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ABSTRACT 
Early estimation of defect density of a product is an important step 
towards the remediation of the problem associated with affordably 
guiding corrective actions in the software development process. 
This paper presents a suite of in-process metrics that leverages the 
software testing effort to create a defect density prediction model 
for use throughout the software development process. A case 
study conducted with Galois Connections, Inc. in a Haskell 
programming environment indicates that the resulting defect 
density prediction is indicative of the actual system defect density.   
 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics - Performance 
measures, Process metrics, Product metrics. 

General Terms 
Measurement, Reliability. 

Keywords 
Empirical software engineering, multiple regression, 
software quality, Haskell. 
 
1. INTRODUCTION 
In industry, actual defect density of a software system cannot be 
measured until it has been released in the field and has been used 
extensively by the end user. Actual defect density information as 
found by the end users becomes available too late in the software 
lifecycle to affordably guide corrective actions to software quality. 
It is significantly more expensive to correct software defects once 
they have reached the end user compared with earlier in the 
development process [3]. 

Software developers can benefit from an early warning of defect 
density. This early warning can be built from a collection of 
internal, in-process metrics that are correlated with actual defect 
density, an external measure. The ISO/IEC standard [16] states 
that “internal metrics are of little value unless there is evidence 
that they are related to some externally visible quality.”  Some 
internal metrics, such as complexity metrics, have been shown to 
be useful as early indicators of externally-visible product quality 
[1] because they are related (in a statistically significant and stable 
way) to the field quality/reliability of the product. The validation 
of such internal metrics requires a convincing demonstration that 
(1) the metric measures what it purports to measure and (2) the 
metric is associated with an important external metric, such as 
field reliability, maintainability or fault-proneness [12]. 

 

Our research objective is to construct and validate a set of easy-
to-measure in-process metrics that can be used to create a 
prediction model of an external measure of system defect density.  
To this end, we have created a metric suite we call the Software 
Testing and Reliability Early Warning metric (STREW) suite.  
Currently, there are two versions of STREW that have been 
developed to analyze an object-oriented language (STREW-Java 
or STREW-J) [20] and a functional programming language 
(STREW-Haskell or STREW-H) [23, 24].  

In this paper, we present the results of an industrial case study 
designed to analyze the capabilities of the prediction model 
created by the STREW-H metrics suite.  The project is an ASN.1 
compiler created by Galois Connections, Inc., using the Haskell 
programming language.  The remainder of the paper is organized 
as follows.  Section 2 describes the background work, and Section 
3 introduces the STREW metric suite.  Section 4 discusses the 
industrial case study performed with the STREW-H metric suite.  
Section 5 presents our conclusions and future work. 

2. BACKGROUND 
In prior research, software metrics have been shown to be 
indicators of the quality of software products.  Structural object-
orientation (O-O) measurements, such as those in the Chidamber-
Kemerer (CK) O-O metric suite [8], have been used to evaluate 
and predict fault-proneness [1, 5, 6].   These O-O metrics can be a 
useful early internal indicator of externally-visible product quality 
[1, 25, 26]. The CK metric suite consists of six metrics: weighted 
methods per class (WMC), coupling between objects (CBO), 
depth of inheritance tree (DIT), number of children (NOC), 
response for a class (RFC) and lack of cohesion among methods 
(LCOM).  

Basili et al. [1] studied the fault-proneness in software programs 
using eight student projects. They observed that the WMC, CBO, 
DIT, NOC and RFC were correlated with defects while the 
LCOM was not correlated with defects. Further, Briand et al. [6] 
performed an industrial case study and observed the CBO, RFC, 
and  LCOM to be associated with the fault-proneness of a class. A 
similar study done by Briand et al. [5] on eight student projects 
showed that classes with a higher WMC, CBO, DIT and RFC 
were more fault-prone while classes with more children (NOC) 
were less fault-prone. Tang et al. [26] studied three real time 
systems for testing and maintenance defects. Higher WMC and 
RFC were found to be associated with fault-proneness.  

