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Abstract cess management agent, or a human agent, will have an ex-
ecutable plan to achieve such a goal.

Emergent processes are non-routine, collaborative busi-  The term “business process management” [14] is
ness processes whose execution is guided by the knowledggenerally used to refer to the simpler class of work-
that emerges during a process instance. They may involveflow processes [5], although there are notable exceptions
informal interaction, and so there is a limit to the extent to [11]. From the management perspective, emergent pro-
which the processes can be “managed”. Tdwllaboration  cesses are “knowledge-driven”. Aknowledge-driven
however can be managed. Managing collaboration needsprocessis guided by its “process knowledge” and “per-
an intelligent agent that is guided not by a process goal, formance knowledge”.Process knowledgés informa-
but by observing the performance of the other agents. Eachtion either generated by the individual users or is extracted
agent hagprocess knowledge- that is information either ~ from the environment, and includes background infor-
generated by the individual users or is extracted from the mation. Performance knowledgdescribes how the other
environment, angerformance knowledge- that describes  agents together with their ‘owners’ perform, includ-
how the other agents, together with their ‘owners’, perform ing how reliable they are.

—iqcluding how reliable they are. T_heintegrity o_fth_e infor- In so far as the process goal gives direction to goal-
mation derived from past observations decays in time, and yyjyven processes, the continually evolving process knowl-
so they have an inference mechanism that can cope with i”'edge gives direction to knowledge-driven processes. So
formation of decaying integrity. An agent is described that pjan-pased agent architectures such as BDI [17] are not di-
achieves this by using ideas from information theory. rectly suitable. To manage knowledge-driven process with
such an architecture would require machinery to manage
the mutations of the process goal. The agent architecture
described here manages the collaboration in the processes,
and not the processes themselves. This architecture is based

. on information theory.
Emergent processes are business processes that are not pre-

defined and arad hoc These processes typically take place
at the higher levels of organisations [9], and are distinct
from production workflows [5]. Emergent processes are op-
portunistic in nature whereas production workflows are rou-
tine [3]. How an emergent process will terminate may not Following [5] abusiness process “a set of one or more

be known until the process is well advanced. The tasks'inked procedures or activities which collectively realise a
involved in an emergent process are typically not prede- business objective or policy goal, normally within the con-
fined and emerge as the process develops. Those tasks md§xt of an organisational structure defining functional roles
be carried out by collaborative groups as well as by indi- and relationships”. ImpI|C|t in this definition is the idea that
viduals [15] and may involve informal meetings, business @ process may be repeatedly decomposed into linked sub-
lunches and so on. Further, the goal of an emergent pro-Processes until those sub-processes are activities which are
cess instance may mutate as the instance matures. So unlikgtomic pieces of work. [viz [5] “Aractivity is a description
“lower-order” processes, the goal of an emergent process in-0f @ piece of work that forms one logical step within a pro-
stance may not be used as a focus for the process manag&€ss.”].

ment system. An emergent process may have a fixed goal A particular process is called a (processtance An in-

such as “maximize profits” — but it is unlikely that a pro- stance may require that certain things should be done; such

1. Introduction

2. Process Management



Process Process Goal
Knowledge (what we believe we

(knowledge of Revise
what has been

achieved so far)

are trying
to achieve over all)

The complete representation, never mind the mainte-
nance, of the process knowledge may be complex. However,
in a process management system, or in an Electronic Institu-
tion [4], much of that knowledge may be readily available.

