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ABSTRACT

Sequential auctions are an important mechanism for buying/selling
multiple objects. Existing work has studied sequential auctions for
objects that are exclusively either common value or private value.
However, in many real-world cases an object has both features.
Also, in such cases, the common value component (which is the
same for all bidders) depends on how much each bidder values the
object. Moreover, an individual bidder generally does not know
the true common value, since it may not know how much the other
bidders value it. On the other hand, a bidder’s private value is inde-
pendent of the others’ private values. Given this, we study settings
that have both common and private value elements by treating each
bidder’s information about the common value as uncertain. We
first determine equilibrium bidding strategies for each auction in a
sequence using English auction rules. On the basis of this equilib-
rium, we analyse the efficiency of auctions. Specifically, we show
that the inefficiency that arises as a result of uncertainty about the
common values can be reduced if the auctioneer makes its informa-
tion about the common value known to all bidders. Moreover, our
analysis also shows that the efficiency of auctions in an agent-based
setting is higher than that in an all-human setting.
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[.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
K.4.4 [Computers and Society]: Electronic Commerce
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1. INTRODUCTION

Market-based mechanisms such as auctions are now being widely
studied as a means of buying/selling resources in multiagent sys-
tems. This uptake is occurring because auctions are both simple
and have a number of desirable properties (typically the most im-
portant of which are their ability to generate high revenues to the
seller and to allocate resources efficiently [17, 3, 19]). Now, in
many cases the number of objects to be auctioned is greater than
one. In such cases, there are two types of auctions that can be used:
combinatorial auctions [16] and sequential auctions [4, 2]. The
former are used when the objects for sale are available at the same
time, while the latter (which is the main focus of this paper) are
used when the objects become available at different points in time.

In the sequential case, the auctions are conducted at different
times, therefore a bidder may participate in more than one of them.
In such a scenario, it has been shown that although there is only
one object being auctioned at a time, the bidding behaviour for any
individual auction strongly depends on the auctions that are yet to
be conducted [4, 2] . For example, consider sequential auctions for
oil exploration rights. In this scenario, the price an oil company
will pay for a given area is affected not only by the area that is
available in the current round, but also by the areas that will become
available in subsequent rounds of leasing. Thus, it would be foolish
for a bidder to spend all the money set aside for exploration on the
first round of leasing, if potentially even more favourable sites are
likely to be auctioned oft subsequently.

Against this background, a key problem in the area is to study the
strategic behaviour of bidders in each individual auction. To date,
considerable research effort has been devoted to this problem, but a
key drawback is that it deals with objects that are either exclusively
common value (an object is worth the same to all bidders) [1] or
exclusively private value (different bidders value the same object
differently) [20, 6, 15, 4]. Also, several of them assume complete
information about these values is available to the bidders [15, 1].
However, most real-world auctions are neither exclusively private
nor common value, but involve an element of both [8]. Again, con-
sider the above example of auctioning oil drilling rights. This is,
in general, treated as a common value auction. But private value
differences may arise, for example, when a superior technology en-
ables some firm to exploit the rights better than others. Also, in
such cases, the common value depends on how much each bidder
values the object. Moreover, an individual bidder generally does
not know the true common value, since it may not know how much
the other bidders value it.

Given this, our objective is to study sequential auctions that have
both common and private value elements by treating each bidder’s



information about the common value as uncertain. We study the
case where each bidder needs at most one object. Each object is
modelled with a two-dimensional signal: one for its common value
and the other for its private value. The auctions are conducted us-
ing English auction rules. We first determine equilibrium bidding
strategies for each individual auction in a sequence. On the basis
of this equilibrium, we study auction efficiency. We focus on effi-
ciency because in the context of objects with common and private
values, it is of major importance (because although it is possible
to have efficient auctions for objects that are either only common
value or only private value, it is not possible to have efficient auc-
tions for objects that have both elements [9, 3] — see Section 7 for
more details). We then show how uncertainty and competition (i.e.,
the number of bidders) affect auction efficiency. Here the role of
competition is important in an agent-based auction setting than in
a human setting because the former case leads to more competition
[14].

The two key results of our analysis are as follows. First, we show
that for each auction in a sequence, efficiency decreases with un-
certainty (we also provide a means of reducing inefficiency). Sec-
ond, we show that an increase in competition increases auction ef-
ficiency. Since competition in an agent-based setting is higher than
that in an all-human setting, this result implies that efficiency of
auctions in an agent-based setting is higher than in a human set-
ting.

The remainder of the paper is organized as follows. Section 2 de-
scribes the auction setting. Section 3 determines equilibrium bid-
ding strategies. Section 4 studies the effect of uncertainty on the
equilibrium outcome. Section 5 studies the effect of disclosure of
the auctioneer’s information and Section 6 that of competition on
the auction efficiency. Section 7 provides a discussion of related
literature and Section 8 concludes.