Nikora and Munson [22] have shown that structural metrics can be 
indicators of defects in software. Structural metrics include 
measurements such as number of executable statements, number 



of nodes and edges in a flow graph, and total number of cycles in 
a flow graph.  Nikora and Munson showed that when the values of 
these specific structural metrics increase, more defects were likely 
to have been introduced into the system.  Also, Harrison et al. [14] 
used structural metrics to estimate the quality of functional 
programs in order to compare the relative quality of systems 
created using functional languages with those created using 
object-oriented programs.  Harrison et al. demonstrated a 
statistically significant correlation between the structural metrics 
and software quality.    

El Emam et al. [13] studied the effect of class size on fault-
proneness by using a large telecommunications application. Class 
size was found to confound the effect of all the metrics on fault-
proneness. Finally, Chidamber et al. [7] analyzed project 
productivity, rework, and design effort of three financial services 
applications. High CBO and low LCOM were associated with 
lower productivity, greater rework, and greater design effort.  

Vouk and Tai [27] showed that in-process metrics have strong 
correlation with field quality of industrial software products. They 
demonstrated the use of software metric estimators, such as the 
number of field failures, failure intensity (indicated by failures per 
test case), and drivers such as change level, component usage, and 
effort in order to quantify component quality in terms of the 
number of failures; identify fault-prone and failure-prone 
components; and guide the software testing process. 

To summarize, there is a growing body of empirical evidence that 
supports the theoretical validity of the use of these internal metrics 
[1, 5] as predictors of fault-proneness. The consistency of these 
findings varies with the programming language [25].  Therefore, 
the metrics are still open to criticism. [9] 

2.1 HUnit and Test-Driven Development 
HUnit1 is an open source unit-testing framework that has been 
created for Haskell systems.  The capabilities of HUnit parallel 
those of the award-winning Java unit testing framework, JUnit2 
[15].  HUnit provides different developers working on the same 
project a standard framework for creating unit tests and allows 
them to run all sets of tests created by the development team.   
STREW-H contains metrics that are gathered from the HUnit test 
cases.   

The basic construct in HUnit is an assertion.  A HUnit test case is 
an executable unit of code that contains one or more assertions.  
Assertions are functions that check to see if an actual result 
matches an expected result using keywords such as 
assertEqual, assertTrue, assertBool, and 
assertFailure.  For example, assume a function foo that 
takes an integer x and returns a tuple (1,x).  The following HUnit 
code could be used to test a single case of this function: 

test1 = TestCase (assertEqual "for (foo 2)," 
(1,2) (foo 2)) 

This says that with test case name "for (foo 2)," verify 
that (foo 2) returns (1,2).  However, assume that this 
function has an defect in it and returns (1,3) instead.  The 
following would be reported by the HUnit module: 

                                                           
1 http://hunit.sourceforge.net/ 
2 http://www.junit.org  

### Failure in: 0:test1 

  for (foo 2), 

  expected: (1,2) 

  but got: (1,3) 

  Cases: 1  Tried: 1  Failures: 1 

Suites of test cases can be created for various functions in a 
system and can be run in batch quickly and easily.  Automated 
HUnit suites can be run often (e.g. at least once per day) as 
regression tests to check whether new functionality has broken 
previously-working functionality.  

By creating and grouping together various sets of test cases, 
HUnit allows a developer to utilize a test-driven development 
(TDD) [2] practice.  With TDD, before implementing production 
code, the developer writes automated unit test cases for the new 
functionality they are about to implement. After writing test cases, 
the developers produce code to pass these test cases. The process 
is essentially “opportunistic” in nature [11]. A developer writes a 
few test cases, implements the code, writes a few test cases, 
implements the code, and so on.  The work is kept within the 
developer’s intellectual bounds because he or she is continuously 
making small design and implementation decisions and increasing 
the functionality at a manageable rate.  New functionality is not 
considered properly implemented unless these new (unit) test 
cases, and every other unit test case written for the code base, run 
properly.   Williams et al. performed a case study with a team at 
IBM that transitioned from ad hoc unit testing to TDD for a Java 
project  [28].  The team experienced a 40% reduction in defect 
density of new/changed code once the method was adopted.   

