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ABSTRACT 
We summarize the results of our requirements tracing work to 
date, focusing on our empirical results with open source datasets.  
Specifically, we describe the problem of after-the-fact 
requirements tracing for Verification and Validation (V&V) 
analysts, we provide a brief overview of Information Retrieval 
methods we have applied as well as measures used to evaluate 
them, we describe our tracing tool, and we present the results of a 
number of empirical studies. Two of the open source datasets that 
we have used are available to the research community at 
http://promise.site.uottawa.ca/SERepository/. 

Categories and Subject Descriptors 
D.2.1 [Requirements/Specifications]: Tools 
D.2.5 [Testing and Debugging]: Tracing 
H.3.3 [Information Search and Retrieval]: relevance feedback, 
retrieval models 

General Terms 
Experimentation, Human Factors, Verification. 

Keywords 
Requirements tracing, traceability, information retrieval, relevance 
feedback. 

1. INTRODUCTION 
Ensuring that requirements have been addressed at each phase of 
the lifecycle is an important part of the verification and validation 
of a system.  In addition, the ability to assess change impact is an 
important activity that we undertake in software engineering.  In 
order to achieve these two important tasks, a detailed, accurate 
Requirements Traceability Matrix (RTM) is needed.  
Unfortunately, such RTMs are often not built to the appropriate 
level of detail, or are not maintained, thus requiring “after-the-
fact” tracing.  Building and maintaining an RTM can 

be tedious, cumbersome, and error-prone.  Current approaches to 
after-the-fact tracing have many shortcomings, detailed in [4, 5]. 

Fortunately, requirements tracing can be represented as an 
Information Retrieval (IR) problem.  Requirements tracing, as 
described in [5], consists of document parsing, candidate link 
generation, candidate link evaluation, and traceability analysis. 
Our work focuses on candidate link generation.  We have found 
that IR methods can be used to quickly generate candidate links 
that are accurate (as measured by: the percentage of actual 
matches that are found (recall), and the percentage of correct 
matches as a ratio to the total number of candidate links returned 
(precision)).  We have implemented these methods in a tool, 
REquirements TRacing On target (RETRO).  We have evaluated 
the methods using two open source NASA datasets, Moderate 
Resolution Imaging Spectroradiometer (MODIS) [7, 9], and CM-
1 [8].  This paper summarizes the results obtained in our 
experiments. Some of the results we mention have been reported 
previously in [5], while other results are reported here for the first 
time. 

The paper is organized as follows: Section 2 presents an overview 
of the methods implemented in RETRO and the measures used to 
evaluate the methods. Section 3 discusses the datasets used for 
evaluation. Section 4 presents our tool. Section 5 discusses 
experimental setup while Section 6 shows the results obtained 
from evaluation. Finally, conclusions and future work are 
presented in Section 7. 

2. USING INFORMATION RETRIEVAL 
FOR REQUIREMENTS TRACING 

In this section, we present a short description of information 
retrieval, the IR methods applied, and the measures used to 
evaluate the methods. 

2.1 Information Retrieval 
As discussed in [5], the problem of requirements tracing can be 
viewed as determining, for each pair of elements from high- and 
low-level documents, whether the elements match. The problem 
of Information Retrieval can be stated as follows: given a 
document collection and a query, determine the set of documents 
from the collection that are similar to the query [1]. We can see 
that there is a striking similarity between requirements tracing and 
IR. In the case of requirements tracing, the high level elements or 
requirements act as queries and the low level elements act as the 
document collection. 
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2.2 Information Retrieval Methods Used in 
RETRO 

We have implemented and evaluated a variety of IR methods. In 
this paper, we discuss tf-idf vector retrieval, tf-idf retrieval with 
simple thesaurus, and Latent Semantic Indexing (LSI). Each 
method has been implemented with an appropriate analyst 
feedback processing method [1]. 

