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ABSTRACT
In this paper we present a rich decision model for intelli-
gent agents involved in multi issue negotiations. The model,
grounded on information theory, takes into account the as-
pects of trust and preference to devise mechanisms to man-
age dialogues. The model supports the design of agents
that aim to take ‘informed decisions’ taking into account
that which they have actually observed.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Theory

Keywords
Multiagent systems, Trust

1. INTRODUCTION
Negotiation is an information exchange process as well as a
proposal exchange process. If an agent proposes a deal then
it reveals information about what it is prepared to accept.
If it rejects a deal then it reveals information about what is
not acceptable to it. If it transmits preference information
then it reveals information about its general willingness to
accept deals. If it transmits information that is intended to
influence its opponent’s preferences for a deal then it reveals
information both about what it believes its opponent knows
and about what information it believes to be pertinent for
that deal. Anything that an agent communicates, or fails
to communicate, during a negotiation gives away (valuable)
information.

The information that is exchanged both directly as part of,
and indirectly because of, the exchange of proposals may not
be truthful. For example, an agent may reject an acceptable
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proposal in an attempt to secure a more satisfactory deal.
So the information received by an agent during a negotiation
may be more or less true. Such information is only useful
if an agent is prepared to attach a degree of belief to it.
Further the integrity of information generally will decay in
time, and these degrees of belief will reflect that decay.

Our negotiating agent, α, uses ideas from information the-
ory to evaluate its negotiation information. If its opponent,
β, communicates information, the value of that communica-
tion is the decrease in uncertainty in α’s model of β. One
measure of this decrease in uncertainty is Shannon infor-
mation [10], or negative entropy. If α communicates infor-
mation it evaluates that information as its expectation of
the resulting decrease in β’s uncertainty about α. Any such
decrease in uncertainty is seen against the continually in-
creasing uncertainty in information because information in-
tegrity necessarily decays in time. Information theory may
also be used to measure features of inter-agent relationships
that extend beyond single negotiations — for example, the
sharing of information in a trading pact or relationship, and
the strength of trading networks that form as a result of
such information sharing. α uses entropy-based inference —
both maximum entropy inference and minimum relative en-
tropy inference — to derive probability distributions for that
which it does not know in line with the following principle.

Information Principle. α’s information base contains only
observed facts — in the absence of observed facts, α may
speculate about what those facts might be. For example
in competitive negotiation, β’s utility, deadlines, and other
private information will never be observable — unless β is
foolish. Further, β’s motivations (such as being a utility
optimizer) will also never be observable. So in competitive
negotiation β’s private information is “off α’s radar” — α
does not contemplate it or speculate about it.

We assume that agents may observe the values of differ-
ent types of environment variables: illocutions uttered by
agents, the role played by agents, the result of the execu-
tion of contracts, and, in general, agents may observe other
variables of the environment that could influence their opin-
ion about the behaviour of other agents, e.g. market data,
or general information from the Internet. We assume that
the interactions between agents are made within the frame-
work of an infrastructure that fixes ontology and meaning,
for instance an Electronic Institution [1]. Thus, no differ-
ences in the observation of illocutions have to be assumed.
Moreover, we assume that the role of a player is public infor-
mation that can be observed — this is the case for instance
if we are within an electronic institution framework. How-



ever, the perception of the execution of a contract is sub-
jective in the sense that two deviations of behaviour can be
perceived differently by two different agents. We will there-
fore assume that each agent is equipped with a perception
function (noted in this paper as Observe(·)) that determines
which contract execution has actually occurred. Based on
these assumptions, in this paper we present the architec-
ture of an agent based on an information theory approach
and then propose a trust model based on both relative and
conditional entropy.

In Sections 2 and 3 we motivate the need for modelling
trust and preferences in the context of multiagent negotia-
tion. In Section 4 we introduce a representation language
to support negotiation dialogues that also permits the inter-
change of information. Dialogues are given an information-
based semantics in Section 5 that is the base for the trust
model presented in Section 6. We conclude with an appro-
priate agent architecture to support the model and a discus-
sion section.

2. TRUST AND NEGOTIATION
Trust is a multi-faceted concept that has received increasing
attention recently [11, 13, 12, 6]. In the context of negotia-
tion, trust represents a general assessment on how ‘serious’
an agent is about the negotiation process, i.e. that his pro-
posals ‘make sense’ and he is not ‘flying a kite’, and that he
is committed to what he signs. A lack of trust may provoke
agents to breakdown negotiations, or to demand additional
guarantees to cover the risk of potential defections. There-
fore, in any model of trust the central issue is how to model
expectations about the actual outcome at contract execution
time. Contracts, when executed, may, and frequently do,
yield a different result to what was initially signed. Goods
may be delivered late, quality may be (perceived) different
from the contract specification, extra costs may be claimed,
etc. So the outcome is uncertain to some extent, and trust,
precisely, is a measure of how uncertain the outcome of a
contract is. Naturally, the higher the trust in a partner the
more sure we are of his or her reliability. Trust is therefore
a measure of expected deviations of behaviour along a given
dimension, and in many cases for a given value (region) in
that dimension (e.g. I might trust you on low-priced con-
tracts but not on high-priced ones). In this sense, the higher
the trust the lower the expectation that a (significant) devi-
ation from what is signed occurs. Trust values can be used
for three basic purposes:

• Trust permits us to select what offer to send next. As
trust measures the expected deviation of behaviour of
our opponent, we can use it as a ‘counter-balance’ by
asking for even better deals.