2.2 QuickCheck 
Much like HUnit, QuickCheck3 is a testing tool created 
specifically for Haskell systems.  STREW-H also contains metrics 
that are gathered from the QuickCheck test cases.  The purpose of 
QuickCheck is to find user-defined properties within a Haskell 
program and generate multiple random test cases for each 
property.  QuickCheck was created to directly exploit an 
advantage that functional programs possess [10].  Most of the 
Haskell code in a system consists of pure functions as opposed to 
functions that produce side effects.  This property enables testing 
without concern for the state of the program, allowing developers 
to test individual functions easily.  In QuickCheck, a developer 
can define a property, which indicates a truism about a function.  
For example, the function (reverse [x] = [x]) indicates 
that if a list of one element is passed to the function reverse, 
the list is returned unchanged.  A property for this function can be 
defined as: 

(prop_reverse x = reverse [x] == [x])   

This property shows that for all values of x passed to the function 
reverse, the left side should always equal the right side for a list of 
one element. 

Also consider the example function from Section 2.1.  This HUnit 
code easily tested one case of the function foo.  However, this 
function would be a good candidate for testing under QuickCheck, 
since it is likely that a developer would want to test this function 

                                                           
3 http://www.cs.chalmers.se/~rjmh/QuickCheck/ 



for numerous test cases simultaneously.  For this function, a 
property can be defined as: 

(prop_foo x = (foo x) == (1,x)) 

When activated, QuickCheck will scan through source code 
looking for these defined properties and will generate random 
values for the parameters (x, in this case) to test the function.  The 
default is to run 100 values for x (random, not necessarily unique) 
per each property.  However, QuickCheck provides a great deal of 
control over the testing as well, allowing developers to define the 
number of test cases to be run, along with ranges for proper values 
for random testing. 

3. STREW BACKGROUND 
The STREW metric suite is a set of internal, in-process software 
metrics that are leveraged to make an early estimation of defect 
density and its associated confidence interval.  Prior studies [1, 5-
7, 13, 14, 22, 25-27] have leveraged the structural aspects of the 
code, but not metrics associated with the testing effort, to make an 
estimate of defect density. 

The STREW metric suites consist of measures of the 
thoroughness of white-box testing and of some structural aspects 
of the implementation code.  The metrics are intended to cross-
check each other and to triangulate upon a defect density estimate.  
For example, one developer may write fewer test cases, each with 
multiple assertions checking various conditions.  Another 
developer might test the same conditions by writing many more 
test cases, each with only one assertion.  We intend for our metric 
suite to provide useful guidance to each of these developers 
without prescribing the style of writing the system code or test 
cases.      

The use of the STREW metrics is predicated on the existence of 
an extensive suite of automated unit test cases being created as 
development proceeds, such as is done with HUnit and 
QuickCheck.  STREW leverages the utility of automated test 
suites by providing a defect density estimate.  The defect density 
estimate relative to historical data is calculated using multiple 
linear regression analysis which is used to model the relationship 
between software quality and selected software metrics [17, 19].  

Current research involves the refinement of the language-
dependant STREW-J [20] and STREW-H metric suites.  Metrics 
will be added and deleted from the suites based on case studies 
and validation efforts using various analysis techniques, such as 
multiple linear regression analysis, Bayesian analysis, and 
principal component analysis (PCA).  Ultimately, the metric suites 
will be comprised of a minimal set of metrics necessary to provide 
an accurate defect density estimate while not imposing undue 
overhead.      