2. THE SEQUENTIAL AUCTIONS MODEL

Single object auctions that have both private and common value
elements have been studied in [5]. We therefore adopt this basic
model and extend it to cover the multiple objects case. Before do-
ing so, however, we give an overview of the basic model.

2.1 Single object

A single object auction is modelled in [5] as follows. There are
n > 3 risk neutral bidders. The common value (V1) of the object
to the n bidders is equal, but initially the bidders do not know this
value. However, each bidder receives a signal that gives an estimate
of this common value. Bidder ¢ = 1,...,n draws an estimate
(vi1) of the object’s true value (V1) from the probability distribution
function Q(v) with support [vr,vg]. Although different bidders
may have different estimates, the true value (V1) is the same for all
bidders and is modelled as the average of the bidders’ signals:

1 n
i = E;U“ (D

Furthermore, each bidder has a cost which is different for different
bidders and this cost is its private value. For ¢ = 1,...,n, let
¢i1 denote bidder ¢’s signal for this private value which is drawn
from the distribution function G(c) with support [cz,cp] where
cr > 0and vy > cg. Cost and value signals are independently
and identically distributed across bidders. Henceforth, we will use
the term value to refer to common value and cost to refer to private
value.

If bidder 7 wins the object and pays b, it gets a utility of Vi —
ci1 — b, where Vi — ¢;1 is ¢’s surplus. Each bidder bids so as to

maximize its utility. Note that bidder ¢ receives two signals (v;
and ¢;) but its bid has to be a single number. Hence, in order to
determine their bids, bidders need to combine the two signals into a
summary statistic. This is done as follows. For ¢, a one-dimensional
summary signal, called i’s surplus', is defined as:

S = Uil/n — Ci1

which allows 7’s optimal bids to be determined in terms of Sj; (see
[5] for more details about the problems with two signals and why
a one-dimensional surplus is required). In order to rank bidders
from low to high valuations, Q(v) and G(c) are assumed to be
log concave®. Under this assumption, the conditional expectations
E(v|S = z) and E(v|S < z) are non-decreasing in z. Further-
more, E(c|S = z) and E(c|S < z) are non-increasing in z. In
other words, the bidders can be ranked from low to high values on
the basis of their surplus. We extend this model to m > 1 objects.

2.2 Multiple objects

For each of the m > 1 objects, the bidders’ values are indepen-
dently and identically distributed and so are their costs. There are
m distribution functions for the common values, one for each ob-
ject. Likewise, there are m distribution functions for the costs, one
for each object. For j = 1,...,m,let @Q; : Ry — [0,1] de-
note the distribution function for the value of the jth object and
Gj : Ry — [0,1] that for its cost. Thus, each bidder receives its
value signal for the jth object from ; and its cost signal from G;.

Furthermore, each bidder receives the cost and value signals for
an auction just before that auction begins. The signals for the jth
object are received only after the (j — 1) previous auctions have
been conducted. Consequently, although the bidders know the dis-
tribution functions from which the signals are drawn, they do not
know the actual signals for the jth object until the previous (j — 1)
auctions are over.

The m objects are sold one after another in m auctions that are
conducted using English auction rules. Furthermore, each bidder
can win at most one object. The winner for the jth object does
not participate in the remaining m — j auctions. Thus, if n agents
participate in the first auction, the number of agents for the jth
auction is (n — j + 1).

For objects j = 1,...,m and bidders ¢ = 1,...,n, let v;; and
ci; denote the common and private values respectively. The true
common value of the jth object (denoted V}) is:

1
Vi n—j+1 Z._ i @

For objects j = 1,...,mand bidders ¢ = 1, ...
i’s surplus for object j where

Sij = wy/(n—j+1) —ciy 3)

,m, let S;; denote

Note that the values/costs for our model are not correlated. Such
correlations occur across objects, if for a bidder (say ¢) the value/cost
of object j = 2,...,m can be determined on the basis of ¢’s
value/cost signal for the first object. However, in many cases such

"Note that ¢’s true surplus is Vi — ¢;1 which is equal to vir/n —
ci1 + Zj# vj1/n. But since v;1/n — ¢;1 depends on 4’s signals
while 37, vj1/n depends on the other bidders’ signals, the term
‘4’s surplus’ is also used to mean v;1 /n — ¢;1.

?Log concavity means that the natural log of the densities is con-
cave. This restriction is met by many commonly used densities
like uniform, normal, chi-square, and exponential, and it ensures
that optimal bids are increasing in surplus. Again see [5] for more
details.



a direct relation between the objects may not exist. Hence, we fo-
cus on the case where different objects have different distribution
functions. Furthermore, although each bidder knows the distribu-
tion functions from which the values/costs are drawn before the first
auction begins, it receives its signals for an object only just before
the auction for that object begins.