• Trust permits us to better select negotiation partners.
Humans (normally) prefer to live in worlds with low
uncertainty about the future. The higher the trust
on a partner the less probable a deception is going to
happen, even if what is to be expected is not extraor-
dinarily good. This would also explain the fact that
humans tend not to explore too much once they settle
down in a situation that is satisfactory enough. That
is, a situation in which they have a landscape of trust
that permits them to select partners in a good enough
way. If I’m satisfied with my butcher I will not explore
more butchers unless I am disappointed at some point.

• Trust simplifies negotiation dialogues. Trust is mostly
built through ongoing relationships, the repetition of
negotiation dialogues and contract executions means
that some terms and conditions (negotiation dimen-
sions) need not be discussed and specified again and
again. A high trust in what will happen along a cer-
tain dimension enables partners to omit it from the
negotiation dialogue. The higher the trust the smaller
the number of dimensions of the negotiation object,
and thus the shorter the negotiation dialogue.

We will propose in this paper to base our measure of trust
as the negative entropy of the probability distribution of
possible outcomes for a given contract given that trust mea-
sures the relationship between commitment and execution
of contracts. More precisely, between signed contracts and
perceived execution of contracts. In this way, a natural way
to base our modelling of trust is on a conditional probability,
P t, between contracts given a context e as:

P t(Observe(α, b′)|Accept(β, α, (a, b)), e)

where every contract execution represents a point in that
distribution.1 A concrete relation between a signed contract
and the perception of an executed one.

3. PREFERENCES AND NEGOTIATION
Rhetorics in a negotiation context represents the use of lan-
guage constructs to persuade the oponent to accept our pro-
posals. Agents use rhetorics because they want to change
their opponents’ preferences or their opponents’ view of them.
Rhetorical constructs are intimately linked to social struc-
ture2 and time3. The amount and the persistence of pref-
erence change induced by a rhetorical construct depends
strongly on the distance in some social scale between the
speaker and the hearer. The larger the distance the bigger
the impact. The closer, the longer the effect. A Nobel Prize
winner is able to change a lot our views on a certain subject
although getting convinced by a peer on some matter usu-
ally has longer impact [9]. The impact of the use of rhetoric
constructs in negotiation models is the following:

1. Rhetoric permits us to change the preferences of the
opponent. The acceptance of a proposal depends on

1To simplify notation in the rest of the paper we will denote
P t(Observe(α, b′)|Accept(β, α, (a, b), e) as P t(b′|b, e).
2The social relationship that negotiators hold determines
to a great extent how probable it is that a proposal will
be accepted. By exerting power or authority a negotiator
can achieve the acceptance of a proposal by the opponent
that would otherwise be unacceptable, for instance if coming
from a peer. Thus, an important element when considering
the acceptance of a proposal is to analyse the role of our
opponent and what can we expect to occur in future inter-
actions. Social relations are, in a sense, built and mantained
to permit an accurate assessment of what to expect from
others, now but mainly in the future.
3Time limits are strategic elements. Sometimes they even
become public information, and therefore there is total cer-
tainty on the outcome of a negotiation should the limit been
reached. Often, the reasons for a breakdown are kept pri-
vate and therefore we can only guess whether negotiation
will continue or not. Negotiations are even undertaken al-
though one party is decided to breakdown from the very
beginning, whatever the proposals are. It is important to
note that Negotiation is temporaly bounded and that Nego-
tiation time has an associated cost.



the set of beliefs held by the opponent. Depending
on the social relationship between the agents, certain
rhetoric constructs might provoke a belief update, and
therefore a change of preferences.

2. Rhetoric permits us to refine the opponent’s model of
ourselves. By issuing critiques of proposals received,
or putting questions, we are giving information to our
opponent that may help him/her to build a more ac-
curate model of our preferences. We can also simply
inform our opponent about our preferences to perhaps
shorten the dialogue by reducing the exploration space.

3. Rhetoric permits us to maintain the level of trust. For
instance when a negotiation is not converging as usual,
a negotiator may ‘remind’ the opponent of the level
of trust he has built in the past as encouragement to
maintain it.

Another dimension that is very important in the analysis
of dialogues is ontology. The contents of illocutions deter-
mine whether our assumptions about the opponent’s model
of the problem are correct. New values can be added to a
dimension by a simple question: “Have you got yellow plas-
tic crocodiles? — Oops, I never thought yellow crocodiles
existed!”. A simplifying solution is to start any negotia-
tion process by fixing a common ontology. Alternatively, we
can use ontology clarifying dialogues and then be ready to
modify our models during the dialogue. This seems more
complex but more challenging as well.

