
Early Estimation of Defect Density Using an In-Process
Haskell Metrics Model

Mark Sherriff1, Nachiappan Nagappan2, Laurie Williams1, Mladen Vouk1

1 North Carolina State University, Raleigh, NC 27695
{mssherri, lawilli3, vouk}@ncsu.edu

2 Microsoft Research, Redmond, WA 98052
nachin@microsoft.com

ABSTRACT
Early estimation of defect density of a product is an important step
towards the remediation of the problem associated with affordably
guiding corrective actions in the software development process.
This paper presents a suite of in-process metrics that leverages the
software testing effort to create a defect density prediction model
for use throughout the software development process. A case
study conducted with Galois Connections, Inc. in a Haskell
programming environment indicates that the resulting defect
density prediction is indicative of the actual system defect density.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics - Performance
measures, Process metrics, Product metrics.

General Terms
Measurement, Reliability.

Keywords
Empirical software engineering, multiple regression,
software quality, Haskell.

1. INTRODUCTION
In industry, actual defect density of a software system cannot be
measured until it has been released in the field and has been used
extensively by the end user. Actual defect density information as
found by the end users becomes available too late in the software
lifecycle to affordably guide corrective actions to software quality.
It is significantly more expensive to correct software defects once
they have reached the end user compared with earlier in the
development process [3].

Software developers can benefit from an early warning of defect
density. This early warning can be built from a collection of
internal, in-process metrics that are correlated with actual defect
density, an external measure. The ISO/IEC standard [16] states
that “internal metrics are of little value unless there is evidence
that they are related to some externally visible quality.” Some
internal metrics, such as complexity metrics, have been shown to
be useful as early indicators of externally-visible product quality
[1] because they are related (in a statistically significant and stable
way) to the field quality/reliability of the product. The validation
of such internal metrics requires a convincing demonstration that
(1) the metric measures what it purports to measure and (2) the
metric is associated with an important external metric, such as
field reliability, maintainability or fault-proneness [12].

Our research objective is to construct and validate a set of easy-
to-measure in-process metrics that can be used to create a
prediction model of an external measure of system defect density.
To this end, we have created a metric suite we call the Software
Testing and Reliability Early Warning metric (STREW) suite.
Currently, there are two versions of STREW that have been
developed to analyze an object-oriented language (STREW-Java
or STREW-J) [20] and a functional programming language
(STREW-Haskell or STREW-H) [23, 24].

In this paper, we present the results of an industrial case study
designed to analyze the capabilities of the prediction model
created by the STREW-H metrics suite. The project is an ASN.1
compiler created by Galois Connections, Inc., using the Haskell
programming language. The remainder of the paper is organized
as follows. Section 2 describes the background work, and Section
3 introduces the STREW metric suite. Section 4 discusses the
industrial case study performed with the STREW-H metric suite.
Section 5 presents our conclusions and future work.

2. BACKGROUND
In prior research, software metrics have been shown to be
indicators of the quality of software products. Structural object-
orientation (O-O) measurements, such as those in the Chidamber-
Kemerer (CK) O-O metric suite [8], have been used to evaluate
and predict fault-proneness [1, 5, 6]. These O-O metrics can be a
useful early internal indicator of externally-visible product quality
[1, 25, 26]. The CK metric suite consists of six metrics: weighted
methods per class (WMC), coupling between objects (CBO),
depth of inheritance tree (DIT), number of children (NOC),
response for a class (RFC) and lack of cohesion among methods
(LCOM).

Basili et al. [1] studied the fault-proneness in software programs
using eight student projects. They observed that the WMC, CBO,
DIT, NOC and RFC were correlated with defects while the
LCOM was not correlated with defects. Further, Briand et al. [6]
performed an industrial case study and observed the CBO, RFC,
and LCOM to be associated with the fault-proneness of a class. A
similar study done by Briand et al. [5] on eight student projects
showed that classes with a higher WMC, CBO, DIT and RFC
were more fault-prone while classes with more children (NOC)
were less fault-prone. Tang et al. [26] studied three real time
systems for testing and maintenance defects. Higher WMC and
RFC were found to be associated with fault-proneness.

Nikora and Munson [22] have shown that structural metrics can be
indicators of defects in software. Structural metrics include
measurements such as number of executable statements, number

of nodes and edges in a flow graph, and total number of cycles in
a flow graph. Nikora and Munson showed that when the values of
these specific structural metrics increase, more defects were likely
to have been introduced into the system. Also, Harrison et al. [14]
used structural metrics to estimate the quality of functional
programs in order to compare the relative quality of systems
created using functional languages with those created using
object-oriented programs. Harrison et al. demonstrated a
statistically significant correlation between the structural metrics
and software quality.

