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ABSTRACT

We present here Extended Markov Tracking (EMT), a computa-
tionally tractable method for the online estimation of Markovian
system dynamics, along with experimental support for its success-
ful contribution to a specific control architecture. The control archi-
tecture leverages EMT to simultaneously track and correct system
dynamics.

Using a widespread extension of the Markovian environment
model to multiagent systems, we provide an application of EMT-
based control to multiagent coordination. The resulting coordi-
nated action algorithm, in contrast to alternative approaches, does
not eliminate interference among agents, but rather exploits it for
purposes of synchronization and implicit information transfer. This
information transfer enables the algorithm to be computationally
tractable. Experiments are presented that demonstrate the effective-
ness of EMT-based control for multiagent coordination in stochas-
tic environments.

Categories and Subject Descriptors

1.2.8 [Problem Solving, Control Methods, and Search]; 1.2.11
[Distributed Artificial Intelligence]: Multiagent systems; 1.2.11
[Distributed Artificial Intelligence]: Coherence and coordination

General Terms
Algorithms

Keywords

Control, Planning, Coordination, Multiagent Systems, Markovian
Environment

1. INTRODUCTION

Imagine a team of robots sent into a danger zone on a search and
rescue mission. Sophisticated machines, they carefully navigate
uneven ground, mapping their way, monitoring for sudden changes
in the environment or each other. They find an injured person, and
two of the robots carry the victim out on a stretcher, careful to keep
it as steady as possible.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AAMAS’ 05, July 25-29, 2005, Utrecht, Netherlands.

Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

This scenario may require the solution of many hard problems
for a robotic agent: planning and control in a stochastic domain,
data fusion and data mining, model learning; and all of these, even
when individually solvable, are made much harder by the need
for continually coordinated performance. The latter, if not han-
dled properly, will be easily hindered by unintentional interference
between the team members, observational noise, and uncertainty
about the environment and its response to actions.

Continual coordination is a process that occurs over time, and as
such deals with the exhibited behavior of the system over time—
that is, the system dynamics, rather than the system state at a single
point in time. In teamwork, the dynamics that the system is sup-
posed to exhibit may be known, and the coordination task is to en-
sure that those dynamics are brought about. This means continual
tracking of the system dynamics, detection of deviation from the
ideal dynamics, and choice of action in an attempt to correct the
deviation.

A tracking mechanism that we introduce in this paper, called Ex-
tended Markov Tracking (EMT), allows efficient observation-based
estimation of the dynamics exhibited by a system. By incorporating
EMT as a predictor in a control schema, we achieve the simultane-
ous tracking and correction of system dynamics for a single agent.
Extending the environment model used by EMT-based Control to
include multiple agents, we obtain a coordinated action algorithm
for stochastic domains.

The resulting coordinated action algorithm, in contrast to alter-
native approaches, does not eliminate interference among agents,
but rather exploits it for purposes of synchronization and implicit
information transfer. As a result, it becomes computationally fea-
sible to carry out the coordinated choice of actions.

1.1 Overview of the Paper

The rest of the paper is organized as follows. We first discuss the
background and connections of the proposed algorithm, to relate
it to and distinguish it from other research, in Section 2. We then
provide technical details of our algorithm for the tracking of system
dynamics, in Section 3. Application to control and modification for
coordinated action is presented in Section 4, and experimental per-
formance results of EMT Control follow in Section 5. We expand
discussion of the technique in Section 6, and then present conclu-
sions in Section 7.

2. RELATED WORK

EMT Control has many connections to other research in the lit-
erature, which we will review in this section. Most of these con-
nections can be classified into one of two main groups: (1) those
related to Information Theory, and (2) those related to Decision
Theory.



2.1 Information Theory Connections

System dynamics has long been a subject of inquiry in informa-
tion theory [7]. That field mainly deals with Markovian dynamics,
where the current system state probabilistically depends on a finite
history backwards in time. These dynamics (and we also adopt this
description) are represented by a conditional distribution, and de-
scribe the way information is transmitted through a noisy channel.
One of the major tasks of information theory is to find a source
coding to maximize the rate and accuracy of information transfer.