4. A NEGOTIATION LANGUAGE
Agent α is negotiating with an opponent β. They aim to
strike a deal δ = (a, b) where a is α’s commitment and b is
β’s. (Where a or b might be empty.) We denote by A the
set of all possible commitments by α, and by B the set of all
possible commitments by β. The agents have two languages,
C for communication (illocutionary based) and L for internal
representation (as a restricted first-order language).4

In this paper we assume that the illocution particle set is:

ι = {Offer,Accept,Reject,Withdraw, Inform}

with the following syntax and informal meaning:

• Offer(α, β, δ) Agent α offers agent β a deal δ = (a, b)
with action commitments a for α and b for β.

• Accept(α, β, δ) Agent α accepts agent β’s previously
offered deal δ.

• Reject(α, β, δ, [info]) Agent α rejects agent β’s previ-
ously offered deal δ. Optionally, information explain-
ing the reason for the rejection can be given.

• Withdraw(α, β, [info]) Agent α breaks down negotia-
tion with β. Extra info justifying the withdrawal may
be given here.

• Inform(α, β, [info]) Agent α informs β about info.

4It is commonly accepted since the works by Austin and
Searle that illocutionary acts are actions that succeed or
fail. We will abuse notation in this paper and will consider
that they are predicates in a first order logic meaning ‘the
action has been performed’. For those more pure-minded an
alternative is to consider dynamic logic.

The accompanying information, info, can be of two basic
types: (i) referring to the process (plan) used by an agent to
solve a problem, or (ii) data (beliefs) of the agent including
preferences. When negotiating, agents will therefore try to
influence the opponent by trying to change their processes
(plans) or by providing new data.

Dialogues, especially in Electronic Institutions [1], tend to
be structured in order to facilitate the decision making of the
participants, and because some illocutions only make sense
in a particular conversation context, e.g. I cannot accept an
offer that has not been made. This structuring of dialogues
is what is usually called a protocol. We will not detail it
here, but will assume that such a protocol exists.

Following the extensive literature on preferences, prefer-
ences are divided into two classes:
Quantitative. These preferences are usually called soft
constraints (hard constraints are particular cases of soft con-
straints). A soft constraint associates each instantiation
of its variables with a value from a partially ordered set.
One natural interpretation of this value is the probability of
choice. In general, preferences can be expressed as values
within a semi-ring 〈A,+,×, 0, 1〉 such that A is a set and
0, 1 ∈ A; + is commutative, associative with 0 as its unit
element; × is associative, distributes over +, 1 is its unit el-
ement, and 0 is its annihilating element. Given a semi-ring
〈A,+,×, 0, 1〉, an ordered set of variables V = {v1, ..., vn}
and their corresponding domains D = {D1, ..., Dn} a soft

constraint is a pair 〈f, con〉 where con ⊆ V and f : D|con| → A
with the following intuitive meaning: f(d1, . . . , dn) = κ
means that the binding x1 = d1, . . . , xn = dn satisfies the
constraint to a level of κ.5

Qualitative. In many domains it is difficult to formulate
precise numerical preferences, and it is more convenient to
express preference relations between variable assignments:
“I prefer red cars to yellow cars”. The usual way to represent
this relationship formally is v = a > v = a′, or simpler
a > a′, meaning that we prefer the assignment of variable v
to a than to a′. Also, in case of an absolute preference for
a particular value in a domain, that is, when our preference
is ∀x 6= a.v = a > v = x we can simply write v = a or
just a. Also, in many cases preference relations depend on
the values assigned to other variables (configuring what is
called a Conditional Preference Net (CP-net) [2]). “If they
serve meat, I prefer red wine to white wine”. A conditional
preference can be represented as v1 = c : v2 = d > v2 = d′

(or again c : d > d′ ) meaning that we prefer d to d′ in the
context where c is the case. In general, any DNF over value
assignments could be used as the condition. And also, other
comparatives than ‘=’ could be used.

Finally, it seems natural that the constraints have an as-
sociated certainty degree representing their degree of truth.
We thus propose the following content language expressed
in BNF: (info ∈ L):

info ::= unit[ and info]

5As we use maximum entropy inference we have to make the
simplifying assumption that domains of quantitative con-
straints must be finite. This means that continuous domains
must be represented as a finite set of intervals, further the
way in which those intervals are chosen affects the outcome.
This is sometime cited as a weakness of the maximum en-
tropy approach. In [3] it is argued to the contrary, that
the choice of intervals represents our prior expectations in
fine-grained detail.



unit ::= K|B|soft|qual|cond
K ::= K(WFF)
B ::= B(WFF)
soft ::= soft(f, {V +})
qual ::= V=D[>V=D]
cond ::= If DNF Then qual
WFF ::= any wff over subsets of variables {V }
DNF ::= conjunction[ or DNF]
conjunction ::= qual[ and conjunction]
V ::= v1| · · · |vn

D ::= a|a’|b| · · ·
f ::= any function from the domains of subsets

of V to a set A. For instance a fuzzy set
membership function if A = [0,1]

Examples could be: “I prefer red wine to white wine when
served meat.” as Inform(α, β, if Food = meat then Wine
= red > Wine = white); “I prefer more money to less
money” as Inform(α, β, soft(tanh, {Money})); “I reject your
offer since I definitely cannot pay more than 200$” as Reject(
α, β,Money = 250,hard(Money < 200$, {Money})); and “I
prefer red cars to yellow cars” as Inform(α, β, if thing = car
then Colour = Red > Colour = Yellow)

5. INFORMATION-BASED NEGOTIATION
We ground our negotiation model on information-based con-
cepts. Entropy, H, is a measure of uncertainty [10] in a
probability distribution for a discrete random variable X:
H(X) , −

P
i p(xi) log p(xi) where p(xi) = P (X = xi).