Decompose Performance knowledge is not difficult to capture, represent
A g;og;ggﬁggﬁgg;‘;e and maintain. For example, measurements of how long an-
other agent took to complete a sub-process, and measure-
ments of how reliable the other agents are.
Now-Goal
(what to try to Performance
hi t Knowledge
achieenex) (knowledge of 3. Emergent Process Management System
Select how effective
Add tiviti . . .
0 activities are) In the system described here each human player is assisted
Activity A by an agent. As emergent processes may involve informal
(what to do Add to interaction between players, there is a limit to the extent

next)
Do it —
(until termination

to which the processes themselves can be “managed”. This
is in contrast to task-driven processes, or production work-

condition .
satisfiod) flow, where a management system prescrivbat should

happen next— agents are “asked” to do things and are “ex-
pected” to comply. For emergent process théaboration
can be managed. The questions that an emergent process

agent considers include: “who to ask to assist”, “who can |
rely on”, “who works well with who”, “who do | want to

build a relationship with”. The answers to these questions
are inferred by observing the dynamics of the collaboration

) ) between the agents. So an agent for emergent process man-
things are called tasks. Three classes of business process afyement needs to be able to observe and evaluate the col-
defined in terms of their management properties. laboration — what appears to work and what does not —

and has to make sense out of this diverse information.
. " L The act of an agenining a real or virtual group for
a — possibly conditional — sequence of activities. gen 9 group

Each of th tivities h L and i iat qsome purpose is fundamental to collaboration. Another act
ach ot these ?C Wi 'ef as a goal and I assoclaleGg e agentelegatingresponsibility for a sub-process to
with a task that “always” achieves this goal.

another. The product of group activity, or process delega-

e A goal-driven proceshas a process goal, and achieve- tion, is some information being generated, and so to the
ment of that goal is the termination condition for the act ofinformation being passeflom one agent to another.
process. The process goal may have various decompol e system aims to implement these three types of act in-
sitions into sequences of sub-goals where these sublelligently. It consists of the set of agents(; };, — the
goa|s are associated W|th (atomic) activities and (o) description fO||0Wing iS Wl’itten from the pOint Of VieW Of
with tasks. Some of these sequences of tasks may workegentXo that interacts with the other agents. In the text,
better than others, and there may be no way of know- the agentX,, is “an other” agent —i.ew # 0.

ing which is which [15]. The possibility of task failure The agent architecture extends the agent described in [2].
is a feature of goal-driven processes. It is driven by the contents of a knowledge base that repre-

sents the agent’s world model represented in probabilistic
e A knowledge-driven processay have a process goal, first-order logic. The system attempts to manage the collab-
but the goal may be vague and may mutate [3]. Muta- oration using the information that is generated both by and
tions are determined by the knowledge generated dur-pecause of it. To achieve this, it draws on ideas from in-
ing the process. At each stage in the performance offormation theory. As with the agent described in [X],
a knowledge-driven process, the “next goal” is iden- makes assumptions about: the way in which the integrity of
tified using the process knowledge. So in so far as jnformation will decay, and some of the preferences that its
the process goal gives direction to goal-driven — and collaborators may have for some agreements over others. It
task-driven — processes, the process knowledge givesalso assumes that unknown probabilities can be inferred us-
direction to knowledge-driven processes. A simpli- jng maximum entropy inferen¢&2], ME, which is based on
fied view of knowledge-driven process management is random worlds [7]. The maximum entropy probability dis-
shown in Fig. 1. tribution is “the least biased estimate possible on the given

New Performance
Knowledge

New Process
Knowledge

Figure 1. Knowledge-driven processes.

e A task-driven procesisas a unique decomposition into



information; i.e. it is maximally noncommittal with regard the functionU may expressed in units of time. It may not
to missing information” [10]. In the absence of knowledge be possible to specify the utility function either precisely or
about the other agents’ allegiancesy assumes that the with certainty. This is addressed in Sec. 5.
“maximally noncommittal” model is the correct model on The agents communicate using sentences in a first-order
which to base its reasoning. languageC: Delegate(-), Join(-), Accept(:), Reject(-),

