
Launch Commit Criteria Monitoring Agent

Glenn S. Semmel

Steven R. Davis, Kurt W. Leucht

Dan A. Rowe, Andrew 0. Kelly

National Aeronautics and Space Administration

Spaceport Processing Systems Branch

Glenn.S.Semmel@nasa.gov

Ladislau Bölöni

University of Central Florida

Dept. of Electrical and Computer Engineering

lboloni@cpe.ucf.edu

Abstract

The Spaceport Processing Systems Branch at NASA
Kennedy Space Center has developed and deployed a soft-
ware agent to monitor the Space Shuttle 's ground process-
ing telemetry stream. The application, the Launch Commit
Criteria Monitoring Agent, increases situational aware-
ness for systemn and hardware engineers during Shuttle
launch countdown. The agent provides autonomous mon-
itoring of the telemetry stream, automnatically alerts sys-
tem engineers when p redefined criteria have been met,
identfles limit warnings and violations of launch coin-
mit criteria, aids Shuttle engineers through troubleshooting
procedures, and provides additional insight to verify ap-
propriate troubleshooting of problems by contractors.
The agent has successfully detected launch commit crite-
ria warnings and violatons on a simulated playback data
stream. Efficiency anii safety are improved through in-
creased automation.

1. Introduction

This paper describes a software agent that is used for
processing Space Shuttle telemetry data and notifying sys-
tem engineers of warnings and violations. After describing
the problem and objectives, the environment, interfaces, ap-
plication description, and extension of the agent for future
uses will be presented.

1.1. Background

NASA Kennedy Space Center (KSC) is responsi-
ble for pre-launch ground checkout of the Space Shuttle.

I	 A demonstration of this system will be available to be shown at the
conference.

Sh,rnk Dab Sbam

Hrdw Con,b,ablS La,,h ConoI a,ai Mon.tor
Sppo,t Itf
Eqaipnbne Mothila

Mcen,na Sv,t,n, -

Figure 1. Ground Control and Monitoring at
NASA KSC

The Launch Processing System (LPS) at KSC provides fa-
cilities for NASA Shuttle system engineers, contractors,
and test conductors to command, control, and moni-
tor space vehicle systems from the start of Shuttle interface
testing through various phases including terminal count-
down, launch, abort, safing, and scrub turnaround.

LPS continually monitors the Shuttle and its ground
equipment including environmental controls and hardware
that loads propellants. Consoles with vehicle responsibili-
ties communicate information directly to and from the Shut-
tle computer systems. Consoles with ground support equip-
ment responsibility communicate information to and from
the hardware interface modules which are connected to the
numerous ground support systems. See Figure 1. Each mod-
ule is capable of interfacing to approximately 240 sensors
or controls. Overall, some 50,000 temperatures, pressures,
flow rates, liquid levels, turbine speeds, voltages, currents,
valve positions, switch positions, and many other parame-
ters must be controlled and monitored.

For over 25 years, engineers have used LPS to verify
Space Shuttle flight readiness and to control launch count-
down. LPS has performed superbly well. Recently, much
of the LPS hardware was upgraded assuring its continu-
ance for many more years. However, the system architec-
ture was not changed and software remains basically the
same. As a result, the level of situational awareness has not
increased proportionally to what would otherwise be possi-

ble with more modem software technologies.
After the Shuttle Columbia disaster on February 1,2003,

the Columbia Accident Investigation Board [14] proposed
recommendations to improve safety from both an organi-
zational and technical perspective. The Board indicated the
need to "[adopt] and maintain a Shuttle flight schedule that
is consistent with available resources." Also, both manage-
ment and engineering support staff must maintain an aware-
ness of anomalies and those must not be lost "as engineer-
ing risk analyses [move] through the process." Given two
tragic losses of a crew and Shuttle, today NASA engineers
have an even greater pressure to be more vigilant in identi-
fying problems. Anomalies must be detected and reported
to prevent problems with Shuttle subsystems, countdown,
and launch. The aging LPS hardware has limited resources
and precludes the level of automation and notification war-
ranted by this domain.

