 0.8249 0.8019 0.7074 0.5945 0.2972
6 0.7235 0.7039 0.6228 0.5234 0.2617
5 0.6222 0.6058 0.5383 0.4523 0.2262
4 0.5208 0.5077 0.4537 0.3813 0.1906
3 0.4195 0.4096 0.3691 0.3102 0.1551
2 0.3181 0.3116 0.2846 0.2391 0.1196
1 0.2168 0.2135 0.2000 0.1681 0.0840

In this array, the derived sentence probabilities for the three

sentences inB are shown in bold type; they are exactly their
given values.

X0’s interaction strategyis a functionS : K × B → A
whereA is the set of actions that sendDelegate(·), Join(·),
Accept(·), Reject(·), Inform(·) andQuit(·) messages to
Xω. If X0 sends any message toXω then she is givingXω

information about herself.

6.1. An ‘even-handed’ agent

An agent may be motivated to act for various reasons —
three are mentioned. First, if there are costs involved in the
interaction dueeither to changes in the value of the inter-
action object with timeor to the intrinsic cost of conduct-
ing the interaction itself. Second, if there is a risk of break-
down caused by a collaborator dropping out of a negoti-
ation. Third, if the agent is concerned with establishing a
sense of trust [13] with the collaborator — this could be
the case in the establishment of a business relationship. Of
these three reasons the last two are addressed here. The risk
of breakdown may be reduced, and a sense of trust may be
established, if the agent appears to its collaborator to be “ap-
proaching the interaction in an even-handed manner”. One
dimension of “appearing to be even-handed” is to be equi-
table with the value of information given to the collaborator.
Various interaction strategies, both with and without break-
down, are described in [2], but they do not address this is-
sue. An interaction strategy is described here that is founded
on a principle of “equitable information gain”. That is,X0

attempts to respond toXω ’s messages so thatXω ’s expected
information gain similar to that whichX0 has received.

X0 modelsXω by observing her actions, and inferring
beliefs about her future actions in probability distributions
such asP(Aggd). X0 measures the value of information
that it receives fromXω by the change in the entropy of
this distribution as a result of representing that informa-
tion in P(Aggd). More generally,X0 measures the value
of information received in a message,µ, by the change in
the entropy in its entire representation,Jt = Kt ∪ Bt, as
a result of the receipt of that message; this is denoted by:
∆µ|J Π

t |, where |J Π
t | denotes the value (as negative en-

tropy) of X0’s information inJ at time t. Although both
X0 and Xω will build their models of each other using
the same data — the messages exchanged — the observed
information gain will depend on the way in which each
agent has represented this information. It is “not unrea-
sonable to suggest” that these two representations should
be similar. To support its attempts to achieve “equitable
information gain” X0 assumes thatXω ’s reasoning ap-
paratus mirrors its own, and so is able to estimate the
change inXω ’s entropy as a result of sending a message
µ to Xω: ∆µ|J Ω

t |. Suppose thatX0 receives a message
µ = Delegate(·) from Xω and observes an information

gain of ∆µ|J Π
t |. Suppose thatX0 wishes to reject this

agreement by sending a counter-proposal,Delegate(·), that
will give Xω expected “equitable information gain”.δ =
{arg maxδ P(Accd(δ) | It) ≥ α | (∆Delegate(δ)|J Ω

t | ≈
∆µ|J Π

t |)}. That isX0 chooses the most acceptable agree-
ment to herself that gives her collaborator expected “equi-
table information gain” provided that there is such an agree-
ment. If there is not thenX0 chooses the best available com-
promiseδ = {arg maxδ(∆Delegate(δ)|J Ω

t |) | P(Accd(δ) |
It) ≥ α} provided there is such an agreement — this strat-
egy is rather generous, it rates information gain ahead of
personal acceptability. If there is not thenX0 quits.