4. STREW-H 
We utilized the STREW-J [20] metric suite as our starting point to 
create the STREW-H metric suite.  Metrics were eliminated that 
were not applicable for functional languages and additions were 
made based upon a review of the literature and upon expert 
opinion, as will be discussed.  The metrics taken directly from the 
STREW-J, however, were changed somewhat to be used with the 
Haskell language.  For example, assertions take on a slightly 
different meaning in Haskell.  The STREW-J's assertions are 
calculated by counting the assert keywords in JUnit testing cases.  
The assertion/testing metric was changed to include the number of 

QuickCheck  properties and HUnit asserts that are checked.  This 
“number of test cases” metric effectively gives the same measure 
of individual testing statements for STREW-H as the JUnit asserts 
does for STREW-J.   

Interviews were conducted with 12 Haskell researchers at Galois 
Connections, Inc.4 and with members of the Programatica team5 at 
The OGI School of Science & Engineering at OHSU 
(OGI/OHSU) to elicit suggestions for the initial version of the 
STREW-H metric suite.  The suggestions included metrics that 
measured structural and testing concepts that are unique to 
functional languages. 

One of these structural and testing concepts that is unique to 
functional programming is monadic code.  Monadic code is 
effectively a written “building block” of code.  Programmers can 
put these “building blocks” together in an ordered way to create 
sequences of computations.   Haskell programs incorporate 
monads to implement imperative functions [21].  Monads allow a 
system written in a functional language, such as Haskell, to 
perform tasks that require external information, such as user input.  
Monads also allow Haskell developers to use algorithms that work 
more efficiently in an imperative environment.  Anecdotal 
evidence from Galois and OGI/OHSU suggests that once the 
system switches over into monadic code, there is a higher 
likelihood of programmer error.   

Another of the proposed metrics is concerned with warnings that 
are reported by the Glasgow Haskell Compiler [18], one of the 
most commonly used Haskell compilers.  These warnings are 
indicators of potential defects in the system.  For instance, an 
“incomplete pattern” warning indicates that there are base cases 
not covered by a recursive function and could possibly produce a 
program failure.  These warnings are not necessarily defects in the 
system, but could be an indication of programmer error [18]. 

A STREW-H feasibility study [23] was performed using a large 
(200+ KLOC), open-source Haskell project.  This study used the 
initial version of STREW-H, Version 0.1.  This study showed a 
strong relationship between the STREW-H metric suite and 
system defects and motivated further study of STREW-H in-
process metrics.  Our most recent findings from an industrial case 
study regarding the STREW-H suite is presented in this paper and 
build upon concepts from our feasibility study. 

From this feasibility study, we analyzed what metrics contributed 
the most to the prediction model and how some metrics were 
related to each other.  This analysis prompted us to refine our 
metric suite to five metrics that cover both testing information and 
coding standards specific to the Haskell programming language. 

We thus propose the following five candidate metrics for the 
STREW-H Version 0.2: 

• test lines of code / source lines of code (M1) includes 
HUnit, QuickCheck, and ad host tests and shows the 
general testing effort with respect to the size of the 
system; 

• number of type signatures / number of methods in the 
system (M2) shows the ratio of methods that utilize type 

                                                           
4 http://www.galois.com 
5 http://www.cse.ogi.edu/PacSoft/projects/programatica/ 



signatures, which is a good programming practice in 
Haskell; 

• number of test cases / number of requirements (M3) 
includes HUnit, QuickCheck, and ad host tests and 
shows the general testing effort with regard to the scope 
of the system;  

• pattern warnings / KLOC (M4) shows some of the most 
common errors in Haskell programming and includes 
common errors in the creation of recursive methods, 
such as incomplete patterns and overlapping patterns; 

• monadic instances of code / KLOC (M5), identified as a 
source of problems in Haskell programs, provides 
information on likely problem areas; 

The STREW-H metric suite will be refined through additional 
research. 