1.2. Problem Description

During launch countdown, NASA Shuttle engineers are
required to monitor shuttle data for violations of the launch
commit criteria (LCC) and to verify that the contractors
troubleshoot problems correctly. When a violation is rec-
ognized by the system engineers it is reported to the NASA
Test Director. The problem report, or call, includes a de-
scription of the problem, the criticality, whether a hold is
requested, and whether a preplanned troubleshooting pro-
cedure exists. Many systems have a large number of mea-
surements with associated LCC limits and a large num-
ber of LCC requirements. Table 1 shows four representa-
tive Shuttle subsystems and their corresponding number of
LCCs and measurements. As illustrated, hundreds of mea-
surements must be monitored just for this small set of sub-
systems.

The Shuttle is composed of many subsystems (e.g. Main
Propulsion, Hydraulics). Each of those subsystems has a
team of engineers responsible for troubleshooting problems
for that respective system during a launch countdown. Each
team has its own tools for identifying LCC violations. Many
of these tools use the LPS software and simply change the
color of the displayed data and/or present a text message
to the user or set off an audible alarm. Troubleshooting
may require other displays such as plots and troubleshoot-
ing flowcharts. Valuable time is spent locating these pro-
cedures and locating the data that supports them. Table 2
shows some sample limits for the Power Reactant Supply
and Distribution (PRSD) subsystem. In this case minimum
and maximum limits are specified for pressure measure-
ments associated with two hydrogen tanks. Limits can be
much more complex, involving limits calculated from other
measurements and limits that apply only to specific times
during the countdown.

Given the possible complexity of limits, the large num-
ber of limits, and the need to get supporting data quickly
Shuttle engineers needed an advisory tool to provide more
insight and situational awareness during launch countdown.
In the latter half of 2003, a software tool was proposed to
provide additional insight during Shuttle launch countdown
and increase the level of situational awareness. The tool,
called the Launch Commit Criteria Monitoring Agent (LC-
CMA), complements LPS and is capable of autonomously
and continuously monitoring Shuttle telemetry data. LC-
CMA automatically alerts NASA Shuttle engineers when
predefined criteria (e.g. limit violations, warnings) have
been met and guides the engineers through troubleshoot-
ing probedures.

1.3. Objectives

LCCMA acts as a software agent for the NASA engineer.
For this discussion, an agent is defined as rule-based, au-
tonomous software that reacts to its environment and com-
municates results to a human, a NASA engineer in this
usage. Agents have been extensively researched [22, 19].
Agents standards [9] and frameworks [1, 15] have also been
developed.

The primary objectives for LCCMA include:

• Monitor Space Shuttle telemetry ground data.

• Allow a NASA engineer to specify rules to be applied
to Space Shuttle telemetry ground data.

• Display a visual indication of violated LCCs.

• Display a text message of the LCC violation call.

• Display troubleshooting steps from preplanned proce-
dures.

LCCMA does not send any commands and is used for
advisory purposes only. A future release of LCCMA will
include an interactive troubleshooting display that reads the
data stream and accepts user inputs to direct diagnostic trou-
bleshooting.

2. Environment and Interfaces

2.1. Shuttle Data Stream

Data processed by LPS is distributed on a local area net-
work. As shown in Figure 1, the distributed data is known as
the Shuttle Data Stream (SDS) [16] and contains real-time
vehicle and ground processing data. Thousands of teleme-
try measurements are published in the SDS and are used
by monitor-only applications such as LCCMA. The SDS
contains multiple types and subtypes of measurements in-
cluding discretes (i.e. boolean measurements), analogs (i.e.
floating point measurements), and digital patterns (i.e. inte-
ger measurements).

Subsystem Number of LCCs Number of Measurements
APU/HYD 50 252

ECLSS 29 136
PRSD 15 113
OMS 18 434

Table 1. Number of Measurements for Various Shuttle Subsystems

LMeasurement Id Description Mm Max Units
V45P21 1OA Tank 1 Heater Control Pressure 196 298 psia
V45P2100A Tank 1 Pressure 192 294 psia

Table 2. Example LCC Requirements for PRSD H 2 Tank 1

2.2. LCCMA Context Diagram

Figure 2 shows the context diagram for LCCMA. The
agent process, represented in the middle circle, commu-
nicates with various sources and data stores. A measure-
ment database is used to decode the SDS into usable mea-
surements. The SDS source broadcasts measurements as
data packets over local area networks. LCCMA monitors
this stream for measurement violations and warnings spec-
ified by the Shuttle engineers. The Troubleshooting Proce-
dures source represents html or pdf files containing the trou-
bleshooting steps, often in flowchart format. LCCMA sends
limit violations to the NASA Engineer via the Status Board
Display. The Rules data store represents the Jess scripts and
knowledge base that defines the rules for the limit viola-
tions.