3. EQUILIBRIUM BIDDING STRATEGIES

The m objects are auctioned in m separate English auctions that are
conducted sequentially. The English auction rules are as follows.
The auctioneer continuously raises the price, and bidders publicly
reveal when they withdraw from the auction. Bidders who drop out
from an auction are not allowed to re-enter that auction. A bidder’s
strategy for the jth (for 5 = 1,...,m — 1) auction depends on
how much profit it expects to get from the (m — j) auctions yet
to be conducted. However, since there are only m objects there
are no more auctions after the mth one. Thus, a bidder’s strategic
behaviour during the last auction is the same as that for a single
object English auction. Equilibrium bidding strategies for a single
object of the type described in Section 2 have been obtained in [5].
We therefore briefly summarize these strategies and then determine
equilibrium for our m objects case.

3.1 Single object

For a single object with value V1, the equilibrium obtained in [5]
is as follows. A bidder’s strategy is described in terms of its sur-
plus and indicates how high the bidder should go before dropping
out. Since n > 3, the prices at which some bidders drop out
convey information (about the common value) to those who re-
main active. Suppose k bidders have dropped out at bid levels
b1 < ... < br. Abidder’s (say ¢’s) strategy is described by func-
tions By (S;; b1 .. .bx), which specify how high it must bid given
that k bidders have dropped out at levels b; . . . bx and given that its
surplus is S;. The n-tuple of strategies (B(-), ..., B(-)) with B(-)
defined in Equation 4, constitutes a symmetric equilibrium of the
English auction.

Bo(z;) = E(vi — ¢i|Si = x3)
Bi(zishi...by) = "“EEw]s =)
1 k—1
+ E(vi| Bj(Si;b1,...,b;) =bj41)

j=0

—E(ci|Si = i) 4

where z; is ¢’s surplus. The intuition for Equation 4 is as follows.
Given its surplus and the information conveyed in others’ drop out
levels, the highest a bidder is willing to go is given by the expected
value of the object, assuming that all other active bidders have the
same surplus. For instance, consider the bid function By (.S;) which
pertains to the case when no bidder has dropped out yet. If all other
bidders were to drop out at level By (Sp), then 4’s expected payoff

(ep = Vi — ¢i — Bo(So)) would be:
ep = Si+2——E(v|S=So)— Bo(So)
= E(w|S = So) — E(v—¢|S = So)
= 8 =50

Using strategy By, ¢ remains active until it is indifferent between
winning and quitting. Similar interpretations are given to By, for
k > 1; the only difference is that these functions take into account
the information conveyed in others’ drop out levels.

Let f* denote the first order statistic of the surplus for the n
bidders and let sy denote the second order statistic. fi* and sy
are obtained from the distribution functions ): and G;. For the
above equilibrium, the bidder with the highest surplus wins. The
expected selling price, the winner’s expected profit, the total ex-
pected surplus, and the expected revenue are as follows [S]. The
expected selling price (denoted E(P,)) is:

E(P,) = E(s7) )
The winner’s expected profit (denoted E(my,)) is:
E(mw) = E(f') — E(s1) (6)

The total expected surplus (denoted E(W)) is the surplus that gets
split between the auctioneer and the winning bidder. It is:

EW) = E(M1) - E(cw) ©)

where E(c.,) denotes the expected cost of the winner. Finally, the
expected revenue (denoted E(R)) is the difference between the sur-
plus (E(W)) and the winner’s expected profit (E(my)). This rev-
enue is:

E(R) = EW)- E(m) ®)

On the basis of the above equilibrium for a single object, we now
determine equilibrium for sequential auctions for the m objects de-
fined in Section 2.

3.2 Multiple objects

We will denote the first order statistic of the surplus for the jth (for
Jj=1,...,m)auction as f; "~7*! and the second order statistic as
s;-’_j *!. The following theorem characterises the equilibrium for
m > 1 objects.

THEOREM 1. Forj=1,...
let aj be defined as:

,m,let B; =1/(n—j+ 1) and

o = Z(ﬁy x Xy)
y=j
where X, = E(fy ™) —E(sy ™)+ Xyp1fory =1,...,
and X41 = 0. Then the n- tuple of strategies (B(-),...,B(- ))
with B(-) defined in Equation 9 constitutes an equilzbrmm for the
jth (for 5 = 1,...,(m — 1)) auction at a stage where k bidders
have dropped out:

B{(xij)

Bi(l’i]‘;bl,. .. ,bk-)

E(vij — cij|Sij = @ij) — j1
n—j+1—-k

R E(vi|Sij = zij)
—E(cij]Sij = wij)

E(Uij|By(Sij;b1, e

1 k—1 _
+n—j+1 Zy:O 7by) _by+1)
—Q41 )

For the last auction, the equilibrium is as given in Equation 4 with
n replaced with (n — m + 1).