2.2.1   Tf-Idf Model 
A document D in the collection is represented as a vector 
d=(w1,..,wN) of keyword weights, based on the vocabulary 
V=(k1,..kN )  of the entire collection. The weight, wi,  is calculated 
as the product of the term frequency (tf), the number of times ki 
occurs in D, and the inverse document frequency (idf), determined 
by the number of documents in the collection in which ki occurs. 
Similarly, the query is also converted into a vector, q=(q1,..,qN), 
and the similarity (also called relevance) sim(d,q) is computed as 
the cosine of the angle between the vectors d and q: 
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2.2.2 Tf-Idf + Simple Thesaurus   
This method is an extension of the Tf-Idf model with a simple 
thesaurus of keywords and phrases. A simple thesaurus T is a set 
of triplets <t,t’,�>, where t and t’ are matching thesaurus terms 
and � is the similarity coefficient between them (e.g., <“fault”, 
“error”, 0.85>). Thesaurus terms can be either single keywords or 
key phrases – sequences of two or more keywords. In this method, 
the vocabulary of the document collection now contains all 
thesaurus terms that are key phrases (i.e., not single keywords). 
The similarity (relevance) formula is modified to account for the 
thesaurus matches as: 
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2.2.3 Latent Semantic Indexing (LSI)   
LSI is a dimension reduction technique based on Singular Value 
Decomposition (SVD) of the term-by-document matrix that can 
be constructed by putting tf-idf vectors of all documents in a 
single matrix [3]. SVD transforms the original matrix into a 
product of two orthogonal matrices and a diagonal matrix of 
eigenvalues.  By considering only the top k eigenvalues, we can 
obtain an approximation of the original matrix by a smaller 
matrix. Rows of the matrix can be compared to each other using 
the cosine similarity described above.  For example, if L is a 
document-by-term weight matrix of dimension A x B, its SVD is 
written as L = TSD’, where T is a matrix with orthogonal rows, D’ 
is a matrix with orthogonal columns and S is a diagonal matrix of 
eigenvalues of L.  We can trim the list of eigenvalues of L from 

rank(L) to a smaller number n and obtain a decomposition Ln= 
TSnD’, where Sn is the diagonal matrix of size n x n with n largest 
eigenvalues of L on the diagonal. Rows of the matrix TSn

2D’ can 
be compared to each other using the cosine similarity as defined 
in Section 2.2.1. Use of the matrix TSn

2D’ instead of the original 
matrix  L reduces the dimensionality of the document vectors 
from B to n. We have implemented LSI based both on tf-idf and 
tf-idf+thesaurus document collection matrices.   

2.2.4 Relevance Feedback   
To incorporate interactive work with analyst into RETRO, we 
have implemented relevance feedback for the IR methods studied.  
Relevance feedback works as follows: the analyst conveys to 
RETRO both positive (true link found) and negative (false 
positive found) information. The relevance feedback processor re-
computes the vector qnew for the query q by adding to it positive 
information and subtracting negative information: 
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In the above formula, �, � and � determine the importance of the 
original vector, positive information and negative information 
respectively. Dr is the set of documents deemed as relevant to the 
query q and Dirr is the set of documents deemed as irrelevant to 
the query q. 

2.3 Measuring Effectiveness 
This section discusses the primary and secondary measures used 
to evaluate tracing techniques.  The effectiveness of IR techniques 
is typically evaluated using the primary measures of recall and 
precision as defined in [6]. In requirements tracing, recall 
measures if a technique was able to find all the high-low level 
requirement pairs that trace to each other, whereas precision 
signifies the number of extra pairs found by the technique that do 
not trace to each other.  Secondary measures help to understand 
the structure of the candidate links better.  In [6], we have 
developed and used a set of secondary measures.  For brevity, we 
only examine Selectivity - the percentage of all possible high-low 
requirement pairs that is found in the candidate trace. 

 

 
Figure 1.  Sample answer set for MODIS dataset. 

 

 
Figure 2.  Sample text for a requirement from CM-1 dataset. 



  

2.3.1 Evaluating Candidate Traces  
When evaluating candidate traces (whether computer- or human-
generated), we want both precision and recall to be as high as 
possible. However, we use different thresholds for these two 
measures. Based on our observation, we note that a change from 
10% to 20% in precision means that instead of 1 true link in 10, 
the trace contains 1 true link in 5, a savings of about 50% in terms 
of the number of links to verify for the analyst.  We strive for high 
recall to prevent analysts from having to search for links not 
shown to them.  This latter activity is much more time consuming 
and much less desirable as a task than simply vetting the results 
provided from an existing candidate trace.  In addition, we want 
selectivity to be as low as possible (while keeping recall high). 
For recall, we consider results above 80% excellent, above 70% - 
good, and between 60% and 70% - acceptable. For precision, 20-
30% is acceptable, 30-50% is good, and 50% and above – 
excellent. 