3. Application Description

3.1. Languages and A! Tools Used in Application

The Java Expert System Shell (Jess) [121 was selected as
the agent's rule engine. Jess was developed and supported
by another government agency, Sandia National Labs. As
such, our development team and customer have full usage
of the tool via government licensing without any fees. This
includes access to all the Jess source code.

Jess' forward chaining reasoning system was modeled
after production systems such as OPS5 [3] amd CLIPS [23].
It contains highly efficient and sophisticated pattern match-
ing based on the Rete algorithm [11] . This enables its in-
ference engine to process many rules and data rapidly. The
engine repeatedly processes through a match-select-act cy-
cle. As a production system, its consequents can be actions.
A conflict resolution strategy determines the precedence of
rule firings.

Jess' predicate logic lends itself to capturing and spec-
ifying the heuristics and engineering rules of this space-
port domain. The declarative paradigm of this rule-based
agent application also makes it highly modular and scal-
able to span multiple subsystems of the Shuttle. Jess also
includes a fourth generation scripting language and interac-
tive command line which are very conducive for prototyp-
ing and testing.

Jess is written entirely in Java and has access to the
full Java application programming interface from the script-
ing language. It provides standard control flow constructs
and supports variables, strings, objects, and function calls.
Jess automatically converts between its own types and Java
types insulating the developer from manually performing
the conversions. Its use as a Java library made Jess' selec-
tion more appealing since Java supports multiple platforms
with its "write once, run anywhere" paradigm. Beyond that,
the need for NESTA to support web enabled clients also
made Java a natural fit given its origins and strong support
for developing Internet based applications.

3.2. Design

Java classes were developed to parse and decode the data
stream and represent measurements as facts in Jess' work-
ing memory. To interface Jess' rule engine with the SDS,
each data measurement is modeled and implemented as a
Java bean [21]. Java beans provide a component architec-
ture to enable easier integration of applications. A property
change notification mechanism is supported that allows one
object to become a registered listener of another object. The
listener object will then automatically receive changes from
the source object. This is also known as a publish-subscribe
or observer pattern [13]. Within Jess, each Java bean cone-
sponds to what is known as a shadow fact. A Jess shadow
fact is a mirror image of a Java bean, such as a pressure

Rule: e LiN
Data Format

Rule

Shuttle	 Measurement	 /	 0.0	 ______________ Data	
LCCMA	

) Limit violation

Stream	 I

DM1 Sequence

leshootin/	

Message

Log ure j 	 _

Status

Enabled
Client

NASA Engineer

Figure 2. LCCMA Context Diagram

measurement, within Jess' working memory. All shadow
facts are registered listeners of their Java bean counterparts.
Thus, whenever a measurement changes in the data stream,
a property change event is automatically generated for the
given measurement and its sibling shadow fact is updated in
Jess' working memory. Figure 3 illustrates this path.

After a shadow fact is updated, the Jess pattern matcher
will determine if the premises of any rules match the new
or modified facts. Rules are compared to working mem-
ory to identify premises that are matched by the data in
working memory. For LCCMA, this data represents mea-
surements from the SDS and rules represent data monitor-
ing criteria submitted by NASA Shuttle system engineers.
Rules with matching premises are activated and placed onto
an agenda. Next, the agenda is ordered according to Jess'
default conflict resolution strategy. The highest priority rule
is then fired and executed. This match-select-act cycle re-
peats until no more rules are available to fire. An action han-
dler class was developed and is used to build and send the
notification message to the Shuttle engineer whenever a rule
fires.

3.3. Graphical User Interface

A graphical user interface currently exists for LCCMA
called the Status Board Display. It is being upgraded and
Figure 4 shows a storyboard representative of that future in-
terface. The Status Board Display shows the health of the
network connection, data stream status, countdown time,
and other relevant information.