Among the most recent works on the subject are those of Tishby
etal. [19, 20], which propose a novel method for distributional clus-
tering and relevant quantization. An elegant theoretical schema is
built for preserving maximum relevant information, when it has to
be transmitted via a third party. For example, image-based face
recognition has two stages: image “compression” into features,
then face recognition based on the features. [20] provides an ex-
act, self-consistent set of equations that allow optimal creation of
feature coding, so that information relevant to face recognition will
be maximally preserved in the derived features. Later work [19]
provides a practical algorithm for developing the feature set itself,
also through a widely applicable mathematical construction.

Notice that source coding can be seen as open loop control: pre-
set source code defines what kind of dynamics the overall system
will exhibit as time goes to infinity. Control with Extended Markov
Tracking (EMT), which we present here, exploits similar mathe-
matical tools and notation. It also deals with the system state pass-
ing through the noisy channel of a state transition function. How-
ever, the task it faces differs significantly in several respects. First,
EMT Control has no ability to directly predetermine the way that
the system state will be distributed; instead, EMT Control has only
a limited set of actions that will influence the channel noise, which
(in turn) will continually change the system state distribution. Sec-
ond, EMT Control does not have the luxury of infinite time. Exhib-
ited dynamics must stay within tight bounds at all times, not only
in the limit.

An information-theoretic approach to coordinated control was
also used by the research group of Durrant-Whyte [3, 10]. In their
work, multi-robot sensor systems are explored within the frame-
work of decentralized data fusion. As a consequence, control be-
comes a function of predicting information gain from an action,
and choosing the best prospect. Allowing non-frequent exchange
of observation information, a successful control schema is devel-
oped. However, it is important to note that the goal of their systems
is information itself. In our work, we tend toward more general
systems, where information is only a key to better control, not the
ultimate goal. Also, as will be shown in the experiment set of Sec-
tion 5, the coordinated action control proposed in this paper does
not use explicit information exchange, but rather exploits implicit
information transfer through the environment, which further gener-
alizes the approach.

2.2 Decision Theory Connections

Another related branch of research is Markov Decision Problems
(MDPs), and their extensions to multiagent domains. MDPs also
have at their core a Markovian model of system dynamics. How-
ever, they do not deal directly with ideal system dynamics. Instead,
MDPs see them as a reward function, dictating how much gain or
cost would be incurred if the system would move from one state
to another. The idea is that maximizing the average reward (ac-
cumulated over time, or accumulated in a discounted fashion over
time) [14] requires the system to follow and exhibit the ideal dy-
namics. Solving fully observable MDPs, where it is possible to de-
termine completely the system state from observations, is relatively

simple. However, Partially Observable MDPs (POMDPs) are hard
to solve [4, 12, 2].

There have been several extensions of the Markovian environ-
ment model to multiagent settings. They preserve the MDP eco-
nomic perspective, and attempt solutions mostly based on rein-
forcement learning techniques (e.g., [11, 15, 1]). However, agent
actions interfere with one another, creating observational noise, so
multiagent MDPs are at least as hard as POMDP, even if explicit
communication is available at no cost. If, in addition, communi-
cation is limited or is subject to cost, the exact solution of multia-
gent MDPs becomes exceptionally hard. Computational complex-
ity reaches NEXP in all system parameters, and what is even worse,
the problem is inapproximable—good approximate solutions have
equally high complexity [15, 17].

The classical way to reduce this complexity is to eliminate the in-
terference between the agents or to break the problem into smaller
parts, e.g., [4, 9]. These approaches regard inter-agent dependen-
cies created by system feedback as a hazard. A refreshingly neutral
work in this sense is that of Wolpert et al. [23, 24]. That research
views inter-agent interference as a side effect of their activity, and
attempts to align them, providing alternative targets for each agent
to achieve. This in turn improves system performance.