3. DATASETS 
Two NASA open source datasets were used to evaluate the IR 
techniques implemented in our tool, MODIS [7, 9] and CM-1 [8]. 
The MODIS dataset consists of 19 high level and 49 low-level 
requirements whereas the CM-1 dataset contains 235 high-level 
requirements and 220 design elements.  We have manually traced 
both datasets and have verified the obtained traces. We refer to 
these as “answer sets” or “theoretical true traces.” There were 41 
and 361 true links found for the MODIS and CM-1 datasets, 
respectively. Figure 1 shows a subset of the answer set (true trace) 
for MODIS [7, 9]. The answer set contains the matching low level 
elements for each high level element, separated by a percentage 
symbol.  For example, high level requirement SDP3.3-2 has two 
children:  L1APR03-I-2 and LIAPR01-I-2.  Figure 2 shows the 
text for an exemplary requirement from the CM-1 [8] dataset. 

4. RETRO 
RETRO consists of an IR toolbox, a GUI (shown in Figure 3), and 
a set of analysis tools.  The IR toolbox is implemented in C++ and 
contains a variety of IR methods, adapted for the purpose of the 
requirements tracing task. The GUI component is implemented in 
JAVA and can be used to access the methods from the IR toolbox. 
The analyst can use the GUI to set up tracing projects, to analyze 
the candidate lists, and to provide feedback to the tool. The 
interface contains, at the top of the screen, the list of high level 
requirements (left) and the list of candidate links for the high level 
requirement selected, with relevance factor (right). The middle 
part of the screen contains the text of the selected high level and 
low level requirement pair. The controls at the bottom of the 
screen allow the analyst to supply feedback about the current 
candidate link under consideration. Upon analyst request, the 
feedback information is sent to the feedback processing module 
implemented in C++ and the candidate list is refreshed according 
to the new result. 

5. EXPERIMENTAL SETUP 
We have tested four methods (tf-idf, tf-idf+thesaurus, LSI, LSI+ 
thesaurus) on two datasets (CM-1, MODIS). In each test, we have 
simulated perfect analyst behavior for eight steps. Four types of 
behavior, Top1, Top2, Top3 and Top4 were simulated: Topi 

means that on each step and for each high-level requirement, we 
verify the first i of its unverified candidate links. For each run 

 

Figure 3.   A screenshot of RETRO. 

and iteration, we collected the resulting candidate trace. We 
determined the values of primary and secondary measures for each 
iteration for the initial candidate trace and for filtered candidate      
traces.  These were obtained by removing (from the initial trace) 
the links with relevance lower than a threshold �. We used values 
of �=0.05, 0.1, 0.15, 0.2, 0.25. 

6. EXPERIMENTAL RESULTS 
Table 1 shows the results of running all four methods on both 
datasets with no feedback and no filtering. We show two runs of 
LSI methods,  with 10 and 19 dimensions for MODIS and with 
100 and 200 dimensions for CM-1. We note that all methods gave 
excellent recall for the CM-1 dataset, and good-to-excellent recall 
for MODIS. At the same time, precision and selectivity were quite 
low for both datasets, especially for CM-1. 

 

Table 1. Results of IR methods on CM-1 and MODIS datasets, 
no feedback, no filtering. 

 

Table 2 shows the effects of filtering on the results of IR methods 
with no feedback. For brevity, all cells of the table have the 
format (Precision, Recall, Selectivity). We report results for LSI 
on 10/100 dimensions for MODIS/CM-1 respectively. The 
numbers for tf-idf + thesaurus and LSI+thesaurus for CM-1  

MODIS CM-1   
  Prec. Recall Sel. Prec. Recall Sel. 

tf-idf 7.9% 75.6% 41.9% 1.5% 97.7% 42.8% 

tf-idf+TH 10.1% 100.0% 43.1% 1.5% 97.7% 42.8% 
LSI 
(10/100) 6.3% 92.6% 64.1% 0.9% 98.6% 71.5% 
LSI+TH 
(10/100) 6.5% 95.1% 63.7% 0.9% 98.6% 71.5% 
LSI 
(19/200) 4.2% 63.4% 65.2% 0.9% 98.8% 73.9% 
LSI+TH 
(29/200) 5.4% 80.4% 65.8% 0.9% 98.8% 73.9% 



  

Table 2. Effects of filtering on the results of IR methods for 
MODIS and CM-1 datasets, no feedback. 