When LCC limits are violated, the LCC call is displayed

in the text box. The user reads the text and, if there is an as-
sociated troubleshooting file, clicks on the file button next to
the text. This brings up a Troubleshooting Display for that
particular LCC and limit. The LCC text remains bold un-
til the Acknowledge button is pushed. Message text can be
displayed with one of three icons representing a violation,
warning, or informational cue.

The text messages can be read over the Operational Inter-
communication System as LCC calls during the countdown.
Calls will change based on what limit is violated (e.g. warn-
ing, LCC, high/low limit), the time criticality of the call, and
LCC effectivity. The application aids the NASA engineer in
making a Go/No-Go decision.

3.4. Execution

At startup, LCCMA connects to a single data stream
based on user input and reads a rules file containing LCC
violation and warning limits. Table 3 shows the conditions
and actions associated with an LCC warning and violation
for the hydrogen (H2) tank I from Table 2. For example, if
either of the H2 tank I pressures are above the upper limit,
the agent should notify the NASA engineer by displaying
the violation in red font and direct the engineer to the corre-
sponding troubleshooting file (i.e. PRSDO6Hi.pdf) for that
violation. The troubleshooting file shows the steps neces-
sary to be taken by the engineer when the specified limits of
a given subsystem are violated.

Shuttle Data Stream	 Shuttle Data Stream Reader	
FD Measurement (JavaBean)	

[mtvcharraeSu000c1
J	

Jess Shadow Fact

getNextPacket()

set VaJueO

tirePropertyChange()

propertyChange()

Figure 3. Sequence Diagram Illustrating Update to Jess Working Memory from Shuttle Data Stream

LCCMA Status Board Display

Stream ID; 7	 Limit File: Fuel CeU Activation

Stream Status:	 GiWI':328:0055154	 User Inlsjbiled: I
TCID: SAAII3B	 CDT:-fOOdJOlO/23	 Masked Values/Rules: 2/I LCCMAVer:OJc

Liantt tictaits
I

322:0052/12.359 GMT (+00.0009/07 CDI) 0 L

-

PRSD-02 02 Manifold Isolation Valve Indicates Closed
V45X214IE1 {PRSD 02 MANF 3 TSLN VLV-OPEN} is OFF
V45)c214d51 {PF2D 02 MANF 4 ISU1 VLV-OFENI is OFF.

328:0051/12.359 GMT (+00:0008107 CDT) 0 PRSD-04 02 Manifold Isolation Valve Indicates Closed
V45X4141E1 (PRSD 02 MANF 7 ISLN \YLV-OFEN) is OFF

328:0049/12. 59 GMT (±0 .0006/07 CDI) [OUTDATED MEAGEJ
PRSD-02 02 Manifold Isolation Valve Indicates Closed

V45X21 4JEI IPRSD 02 MANF3 ISLN FL V-OPEN/is QPFi
V45X21 46E! [PRSD 02 M4NP 4 JSLN VI V-OPEN/is OFF

328:0048/12.359 GMT (+00:0005107 CDT)
PRSD-01 02 Manifold Isolation Valve Indicates Closed L

V45X1 141E1 IPRSD 02 MANF 1 ISLN VLV-OFE11) is OFF.
V45X1 146E1 /PRD 02 MANF 2 ISLN VLV-OPEN} is OFF.

Act on selected

V

Select All	 Acknowledge	 Pause	 Rules	 j Print...

Select Noise	 Remove	 .	 :i	 Help Exit

Figure 4. LCCMA Status Board Display

Condition Description Message Action
(V45P21 bA > 270 H2 Tank 1 Pressure Heater Control Pressure Reading Display [Description],

OR V45P2100A > 270) AND Warning High [V45P21 bA], [Message] in Yellow
V45P21 bOA <= 298 AND Tank Pressure Reading

V45P2100A <= 294 _______________ [V45P2100A]
(V45P2 11 OA > 298 OR H2 Tank I Pressure Heater Control Pressure Reading

Display [Description],

V45P2100A > 294) Violation High [V45P21I0A], [Message] in Red.
Tank Pressure Reading Open file