X, decides what to do — such as what message to sendnform(-) and Quit(-). Delegate((Xy, p), (Xw,G:))
— on the basis of its past observations, the current integritymeans X, proposes to recompensg, with p if X,
of which is expressed as degrees of belief. uses thisin-  agrees to take responsibility for an individual gaa]”.
formation to calculate, and continually revise, probability Join((Xy, p), (X, G;)) means X, proposes to recom-
distributions for that which it does not know. One such dis- penseX,, with p if X, agrees to contribute to coopera-
tribution, over the set of all possible actions, expressgs tive goal G;". Accept(6) means “the sender accepts your
belief in the suitability to herself of performing that action. proposed agreemeidt. Reject(d) means “the sender re-
Other distributions attempt to predict the behavior of an- jects your proposed agreemefit Inform((Xo,Zx), Xw)
other agent — such as what agreements she might acceptneans X, offers informationZ; to X,”. Quit(-) means
X is purely concerned with the other agents’ behaviors — “the sender quits — the interaction ends”. So for these pred-
what they actually do — and not with assumptions about icates, and in this discussion, an agreemenas the form
their motivations. This somewhat detached stance is ap-((Xo, p), (X.,G;))-
propriate for emergent process management in which each The communication predicates described in the previous
agent represents the interests of it owner, whilst at the samearagraph introduce a number of concepts. In the interest of

time attempting to achieve social goals. brevity these are only described here informally. The notion
of one agent recompensing another [pfrefers to both the
4. Emergent Process Agenk, informal “thanks, | owe you one”, and to the formal “take

the rest of the day off”, or some sum of money. Ali-

X, operates in an information-rich environment that in- Vidual goalhas the form of: informatiorf;, will be sent
cludes the Internet. One source ®i’s information is the 10 agentX,. by time ¢. An cooperative goahas the form
signals received fromX,,. These include proposals from of: the assembly of informatiof;, will be coordinated by
X., to X,, the acceptance or rejection B, of X,'s pro- agentX, by timet. The expression of the information re-
posals, and information tha,, sends taX,. Incoming in-  duires somentology— that is not described here.
formation is augmented hy(, with sentence probabilities

that represent the strength of her belief in its truthX|f re- 4.2. Agent Architecture

fused to assisX, two days ago then what i§,’s belief now

in the proposition thak',, will assist her now? Perhapsiitis  x; uses the languagtfor external communication, and the
around 0.1. For simplicity, a linear model is used to model languagel for internal representation. One predicateCin
the integrity decay of these beliefs, and when the probabil-is: Accq(((Xy, p), (X.,,G;))). The propositionAccq(8) |

ity of a decaying belief approaches its maximum entropy 7,) means: %, will be comfortable accepting the delega-

value the belief is discarded. tion agreemend with agentX,, given thatX, knows infor-

mationZ; at timet”. The idea is thatX, will accept delega-
4.1. Interaction Protocol tion agreement if P(Accq(d) | Zt) > « for some threshold

constantv. The precise meaning tha, gives toAccq(0) is
An agreemenis a pair of commitmentsx,.x_, (zo, z.,) be- described in Sec. 5. Similarlcc; for Join(-) agreements.
tween an agenX, and another ager¥,,, wherez is Xy's The probability distributionP (Aggq((Xo, p), (Xw,G:)))
commitment and:,, is X,,'s commitment.A = {§;}2, is is agentXy’s estimate of the probability that agekt, will
the agreement set — ie: the set of all possible agreementsagree to théelegate agreemend [or Agg;(-) for Join(-)
If the context is clear then the subscrigty : X" is omit- agreements] — it is estimated in Sec. 6.

ted. These commitments may involve multiple issues —not  Each incoming messag®l from sourceS received at
simply a single issue such as time to complete a task. Thetime ¢ is time-stamped and source-stampéd;s ), and

set ofterms 7, is the set of all possible commitments that placed in arin box, X, as it arrives Xy has arinformation
could occur in an agreemednte A. repositoryZ, aknowledge bas& and abelief set3. Each

An agent may have a real-valuedility function: U : of these three sets contains statements in a first-order lan-

7 — R, that induces an ordering ofi. For such an  guagel. Z contains statements ifitogether with sentence
agent, for any agreement = (zo,xz,) the expression probability functions of timeZ, is the state off at timet
U(x,,) — U(xo) is called thesurplusof §, and is denoted  and may be inconsistent. At some particular timk, con-

by L(6) whereL : 7 x T — . For example, the values of tains statements tha&f, believes are true at timeg such as