PROOF. We consider each of the m auctions by reasoning back-
wards.

o mth auction. To begin, consider the mth auction for which
there are (n — m + 1) bidders. Since this is the last auc-
tion, an agent’s bidding behaviour is the same as that for
the single object case. Hence, the equilibrium for this auc-
tion is the same as that in Equation 4 with n replaced with



(n—m+1). Forj =1,...,m, let a;j denote an agent’s cu-
mulative ex-ante expected profit from auctions j to m. Recall
that although the bidders know the distribution (from which
the cost and value signals are drawn) before the first auction
begins, they draw the signals for the jth auction only after
the (j — 1) earlier auctions end. Since «;j is the ex-ante
expected profit (i.e., it is computed before the bidders draw
their signals for the jth auction), it is the same for all partic-
ipating bidders. Thus, we will simplify notation by dropping
the subscript © and denote o simply as o We know from
Equation 6 that:

= (B — (s ™ 10)
This is because all the (n — m + 1) agents that participate
in the mth auction have ex-ante identical chances of winning
it. Note that the right hand side of Equation 10 does not de-
pend on i. In other words, since bidders receive their signals
for the mth auction after the (m — 1)th auction, the ex-ante
expected profit for the mth auction (before the (m — 1)th
auction ends) is the same for all the (n — m + 1) bidders.

(m — 1)th auction. Consider the (m — 1)th auction. During
this auction, a bidder bids b if (Vin—1 — cm—1 —b > am) or

b S mel —Cm—1 — Qm (11)

Hence, a symmetric equilibrium for the (m — 1)th auction is
obtained by substituting 7 = m — 1 in Equation 9. We know
from Equation 5, that the expected selling price for the single
object case is the second order statistic of the surplus. The
difference between the equilibrium bids for the single object
case and the (m — 1)th auction of the m objects case is oo
(see Equations 4 and 9). Hence, the expected selling price
for the (m—1)th auction is E(s™_"*?) — am. This implies
that the winner’s expected profit for the (m — 1)th auction
is:
E(ﬂ'w(m—l)) = E( TTYLL_—TIYHQ) - E(Snm_—T;H_Z) +

am 12)

First (m — 2) auctions. Consider the jth auction where 1 <
j <m—2. Wenow find ai,...,am—1. Since the number
of bidders for the jth auction is (n — j + 1) and each bidder
has ex-ante equal chances of winning, the probability that a
bidder wins the jth (for j = 1, ..., m) auction (denoted [3;)
is:

Bi = 1m—-j+1)
This implies that, for j = 1,...,m, a; is:
aj = BiE(mw;) + it

Generalising Equation 12 to the first (m — 1) auctions, we
get the winner’s expected profit (E(mw;)) as:

E(rwj) = B(ff 7))~ E(s; 7)) +ajm

Consequently, a bidder’s optimal bid for the jth auction is
obtained by discounting the single object equilibrium bid by
aj41. Hence, we get the equilibrium bids in Equation 9.

O

THEOREM 2. For the jth (for j = 1,...,m) auction, the ex-
pected selling price (denoted E(Py;)) is:

VG E(Pyy) = E(s]7M) —ajn

E(Pum) = B(sp ™)

The winner’s expected profit (E(mw;)), the total expected surplus
(E(W;)), and the expected revenue (E(R;)) are:

Vi E(mw;) = B(ff 7)) = B(s) 7 (13)
+aj41

E(mwm) = E(f ™) —BE(sp ™) (14)

VislE(W;) = E(Vj) — E(cw;) (15

ViC'E(R;) = E(W;)— (B(ff ") = E(s] /) (16)
+aj41)

E(Rn) = EWnx)—(E(fi ™) = E(sp, ™07

where E(cwj) denotes the expected cost of the winner for the jth
auction.

PROOF. It is important to note that for the jth (j = 1,...,m)
the bids in Theorem 1 are similar to those in Equation 4 (for the
single object case), except that each bid in the former case is ob-
tained from the corresponding bid in the latter by shifting the latter
by the constant aj 1. Since a1 is the same for all participating
bidders, the relative positions of bidders for each of the m auctions
remains the same as that for the corresponding single object case.
Hence, the winner for the jth (for j = 1,...,m) auction is the
bidder with the highest surplus for that auction. Consequently, the
expected selling price for the jth (for y = 1,...,m — 1) auction
is:

E(P,;) = E(S;-L_j+l)—aj+1

For the last auction (which is similar to a single object auction),
the selling price is:

E(Pym) = E(si™)