________________________ ________________ [V45P2 IOOA] PRSDO6Hi.pdf

Table 3. Example LCC Conditions and Actions for PRSD H 2 Tank 1

3.5. Deployment

LCCMA was delivered to the customer and has suc-
cessfully detected LCC warnings and violations on an SDS
recorded playback. It has not been used during an actual
launch countdown yet since NASA has not returned to flight
subsequent to the Columbia disaster. However, LCCMA's
potential was already recognized by other projects at NASA
KSC and it is in the process of being integrated into a larger
monitoring application. For that one, hundreds of customers
will use LCCMA to enter not just LCC monitoring criteria,
but many types of simple and complex measurement con-
straints.

3.6. Knowledge Representation

This is an actual LCCMA rule written in the Jess script-
ing language:

(defruie orbiter-cabin-o2-prassure-anonaly-rule
ECL-060rsrgsncy Condition Yellow Orbiter Cabin 02 Pressure Anocraly

?aotivatton-faot u- (activate-orbi ter-cabin-o2-p_-sssure-anona ly-rule)
)AnalogFd (fdNace V61?2511A1) (value ?V6i?2SLIAS_val)
(AnaiogFa (fdnare V6iP2513Ai()vaive'V61P251301_val()
(AnaiogYd (fdNve V6lP2Si5A1((valve ?V61P2515A1_vui)

(teat

(0 (abs (- ?V61P2511A val ?V6102513A1_val	 0.15

)v)abs(- ?V61?251301 vol ?V61P251051_val () 0.15
)v (abe)- 'V61?251101_val ?V61?255A1_val)) 0.15
(u (abc)- ?V61025l1h1_val 3.1)) 0.3)
(u (aba)- ?VS1?2513A1_voi 3.1)) 0.3)
(u (aba)- ?V6i025iShLvai 3.1) 0.3)

(retract ?activatlnn-faot)
assert (orbiter-cabn-e2-pressure-anona1y-ru1 c-reactivation-activate))
)nntifybctinntandlcr

(creates
http://xb?0.ksr.nasa.gnv/EcL/Ec:Hove/Launrh.htnl
http //rbO0.ksc.nasc.gnv/0CL/CCL_Hcve/Cab±n_Leai.htcl

(get-venber L000aColnreessageviolatlov)
(createS V610240101 V61P240551 V61125525l(

For this rule, three analog measurements, V6lP25llAl,
V6IP25I3A1, and V61P2515A1, are monitored. The ab-
solute value of the difference among pairs of these analog
measurements must not exceed a given quantity. If anyone

of them is exceeded, the rule will fire indicating an anomaly
in the cabin oxygen pressure. Once fired, the right hand
side of the rule executes. The not ifyActionHandler
call has three arguments. The first one contains two trou-
bleshooting web page links that are made available to the
NASA engineer. The second argument specifies the color
of the message, a violation in this case. Finally, the third ar-
gument species the three measurements that may be plotted
to investigate the anomaly further.

4. Future Exploration Agents

As indicated in the national Vision for Space Exploration
[18], an increased human and robotic presence will be cul-
tivated in space, on lunar and Martian surfaces, and other
destinations. Spaceports will now span from the Earth to
the moon and beyond. A new set of challenges is presented
by this Exploration Vision. In particular, the need for auton-
omy significantly increases as people and payloads are sent
greater distances from Earth.

Agents for these future applications will demand much
higher degrees of autonomy than today's Shuttle agents.
Few or no human experts will reside at remote lunar or Mar-
tian sites to correct problems in a timely manner. More au-
tomation will be required along with advanced diagnostics
and prognostics. This requires higher levels of reasoning.

Today on Earth, system and hardware engineers and
technicians leverage multiple skills when monitoring, di-
agnosing, and prognosticating problems in Shuttle ground
support equipment. For the Exploration Vision, the need for
extending these skills to support other vehicles at remote
locations from the Earth to Mars becomes essential. These
skills include being rational, collaborative, goal driven, and
the ability to reason over time and uncertainty, The agent
discussed earlier in the paper, LCCMA, is capable of shal-
lowing reasoning of short inference chains within the Shut-
tle domain. However, this existing agent can be endowed
with higher levels of rationality enabling a deeper reason-
ing. We are investigating how to mature LCCMA into a

Spaceport Exploration Agent (SEA) in support of the Ex-
ploration Vision.