The EMT-based coordinated action algorithm presented in this
paper goes further, and views interference between agents as an
asset. The algorithm exploits that interference to implicitly trans-
fer information between the agents through the environment. This
ability should indeed be an important feature of any coordinated
action control algorithm. It allows us, together with a well-formed
mathematical apparatus, to compel the system to exhibit the desired
dynamics, while investing computational effort only polynomial in
the system description.

3. EXTENDED MARKOV TRACKING

Determining, from observations, the behavioral trends of an en-
vironment during interaction with it is known to be a hard problem.
It is universally treated by complex models that require significant
amounts of data and involve a large computational burden [18, 5,
16]. However, usually interaction is either short-lived and discrete
in time or, although internally complex, exhibits simple external
trends. Thus, a simple Markovian model will often be sufficient for
our needs.

3.1 Model

A Markovian environment is described by a tuple
< S,AT,0O,Q,so >, where:

e S is the set of all possible environment states;

e sg is the initial state of the environment (which can also be
viewed as a distribution over S);

e A is the set of all possible actions applicable in the environ-
ment;

e T'is the environment’s probabilistic transition function:
T:S5x A — II(S). Thatis, T(s'|a, s) is the probability
that the environment will move from state s to state s’ under
action a;

e O is the set of all possible observations. This is what the
sensor input would look like for an outside observer;

e (2 is the observation probability function:
Q:S%x AxS —T(O). Thatis, Q(o|s’, a, s) is the proba-
bility that one will observe o given that the environment has
moved from state s to state s’ under action a.



In many current approaches, including previously mentioned MDPs

(Section 2), “tracking” means a continual estimation of the system
state as seen through the distortion of observations. We believe this
approach is insufficient, since it actually disregards the continual
nature of tracking. Rather than understanding where the system is
moving, it is of greater importance to know how it is moving. In
other words, instead of tracking the system state, one needs to track
the way the system changes, i.e., the dynamics of the system.

This is what makes Extended Markov Tracking (EMT) so well-
suited for coordinated action choice. Unlike other approaches that
have to be adapted to the task, EMT concentrates directly on the
subject of coordination: system dynamics.

3.2 Tracking of Dynamics

EMT tracks the system dynamics by continually performing a
conservative update of a system dynamics estimate expressed as a
mapping PD : S — II(S). After every development epoch of the
system, the EMT algorithm searches for an explanation dynamics
D that can account for the change in system state. An explanation
that differs least from the old dynamics estimate then becomes the
new estimate.

The distance between old and new system estimates is measured
by EMT using the Kullback-Leibler (KL) divergence function [7]:

Dicr(pla) = 3 p(a) log gg—j

P N

From the information theoretic point of view, this is the price
one will have to pay for using distribution ¢ to encode a source
distributed by p. In our case, the old dynamics estimate is the en-
coding we use, while the new dynamics estimate stands in for the
true source distribution. In a sense, KL divergence would measure
the “regret” of using an old estimate in light of new evidence and a
new estimate of the system dynamics. Conservative update dictates
the minimization of this regret.

However, to complete the measure and system dynamics track-
ing, one has to maintain one auxiliary kind of information: beliefs
about the current system state. Initial beliefs are given by the def-
inition of the environment tuple. Assume that at some stage we
believe p € II(S), and we obtain an observation o € O after action
a. Then we can update our beliefs using the Bayesian formula:

p(s) x Q(ols, a) Z T(s|a, s )p(s").

s/

Notice that, although action is present in computations of the
state estimator, it serves as an input to the procedure, and not as an
unknown parametric component.

Given that we keep track of our beliefs about the environment
state, we can do the same with regard to the observed dynamics.
Our prior beliefs in this case might obviously depend on the do-
main, but in the absence of any other preference, one commonly
accepted prior belief is the uniform distribution. That is, we as-
sume at the beginning that anything can happen in the environment
with equal likelihood. The other popular alternative is a ‘static’
environment, that is, the assumption that the system state does not
change.