 

Table 3. Effects of relevance feedback (Top 2) on the results of 
the IR methods, MODIS and CM-1 datasets, no filtering. 

 

dataset are the same as the numbers for tf-idf and LSI respectively 
(no change). As can be seen from the table, filtering (for the most 
part) drastically reduces recall, while improving precision to the 
level of 20-35% and improving selectivity roughly tenfold. 
Filtering with small (0.05, 0.1) filters produces more stable results 
for the CM-1 dataset than for MODIS. 

Table 3 documents the effects of feedback on the results of IR 
methods with no filtering. The contents of each cell have the 
format (Recall, Precision, Selectivity). In this table, we list the 
results of Top 2 feedback strategy.  For the MODIS datset, tf-idf 
shows slight improvement in recall and more than twofold 
improvement in precision. Tf-idf + thesaurus shows improvement 
in precision without the loss of total recall. For both datasets, 
feedback for LSI results in slight loss of recall, while tf-idf for 
CM-1 shows no change. 

Table 4 shows what happens when filtering and feedback are 
combined.  We include the recall and precision results of tf-idf 
and tf-idf+thesaurus runs for the MODIS dataset and tf-idf run for 

 
Table 4. Effects of relevance feedback and filtering on the 

results of IR methods. 
 

(a) MODIS dataset, tf-idf 
 

Filter 0.05 0.1 0.15 0.2 

It. 
Rec 
(%) 

Pr. 
(%) 

Rec 
(%) 

Pr. 
(%) 

Rec 
(%) 

Pr. 
(%) 

Rec 
(%) 

Pr. 
(%) 

0 48.8 7.8 29.3 11.8 24.4 17.2 19.5 21.6 

1 48.8 8.1 29.3 12.6 24.4 20.0 22.0 36.0 

2 48.8 8.9 31.7 17.6 24.4 31.3 24.4 47.6 

3 53.7 11.1 31.7 21.7 31.7 38.2 31.7 61.9 

4 65.9 14.9 46.3 33.9 36.6 51.7 31.7 65.0 

5 68.3 19.7 53.7 51.2 46.3 70.4 41.5 77.3 

6 70.7 33.7 65.9 64.3 48.8 74.1 48.8 80.0 

7 75.6 50.0 68.3 70.0 63.4 78.8 51.2 80.8 

8 80.5 58.9 70.7 74.4 68.3 82.4 63.4 86.7 
 

(b) MODIS dataset, tf-idf+thesaurus  
 

Filter 0.05 0.1 0.15 0.2 

It. 
Rec 
(%) 

Pr. 
(%) 

Rec 
(%) 

Pr. 
(%) 

Rec 
(%) 

Pr. 
(%) 

Rec 
(%) 

Pr. 
(%) 