The mth auction is identical to the single object case. Hence, the
expected profit for this auction is: E(f"™ ) —E(s% ™). The
relative positions of the bidders for the jth (forj =1,...,m —1)
auction of the m object case and the corresponding single object
auction are the same. Since the difference between the selling price
of each of the first m — 1 objects and the corresponding single
object case is aj 11, the winner’s expected profit for the jth auction
is:

E(ff 7 = B(s77 Y +ajn

For j = 1,...,m the total expected surplus (E(Wj)) that gets
split between the auctioneer and the winning bidder is obtained
from Equation 7 as:

EW;) = E(V))— E(cu))

For j = 1,...,m, the expected revenue (E(R;)) for the jth
auction is the difference between the surplus (E(W;)) and the win-
ner’s expected profit (E(mwj)). Thus, we have:

VIL'E(R;) = E(W;) - (E(fJTL—Hl) - E(S;}—j+l) (18)
+aj1)
E(Rn) = E(Wn)-— (E( :»Lz_m+l) — E(s"m_m+l))

O

Recall from Section 2, that the common value of an object depends
on the value signals of all the bidders. Also, although all the bid-
ders know the probability distributions from which the signals are



drawn, each bidder knows only the signals that it draws and not
those of the others’. This lack of information results in an uncer-
tainty about the common values of the objects. In the following
section, we study the effect of this uncertainty on the allocative
efficiency. We also show how competition affects efficiency.

4. THE EFFECT OF UNCERTAINTY

Consider the allocative efficiency of the equilibrium obtained in
Section 3. The efficiency of an auction is, in general, measured
in terms of the total surplus (that gets split between the auctioneer
and the winning bidder) it generates [7]. The larger the surplus, the
higher are the gains that are split between the auctioneer and the
winning bidder, and the more efficient the auction. We know from
Equation 15, that the total expected surplus for the jth auction is
decreasing in the cost of the winner for that auction. Also, from
the equilibrium given in Theorem 1, we know that the winner for
the jth auction (for 5 = 1,...,m) is the bidder that has the high-
est surplus for that auction. Although the winner has the highest
surplus, it may not necessarily have the lowest cost. This gives rise
to inefficiency in the allocation of the objects. In this section, we
determine the relation between the efficiency of an auction and the
uncertainty (described in detail below) about the common value of
the object sold in that auction.

Recall that a bidder’s cost is its private value component and does
not depend on the other bidders’ signals. But the common value
component depends on the signals of all the bidders (see Equa-
tion 2). Although a bidder only knows its value (from its value
signal) it is uncertain about the values of the others. In order to
study the effect of uncertainty on the equilibrium outcomes of the
m auctions, a weight (y > 1) is associated with the common value
signals. This weight is called the uncertainty parameter and is de-
noted «y; for the jth auction. Intuitively, it denotes the degree of

uncertainty in the common value of an object. For j = 1,...,m,
we apply the following mean-preserving transformation to bidder
i’s (fori = 1,...,n) common value signal:

vij = i+ (1= ) E(V) (19)

We apply this transformation because it leaves the expectation of
the common value unchanged but increases its variance (i.e., its
uncertainty). Note that E(V;) depends on the function @;, but
not on the actual signals received by the bidders. Hence, the term
(1 —~;)E(V;) in Equation 19 is constant (i.e., it is independent of
the bidders’ signals) and is the same for all the bidders. In order to
parameterize the uncertainty about the common value, the surplus
is now defined as:

Sij(yi) = vig/(n—j+1) —ci (20)
Thus, if ; is large, the common value component is large in com-
parison with the cost (c;;) and uncertainty is high. On the other
hand, if v; is low, the common value component is low in compari-
son with the cost (c;;) and the uncertainty is also low. Note that we
do not consider the additive constant of Equation 19 in the surplus.
This is because the additive constant merely causes an equal shift
in the equilibrium bids of all the bidders. Hence, the relative posi-
tions of the bidders for the equilibrium of Theorem 1 is the same as
the equilibrium for the transformation given in Equation 19.

For the parameterised definition of Equation 19, the work in [5]
has studied the effect of v on the allocative efficiency for a single
object. Below, we extend these results to our m objects case.

The following theorems study the effect of uncertainty on the
auction outcomes. For j = 1,...,m, we will denote the highest

order statistic of the surplus for the jth auction as f;’_] ! (v;) and

the second highest order statistic as S;L_j ().

THEOREM 3. For j = 1,...,m, the expected cost of the win-
ner for the jth auction is increasing in ;.