Thus, we can formally define EMT update as follows. Denote
old beliefs about the exhibited system dynamics by PD(s’|s), and
the new beliefs by D(s’|s), that explain the change in system state
that is §(s") = > D(s|s)p(s), where p(-) and p(-) are, respec-

S
tively, the old and the new estimations of the system state. D is the

conservative update we seek if it exists:

D(/[s) = arg min (Di(Q('15)|[PD('13)),.

s.t.

Vs p(s’) = Z&: Q(s[s)p(s)
Vs 2 Q(s'ls) =1

The optimization problem above is convex, and can be solved
efficiently in time and space complexity polynomial in the descrip-
tion of the system, e.g., numerically by gradient descent or alterna-
tively by an internal point algorithm.

Notice that the Kullback-Leibler extension for Markovian dy-
namics, (Dxr(Q(s']s)[|[PD(s'|s))), ) can also provide failure
detection for controllers. This is used in a two-level control ar-
chitecture into which we incorporate EMT, as described below in
Section 4.

4. CONTROL WITH EMT

The control framework we use consists of two continually inter-
acting layers:

o The strategic layer is concerned with the following question:
given a high level goal, what kind of system dynamics will
suffice to achieve it;

e The ractical layer has no concern whatsoever with the high
level goal. Rather, it attempts to ensure that the system dy-
namics of the changing state indeed match the one desired by
the strategic layer.

Failure of the tactical layer is reported back to the strategic layer,
forming a closed control loop.

Although the strategic/tactical paradigm is evident in many old
and new planners and controllers [8, 21, 13], it may be desirable,
as we have done, to shift responsibilities to the tactical layer, which
typically is present only in a degenerate sense within existing ap-
proaches.

In this work, we propose to implement the tactical layer by means
of Extended Markov Tracking as presented above, and to base ac-
tion selection directly on the system dynamics. Thus the strate-
gic/tactical architecture becomes related to a paradigm of cooper-
ation/coordination. Cooperation (working together, the strategic
layer) dictates the ideal system dynamics r : S — II(S) (or so
called tactical target), and the coordinated action selection algo-
rithm (the tactical layer) provides a means to achieve it.

Formally, the EMT-extended tactical solution, or EMT Controller,
operates as follows. Denote by H (p, p, PD) the EMT procedure
of obtaining the optimal explanation for transition between belief
states p and p with respect to the dynamics-prior PD. Denote as
p: the belief about the system state at time ¢, and P D; the beliefs
about the exhibited system dynamics at time ¢. Also, let T, be the
environment transition function restricted to action a (1, p thus be-
comes a matrix applied on a vector). Then, the action of choice in
the EMT Controller is:

a* =arg min (Dkr (H(Tap,p, PD)|r)), -

While the overall EMT Controller algorithm may be written as fol-
lows:

0. Initialize estimators:

e the system state estimator po(s) = so € I1(.59);



e system dynamics estimator
PDq(8|s) = prior(3|s)
Set time to ¢ = 0.
1. Select action a* to apply using the following computation:

e For each action a € A predict the future state distribu-
tion pyy 1 = T * pg;

e For each action, compute

Da = H(ﬁltl-‘-l?pt? PDt)v

e Selecta” = argmin (Dxr (Dall7)),, -

2. Apply the selected action a™ and then receive an observation
0€O.

3. Compute p:+1 due to the Bayesian update.
4, Compute PDtJrl = .[v‘.[(thrl,pt7 PDt)
5. Sett :=1t+ 1, goto 1.

In essence, the tactical algorithm above utilizes extended Markov
tracking both to guide its action selection, and to ensure that the ex-
hibited behavior indeed concurs with the given preference mapping
r: S —TII(S).

4.1 Coordination by EMT Control

Consider now a cooperative multiagent system with no commu-
nication between the agents. In such systems, performing coordi-
nated action requires the utilization of implicit data transfer through
the environment to synchronize agents. This can be done by the
EMT Control scheme: each agent will estimate the exhibited sys-
tem dynamics based on its own observational data, choose the best-
fitted joint action, and perform its part in it. If agent effects on the
system are correlated, EMT will provide the means for information
transfer and synchronization.