0 78.0 12.1 65.9 22.3 46.3 25.7 39.0 33.3 

1 78.0 12.1 61.0 21.6 51.2 33.3 41.5 44.7 

2 78.0 12.7 61.0 25.0 51.2 42.9 46.3 61.3 

3 78.0 14.1 63.4 29.5 56.1 50.0 53.7 68.8 

4 90.2 18.9 75.6 37.3 56.1 52.3 56.1 69.7 

5 95.1 22.4 75.6 46.3 58.5 57.1 56.1 67.6 

6 97.6 30.3 78.0 52.5 65.9 69.2 58.5 70.6 

7 97.6 39.2 92.7 60.3 78.0 74.4 75.6 77.5 

8 97.6 43.0 92.7 65.5 90.2 77.1 78.0 82.1 

 MODIS CM-1 
 tf-idf tf-idf+TH LSI LSI+TH tf-idf LSI 

Filter 

Precision, 
Recall, 

Selectivity 

0 
7.9%, 
79.6, 
41.9% 

10.1%, 
100%, 
43.1% 

6.3%, 
92.6%, 
64.1% 

6.5%, 
95.1%, 
63.6% 

1.5%, 
97.8%, 
42.8% 

0.9%, 
98.6%, 
71.5% 

0.05 
7.7%, 
48.7, 
27.6% 

12.1%, 
78%, 
28.3% 

8%, 
58.5%, 
32.2% 

9.3%, 
68.3%, 
32.2% 

4.3%, 
92.2%, 
14.7% 

3.9%, 
91.4%, 
16.3% 

0.1 
11.7%, 
29.2%, 
10.9% 

22.3%, 
65.8%, 
13% 

9.3%, 
29.2%, 
13.7% 

14.9%, 
46.3%, 
13.6% 

10.8%, 
76.4%, 
4.92% 

9.3%, 
77%, 
5.7% 

0.15 
17.2%, 
24.4%, 
6.2% 

25.6%, 
46.3%, 
7.9% 

15.2%, 
26.8%, 
7.7% 

19.2%, 
39%, 
8.9% 

19.1%, 
53.7%, 
1.9% 

16.8%, 
56.5%, 
2.3% 

0.2 
21.6%, 
19.5%, 
3.9% 

33.3%, 
39%, 
5.1% 

20.4%, 
21.9%, 
4.7% 

22.4%, 
31.7%, 
6.2% 

27.1%, 
32.6%, 
0.8% 

24.8%, 
39%, 
1% 

0.25 
32%, 
19.5%, 
2.7% 

36.3%, 
29.2%, 
3.5% 

25%, 
19.5%, 
3.4% 

27.9%, 
29.2%, 
4.6% 

34.8%, 
21.9%, 
0.4% 

31.6%, 
24.3%, 
0.5% 

  MODIS CM-1 

I tf-idf 
Tf-

idf+TH LSI LSI+TH tf-idf LSI 

 

Recall 
Precision 
Selectivity 

0 

75.6% 
7.9% 

41.9% 

100.0% 
10.2% 
43.2% 

92.7% 
6.4% 

64.1% 

95.1% 
6.6% 

63.7% 

97.8% 
1.6% 

42.8% 

98.6% 
1.0% 

71.5% 

1 

78.0% 
8.2% 

42.1% 

100.0% 
10.0% 
43.9% 

87.8% 
6.3% 

61.7% 

95.1% 
7.1% 

58.6% 

97.8% 
1.6% 

43.6% 

98.9% 
1.0% 

71.1% 

2 

87.8% 
9.4% 

41.4% 

100.0% 
9.8% 

44.8% 

85.4% 
6.4% 

58.9% 

100.0% 
7.4% 

59.6% 

97.8% 
1.6% 

43.8% 

98.6% 
1.0% 

70.4% 

3 

85.4% 
9.1% 

41.1% 

100.0% 
9.9% 

44.4% 

92.7% 
7.3% 

56.0% 

95.1% 
7.6% 

55.2% 

97.8% 
1.6% 

43.5% 

98.6% 
1.0% 

69.7% 

4 

87.8% 
9.9% 

38.9% 

100.0% 
10.6% 
41.4% 

92.7% 
7.7% 

53.3% 

95.1% 
8.4% 

50.1% 

97.8% 
1.6% 

43.3% 

98.6% 
1.0% 

69.1% 

5 

85.4% 
10.5% 
35.7% 

100.0% 
11.5% 
38.3% 

87.8% 
8.2% 

47.3% 

95.1% 
8.8% 

47.8% 

97.8% 
1.6% 

43.0% 

98.6% 
1.0% 

68.5% 

6 

85.4% 
11.6% 
32.3% 

100.0% 
12.9% 
34.2% 

87.8% 
8.7% 

44.3% 

95.1% 
9.1% 

46.2% 

98.1% 
1.6% 

42.7% 

98.6% 
1.0% 

67.9% 

7 

82.9% 
13.3% 
27.4% 

100.0% 
14.4% 
30.5% 

90.2% 
9.6% 

41.2% 

95.1% 
9.9% 

42.4% 

98.3% 
1.6% 

42.5% 

98.6% 
1.0% 

67.2% 

8 

82.9% 
18.0% 
20.3% 

100.0% 
18.8% 
23.4% 

87.8% 
10.9% 
35.3% 

92.7% 
10.2% 
39.8% 

98.3% 
1.6% 

42.2% 

98.3% 
1.0% 

66.5% 



  

 
 (c) CM-1 dataset, tf-idf 

 
Filter 0.05   0.1   0.15   0.2   

I 
Rec 
(%) 