SEAs will need to communicate and collaborate along
multiple and lengthy logistics chains. This does not simply
include agents monitoring pre-flight checkout of vehicles at
a terrestrial spaceport (e.g. LCCMA monitoring Shuttle ac-
tivities). Rather, SEAs will reside in multiple locations at
great distances. Logistics, scheduling, and planning are just
some of the activities that these agents will manage.

Within this virtual collaborative management chain,
SEAs will be inundated with massive amounts of data that
must be sorted and processed. It becomes necessary for
them to revise their sets of beliefs as new data arrives. It is
simply not enough to revise singular data points within an
agent's working memory and to have an agent blindly re-
act to those changes. Rather, an agent must possess the abil-
ity to revise previously concluded assertions based on what
may be now stale data. This activity is called truth main-
tenance [4, 10], also known as belief revision, and is
particularly important when deep reasoning of long in-
ferences is necessary. An assumption based truth main-
tenance system (ATMS) can reason over many contexts
simultaneously. By capturing, maintaining, and deploy-
ing spaceport expertise within ATMS-enabled SEAs, the
costs and manpower required to meet the Exploration Vi-
sion are reduced while safety, reliability, and availability
are increased.

4.1. Benefits of Endowing Spaceport Exploration
Agents with Belief Revision

SEAs enabled with belief revision will provide the fol-
lowing:

• SEAs will continuously monitor spaceport telemetry
streams for expected and anomalous conditions during
operations and launch countdowns. SEAs wil analyze
data from networks of sensors and draw inferences
over time to deduce further action. Results are pro-
vided to humans, agents, and other subsystems which
may compose an integrated health management func-
tion.

• SEAs provide an automated explanation generation fa-
cility and diagnostic capabilities. The inferences and
facts that lead to a conclusion will be available to the
human expert and other agents for further processing.

• SEAs provide prognostics to predict where and when
failures may occur in support equipment and what if
scenarios to assess chains of events.

• If a human expert leaves the program or moves onto
other opportunities, SEAs remain and can virtually
mentor the human replacement leveraging its knowl-
edge base.

4.2. Types of Questions to be Answered

SEAs will be able to answer the following types of ques-
tions:

• Is there one or more faults in the support equipment?

• Where is the fault most likely located?

• What combination of data and events lead up to a fault
(i.e. explanation generation)?

• If a fault remains, what are its effects both locally and
systemically, now and in the future.

• What other systems and personnel need to be notified
of the fault including both internal and external clients
(e.g. command/control system, hardware subsystems,
integrated health management, logistics, business sys-
tems, etc.)?

• What actions need to be taken by the system to address
the fault from both a hardware and personnel perspec-
tive?

• Did the fault stress other previously healthy equipment
that now needs to be repaired or replaced?

4.3. Extending LCCMA with Truth Maintenance

As indicated earlier, LCCMA uses Jess as its inference
engine. Jess implements a lightweight version of truth main-
tenance that is much simpler than a full blown ATMS. Jess
uses a logical keyword that keeps track of the "here and
now" for specified premises. Other rule based systems, such
as Clips and Lisa [24], implement a similar level of truth
maintenance.

Premises on the left hand side of a rule can be tied to
assertions of facts on the right hand side via the logical
keyword. A dependency is created between the facts of the
premise and the fact of the conclusion. After the rule fires
and the consequent's fact(s) is asserted, if the premise ever
becomes false, the consequent's facts will be automatically
retracted. In contrast to Jess' version of truth maintenance,
an ATMS dependency network offers a full history of de-
pendencies using an efficient labeling algorithm. It offers a
history of everything that has happened as opposed to just
the "here and now" as provided by Jess' textitlogical key-
word. Dependency tracking and proof histories have been
researched [4, 10, 8] and implemented in other rule based
expert system shells such as MIKE [7].