PROOF. Consider the jth (for j = 1,...,m) auction. For this
auction, we know from Section 3, that the bidder with the highest
surplus wins and pays E(P,j). Hence, the expected cost of the
winner for this auction is:

E(cwj) = B(dS(y) = £ (n)

For a single object auction with n bidders and uncertainty pa-
rameter 7, it has been shown that the expected cost of the winner
(E(cw) = E(c|S(v) = f™(v))) is increasing in ~y [5]. The jth
auction of our m objects case is similar to the single object auction
of [5], since the bidder with the highest surplus wins. The result of
[5] therefore directly applies to the jth auction, and we get:

E(cw;) = B(dS(y) = £ (n)

is increasing in ;. [

THEOREM 4. For j = 1,...,m, the probability (P;(v;)) that
the bidder with the lowest cost wins the jth auction is decreasing
in y;, with

P;j(0)=1
and

lim Pj(vy;)=1
,le_rfloo (Vi) /n

PROOF. To begin, consider the first auction. We know from Sec-
tion 3, that the bidder with the highest surplus wins the first auction.
The probability (Py (1)) that this winner also has the lowest cost
is:

Pi(y1) = Prob(Sii(11) = mazxi=1,...nSi1(711)
|c1r = mini=1,....nci1) (21)
If there is no uncertainty about the common value for the first auc-
tion (i.e., v1 = 0), the auction reduces to a private value auction.
Hence, if i = 0, then S;1(y1) = —cinfori = 1,...,n. In
other words, the surplus is negative for all the bidders. Hence, the
maximum surplus is the one with lowest cost. Therefore, we get
P (0)=1.
Equation 21 for Py(y1) can also be written as:
Pi(y1) = Prob(yivai/n —ca1 < mvi1/n — ci,
Y1vs1/n —c31 < yvi1/n — ¢, ...,
'YlUnl/n —Cn1 < ’YlUll/n — C11

|c11 = mini=1,... nci1)

= PTOb(Cu —c21 < 'Yl(Ull — U21)/n, ey
C11 — Cp1 < ’Yl(vu - Unl)/n
le1r —e21 < 0,...,c11 — ¢cn1 < 0) (22)

Equation 22 shows that Py(y1) is decreasing in 1. As ~y1 tends to
infinity, the condition

ci1 —ci1t < 'Yl(Ull_Uil)/n

is true for i = 2,...,n. Hence, Pi(v1) is the probability that
c11 —c21 < 0,...,c11 — cn1 < 0, or the probability that c11 <
C21,...,C11 < Cn1. The total number of possible orderings for the
costs of m bidders is n!, out of which c11 is the lowest in (n — 1)!
orderings. Hence, we have lim.y, o P;j(7;) = 1/n (which is the



same as the probability that the lowest cost bidder wins if the object
is allocated to a randomly selected bidder).

The above analysis also applies to the remaining m—1 auctions.
This is because the winner for the jth (for j = 1,..., m) auction
is the bidder with the highest surplus for that auction. The only
difference between the m auctions is in the number of bidders ((n—
j + 1) for the jth auction). [

THEOREM 5. For j = 1,...,m, the winner’s expected profit
for the jth auction is non-decreasing in ;.

PROOF. Consider the jth (for j = 1,...,m — 1) auction. For
this auction, we vary y; and study its effect on the winner’s ex-
pected profit by keeping Yjy1,...,Ym constant. The winner’s ex-
pected profit for this auction is:

E(mu;i(7)) = BE(ff 74 () = B(s7 7 () +23)
Qj+1

(see Equation 13). This is of the same form as the winner’s expected
profit for the single object auction of [5]. Also, [5] shows that
E(fI'(v)) — E(sT (7)) is non-decreasing in ~. This implies that
;41 is nondecreasing in vy. It follows that for the first m — 1
auctions of our m objects case, the winner’s expected profit is non-
decreasing in ;. Since the last auction is similar to a single object
auction, the above result applies to this auction also. [

THEOREM 6. For j = 1,...,m, the total expected surplus
(i.e., the expected efficiency) for the jth auction is decreasing in
Vi

PROOF. Consider the jth (for j = 1,...,m) auction (which
has n — j + 1 bidders). For this auction, we vary ~y; and study
its effect on the total expected surplus by keeping i, (for k = j +
1,...,m) constant. The total expected surplus for this auction is:

EW;) = E(Vj)— E(cu))

(see Equation 15). We know from Theorem 3, that E(cyj) is in-
creasing in ;. Furthermore, E(V}) does not change with ~y;, since
the transformation in Equation 19 is mean-preserving. It follows
that the total expected profit for the jth auction is decreasing in
v U

Theorem 7 follows from Theorems 5 and 6 and shows that, for each
of the m auctions, the auctioneer’s expected revenue is decreasing
in the uncertainty for that auction.

THEOREM 7. For j = 1,...,m, the expected revenue for the
Jth auction is decreasing in ;.