Vax(Accept(z) « —Reject(x)). The belief set3; = {5;} A random world for K is a probability distribu-
contains statements that are each qualified wgtvan sen- tion W = (p;) over Vi = (V;), where W ex-
tence probability B(5;), that representXy’s belief in the presses an agent’s degree of belief that each of the possible
truth of the statement at tinte The distinction between the  worlds is the actual world. Thderived sentence probabil-
knowledge bas& and the belief se is simply thatC con- ity of any o € L, with respect toa random worldWy is

tains unqualified statements aficcontains statements that (Vo € £):

are qualified with sentence probabilitids.and B play dif-

ferent roles in the method described in Sec. L3y B; is Py, (0) £ {pn : oisTinV, } (1)
required by that method to be consistent. n
Xo's actions are determined by its “strategy”. sirat- A random worldWx is consistenwith the agent’s beliefs

egyis a functionS : £ x B — A whereA is the set of  Bif: (V3 € B)(B(3) = Pw,(0)). That s, for each belief
actions. At certain distinct times the functi&his applied its derived sentence probability as calculated using Eqgn. 1
to IC and B and the agent does something. The set of ac-is equal to its given sentence probability.

tions, A, includes sendin@elegate(-), Join(-), Accept(-), Theentropyof a discrete random variabl€ with proba-
Reject(-), Inform(-) andQuit(-) messages t&,,. Theway  bility mass function{p; } is [12]: H(X) = — ", p, logp,

in which S works is described in Secs. 6. Two “instants of where:p, > 0and)_, p, = 1. Let Wik ,5y be the “max-
time” before theS function is activated, an “import func-  imum entropy probability distribution ovésx that is con-
tion” and a “revision function” are activated. The import sistent with3". Given an agent withC and B, maximum
functionI : (X x Z,-) — I, clears the in-box, using its  entropy inferencetates that itslerived sentence probabil-

“import rules”. An import rule takes a messagé, written ity for any sentencey € L, is:
in language’, and from it derives sentences written in lan- n
guageL to which it attaches decay functions, and adds these (Vo € L)P(0) = Pwy 5, (9) @)

sentences together with their decay functions;toto form Using Egn. 2, the derived sentence probability for any be-

Z;. These decay functions are functions of the message typeyiet 3. is equal to its given sentence probability. So the term
the time the message arrived and the source from which itgentence probabilitis used without ambiguity.

came — an illustration is given below. Amport rule has If X is a discrete random variable taking a finite number
the form:P(5 | Mix,, 1) = f(M, X, 1) € [0, 1], whereS of possible valuesz; } with probabilities{p;} then theen-
is a statement}/ is a message anflis the decay function. oy s the average uncertainty removed by discovering the
Then the belief revision functioR : Z,- — (Z; x KC; x ;) true value ofY, and is given byFL(X) = — > p,, log py..
deletes any statements - whose sentence probability The direct optimization oL (X) subject to g numbet,
functions have a value thats 0.5 at timet. From the re- ¢ |inear constraints of the form, puge(an) = gy for

maining statement® selects a consistent set of statements, given constantg,, wherek = 1 9, is a difficult prob-
H il

instantiates their sentence probability functions to time  |gm_ Fortunately this problem has the same unique solution
and places the unqualified statements from that s€{ i~ 55 themaximum likelihood problerfor the Gibbs distribu-
the qualified statements, together with their sentence prob+isy The solution to both problems is given by:

abilities, are placed ;.