4.4. ATMS Background

Using de Kleer's model [4, 5, 6], an ATMS is com-
posed of a set of nodes, n 1 , n2 , .. . ,	 , where each node
is a propositional variable. A proposition represents either a
premise, contradiction, or assumption. A premise is a node

Justification

Node"	 I I	 "Node	 I

	

Antecedent
I

Consequent	 rinformant

Figure 5. Justification Class Diagram

that is always true. A contradiction is a node that is al-
ways false. An assumption is a node whose values may be
changed by the inference engine during rule firings. The in-
ference engine incrementally transmits these propositions
(i.e. nodes) to the ATMS.

When the inference engine fires a rule that results in a
new or modified fact, a justification is transmitted to the
ATMS. As shown in Figure 5, a justification is a tuple con-
sisting of the rule's antecedent and consequent forming the
inference. Suggesting an "if-then" type of implication, a
justification may only contain positive literals and be rep-
resented as a horn clause.

From Figure 6, an ATMS node has a datum, justifica-
tion, and label associated with it. The datum represents a
rule or fact within the inference engine as indicated in Fig-
ure 7. The justification is composed of an antecedent, con-
sequent, and informant. The antecedent represents facts on
the left hand side of the rule that caused the rule's premises
to be true and resulted in an activation and firing. The con-
sequent represents facts that were asserted on the right hand
side of the rule upon firing. The informant describes the type
of deduction and is never used in any ATMS computations.
It may be supplied to the inference engine to provide tex-
tual cues for explanation generation.

4.4.1. Interfacing an ATMS to the Jess Rule Engine In-
terfacing an ATMS to a production rule system has been
previously investigated by Morgue and Chehire [17]. In
their study, two levels of coupling were described with re-
spect to the match-select-act cycle of an inference engine.
When an ATMS is loosely coupled with an inference en-
gine, the select and act steps are modified to enable inte-
gration. This is a simple form of interaction between the
ATMS and inference engine and is more prone to becom-
ing intractable than a tight coupling approach. In tight cou-

Figure 6. ATMS Node Class Diagram

Figure 7. Datum Class Diagram

pling, the match step is modified. This requires changes to
the Rete algorithm of the inference engine.

To extend LCCMA with full dependency tracking via
an ATh'IS, Jess offers sophisticated event handling that will
readily enable communication between the Jess inference
engine and the ATMS. Event handlers are supplied and in-
voked when, for example, a fact is asserted, retracted, or
modified. In conjunction with an ATMS facility, these han-
dlers could build and maintain a complete history and de-
pendency network.

Inspired from the Lisp interface definition of Forbus and
de Kleer [10], Figure 8 shows the Atms class with anal-
ogous Java method signatures for an Atms interface def-
inition supporting the Jess inference engine. The Atma
class realizes the Atms Interface and thus implements
the interface's methods. The InferenceEngine class
depends upon the Atms Interface. The createNode
and justifyNode methods of the Atms class are not
publicly accessible as indicated by the leading minus signs
by the method names. They are called after the Atms ob-
ject receives a message from the inference engine indicat-
ing that a new fact was created or a fact was modified by a

and their applicability for constructing probability distribu-
tions from an ATMS [20].

Brachman and Levesque [2) propose description logics
to implement a production system, act as the working mem-
ory, or provide some other service to such a system. In this
paper, the sub sumptive power of description logics might be

__________	 leveraged by the label update algorithms of the truth main-
tenance system. Further, both agent applications and Jess it-

4 self are implemented in Java, an object oriented language.

Description logic taxonomies might be constructed to natu-
rally mirror the object oriented models of the agents.

Figure 8. ATMS Class Diagram

rte,.rmenthm	
I .ee_eFr utaee]

()	 gNattChenge()

1

A	 b,ouamEmnl(DEFRULE_FlRED)

oam,tHpmd(ACTlVATION)
Shuttle Data Striate

era,toNodeO

tettyNodaO

i,Nodeln(node.Nodo. etvEn*oatnant)

References

[1] L. Boloni and D. C. Marinescu. An Object-Oriented
Framework for Building Collaborative Network Agents. In
H. Teodorescu, D. Mlynek, A. Kandel, and H.-J. Zimmer-
man, editors, Intelligent Systems and Interfaces, Interna-
tional Series in Intelligent Technologies, chapter 3, pages
31-64. Kluwer Publising House, 2000.