However, to apply EMT Control we first need to modify the
Markovian environment model to include multiple agents. We adopt
the approach taken by Tambe [15], where the system environment
is described by a tuple < S, { A} 1, T, {O: 31, {1, 50 >,
where:

e N is the number of agents in the system;
e S is the set of all possible environment states as before;
e 3( is the initial state of the environment;

e A, is the set of all possible actions applicable in the environ-
ment by agent ;

e T is the environment’s probabilistic transition function: 7' :
S x Ay x -+ x Ay — TI(S). Thatis, T(s'|@,s) is the
probability that the environment will move from state s to
state s’ under the joint action @ = (a1, ...,an);

e O; is the set of all possible observations available to agent 7;
e Q;(0i|s’, @, s) is the probability that the agent ¢ will observe

0; € O; given that the environment has moved from state s
to state s’ under the joint action @ = (a1, ..., an).

The EMT Control loop operates almost unchanged in the multi-
agent setting, with only a slight modification to accommodate the
fact that each agent contributes only a part of the joint action.

N
Let A = [] Ajs; also, denote by p; ; the belief of agent ¢ at time ¢

=1
about the system state, and by P D ; the beliefs of agent ¢ at time ¢
about the exhibited system dynamics. Then each agent 1 <7 < N
performs the following:

0. Initialize estimators:

o the system state estimator po,i(s) = so € II(S);

e system dynamics estimator
PDoy,;(5|s) = prior(s|s)
Set time to ¢ = 0.

1. Select action a* € A to apply using the following computa-
tion:

e For each action a € A predict the future state distri-
bution Pty ; = Tu * pi,i, Where T, is the transition
function limited to action a;

e For each action, compute
Do = H(P{41,i,Dt,i, PDyi);

e Selecta® = argmin (Dkr (Dal[r)),, .-
a 3

2. From the selected actions a* = (a1,...,an) apply action
a; € A;, and receive an observation o; € O;.

3. Compute ps1,; due to the Bayesian update.
4. Compute PD¢11,; = H(pis1,5,Pt,i, PDeyi).

5. Sett:=t+ 1, goto 1.

S. EXPERIMENTAL DATA

To demonstrate the operational qualities of the proposed EMT
Control loop and its extension to multiagent coordination, we de-
signed several experiment sets.

A single-agent scenario that was used to test the EMT Control
loop was based on the Drunk Man Walk problem, and allowed us to
evaluate EMT Control performance. Since no truly tactical alterna-
tive solution currently exists, we used a standard POMDP solver [6]
as a point of reference for our technique.

A multiagent scenario involved two agents with no explicit com-
munication, nor any direct effect on each other’s actions. However,
the system response correlated the actions of the agents in a non-
trivial way, providing an implicit means of information exchange.

5.1 Single Agent Case: Drunk Man Walk

The Drunk Man Walk domain (Figure 1) is a classic example for
Markov chain discussions: a man stumbles along a path between
his home and nettle bushes, making random steps left (home) and
right (bushes).

The setup was modified to allow stochastic control—actions can
be applied to tilt the probability balance between left and right
steps, but the potential number of steps taken each move was greater
than one (in our experiments, 1/4 of the path could be traversed in
a single epoch). In addition, the true position of the man was veiled
by the observation set—which is the same size as the set of possible
positions. The observation probabilities essentially just “blur” the
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Figure 1: Drunk Man state transition diagram. « is subject to
action effect.

system state. The task was to keep the man as far away as possi-
ble from home and nettle bushes alike. The classic delayed reward
schema, where one is rewarded if the man reached the middle of the
path, was translated into a transition preference matrix for our tac-
tical solution. The comparison was done based on the distribution
of distance from the path midpoint.