7. Delegation

The mechanism thatX0 uses for managing process delega-
tion is described in full.Join(·) messages are managed sim-
ilarly. This next section discusses the sorts of payoff mea-
sures and estimates that are available, and that are combined
to give a value for the expected payoff vectorνi for each
agent. LetP(A �) denoteA is the ‘best choice’ in terms
of some combination of the parameter estimates described
following. These measurements are then used by agentX0

to determineP(Xi �), and then in turn to determine the
delegation strategy(pi)n

i=1.

7.1. The Performance Parameters

Agent X0 continually measures the performance of itself
and of other agents in the system using four measures. Three
are:time, costandlikelihood of successwhich are attached
to all of its delegations-in and delegations-out. The last one
is a valueparameter that is attached to other agents. Time
is the total time taken to termination. Cost is the actual cost
of the of resources allocated. For example, the time that the
agent — possibly with a human ‘assistant’ – actually spent
working on that process. The likelihood of success is the
probability that an agent will deliver its response within its
constraints. The value parameter is the value added to a pro-
cess by an agent. Unfortunately, value is often very difficult
to measure — it is treated here by a subjective estimate de-
livered by users of the system.

The three parameterstime, cost and likelihood ofsuc-
cessare observed and recorded every time an agent, includ-
ing X0, delivers, or fails to deliver, its commitments. This
generates a large amount of data whose significance can
reasonably be expected to degrade over time. So a cumu-
lative estimate only is retained. The integrity of informa-
tion ‘evaporates’ as time goes by. If we have the set of ob-
servable outcomes asO = {o1, o2, . . . , om} then complete
ignorance of the expected outcome means that our expec-
tation over these outcomes is1m — i.e. the unconstrained

maximum entropy distribution. This natural decay of infor-
mation integrity is offset by new observations.

Given one of the parameters,u, with m possible out-
comes1, suppose thatP t(u′ | δ) is the estimate at timet
of the probability that the actual outcomeu′ will be ob-
served given that the agent being observed has committed
to δ. Suppose thatX0 observes the actual outcomer, on the
basis of this outcomeX0 believes that the probability ofr
being observed at the next time isgr. Then letP t

gr
(u′ | δ)

be the posterior minimum relative entropy distribution cal-
culated using Eqn. 4 with prior distributionP t(u′ | δ) and
satisfying the constraint thatP t

gr
(r | δ) = gr. Then up-

dateP t(u′ | δ) with:

P t+1(u′ | δ) =
1− ρ

n
+ ρ · P t

gr
(u′ | δ) (5)

This equation determines the development ofP t(u′ | δ) for
some largeρ ∈ [0, 1].

X0 uses the method in Eqn. 5 to update its estimates for
all probability distributions representing each of the agents
that it deals with. For example, ifP t(·) is X0’s estimate of
the time thatXω will take to deliver on a particular type of
agreement. Suppose that at timet, Xω delivers her response
after having taken timeu. ThenX0 attaches a belief (i.e. a
sentence probability) to the proposition that this is howXω

will behave at timet+1. This becomes the constraint in the
minimum relative entropy calculation and then Eqn. 5 gives
P t+1(·).

The process delegation problembelongs to the class of
resource allocation games which are inspired by the ‘El
Farol Bar’ problem — see [6] for recent work.

7.2. Choosing the ‘best’ collaborator

The probability distributions described above may be used
to determine the probability that one agent is a better choice
than another by calculating the probability that one ran-
dom variable is greater than another in the usual way. This
method may be extended to estimate the probability that one
agent is a better choice than a number of other agents. For
example, if there are three agents to choose from,A, B, and
C, then:
P(A �) = P((A � B) ∧ (A � C))

= P(A � B)×P((A � C) | (A � B))
The difficulty with this expression is that there is no direct
way of estimating the second, conditional probability. This
expression shows that:
P(A � B)×P(A � C) ≤ P(A �) ≤ P(A � B)
By considering the same expression withB andC inter-
changed:

1 Thesuccessparameter has only two possible outcomes ‘succeed’ and
‘fail’.

P(A � B)×P(A � C) ≤ P(A �)
P(A �) ≤ min[P(A � B),P(A � C)]
So for someτA ∈ [0, 1]:
P(A �) = P(A � B)×P(A � C)+
τA × [min[P(A � B),P(A � C)]−
P(A � B)×P(A � C)]

Similar expressions may be constructed for the probabili-
ties thatB andC are the best agents respectively. This is
as far as probability theory can go without making some as-
sumptions. To proceed assume that:τA =τB =τC =τ ; this as-
sumption is unlikely to be valid, but it should not be “too
far” from reality. EitherA or B or C will be the best plan,
so the sum of the three expressions for the probabilities of
A, B andC being the “best” plan will be unity. Hence:
τ = 1−d

q−d where:
d = [(P(A � B)×P(A � C))+
(P(B � C)×P(B � A))+(P(C � A)×P(C � B))]

q = [min[P(A � B),P(A � C)] +
min[P(B � C),P(B � A)]+
min[P(C � A),P(C � B)]]

This expression forτ is messy but is easy to calculate. The
probability that each of the three agentsA, B andC is the
“best” choice isP(A �), P(B �) andP(C �). An al-
ternative to the above is simply to use Eqn. 1 to estimate
the probability of the propositions that each of the agents is
the ‘best’ collaborator. This alternative approach involves a
maximum entropy calculation whereas the above approach
does not.

AgentX0 will choose theg0 function to reflect its own
preferences and to reflect the nature of the process for which
responsibility is being delegated.

7.3. Delegation Strategy

A delegation strategy is a probability distribution{pi}n
i=1

that determines who from{Xi}n
i=1 to offer responsibility to

for doing what. A delegation strategy has the properties:

if P(Xi �) > P(Xj �) then pi > pj

if P(Xi �) = P(Xj �) then pi = pj

pi > 0(∀i) and
∑

i

pi = 1

The delegation strategy achieves this stochastically by
determining insteadn probabilities(p1, . . . , pn) wherepi

is the probability that the i’th agent will be selected, and∑
i pi = 1. The choice of the agent to delegate to is then

made with these probabilities. The expression of the dele-
gation strategy in terms of probabilities enables the strategy
to balance conflicting goals, such as achieving process qual-
ity and process efficiency.

P(Xi �) is the probability thatXi is the ‘best’ choice.
A strategy that continually chose the ‘best’ on the basis of
historic data is flawed because an agent who “goes through

a bad patch” may never be chosen — this means that if an
agent wants “the quiet life” all is would have to do is make a
series of mistakes. So the delegation strategy chooses agents
with probability pi = P(Xi �). That is, the probability
thatX0 will attempt to delegate a process toXω is equal to
the probability thatX0 estimatesXω to be the ‘best’ choice
for the job.

8. Conclusion

Emergent processes are collaborative business processes
whose execution is determined by the prior knowledge of
the agents involved and by the knowledge that emerges dur-
ing a process instance. In an emergent process, the process
goal may mutate, and so does not provide clear direction for
process management. As emergent processes may involve
informal interaction, there is a limit to the extent to which
the processesper secan be “managed”. However, thecol-
laboration can be managed. The solution proposed builds
on ideas from information theory and entropy-based infer-
ence. These inference methods are logic-based and so oper-
ate with multi-issue interaction with ease — this is particu-
larly significant for the interactions involved in these high-
level processes. The establishment of a sense of trust con-
tributes to the establishment of business relationships and to
preventing breakdown during interaction. This is addressed
by the agents attempting to exhibit ‘fair play’ by applying
the principle of equitable information revelation.

To manage collaboration the agent is equipped with
Delegate(·), Join(·), Accept(·), Reject(·), Inform(·) and
Quit(·) interaction predicates. This discussion has focussed
on theDelegate(·) predicate.Join(·) is dealt with similarly.
Inform(·) is used to satisfy a delegation goal, and the re-
maining predicates are necessary to support the interaction.