[2] R. Brachman and H. Levesque. Knowledge representation
and reasoning. Morgan Kaufmann, May 2004.

[3] L. Brownston, R. Farrell, E. Kant, and N. Martin. Pro-
gramming Expert Systems in OPS5: An Introduction to Rule-
Based Programming. Addison-Wesley, Reading, MA, 1986.

[4] J. de Kleer. An assumption-based TMS. Artificial Intelli-
gence, 28(2):127-162, Mar. 1986.

[5] J. de Kleer. Extending the ATMS. Artificial Intelligence,
28(2):163—l96, Mar. 1986.

[6] J. de Kleer. Problem solving with the ATMS. Artificial In-
telligence, 28(2):197-224, Mar. 1986.

[7] M. Eisenstadt and M. Brayshaw. Build your own knowledge
engineering toolkit. Technical report, Human Cognition Re-
search Laboratory, The Open University, UK, June 1990.
R. Filman. Reasoning with worlds and truth maintenance in
a knowledge-based programming environment. Cominuni-
cations of theACM, 3l(4):382-401, Jan 3-6 1988.
FIPA. Foundation for intelligent physical agents abstract ar-
chitecture specification, Dec. 2002.
K. D. Forbus and J. de Kleer. Building Problem Solvers. MIT
Press, Cambridge, MA, 1993.
C. L. Forgy. Rete: A fast algorithm for the many pat-
tern/many object pattern match problem. In Artificial Intelli-
gence, volume 19(1), pages 17-37, 1982.
E. Friedman-Hill. Java Expert System Shell. Manning Pub-
lications, Greenwich, CT, 2003.
E. Gamma, R. Helm, E. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Greenwich, CT, 1995.
H. Gehman, S. Turcotte, J. Barry, K. Hess, J. Hallock,
S. Wallace, D. Deal, S. Hubbard, R. Tetrault, S. Widnall,
D. Osheroff, S. Ride, and J. Logsdon. Columbia Accident
Investigation Board (C'A!B), Volume 1. NASA, Washington
D.C., August2003.
JADE.	 Java agent development framework.
http://jade.tilab.com/, 2004.

Figure 9. AIMS Sequence Diagram	
[81

rule firing resulting in an ACTIVATION event. See the Se-	 [91

quence diagram in Figure 9.	 [10]

5. Conclusion and Future Work 	 [11]

An agent that monitors Space Shuttle ground telemetry
data was presented. LCCMA provides an increased insight 	 [12]

for NASA system and hardware engineers. LCCMA has
successfully detected launch commit criteria warnings and 	 [13]

violations on a simulated playback data stream. We are in-
vestigating extending this agent with truth maintenance ca- 	

[14]

pabilities to support advanced diagnostics and prognostics.

Future work includes incorporating probabilities of oc-
currence of faults within support equipment. In terms of the
ATMS, this translates into the probabilities of a fact being
derivable and the context within which it would appear. Pre- 	 [15]

vious research has shown the utility of Bayesian networks

[16] Lockheed. Pcgoal requirements document. Technical Re-
port KSCL-1 100-0804, Lockheed Space Operations Com-
pany, Oct. 1991.

[17] 0. Morgue and T. Chehire. Efficiency of production systems
when coupled with an assumption based truth maintenance
system. In Proc. ofAAAI-91, pages 268-274, Anaheim, CA,
1991.

[18] NASA.	 The vision for space exploration.
http://www.nasa.gov, Feb 2004.

[19] S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice HaIl, 2nd edition, 2003.

[20] S. Srinivas. A probabilistic atms. Technical Report KSL
94-13, Knowledge Systems Laboratory, Stanford University,
Feb. 1994.

[21] Sun. Java bean specification. http://java.sun.com/, 2004.
[221 M. Wooldridge. Reasoning about Rational Agents. The MIT

Press, Cambridge, Massachusetts, 2000.
[23] R. M. Wygant. Clips: A powerful development and deliv-

ery expert system. In Computers and Industrial Engineer-
ing, volume 17, pages 546-549, Anaheim, CA, 1989.

[24] D. E. Young. Lisa - intelligent software agents for common
lisp. http://lisa.sourceforge.net, 2004.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11