X, uses three things to construct proposals: an esti- exp ( - Zzzl )\kgk(xn))
mate of the likelihood tha,, will accept any agreement Dn = 5 3)
[Sec. 6], an estimate of the likelihood tht will, in hind- > €XP ( =D k=1 Akgk(zm))

sight, feel comfortable accepting any particular agreement

[Sec. 5], and an estimate of whefi, may quit and leave " = 1,2,--- where the constants\;} may be calculated
the interaction — see [2]. using Eqn. 3 together with the three sets of constraints:

Pn Z 01 Zn Pn = 1 and Enp’n,gk(xn) = ?k' The dis-
tribution in Eqn. 3 is known a&ibbs distribution
4.3. Inference Given a prior probability distributiog = (¢;)?, and a
set of constraints, therinciple of minimum relative entropy
Xo employs maximum entropy inference and minimum rel- chooses the posterior probability distributipn="(p;)™_,
ative entropy inference to derive expectations of future per-that has the least relative entropy with respect:to
formance from prior, sparse observations. Gdbe the set -

of all positive ground literals that can be constructed using < Pi

the symbols inC. A possible worlds a valuation function arg n Zpi log @ (4)
V:G — {T,L}. V denotes the set of all possible worlds, - o=t

and Vi denotes the set of possible worlds that are consis-and that satisfies the constraints. The principle of minimum
tent with a knowledge bagé [7]. relative entropy is a generalization of the principle of max-



imum entropy. If the prior distribution is uniform, the rel- To support the agreement-exchange proc&gshas do
ative entropy ofp with respect tog differs from —H(p) two different things. First, it must respond to proposals re-
only by a constant. So the principle of maximum entropy ceived from X,, — that is described in Sec. 5. Second,
is equivalent to the principle of minimum relative entropy it must construct proposals, and possibly information, to
with a uniform prior distribution. send toX,, — that is described now. Maximum entropy in-
ference is used to ‘fill in” missing values with the “maxi-
mally noncommittal” probability distribution. To illustrate
this suppose thaX, proposes to delegate a processxio.

Why would X, accept delegate(-) or aJoin(-) proposal? This process involveX, delivering — gsing afdnform(-)
Each deal§ = ((Xo, p), (X.,,G;)), contains provision for ~ Message —u chapters for a report in so-many days
an incentivep. However it is more realistic [16] to assume 1 NiS section describes machinery for estimating the prob-
that the agents in an emergent process management systefpilities P(Agga((Xo, u), (Xu, G»)) where the predicate
are benevolent [8] — that is, they will accept a responsi- A88d((Xo,u), (Xu, G)) means X, will acceptXy’s del-
bility for a process if they believe that they can achieve the €9ation proposal(Xo, ), (X., Gv))". _
process goal. S&, needs machinery to estimate the prob- X, assumes _the following two preference relations for
ability that if it takes responsibility for goal; then itwill X, @ndK contains:
achieve it. Sec. 6 considers the converse problem: that is/t11 * Va,y, 2((x <y) —
how X, estimates the probability distribution over all pos- (A884((Xo0,¥), (Xu, G=)) — Agga((Xo, 1), (Xu, G2))))
sible responses thaf,, will respond in various ways. k120 Y,y 2((z <y) —

The propositior(Accq((Xo, p), (Xo, Gi)) | 7o) was in- (A88a((Xo, 2), (Xu, Gi)) — Agga((Xo, 2), (Xu, Gy))))

troduced in Sec. 4.2. This section describes how the agenf'S Noted in Sec. 4.3, these sentences conveniently reduce
estimate® (Accq(8) | 7)) — i.e. the probability thak, at- the number of possible worlds. The two preference relations

taches to the truth of this proposition for variouisThis is #11 andsky induce a partial ordering on the sentence proba-

described for delegations only Jein(-) is dealt with sim- ~ Pilitiesin theP (Agga((Xo,u), (Xu, Gy))) array. There are
ilarly. fifty-one possible worlds that are consistent with

X, forms its future expectations on the basis of past ob- _ SUPPOse thaiX, has the following historical data on
servations, including the expectations that it has about it- Similar dealings withX,,. Three months agd’., asked for
self. Sec. 6 following describes hal, forms its expecta- (€N days to deliver four chapters. Two months agppro-
tions about a collaborator. The same approach is used estiP0Sed one day to deliver three chapters Apdefused. One
mateP (Acca((Xo, p), (Xo, Gi)) | Ti) — the integrity of month agaX,, asked for eight days to deliver two chapters.