Maximum entropy inference is used to derive sentence prob-
abilities for that which is not known by constructing the
“maximally noncommittal” [8] probability distribution.

Let G be the set of all positive ground literals that can
be constructed using our language L. A possible world, v,
is a valuation function: G → {>,⊥}. V|K = {vi} is the
set of all possible worlds that are consistent with an agent’s
knowledge base K that contains statements which the agent
believes are true. A random world for K, W |K = {pi} is
a probability distribution over V|Ka = {vi}, where pi ex-
presses an agent’s degree of belief that each of the possible
worlds, vi, is the actual world. The derived sentence prob-
ability of any σ ∈ L, with respect to a random world W |K
is:

(∀σ ∈ L)P{W |K}(σ) ,
X
n

{ pn : σ is> in vn } (1)

The agent’s belief set B = {ϕj}Mj=1 contains statements to
which the agent attaches a given sentence probability B(·). A
random worldW |K is consistent with B if: (∀ϕ ∈ B)(B(ϕ) =
P{W |K}(ϕ)). Let {pi} = {W |K,B} be the “maximum en-
tropy probability distribution over V|K that is consistent
with B”. Given an agent with K and B, maximum entropy
inference states that the derived sentence probability for any
sentence, σ ∈ L, is:

(∀σ ∈ L)P{W |K,B}(σ) ,
X
n

{ pn : σ is> in vn } (2)

From Eqn. 2, each belief imposes a linear constraint on the
{pi}. The maximum entropy distribution: arg maxpH(p),

p = (p1, . . . , pN ), subject to M + 1 linear constraints:

gj(p) =

NX
i=1

cjipi −B(ϕj) = 0, j = 1, . . . ,M.

g0(p) =

NX
i=1

pi − 1 = 0

cji = 1 if ϕj is > in vi and 0 otherwise, and pi ≥ 0, i =
1, . . . , N , is found by introducing Lagrange multipliers, and
then obtaining a numerical solution using the multivariate
Newton-Raphson method. In the subsequent subsections
we’ll see how an agent updates the sentence probabilities
depending on the type of information used in the update.

5.1 Updating from decay and experience
An important aspect that we want to model is the fact that
beliefs ‘evaporate’ as time goes by. If we don’t keep an ongo-
ing relationship, we somehow forget how good the opponent
was. If I stop buying from my butcher, I’m not sure any-
more that he will sell me the ‘best’ meat. This decay is
what justifies a continuous relationship between individu-
als. In our model, the conditional probabilities should tend
to ignorance. If we have the set of observable contracts as
B = {b1, b2, . . . , bn} then complete ignorance of the oppo-
nent’s expected behaviour means that given the opponent
commits to b the conditional probability for each observable
contract becomes 1

n
— i.e. the unconstrained maximum en-

tropy distribution. This natural decay of belief is offset by
new observations.

We define the evolution of the probability distribution
that supports the previous definition of decay using an equa-
tion inspired by pheromone like models [5]:

P t+1(b′|b) = κ ·
„

1− ρ
n

+ ρ ·
`
P t(b′|b) + ∆tP (b′|b)

´«
(3)

where κ is a normalisation constant to ensure that the re-
sulting values for P t+1(b′|b) are a probability distribution.
This equation models the passage of time for a conveniently
large ρ ∈ [0, 1] and where the term ∆tP (b′|b) represents the
increment in an instant of time according to the last expe-
rienced event as the following possibilities show.
Similarity based. The question is how to use the obser-
vation of a contract execution c′ given a signed contract
c in the update of the overall probability distribution over
the set of all possible contracts. Here we use the idea that
given a particular deviation in a region of the space, sim-
ilar deviations should be expected in other regions. The
intuition behind the update is that if my butcher has not
given me the quality that I expected when I bought lamb
chops, then I might expect similar deviations with respect
to chicken. This idea is built upon a function f(x, y) that
takes into account the difference between acceptance prob-
abilities and similarity between the perception of the exe-
cution x of a contract y, that is a contract for which there
was an Accept(β, α, y). Thus, after the observation of c′ the
increment of probability distribution at time t+ 1 is:

∆tP (b′|b) = (1− |f(c′, c)− f(b′, b)|) (4)



where f(x, y) is

f(x, y) =
1 if P t(Accept(x)) > P t(Accept(y))
Sim(x, y) otherwise.

and where Sim is an appropriate similarity function (reflex-
ive and symmetric) that determines the indistinguishability
between the perceived and the committed contract.
Entropy based. Suppose that α observes the event (c′|c),
the entropy based approach estimates ∆tP (b′|b) by applying
the principle of minimum relative entropy.6 Let:`

P tC(bj |b)
´n
j=1

= arg min
p

nX
i=1

pi log
pi

P t(bi|b)
(5)

satisfying the constraint C, and p = (pj)
n
j=1. Then:

∆tP (b′|b) = P tC(b′|b)− P t(b′|b) (6)

Constraint C is specified as follows in three cases: first when
c = b, second when c′ = c 6= b, and third when c′ 6= c 6= b.