The agents in the system are ‘essentially benevolent’ —
they do no necessarily require motivation to contribute to
a collaborative group or to take responsibility for a sub-
process. Despite this, the agents also have a responsibility
to their own user. So our agent does not attempt to second-
guess the motives of the other agents in the system. Instead
it takes advantage of the large amount of readily available
information concerning past performance to estimate, using
maximum entropy methods, expectations about future per-
formance. The information in the system is based on past
observations and so its integrity is in a permanent state of
decay [1]. The agent selects its collaborators from the sys-
tem by using a stochastic strategy. This strategy identifies a
collaborator with a probability that is equal to the agent’s es-
timate that she is the ‘best’ choice. This strategy provides a
reasonable balance between getting things done in the best
way and spreading the work around — thus ensuring that
the agent always has performance expectations for a num-
ber of potential collaborators.

References

[1] D. Bernhardt and J. Miao. Informed trading when informa-
tion becomes stale.The Journal of Finance, LIX(1), Febru-
ary 2004.

[2] J. Debenham. Bargaining with information. In N. Jennings,
C. Sierra, L. Sonenberg, and M. Tambe, editors,Proceedings
Third International Conference on Autonomous Agents and
Multi Agent Systems AAMAS-2004, pages 664 – 671. ACM,
July 2004.

[3] P. Dourish. Using metalevel techniques in a flexible toolkit
for CSCW applications.ACM Transactions on Computer-
Human Interaction (TOCHI), 5(2):109 – 155, June 1998.

[4] M. Esteva, J. Padget, and C. Sierra. Formalizing a languages
for institutions and norms. In J. Meyer and M. Tambe, ed-
itors, Intelligent Agents VIII, pages 348 – 366. Springer-
Verlag, Berlin, Germany, 2002.

[5] L. Fischer.The Workflow Handbook 2003. Future Strategies
Inc., 2003.

[6] A. Galstyan, S. Kolar, and K. Lerman. Resource allocation
games with changing resource capacities. InProceedings
of the second international joint conference on Autonomous
agents and multiagent systems AAMAS-03, pages 145 – 152,
2003.

[7] J. Halpern.Reasoning about Uncertainty. MIT Press, 2003.
[8] M. Huhns and M. Singh. Managing heterogeneous transac-

tion workflows with cooperating agents. In N. Jennings and
M. Wooldridge, editors,Agent Technology: Foundations, Ap-
plications and Markets, pages 219 – 239. Springer-Verlag:
Berlin, Germany, 1998.

[9] A. Jain, M. Aparicio, and M. Singh. Agents for process co-
herence in virtual enterprises.Communications of the ACM,
42(3):62 – 69, 1999.

[10] E. Jaynes.Probability Theory — The Logic of Science. Cam-
bridge University Press, 2003.

[11] N. Jennings, P. Faratin, T. Norman, P. O’Brien, and
B. Odgers. Autonomous agents for business process man-
agement. Int. Journal of Applied Artificial Intelligence,
142(2):145 – 189, 2000.

[12] D. MacKay.Information Theory, Inference and Learning Al-
gorithms. Cambridge University Press, 2003.

[13] S. Ramchurn, N. Jennings, C. Sierra, and L. Godo. A com-
putational trust model for multi-agent interactions based on
confidence and reputation. InProceedings 5th Int. Workshop
on Deception, Fraud and Trust in Agent Societies, 2003.

[14] M. Singh. Business Process Management: A Killer Ap
for Agents? In N. Jennings, C. Sierra, L. Sonenberg, and
M. Tambe, editors,Proceedings Third International Con-
ference on Autonomous Agents and Multi Agent Systems
AAMAS-2004, pages 26 – 27. ACM, July 2004.

[15] H. Smith and P. Fingar. Business Process Management
(BPM): The Third Wave. Meghan-Kiffer Press, 2003.

[16] W. van der Aalst and K. van Hee.Workflow Management:
Models, Methods, and Systems. The MIT Press, 2002.

[17] M. Wooldridge.Multiagent Systems. Wiley, 2002.