4.1 Case Study Description 
We worked with Galois during the seven-month development of 
an ASN.1 compiler system.     The project consisted of developing 
a proof-of-concept ASN.1 compiler (about 20 KLOC) that could 
show that high-assurance, high-reliability software could be 
created using a functional language.   

During the course of the project, 20 in-process snapshots of the 
system were taken at one- or two-week intervals over the seven-
month period.  Also, logs were kept on the code base, indicating 
when changes needed to be made to the code to rectify defects that 
were discovered during the development process. 

Galois’ development methodology could best be considered a 
waterfall process, in which individual components of the ASN.1 
compiler were designed, built, tested, and then integrated over the 
course of the project.  The team was small (three developers), so 
all were involved in all aspects of design, development, and 
testing and were knowledgeable about the code base.  Due to the 
aspects of this development methodology, all developers were 
actively discovering and correcting defects during the coding and 
integration process.   

Two main tools were used to gather the various metrics on the in-
process snapshots of the ASN.1 compiler.  Regular expression 
tools, such as PowerGREP6, were used to identify and count 
keywords in both code and compile logs to gather most of the 
metrics.  SLOCCounter7 was used to count source and test lines of 
code.   

4.2 Case Study Limitations 
We counted in-process defects by manually reading Galois’s logs, 
identifying instances where code had been checked into the code 
base, run, and at some point determined to be incorrect.  Due to 
the nature of the logs, we could thus only count when defects were 
discovered and corrected, not when defects were introduced into 
the system.  Also, it is impossible to classify the types of defects 
that were logged, because the descriptions in the log were often 
too vague to gather any information other than the fact a bug was 
discovered and corrected. 

                                                           
6 http://www.powergrep.com/ 
7 http://www.dwheeler.com/sloccount/ 

Another limitation of the study is that the snapshots were taken 
relatively close together.  That is, there is not a great deal of time 
between the snapshots that we analyzed.  Due to the nature of the 
project and the length of time involved (seven months), it was 
decided that more data points were desired despite their proximity 
in time.  This is a possible explanation for why the data does not 
change greatly from snapshot to snapshot.  Additionally, the 
changes in the projects across the snapshots may not have been 
not large enough to avoid multi-collinearity.  We tried to negate 
this effect to an extent by employing a data splitting technique as 
detailed below. 

Finally, we propose that this method can and should be performed 
in-process in order to allow developers to utilize feedback from 
the method to help guide their development practices.  However, 
for the purposes of validating the study, our analysis of the ASN.1 
project was performed post-mortem in order to ascertain the 
method’s ability to predict defect density with as little bias 
introduced as possible.  The development team was aware that the 
code would be used in this study, but did not know how or to what 
extent. 

4.3 Experimental Results 
A multiple regression prediction model8 was created with the five 
metrics of the STREW-H and the number of in-process defects 
that were corrected and logged in the versioning system by Galois.  
We created the multiple regression model with 14 random in-
process snapshots of the system and used this model to predict the 
remaining six snapshots’ defect densities.  This data splitting was 
done five separate times with a different randomly-chosen set of 
14 snapshots to help remove any bias.  The analysis showed that 
future defect densities in the system could be predicted based on 
this historical data of the project with respect to the STREW-H 
metric suite.   

The R2 values from the five models were as follows: 

• 0.943 (F=26.304, p<0.0005);  

• 0.930 (F=21.232, p<0.0005); 

• 0.962 (F=25.206, p<0.0005); 

• 0.949, (F=29.974, p<0.0005); and 

• 0.967 (F=42.237, p<0.0005).   