In the experiment set, which resulted in the data shown in Fig-
ure 2, the preference over the state transitions was set to

1te = _ |ntl
p(x|x>_{zm> 7 =)

ﬁ otherwise

where Z(x) is a normalization factor. The classical POMDP solu-
tion used the same preference as a reward function, and attempted
to accumulate as large a reward as possible over a preset number
of steps. The observation set was the same size as the system state
set, and probabilities were preset so that observations were equally
distributed over the immediate neighborhood of the man’s true po-
sition.
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Figure 2: Drunk Man: Distance from mid-point

The tactical solution, our EMT Controller, outperformed the clas-
sical POMDP solution. Figure 2 shows cumulative probability that
the Drunk Man will be away from the global goal position—midpoint
along the path. The EMT Controller places the Drunk Man closer
to the midpoint more frequently, and as a consequence will gain
more profit compared to the classical POMDP solution.

5.2 Multiagent Case: Springed Bar Balance
Consider a long bar whose ends rest on two equivalent springs,

and two agents of equal mass standing on the bar. Their task is to

shift themselves around so that the bar levels, as shown in Figure 3.

At each time step of the system, each agent has the choice of three
actions: moving left one step, moving right one step, or staying put.
Every movement of an agent has a non-zero probability of failing,
and the probability is biased by the inclination of the bar. Specif-
ically, an uphill motion has less probability of succeeding than if
the bar were level, and a downhill motion has greater probability
of succeeding than if the bar were level. Notice that the bar in-
clination itself depends on the current agent positions on the bar,
thus creating a correlation between the effects of the agent actions,
and providing a means for implicit information transfer between
the agents.

A L S o i o

Figure 3: Springed bar setting

Formally, the system state is described by the positions of the
two agents on the bar, S = [1 : dymaz]?, Where dpmaz is the length
of the bar in “steps”, and the initial state in our experiment set was
unbalanced as follows: so = (1, 42e= 4 1). The action sets are
A; = {left, stay, right}, and the transition probability is set ac-
cording to the simplified physics of motion as described above.

We considered two observation schemes:

1. O; = S = {all positions of the two agents}, 21 = Q2 and
creates uniform noise over the immediate neighborhood of
the real joint position of agents.

2. O; = [1 : dmaaz| and represents the position of the observ-
ing agent. (); creates a uniform noise over the immediate
neighborhood of the observing agent’s real position.

In the first observation scenario, agents converge to a symmetric
position around the ideal center of mass (given that the springs and
masses are equal, this ends up being the center of the bar), in spite
of the stochastic nature of the environment. An example run can be
seen in Figure 4. Average deviation with confidence bars is shown
in Figure 5.

In the second observation scenario, where agents have only noisy
observations of their own position, an interesting kind of behavior
is created by the control algorithm. Agents cannot step off the bar,
and any action that attempts to do so fails. That, together with the
symmetric nature of the problem, drives the agents toward a “focal
point”, or equilibrium point, where each agent occupies the far end
of the bar, thus balancing it. Somewhat surprisingly, the agents’
positions in the second observational scenario quickly converge to
this focal point.

What is even more interesting is the way that the agents arrive
at the equilibrium. The initial state of the system places one agent
at the far end of the bar, while the second stands quite close to the
middle. The intuitive way to move towards the focal point position
(the two far ends of the bar) would be for the second agent to move
away from the center, while the first agent stays put, especially
since the agents do not see one another. Recall, though, that the
bar would be tilted, slowing the second agent down. EMT Control
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Figure 5: Multiagent observational scenario I. Deviation from
the ideal center of mass

accounts for that, and many runs of the experiment move the first
agent towards the middle of the bar, thus helping the second agent
to reach its destination; only then does the control algorithm return
the first agent to the original far end position. This behavior can be
seen in the example run in Figure 6.

However, because of observational noise the first agent some-
times overshoots, moving too far to the middle. EMT Control of
the second agent detects that overshoot and recalls the second agent
towards the center of the bar, allowing the first agent to correct
its mistake. At its extreme, this behavior can cause “switching”,
where the agents actually switch their relative positions, passing
each other at the center as shown in Figure 7. However, EMT Con-
trol agents in all of our 100 experimental runs managed to balance
the bar, as shown by the statistical data in Figure 8.