past observations is continually discounted, new observa-5 contains:

tions are fed in using minimum relative entropy inference i1 Agga((Xo, 4), (Xo, Gro));
—_Eqn. 4. This yields a probability distribution over all pos- 212 : A8g4((Xo,3), (X, G1)) and

sible outcomes that could occurX, were to committoa 013 : A88a((Xo0,2), (Xu, Gs)),

5. Acceptability of a Proposal.

Delegate(-) proposal.X, then uses this distribution to de-
cide whether or not to commit on the basis of the simple cri-
terion:P(Accq((Xo, p), (Xw, Gi)) | Zt) > o for some per-
sonal ‘comfort factor'a. The details of how this probabil-
ity distribution is derived is the same as thpg(-) — this

is described following.

and assuming a 10% decay in integrity for each month:
P(f11) = 0.7, P(f12) = 0.2 andP(f13) = 0.9

Egn. 3 is used to calculate the distributioiV x5
which shows that there are just five different probabil-
ities in it. The probability matrix for the proposition
Aggd((X()vu)’ (Xw’ Gv)) is:

. v\ U 1 2 3 4 5

6. Interaction 11 0.9967 0.9607 0.8428 0.7066 0.3533
. L ) 10 0.9803 0.9476 0.8330 0.7000 0.3500

Xy interacts with its collaborator§X; }7 ;. It is assumed 9 09533 09238 0.8125 0.6828 0.3414
that goals are initially triggered externally to the system. For 8  0.9262 0.9000 0.7920 0.6655 0.3328
example,Xy’s ‘owner’ may have an idea that she believes 7 0.8249 0.8019 0.7074 0.5945 0.2972
has value, and triggers an emergent process to explore the 6 0.7235 0.7039 0.6228 0.5234 0.2617
idea’s worth. The interaction protocol is simpleXf, sends 5 0.6222 0.6058 0.5383 0.4523 0.2262
aDelegate(-) or aJoin(-) message td,, then an interac- 4 05208 0.5077 0.4537 0.3813 0.1906
tion has commenced and continues until one agent sends an 3 04195 0.4096 0.3691 0.3102 0.1551
Accept(+) or aQuit(-) message. This assumes that agents 2 03181 0.3116 0.2846 0.2391 0.1196
1 0.2168 0.2135 0.2000 0.1681 0.0840

respond in reasonable time which is fair in an essentially co-
operative system.

In this array, the derived sentence probabilities for the three



sentences i are shown in bold type; they are exactly their gain of A,|7!|. Suppose thaf{, wishes to reject this

given values. agreement by sending a counter-propoBalegate(-), that
Xj's interaction strategys a functionS : K x B — A will give X, expected “equitable information gainj. =
whereA is the set of actions that sefilegate(-), Join(-), {arg maxs P(Acca(6) | Z¢) > o | (Apetegate(s)| J5| &
Accept(-), Reject(+), Inform(-) and Quit(-) messages to A, |7|)}. That isX, chooses the most acceptable agree-
X,. If Xy sends any message 1§, then she is givingX,, ment to herself that gives her collaborator expected “equi-
information about herself. table information gain” provided that there is such an agree-

ment. If there is not theX; chooses the best available com-
promi565 = {a‘rg ma'X(S(ADelegate((;)‘kZﬁQD | P(ACCd((S) ‘

Z;) > «} provided there is such an agreement — this strat-
egy is rather generous, it rates information gain ahead of
personal acceptability. If there is not thaly quits.