First, if c = b then C is: P tC(b′|b) = P t(b′|b) + ν(1 −
P t(b′|b)), for ν ∈ [0, 1] — the value of ν represents the
strength of α’s belief that the probability that (b′|b) will
occur at time t+ 1 should increase if (b′|b) occurs at time t.

Second, if c′ = c 6= b then constraint C is:

P tC(b|b) = P t(b|b) + g1(b, c)(1− P t(b|b))

for: g1 ∈ [0, 1], where g1(b, c) represents the strength of α’s
belief that the probability that (b|b) will occur at time t+ 1
should increase if (c|c) occurs at time t.

Third, if c′ 6= c 6= b then suppose that c′ is preferred to
c by α then h(c′, c) = P t(Accept(c′)) − P t(Accept(c)) > 0.
Let B(b)+ = {x | h(x, b) > 0}, ie: the set of contract exe-
cutions that α prefers to b. Given a signed contract b, the
prior probability that the contract execution will be pre-
ferred by α to b is: p(b)+ =

P
x∈B(b)+ P

t(x|b). After ob-

serving (c′|c) we wish to increase the probability that a pre-
ferred execution will occur for contract b to: p(b | (c′|c))+ =
p(b)+ + g2(b, c, c′)(1 − p(b)+), where g2(b, c, c′) represents
the strength of α’s belief that the probability that execu-
tion of contract b at time t+ 1 will be preferred to b should
increase if (c′|c) occurs at time t. Constraint C then is:P
x∈B(b)+ P

t
C(x|b) = p(b | (c′|c))+. Similarly, if c′ is not

preferred to c by α then construct B(b)−.

5.2 Updating from preferences
[4] describes the application of maximum entropy inference
to enable α to estimate P t(Accept(β, α, δ)) the probability
that β will accept deal δ from α in response to α transmit-
ting the illocution Offer(α, β, δ). This distribution is derived
from previously observed Offer(β, α, . . . ) and Reject(β, α, . . . )

6Given a prior probability distribution q = (qi)
n
i=1 and a

set of constraints, the principle of minimum relative en-
tropy chooses the posterior probability distribution p =

(pi)
n
i=1 that has the least relative entropy with respect to

q, arg minp
Pn
i=1 pi log pi

qi
, and that satisfies the constraints.

The principle of minimum relative entropy is a generaliza-
tion of the principle of maximum entropy. If the prior distri-
bution q is uniform, the relative entropy of p with respect to

q differs from −H(p) only by a constant. So the principle of
maximum entropy is equivalent to the principle of minimum
relative entropy with a uniform prior distribution.

illocutions received from β — the former indicating readi-
ness to accept and the latter readiness to reject. α may
not accept this historic readiness as being definitive now, if
so then P t(Accept(β, α, δ)) is estimated by attaching time-
discounted beliefs (as sentence probabilities) to these ob-
servations, and then by calculating the maximum entropy
distribution subject to those probabilities as constraints.

Suppose that α now receives preference information from
β in the form of an Inform(β, α, [info]) illocution, and is
prepared to accept this information into its belief set B as
a belief with sentence probability pinfo — this probability
may decay in time. How will this new information influence
α’s estimate of P t(Accept(β, α, δ))? Preference information
induces a partial ordering on the set of deals. If deal δ1 is
preferred by β to deal δ2 then: if Accept(β, α, δ2) α may
conclude to certainty pinfo that Accept(β, α, δ1).

As described in Sec. 4, preference illocutions generally re-
fer to particular issues within deals — e.g. “I prefer red
to yellow”. In general, “I prefer deals with property Q1 to
those with property Q2” becomes the following constraint
on the P t(Accept(β, α, δ)) distribution:

pinfo =

P
δ:Q1(δ) pδ`P

δ:Q1(δ) pδ
´

+
`P

δ:Q2(δ) pδ
´

the posterior distribution for P t(Accept(β, α, δ)) is calcu-
lated by applying the principle of minimum relative entropy6

to it subject to this constraint.
The method of representing preference information above

is quite general. Although if it is used to represent a pref-
erence ordering on an issue such as “β prefers to pay less
money to more” it generates a set of constraints. If however
such a constraint is assumed with pinfo = 1 — ie: if it is
represented in the knowledge base K — then the following
device is very economical. [4] describes the representation
of P t(Accept(β, α, δ)) where β is attempting to purchase
something for money but with a period of warranty. There
α assumes that β prefers “less money to more” and “more
warranty to less”. These two preference orderings are dealt
with neatly by estimating instead P t(LimAccept(β, α, δ))
meaning “δ is the greatest w.r.t. money and least w.r.t war-
ranty that β will accept from α”.