Pr. 
(%) 

Rec 
(%) 

Pr. 
(%) 

Rec 
(%) 

Pr. 
(%) 

Rec 
(%) 

Pr. 
(%) 

0 92.2 4.4 76.5 10.8 53.7 19.1 32.7 27.1 

1 91.7 4.3 77.0 10.9 55.4 19.8 38.0 31.6 

2 91.4 4.3 76.2 10.8 59.0 20.8 42.9 34.4 

3 91.7 4.4 77.6 10.9 63.2 22.0 45.4 34.8 

4 92.0 4.4 78.9 11.1 66.5 23.1 48.8 35.6 

5 92.0 4.4 81.4 11.5 67.6 23.6 52.6 37.6 

6 92.2 4.4 82.8 11.7 70.1 24.3 55.4 39.1 

7 92.2 4.4 84.2 11.9 70.9 24.5 57.6 39.6 

8 92.2 4.5 84.8 12.0 74.0 24.8 61.2 40.9 
 
CM-1. For MODIS, both recall and precision show stable 
improvement through the iterations. Filtering at 0.05 and 0.1 
levels produces excellent recall and excellent precision. At higher 
filtering values, precision improves even more, but at the price of 
decreased recall. For CM-1, filtering at 0.1 produces very good 
recall, with precision around 10-12% (a significant improvement 
over the results shown in Table 1). Filtering at higher thresholds 
leads to significant improvement in precision, but still keeps recall 
relatively high: above 70% for 0.15 and above 60% for 0.2. 

In Table 5, we briefly summarize the best results achieved during 
other runs of the experiment. We note that, as expected, the 
results of Top1 behavior are somewhat worse, while the results of 
Top3 behavior are somewhat better than the results of Top2 
behavior. Our choice to highlight the results of Top2 behavior is 
explained by our desire to balance the quality of the candidate 
trace and the amount of work (in terms of analyst feedback) 
needed at each iteration. 

7. CONCLUSIONS AND FUTURE WORK 
In this paper, we discussed a variety of IR methods applied to the 
requirements tracing problem.  We focused on our results with 
open source datasets that have been posted at 
http://promise.site.uottawa.ca/SERepository/.  We have 
established that already-existing IR methods can be used to 
automate candidate link generation with minimal modification.  
We evaluated the methods and found that we can achieve recall 
and precision in line with and even better than existing tools [4]. 
We also demonstrated that feedback information from the analyst 
can significantly improve requirements tracing. 

Our future work is in several directions.  First, we want to apply 
more methods and evaluate their performance.  Second, we want 
to investigate the impact of the analyst on the tracing process.  
That includes evaluating how the quality of candidate link lists 
affects analyst decisions.  A small pilot study is underway.  
Finally, we want to perform usability analysis of RETRO.  We 
anticipate that improvements can be made. 

 
 
 
 

 
Table 5. Results of experiments: best of the rest. 

Dataset 
Metho
d Fback 

Filte
r It. Pr. Rec. 

MODIS  LSI Top2 0.05 8 39.4 68.3 

MODIS  LSI Top2 0.1 7 56.4 53.6 

MODIS  LSI Top2 0.2 6 66.6 53.6 

CM-1 LSI Top2 0.15 8 24.1 73.6 

CM-1 LSI Top2 0.2 8 37.7 60.1 

MODIS  tf-idf Top1 0.1 8 68.3 68.3 

MODIS  tf-idf Top1 0.15 8 75.8 53.5 

MODIS  tf-idf Top3 0 8 25 85.3 

MODIS  tf-idf Top3 0.1 7 62.2 80.4 

MODIS  tf-idf Top3 0.2 8 86.1 75.6 

MODIS  tf-idf Top3 0.35 8 93.1 68.8 

MODIS  Tfidf-th Top1 0.05 8 31.5 100 

MODIS  Tidf-th Top1 0.1 8 51.6 78 

MODIS  Tfidf-th Top3 0.05 5 26.7 100 

MODIS  Tfidf-th Top3 0.1 8 63 100 

MODIS  Tfidf-th Top3 0.2 7 78.7 90.2 

CM-1 tf-idf Top3  0.15 8 25.3 77 

CM-1 tf-idf  Top3  0.2 8 40.7 62 
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