6. DISCUSSION

Several interesting questions arise from our experimental results,
beyond their immediate scope. For example, what could explain
the fact that EMT Control outperformed the POMDP solution with
respect to accumulated reward, the very success measure for which
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Figure 7: ‘Switching’ behavior

the POMDP solution was designed?

One plausible explanation lies with an interesting observation
about the Bellman-Ford equation on which all (PO)MDP solutions
are ultimately based. The equation has two significant parts: the
first is the accumulation of the reward, and the second is the averag-
ing over possible system developments. POMDP solutions, despite
their limited knowledge of the true system state, center around the
reward that enters the equation. On the other hand, EMT acknowl-
edges that, because of limited system state information, we may not
obtain the best reward possible, and in a sense sees it as inevitable
and out of the reach of its own control. Instead, EMT concentrates
on its influence on the distribution over which the “reward” will be
averaged, and evidently prevails.

Another interesting question concerns tactical target design. We
find that, compared to (PO)MDP reward scheme design, tactical
target composition is rather intuitive. Once again we turn to Drunk
Man as an example domain. If we retain the reward scheme as be-
fore (recall we “designed it” to keep the Drunk Man as close to the
center of the path as possible), but allow complete state observabil-
ity, we can use a fully observable MDP to solve the problem. The
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Figure 8: Deviation from the ideal center of mass in multiagent
observational scenario II.

MDP solution is quickly obtained by dynamic programming.

However, the chosen reward scheme does not make the MDP so-
lution behave as required. The Drunk Man moves randomly, and
although motion trends can be affected, he is unlikely to stay put.
This leads the MDP solver to a controlled fall solution: the Drunk
Man will leave the middle of the path anyway—and by applying
maximal force will make sure of where he ends up, then apply the
inverse to make sure he comes back. An example of the distribution
over positions along the path can be seen in Figure 9. It shows that
the MDP solution forces the Drunk Man away from the vicinity
of the path’s middle for a large portion of the time. Yet, the intu-
ition that failed for MDP works correctly for EMT control, which
created a Gaussian-like position distribution around the path center
(Figure 10).
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Figure 9: Drunk Man state distribution under MDP solution
control

7. CONCLUSIONS AND FUTURE WORK

We have introduced an on-line tracking mechanism of system
dynamics, called Extended Markov Tracking (EMT), and incorpo-
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Figure 10: Drunk Man state distribution under EMT control

rated it into a control architecture. The resulting EMT Controller
allowed us to simultaneously track and correct the exhibited sys-
tem dynamics; the Controller was in turn applied to coordination in
a multiagent domain. The online nature of EMT, and its intrinsic
connection with system interactions, allowed us to leverage the cor-
relation between the effects that agent actions have on the system
dynamics. In effect, EMT Control has created implicit communi-
cation through the environment. Correlated behavior was demon-
strated in the second observational scenario of our multiagent ex-
periment set, in the absence of explicit communication.

Since the EMT Control scheme takes time polynomial in the size
of the system description, applying it to multiagent domains sig-
nificantly reduces the computational complexity of coordination in
these domains. In fact, EMT Control is polynomial in all parame-
ters, other than the number of agents in the system. The experimen-
tal data collected so far demonstrates the efficiency of the approach
both in single and multiagent domains.

It would be worthwhile to compare EMT Controller performance
to other multiagent solutions, e.g., the MiniMax-Q algorithm and
neural networks. However, although we have made some progress
in this direction within the single agent environment, for multiagent
scenarios it would be quite difficult to construct a uniform bench-
mark problem for the comparison of inherently different algorith-
mic approaches.

To explore EMT Control applicability, we plan to expand our ex-
perimental investigation, and create a spectrum of problems char-
acterized by different degrees of interdependency between agent
effects on the system, as well as general system volatility. In ad-
dition, it will be important to test EMT-based control in multia-
gent domains with available but limited explicit communication,
and to investigate its performance with respect to other bounded
resources.
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