PROOF. Consider the jth (for j = 1,...,m—1) auction. Here,
we vary «y;j and study its effect on the expected revenue by keeping

Ye (fork = 7+ 1,...,m) constant. The expected revenue for this
auction is:
E(R;)) = EW;)—(B(ff 7))~ B 7+ @4
@jt1)

(see Equation 16). We know from Theorem 6 that the total ex-
pected surplus for this auction (i.e., E(Wj)) is decreasing in ;.
Also, we know from Theorem 5 that the winner’s expected profit
(E(ma; (1)) = B () = B(s] 74 () + aj1) is
non-decreasing in ;. It follows that the expected revenue for the
Jth auction is decreasing in ;. [

Since the auctioneer’s expected revenue is decreasing in uncer-
tainty, it is in the auctioneer’s interest to reduce uncertainty. In
the following section, we show that the auctioneer can do so by
disclosing its information about the common values of the objects
to all the bidders. We then show how competition affects efficiency.

S. THE EFFECT OF DISCLOSURE OF THE
AUCTIONEER’S INFORMATION

The above analysis was conducted on the basis of the value and
cost signals received by the n bidders. However, since the objects
for sale have a common value, the auctioneer too can have infor-
mation about this value in the form of its own signal. If this is so,
then for the single object case, it has been shown that the auctioneer
can increase its revenue by making its information known to all the
bidders *, relative to the situation where it does not give its infor-
mation to them [5]. Given this, we extend this work by studying
how the public disclosure of the auctioneer’s information affects
the expected revenue for m sequential auctions.

For j = 1,...,m, let vo; denote the auctioneer’s signal for
the common value V;. For object j = 1,...,m and bidder ¢+ =
1...,n, the common values (with the auctioneer’s signal) are:

1 n—j42
Vi = aTiT ;0 Yid

In order to incorporate the auctioneer’s extra piece of information,
the surplus is now defined as:

Sij = wij/(n—j+2)—ci

Theorem 8 shows that the auctioneer can increase its revenue by
disclosing its common value signal to all the bidders.

THEOREM 8. Assume that the auctioneer discloses its informa-
tion about the common value, vo; (for j = 1,...,m), to all partici-
pating bidders just before the jth auction begins. Public disclosure
of the auctioneer’s information for the jth auction increases the
expected revenue for that auction.

PROOF. Consider the jth (for j = 1,...,m) auction. Recall
that the surplus with and without the auctioneer’s signal is

Sij = wvi/(n—3j+2)—cy
and
Sij = wvi/(n—j+1)—cy

respectively. In order to differentiate between these two surpluses,
we use the parameterised definition of Equation 20 (i.e., S;; (7vj) =
Vivij/(n —j + 1) —cij). Let

Yo=1land y=(n—j+1)/(n—j+2)

For the jth auction, the surplus without the auctioneer’s signal is
Sij (Ya), and with it is Sij (). From Theorem 7, we know that
the expected revenue for the jth auction is decreasing in ;. It
follows that the expected revenue for the jth auction is higher with
the auctioneer’s signal than without it (since vq > ). [

6. THE EFFECT OF COMPETITION

The difference between auctions in an all-human setting and those
in an agent based setting is in terms of the competition (i.e., the
number of bidders) they generate. Online auctions make partici-
pation for bidders easier, thereby increasing competition [14]. The
following theorem shows how competition affects auction efficiency.

3This work shows that such a disclosure of information reduces
uncertainty about the common value. This is because, if the uncer-
tainty is high, the bidders bid less in order to avoid the problem of
the winner’s curse. But if the uncertainty is low, the bidders bid
higher because they are now more certain about the common value.
Our work extends these results to the m objects case.



THEOREM 9. An increase in competition (i.e., the number of
bidders for the first auction) raises the efficiency of the m auctions.
Efficiency is maximized as the number of bidders goes to infinity.

PROOF. Consider two cases: one with n bidders for the first
auction and the other with n + ¢ bidders, where 6 € Z. For the

jth (for j = 1,...,m) auction, the surplus for these two cases is
Sij = wvi/(n—j+1)—cy
and
Sij = wij/(n—j+1+0)—ci

respectively. Again we use the parameterised definition S;j(vy;) =
v;vij [(n — j + 1) — cij for the surplus. Let

Yo=1and vw=(n—j54+1)/(n—j+149)

From Theorem 7, we know that the expected revenue for the jth
auction is decreasing in vy;. Since o > Y, the expected revenue is
higher for the (n + &) bidders case than that for n bidders. Thus,
the first part of the theorem follows.

As n — oo, surplus reduces to —c;; and the surplus is negative
for all the bidders for all the objects. Hence, the maximum surplus
is the one with the lowest cost. Recall that for each of the m auc-
tions, the bidder with the highest surplus wins. Since the bidder
with the highest surplus also has the lowest cost, the efficiency is
maximum. [

Our analysis provides two key results. First, the efficiency of an
auction can be increased if the auctioneer discloses its information
about the common value for that auction (as per Theorem 8). Sec-
ond, the efficiency of each auction in a sequence is higher in the
context of software agents than the corresponding auction in a hu-
man setting. This is because the use of software agents leads to
relatively more bidders participating in the auctions [14]. Since the
number of bidders (i.e., n in Equation 20) increases, the effect of
the common value part decreases in comparison with the private
value part, which is analogous to a reduction in uncertainty. This
leads to higher efficiency (see Theorem 9).