In this way, quantitative preferences over finite domains
will give a finite set of linear constraints (in particular, the
device above may be used to great effect when pinfo = 1),
and qualitative preferences including conditional preferences
also yield a finite set of linear constraints.

5.3 Updating from social information
Social relationships between agents, and social roles or po-
sitions held by agents, introduce a bias, i.e. a constraint, on
the admissible probability distributions. A social model can
be then a set of constraints introduced in K that has to be
respected by the inference mechanism.

For instance, with respect to power, and assuming we
model power as a function from agents to real values, we
could model a meek agent by adding the following constraint
in K that establishes different degrees of acceptability for
proposals according to the power of the proposer:

Power(β) > Power(γ)→
P t(Accept(α, β, ϕ)) > P t(Accept(α, γ, ϕ))

A similar case can be made for reputation, which refers to



the institutional endorsement of observed trustworthiness7.
Power and reputation are different instruments that help an
agent to form an a priori assessment of the trustworthiness
of an unknown opponent, or to modify the assessment of a
known one. If α learns that her good friend γ has a high
opinion of β then this may cause α to increase her trust in β
and to ‘tighten up’ the distribution P t(b′, b). Likewise, if α
learns that β has a high reputation in a respected institution.
So it is natural to represent reputation as Reputation(Φ, β)
where Φ is an institution name.

If α receives information, Θ, such as Reputation(Φ, β)
then Θ will either be a positive influence on α’s estimate
of P t(b′, b) [written Θ+], a negative one [Θ−], or neutral —
ie a positive influence on P t(b, b) [written Θ0]. If α receives
Θ+ then her estimate of the probability that the execution
of contract b will be preferred to b becomes: p(b | Θ+)+ =
p(b)+ + g3(b,Θ+)(1− p(b)+), where p(b)+ is the prior prob-
ability as in Sec. 5.1, g3(b,Θ+) represents the strength of
α’s belief that the probability that execution of contract b
at time t + 1 will be preferred to b should increase given
Θ+ was received at time t. α revises this estimate using the
principle of minimum relative entropy (Eqn. 5 ) subject to
the constraint C:

P
x∈B(b)+ P

t
C(x|b) = p(b | Θ+)+, where

B(b)+ is as in Sec. 5.1. Similarly, if α receives Θ− or Θ0.

6. A TRUST MODEL

6.1 Trust as conditional entropy
One way of modelling α’s trust on β is as one minus the
normalised negative entropy of distribution P t. The idea
is that the more trust the less dispersion of the expected
observations and therefore the closer to 1. In this way we
can define the Trust that an agent α has on agent β with
respect to the fulfilment of a contract (a, b) as:

T (α, β, b) = 1 +
1

B∗
·
X

b′∈B(b)+

P t(b′|b) logP t(b′|b)

where B(b)+ is the set of contract executions that α prefers
to b as defined in Sec. 5.1, B∗ = 1 if |B(b)+| = 1 and
log |B(b)+| otherwise, and β has agreed to execute b, and α
systematically observes b′, for some b′ that α does not prefer
to b, the trust value will be 0. Trust will tend to 0 when the
dispersion of observations is maximal.

And, as a general measure of α’s trust on β we naturally
use the normalised negative conditional entropy of executed
contracts given signed contracts:

T (α, β) =

1+

P
b∈B

h
P t(b) ·

P
b′∈B(b)+ P

t(b′|b) logP t(b′|b)
i

B∗ ·
P
b∈B P

t(b)

This formulation of trust is useful when any variation from
the agreed contract is undesirable.

6.2 Trust as relative entropy
We are usually happier, and ready to trust more, if the ac-
tual execution of a contract goes in the direction of our in-
creasing preference. We capture this idea using as a model

7Electronic Institutions [1] warrant, within specific limits,
the bona fides of the players therein — it is in their inter-
ests to report anecdotal evidence of ‘good’ behaviour beyond
those limits.

for trust the relative entropy8 between the probability distri-
bution of acceptance and the distribution of the observation
of contract execution. That is:

T (α, β, b) = 1−
X

b′∈B(b)+

P t(b′) log
P t(b′)

P t(b′|b)

and, similarly

T (α, β) = 1−
X
b∈B

P t(b)

24 X
b′∈B(b)+

P t(b′) log
P t(b′)

P t(b′|b)
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Finally, and as proposed in Sec. 2, the trust we place in an

agent is useful to determine which agent to prefer in order
to accept proposals. That is, trust is useful to assess the
distribution of probability P (Accept(α, β, δ)|Offer(β, α, δ)).
What trust does to this distribution is to impose constraints
on its values. As follows:

P t(Accept(α, β, δ)|Offer(β, α, δ)) >

P t(Accept(α, γ, δ)|Offer(γ, α, δ)) if T (α, β) > T (α, γ).

e.g. I prefer the same deal from my usual butcher than from
someone I trust less.