6.1. An ‘even-handed’ agent

An agent may be motivated to act for various reasons —
three are mentioned. First, if there are costs involved in the
interaction dueeitherto changes in the value of the inter-
action object with timeor to the intrinsic cost of conduct- 7. Delegation
ing the interaction itself. Second, if there is a risk of break-

down caused by a collaborator dropping out of a negoti- The mechanism that,, uses for managing process delega-
ation. Third, if the agent is concerned with establishing a tion is described in fullJoin(-) messages are managed sim-
sense of trust [13] with the collaborator — this could be jjarly. This next section discusses the sorts of payoff mea-
the case in the establishment of a business relationship. Ofyres and estimates that are available, and that are combined
these three reasons the last two are addressed here. The rigk give a value for the expected payoff vectgrfor each

of breakdown may be reduced, and a sense of trust may bggent. LefP(A > ) denoted is the ‘best choice’ in terms
established, if the agent appears to its collaborator to be “ap-f some combination of the parameter estimates described
proaching the interaction in an even-handed manner”. Onefo|iowing. These measurements are then used by aignt

dimension of “appearing to be even-handed” is to be equi- g determineP(X; >>), and then in turn to determine the
table with the value of information given to the collaborator. gelegation strategp;)

Various interaction strategies, both with and without break-
down, are described in [2], but they do not address this is-
sue. An interaction strategy is described here that is founded?.1. The Performance Parameters
on a principle of “equitable information gain”. That i&,
attempts to respond t8,,'s messages so that,'s expected  Agent X, continually measures the performance of itself
information gain similar to that whicX, has received. and of other agents in the system using four measures. Three
X, modelsX,, by observing her actions, and inferring are:time, costandlikelihood of succeswhich are attached
beliefs about her future actions in probability distributions to all of its delegations-in and delegations-out. The last one
such asP(Aggq). X, measures the value of information is avalueparameter that is attached to other agents. Time
that it receives fromX,, by the change in the entropy of is the total time taken to termination. Cost is the actual cost
this distribution as a result of representing that informa- of the of resources allocated. For example, the time that the
tion in P(Agg,). More generally,X, measures the value agent — possibly with a human ‘assistant’ — actually spent
of information received in a message, by the change in ~ working on that process. The likelihood of success is the
the entropy in its entire representatiqfi, = K, U B, as probability that an agent will deliver its response within its
a result of the receipt of that message; this is denoted by:constraints. The value parameter is the value added to a pro-
A,|T7H|, where| 7| denotes the value (as negative en- cess by an agent. Unfortunately, value is often very difficult
tropy) of Xy's information in 7 at timet. Although both to measure — it is treated here by a subjective estimate de-
Xo and X, will build their models of each other using livered by users of the system.
the same data — the messages exchanged — the observed The three parametetsne, costand likelihood ofsuc-
information gain will depend on the way in which each cessare observed and recorded every time an agent, includ-
agent has represented this information. It is “not unrea-ing X, delivers, or fails to deliver, its commitments. This
sonable to suggest” that these two representations shouldjenerates a large amount of data whose significance can
be similar. To support its attempts to achieve “equitable reasonably be expected to degrade over time. So a cumu-
information gain” X, assumes thaf,’s reasoning ap- lative estimate only is retained. The integrity of informa-
paratus mirrors its own, and so is able to estimate thetion ‘evaporates’ as time goes by. If we have the set of ob-
change inX,,’s entropy as a result of sending a message servable outcomes & = {01, 09,. .., 0., } then complete
uto X,: A#\jﬂ. Suppose thafX, receives a message ignorance of the expected outcome means that our expec-
= Delegate(-) from X, and observes an information tation over these outcomesiﬂ%‘ — i.e. the unconstrained

n
i=1"



maximum entropy distribution. This natural decay of infor-
mation integrity is offset by new observations.