We conservatively used the model with the lowest R2 value for the 
prediction model in this case study.  The results of the regression 
model showed that the STREW-H metrics are associated with the 
number of defects that were discovered and corrected during the 
development process.  Using the generated regression model, the 
defect density of the remaining six snapshots was predicted to be 
as shown in Figure 1.  The graph in Figure 1 shows the closeness 
of the fit of the regression equation.  This regression model 
predicted the number of defects within an acceptable range that 
should be discovered in relation to the STREW-H metric values of 
a system.  Five of the six predictions were within .3 
defects/KLOC, but one prediction was .8 defects/KLOC away 
from the actual value.  We believe this occurred for this particular 
snapshot because it occurred during a time when new code 

                                                           
8 SPSS was used for the purpose of statistical analysis. SPSS does 
not provide statistical significance beyond three decimal places. 
p=0.000 is interpreted as p<0.0005.   



development dropped and test code development increased.  This 
change in their general weekly development methodology 
contributed to this outlier. 
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Figure 1: Actual vs. Estimated Defects/KLOC 

 
One way to analyze which metrics are the most important would 
be a PCA.  When PCA is performed, Kaiser-Meyer-Olkin 
coefficient (KMO) is used as a measure of sampling adequacy.  
KMO values of 0.6 or better are an indication that PCA is an 
acceptable technique to use with the data set [4]. The KMO 
measure of sampling adequacy for this data set, however, was not 
greater than the acceptable value of 0.6 at 0.522 to perform PCA. 
One possibility for this is that some of the measures, such as the 
number of requirements, remained constant through multiple 
snapshots.  This statistical indication may show that while the 
combination of the metrics in the regression equation is indicative, 
the metrics individually cannot be proven to be direct indicators of 
defect density.   

From this initial PCA analysis, however, we can gain some 
information as to which aspects of the STREW-H suite contribute 
the most to the prediction of defects. For example, pattern 
warnings/KLOC was identified as a primary contributor to the 
model in this experiment using factor analysis. Pattern errors 
include two common Haskell programming errors, overlapping 
patterns and incomplete patterns.  An overlapping pattern is a 
condition where a certain case of a recursive function cannot be 
reached due to the fact that another function is called instead.  
This is a similar problem to a variable reference in local scope 
being called instead of one in the global scope – one superseded 
the other.  Incomplete patterns occur when some base cases of a 
recursive function are not covered by a given function.  This 
finding is consistent with what we discovered during our 
developer interviews during the creation of STREW-H. 

5. CONCLUSIONS AND FUTURE WORK 
In this paper we have reported on a metric suite for providing an 
early warning regarding system defect density for Haskell 
programs.  The STREW-H metric suite has been found to be a 
practical early indicator of defect density.  A case study involving 
an industrial project indicates the promise of this approach.  The 
metric suite is intended to be easy to gather in the development 
environment so that developers can receive an early indication of 
system defect density throughout development.  This indication 

allows developers to take corrective actions earlier in the 
development process.  

We will continue to refine the metric suite by add/deleting new 
metrics based on the results of further studies.  Furthermore, we 
also will assess, in the context of our suite, the relationship 
between traditional software metrics, such as LOC and cyclomatic 
complexity and system reliability.  Based upon these results, 
future versions of STREW-H may include these metrics.  We will 
continue to validate the metric suite under different industrial and 
academic environments.  

Future STREW-H case studies will involve the active use of the 
method during the development cycle.  In this study, data was 
gathered post-mortem as to not introduce bias, but it is important 
to analyze how the STREW-H information can actively influence 
a development cycle.  These future cases studies will involve 
teams actively coding and correcting bugs, calculating the 
STREW-H values, and then adjusting their development plans and 
techniques accordingly for the next development cycle. 

During the validation process, we will also incorporate the 
STREW defect density estimation method into the Eclipse 
integrated development environment as a plug-in.  Work has 
already begun on incorporating STREW-H into Eclipse  [24].  
This will enable the automatic gathering of the STREW metrics, 
thus enabling developers to utilize the STREW defect density 
estimation with little overhead for the software developer.  The 
plug-in provides this estimation in the developer’s programming 
environment when corrective action can be taken to correct 
defects when it is still economical. 
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