7. AGENT ARCHITECTURE
The agent architecture developed so far is summarised in
Fig. 1. If α wants to do something at time t then it may
build the distributions shown in Fig. 1 “from scratch” using
the full message history, however this leads to difficult belief
revision problems. At each time t, this involves importing
messages from the “in box” X , using “import rules”, into
a repository It where they are given trust functions — or,
integrity decay functions9, instantiating the knowledge base
Kt and the belief set Bt, resolving inconsistencies, and ap-
plying maximum entropy inference. Alternatively, as new
messages are received α may update the distributions fol-
lowing the approaches in Sec. 5.

The probability distributions in Fig. 1 provide the fuel for
the negotiation strategy. The Accept(α, β, δ) illocution is
perhaps dangerously simple. It is simple because it is binary
— a deal is either acceptable or it isn’t. The danger comes
from misinterpreting the estimate P t(Accept(α, β, δ)) as an
indication of how good the deal, δ, is — that is not what
is intended. This estimate is an estimate of α’s belief in
the proposition that “δ is an acceptable deal” — the value
of that probability will be a function of both deal δ, and
the integrity of the information against which δ has been
evaluated. So P t(Accept(α, β, δ1)) > P t(Accept(α, β, δ2))
does not mean that δ1 is an intrinsically better deal than δ2
— it means that α is more certain that δ1 is acceptable than
δ2 is acceptable.10 The reason for this could be that α has
been unable to access reliable information against which to
evaluate δ2. The choice of this simple, binary Accept(.) is
justified because α will either accept an offer or it will not.

8Otherwise called cross entropy or the Kullback-Leibler dis-
tance — although it is not reflexive and so it is not a metric.
See also Footnote 6.
9The values of these trust functions tend in time to the
maximum entropy value of their distribution which denotes
“no information”.

10We differ from game-theory-based agents in that our agent
is not necessarily “utility aware”.



Figure 1: Trust and the informed agent
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The P t(Accept(α, β, δ)) distribution is derived from ob-
servations made. The significance of those observations will
vary with δ — different criteria will apply to the purchase of
a bar of gold to those used to purchase a used automobile.
In particular, we can imagine the probability of acceptance
of a deal as a composed measure:

P t(Accept(α, β, δ)) = κ1T (α, β, δ) + κ2Power(β)+

κ3Reputation(α, β, δ)

where κ1 + κ2 + κ3 = 1 are constants, or the result of func-
tions depending on the environement, represent the impor-
tance that an agent gives to each of the dimensions. A
benevolent agent might have a large κ3, a meek agent a
large κ2 and a cautious agent a large κ1.

The estimation of the probability of breakdown, pW =
P (Withdraw(β, α)|e), will depend on various factors includ-
ing: time — i.e. duration of the negotiation, and the “ex-
pected acceptability to β” of α’s offers — e.g. if α persis-
tently sends completely unacceptable offers to β then β may
well withdraw. Breakdown is discussed in Sec. 8.1.

The P t(Accept(β, α, δ)) distribution is α’s estimate of β
readiness to accept δ. This is derived by interpreting Offer(β,
α, δ) messages as indicating β’s readiness to accept δ — to
some subjective degree of belief determined by α. And by
interpreting Reject(.) messages as indicating β’s reluctance
to accept. Then either maximum entropy inference or mini-
mum relative entropy inference is used to “fill in the gaps”,
and so to derive probability estimates for β’s readiness to
accept any deal.

The estimation of the probability distributions over β’s
future actions, P (Aβ), is not specifically described here, but
may be achieved by applying either of the two entropy in-
ference methods to the history of actions observed by α.
To estimate all of the foregoing probability distributions α
applies the Information Principle described in Sec. 1.

Finally, α’s negotiation strategy should encapsulate its
overall aim. If α is “greedy” then it could use an “expected
acceptability to α optimising strategy”11. If α strives to

11If α’s acceptance machinery happened to equate to utility
then such an agent would be an expected utility optimiser.

appear “fair” then it could use some variant of an “equitable
information revelation” strategy [see Sec. 8.1] that sought to
equate in the expected (Shannon) value of the information
in the messages sent to that which has been received. If
α strives to appear “cooperative” then it could use some
variant of an “issue tradeoffs” strategy [7].

8. OPERATIONAL SEMANTICS
α observes β’s actions as well as other general information in
the Institution, or marketplace — for example, α may detect
that a competitor has newly arrived. All of this information
is represented in α’s knowledge base, K, and belief set, B.
At time t, α’s information is Jt = Kt ∪Bt. α infers from Jt
beliefs about β’s future actions as a probability distribution
P (Aβ). We propose here that α measures the value of the
information within an illocution uttered by β as the change
in the entropy of P (Aβ). We denote it by ∆µ|J αt | where µ
is the illocution received by α and |J αt | is the certainty (as
negative entropy) of α’s inferred beliefs P (Aβ).

Although two agents engaged only in bilateral bargaining
(i.e. they only observe each other’s actions), and using this
approach, will build the model with the same observable
data (exchanged illocutions) they might perceive different
information gains if they represent the domains differently.
One of the advantages of bargaining within normalised envi-
ronments, such as electronic institutions, is that the ontology
is determined by the environment, and therefore the chances
that the representations chosen by the agents are closer are
higher. Maximum entropy inference is criticised because the
way in which the knowledge is represented determines the
values derived. Requiring agents to interact within an Elec-
tronic Institution minimises the effect of potentially different
representations.