Given one of the parameters, with m possible out-
comes, suppose thaP!(u’ | §) is the estimate at time
of the probability that the actual outcomé will be ob-

P(A>B)xP(A>C)<PA>)
P(A>) < min[P(A> B),P(4> C)]
So for somery € [0, 1]:
P(A>)=P(A> B)xP(A>C)+
T4 x [min[P(A > B),P(A > C)]-

served given that the agent being observed has committed P(A > B) x P(A > C)]
to 4. Suppose thak'y observes the actual outcomgon the Similar expressions may be constructed for the probabili-
basis of this outcomé&, believes that the probability of ties thatB and C' are the best agents respectively. This is
being observed at the next timegs. Then letP, (u’ | 0) as far as probability theory can go without making some as-
be the posterior minimum relative entropy distribution cal- sumptions. To proceed assume that=rg =7¢ =7; this as-
culated using Egn. 4 with prior distributiaR’ (v | 6) and sumption is unlikely to be valid, but it should not be “too
satisfying the constraint tha‘%’;(r | ) = g.. Then up- far” from reality. EitherA or B or C will be the best plan,
datePt(u' | 6) with: so the sum of the three expressions for the probabilities of
A, B andC being the “best” plan will be unity. Hence:
T= (11:—3 where:
d=[P(A> B)xP(A>C))+
This equation determines the developmenPbfu’ | &) for (P(B> C)xP(B > A))+(P(C > A)xP(C > B))|
some large € [0, 1]. ¢ = [min[P(A> B),P(A> C)] +

X, uses the method in Egn. 5 to update its estimates for min[P(B > C),P(B > A)]+
all probability distributions representing each of the agents min[P(C' > A), P(C > B)]|
that it deals with. For example, () is X's estimate of ~ This expression for is messy but is easy to calculate. The
the time thatX,, will take to deliver on a particular type of ~Probability that each of the three agents B andC' is the
agreement. Suppose that at tie,, delivers her response  “best” choice isP(A >), P(B >) andP(C >). An al-
after having taken time. ThenX, attaches a belief (i.e. a ternative to the above is simply to use Eqgn. 1 to estimate
sentence probability) to the proposition that this is hew the probability of the propositions that each of the agents is
will behave at time + 1. This becomes the constraint in the the ‘best’ collaborator. This alternative approach involves a
minimum relative entropy calculation and then Eqn. 5 gives Maximum entropy calculation whereas the above approach
P, does not.

The process delegation probletrelongs to the class of Agent X, will choose they, function to reflect its own
resource allocation games which are inspired by the ‘El Preferences and to reflect the nature of the process for which

Farol Bar' problem — see [6] for recent work. responsibility is being delegated.

p

1
P! [8) = —= +p- P (u'[ ) (5)

7.2. Choosing the ‘best’ collaborator 7.3. Delegation Strategy

The probability distributions described above may be usedA delegatio_n strategy is a pr;)bability diStribUﬁ@i_},;Ll
to determine the probability that one agent is a better choicelat determines who frofuX; }7., to offer responsibility to

than another by calculating the probability that one ran- OF doing what. A delegation strategy has the properties:

dom variable is greater than another in the usual way. This

method may be extended to estimate the probability that one

agent is a better choice than a number of other agents. For

example, if there are three agents to choose franf3, and

C, then:

P(A>)=P((A> B)A(A>()) The delegation strategy achieves this stochastically by

=P(A> B)xP((A>C)|(A> B)) determining instead. probabilities(ps, . .., p,) wherep;

The difficulty with this expression is that there is no direct s the probability that the i'th agent will be selected, and

way of estimating the second, conditional probability. This >, pi = 1. The choice of the agent to delegate to is then

expression shows that: made with these probabilities. The expression of the dele-

P(A> B)xP(A>C)<P(A>)<P(A> D) gation strategy in terms of probabilities enables the strategy

By considering the same expression withand C' inter-  to balance conflicting goals, such as achieving process qual-

changed: ity and process efficiency.

P(X; >) is the probability thatX; is the ‘best’ choice.

1 Thesuccesparameter has only two possible outcomes ‘succeed’ and A strategy that continually chose the ‘best’ on the basis of
fail’ historic data is flawed because an agent who “goes through

if P(X;>) > P(X;>) then p; > p,
if P(X;>) = P(X,>) then p;, =p,

pi>0(Vi) and ) p;=1
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