7. RELATED WORK

Existing work on sequential auctions includes [12, 18, 11, 10, 2].
Our work differs from these in two ways. First, this existing work
focuses on the study of the dynamics of the selling price in sequen-
tial auctions for identical objects. Second, it focuses on objects that
are either exclusively private value or exclusively common value.
For instance, Ortega-Reichert [12] determined the equilibrium for
sequential auctions for two private value objects using the first price
rules. Weber [18] showed that in sequential auctions of identical
objects with risk neutral bidders who hold independent private val-
ues, the expected selling price is the same for each auction. On the
other hand, Milgrom and Weber [11] studied sequential auctions
in an interdependent values model with affiliated* signals. They
showed that expected selling prices have a tendency to drift upward.
Mc Afee and Vincent [10] consider two identical private value ob-
jects and using the second price sealed bid rules, they show that
prices increase in later auctions. Bernhardt and Scoones [2] con-
sider two identical private value objects and show that the selling
price for the second auction can be lower than the first. Our model
is a generalization of [2] since we consider n > 2 objects with

4 Affiliation is a form of positive correlation. Let X, Xo, ..., X,
be a set of positively correlated random variables. Positive correla-
tion roughly means that if a subset of X;s are large, then this makes
it more likely that the remaining X;s are also large.

both common and private values. Furthermore, while [2] focuses
on the dynamics of the selling price, we concentrate on the effi-
ciency property of auctions.

A key difference between the exclusive common/private value
auctions and the those that have both elements is in terms of their
efficiency. For the former category, a number of auction mecha-
nisms have been developed that have the property of efficiency. For
example, in the private values context, Vickrey [17] showed that the
equilibrium bids are increasing in the bidders’ values, and hence,
the object is awarded to the bidder that values it the most (i.e., the
auction is efficient). And for common value auctions, all bidders
value the object the same, so any allocation rule is trivially efficient.
However, for auctions with multi-dimensional signals, Maskin [9]
showed that it is impossible to allocate an object efficiently. Das-
gupta and Maskin [3] extended Maskin’s earlier work and showed
that the Vickrey auction is inefficient for multidimensional signals.
Also, in the context of two dimensional signals Pesendorfer [13]
showed that efficiency varies with the number of bidders. Since
two signals are necessary to model objects with private and com-
mon value elements, it follows that auctions for such objects are, in
general, inefficient.

Given this, it is important to investigate the property of efficiency
since our model involves two-dimensional signals (one for value
and the other for cost). To this end, Theorem 6 shows that the ex-
pected efficiency (measured in terms of the total expected surplus)
for each of the m auctions decreases with the uncertainty for that
auction. Also, Theorem 4 shows that, in the limit (i.e., as y; — 00),
the uncertainty about the common value is so large as to override
the private value component (see Equation 20), an auction is no
more efficient than a random allocation rule. At the other extreme,
when there is no uncertainty about the common value (i.e.,y; = 0),
an auction reduces to an efficient private value auction. For our
model, uncertainty and competition are related. As competition
(i.e., m in Equation 20) increases, the effect of the common value
part decreases in comparison with the private value part, which is
analogous to a reduction in uncertainty. This leads to higher effi-
ciency (see Theorem 9).

8.  CONCLUSIONS AND FUTURE WORK

This paper has analyzed sequential auctions for objects with private
and common values, in an uncertain information setting. We first
determined equilibrium strategies for each auction in a sequence.
The lack of complete information (i.e., the uncertainty about the
common values) leads to inefficiencies in the auctions. On the basis
of the equilibrium, we determined the relation between uncertainty
and efficiency. We showed that, for each auction in a sequence, ef-
ficiency decreases with uncertainty. In the limit, when uncertainty
is very high, the auction mechanism is no better than a random al-
location of the object to a bidder. At the other extreme, when there
is no uncertainty, the auctions reduce to efficient private value auc-
tions. We also showed that efficiency is improved if the auctioneer
makes its information about the common values known to all the
bidders, and also if competition increases.

Our present focus was on the efficiency of sequential auctions.
But apart from efficiency, there are other important issues that need
to be addressed. First, is the question of the order in which the
auctions should be conducted (where this is a choice). For such
cases, we would like to determine the order that maximizes total
expected revenue across all the auctions in a sequence. Second,
in this work, we used the English auction form which is by far the
most common form in practice. However, in order to generalize our
results, we intend to extended the analysis to other auction forms.
Finally, we will extend our analysis to the case where each bidder



needs more than one object.
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