An important question is how to determine what initial
opponent’s model α should use to determine whether a pro-
posal is going to be acceptable to β. A possibility, used
here, is to assume that Iβt = Mirror(Iαt ) where mirror is a
function that deals with the fact that our opponent’s will-
ingness in accepting proposals decreases as ours increases
as we move along dimensions with a clear preference or-
dering. For instance, if ∀x, y(x ≥ y) → (Accept(α, β, x) →
Accept(α, β, y)) ∈ Iαt then we’ll assume that ∀x, y(x ≥ y)→
(Accept(β, α, y)→ Accept(β, α, x)) ∈ Iβt .

In what follows we’ll assume that when the bargaining
process starts, at time t0 it is the case that J βt = Mirror(J αt )
if α knows nothing about β. If α has interacted with β pre-
viously, or has access to any other information, then α can
use that information to develop a better model of these be-
liefs. α’s information base, Iαt is updated when an illocution
arrives in the agent’s in-box, X , at time t:

• Offer(β, α, δ) ∈ X :
B(Accept(β, α, δ)) = fOffer(T (α, β, δ)) ∈ Iαt+1

• Accept(β, α, δ) ∈ X :
B(Accept(β, α, δ)) = 1 ∈ Iαt+1

• Reject(β, α, δ, [info]) ∈ X :
B(Accept(β, α, δ)) = fReject(T (α, β, δ)),
B([info]) = fInform(T (α, β)) ∈ Iαt+1

• Withdraw(β, α, [info]) ∈ X :
∀xB(Accept(β, α, x)) = 0,
B([info]) = fInform(T (α, β)) ∈ Iαt+1



• Inform(β, α, [info]) ∈ X :
B([info]) = fInform(T (α, β)) ∈ Iαt+1

where the functions f subscripted with illocutionary forms
convert the trust values to probabilities. The first equation
means that we believe, B, that agent β will sign a contract
supporting his offer with the degree that our trust, T , that
his dialogue behaviour indicates. The second and fourth
equations contain certain beliefs, 1 and 0 respectively, in
recognition of the meaning of Accept and Withdraw.

8.1 Breakdown model
In order for an agent to act sensibly in a negotiation it is
necessary that it assesses both the probability that it should
withdraw and the probability of breakdown of the opponent
P (Withdraw(β, α)|e) — we use the abbreviation pW when
the context is unambiguous. Time spent negotiating is a
cost, and the probability of breakdown will increase as the
negotiation progresses (β may perceive that α is not giving
away enough information and then decreases its trust on α,
or β might have found a better deal in the meantime, etc.).
In general it is reasonable to assume that this probability
is very low initially and then it increases asymptotically to-
wards 1. Learning the shape of this distribution from past
cases seems the reasonable thing to do here, either through
inductive learning or case-base reasoning.
P (Withdraw(β, α)|e) may also be a function of the attrac-

tiveness of the proposals that α has submitted. For example,
if α has submitted only deals that are highly unattractive
to β then β may decide that interacting with α is a waste
of time. Every illocution that an agent α receives gives
away information about her opponent β. That information
may be valued as the increase in certainty (i.e. decrease
in entropy) in P t(Accept(β, α, δ)) as described in Sec. 5.2.
Likewise, every illocution that α utters gives away informa-
tion about herself. That information may be valued by α
as the expected decrease in uncertainty in β’s model of α.
Hence the principle of “equitable information revelation” as
one strategy for managing P (Withdraw(β, α)|e) — that is,
α utters illocutions that will give β comparable expected
information gain as α derived from β’s previous utterance.

9. DISCUSSION
Game theory tells α that she should accept a proposal if
sδ > mδ where sδ is the surplus, sδ = u(ω)−u(π) and mδ is
the margin. This is fine if everything is certain. If it is not
then game theory tells α to work with a random variable,
Sδ, instead. Incidentally this means that α has to be cer-
tain about her uncertainty, but that is not the issue. This
means that α can consider P (Sδ > mδ), and the standard
deviation, σ(Sδ), is a measure of uncertainty in the process.
Then α asks “how risk averse am I”, and then is able to
calculate P ( accept δ ).

The argument is that with uncertain information and de-
caying integrity, the “utility calculation” in the previous
paragraph is a futile exercise. Instead we argue that it makes
more sense to ask simply: “on the basis of what we actually
know, what is the best thing to do?”. In support of this, we
claim that α will be more concerned about the integrity of
the information with which the decision is being made, than
with an uncertain estimation of her utility distribution as
an intermediate, and unnecessary, step in the calculation.

Further α should be concerned with “driving her accep-
tance machinery backwards” to identify information within
the calculation whose integrity may, perhaps be increased.
That is, α may view the acceptance machinery as an infor-
mation management tool that may be used to proactively
seek additional information to increase her certainty in her
conclusions.

Finally the trust model proposed covers the requirements
presented at the beginning of the paper, and is grounded on
solid information based semantics.
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