El Emam et al. [13] studied the effect of class size on fault-
proneness by using a large telecommunications application. Class
size was found to confound the effect of all the metrics on fault-
proneness. Finally, Chidamber et al. [7] analyzed project
productivity, rework, and design effort of three financial services
applications. High CBO and low LCOM were associated with
lower productivity, greater rework, and greater design effort.

Vouk and Tai [27] showed that in-process metrics have strong
correlation with field quality of industrial software products. They
demonstrated the use of software metric estimators, such as the
number of field failures, failure intensity (indicated by failures per
test case), and drivers such as change level, component usage, and
effort in order to quantify component quality in terms of the
number of failures; identify fault-prone and failure-prone
components; and guide the software testing process.

To summarize, there is a growing body of empirical evidence that
supports the theoretical validity of the use of these internal metrics
[1, 5] as predictors of fault-proneness. The consistency of these
findings varies with the programming language [25]. Therefore,
the metrics are still open to criticism. [9]

2.1 HUnit and Test-Driven Development
HUnit1 is an open source unit-testing framework that has been
created for Haskell systems. The capabilities of HUnit parallel
those of the award-winning Java unit testing framework, JUnit2
[15]. HUnit provides different developers working on the same
project a standard framework for creating unit tests and allows
them to run all sets of tests created by the development team.
STREW-H contains metrics that are gathered from the HUnit test
cases.

The basic construct in HUnit is an assertion. A HUnit test case is
an executable unit of code that contains one or more assertions.
Assertions are functions that check to see if an actual result
matches an expected result using keywords such as
assertEqual, assertTrue, assertBool, and
assertFailure. For example, assume a function foo that
takes an integer x and returns a tuple (1,x). The following HUnit
code could be used to test a single case of this function:

test1 = TestCase (assertEqual "for (foo 2),"
(1,2) (foo 2))

This says that with test case name "for (foo 2)," verify
that (foo 2) returns (1,2). However, assume that this
function has an defect in it and returns (1,3) instead. The
following would be reported by the HUnit module:

1 http://hunit.sourceforge.net/
2 http://www.junit.org

Failure in: 0:test1

 for (foo 2),

 expected: (1,2)

 but got: (1,3)

 Cases: 1 Tried: 1 Failures: 1

Suites of test cases can be created for various functions in a
system and can be run in batch quickly and easily. Automated
HUnit suites can be run often (e.g. at least once per day) as
regression tests to check whether new functionality has broken
previously-working functionality.

By creating and grouping together various sets of test cases,
HUnit allows a developer to utilize a test-driven development
(TDD) [2] practice. With TDD, before implementing production
code, the developer writes automated unit test cases for the new
functionality they are about to implement. After writing test cases,
the developers produce code to pass these test cases. The process
is essentially “opportunistic” in nature [11]. A developer writes a
few test cases, implements the code, writes a few test cases,
implements the code, and so on. The work is kept within the
developer’s intellectual bounds because he or she is continuously
making small design and implementation decisions and increasing
the functionality at a manageable rate. New functionality is not
considered properly implemented unless these new (unit) test
cases, and every other unit test case written for the code base, run
properly. Williams et al. performed a case study with a team at
IBM that transitioned from ad hoc unit testing to TDD for a Java
project [28]. The team experienced a 40% reduction in defect
density of new/changed code once the method was adopted.

2.2 QuickCheck
Much like HUnit, QuickCheck3 is a testing tool created
specifically for Haskell systems. STREW-H also contains metrics
that are gathered from the QuickCheck test cases. The purpose of
QuickCheck is to find user-defined properties within a Haskell
program and generate multiple random test cases for each
property. QuickCheck was created to directly exploit an
advantage that functional programs possess [10]. Most of the
Haskell code in a system consists of pure functions as opposed to
functions that produce side effects. This property enables testing
without concern for the state of the program, allowing developers
to test individual functions easily. In QuickCheck, a developer
can define a property, which indicates a truism about a function.
For example, the function (reverse [x] = [x]) indicates
that if a list of one element is passed to the function reverse,
the list is returned unchanged. A property for this function can be
defined as:

(prop_reverse x = reverse [x] == [x])

This property shows that for all values of x passed to the function
reverse, the left side should always equal the right side for a list of
one element.

Also consider the example function from Section 2.1. This HUnit
code easily tested one case of the function foo. However, this
function would be a good candidate for testing under QuickCheck,
since it is likely that a developer would want to test this function

3 http://www.cs.chalmers.se/~rjmh/QuickCheck/

for numerous test cases simultaneously. For this function, a
property can be defined as:

(prop_foo x = (foo x) == (1,x))

When activated, QuickCheck will scan through source code
looking for these defined properties and will generate random
values for the parameters (x, in this case) to test the function. The
default is to run 100 values for x (random, not necessarily unique)
per each property. However, QuickCheck provides a great deal of
control over the testing as well, allowing developers to define the
number of test cases to be run, along with ranges for proper values
for random testing.

3. STREW BACKGROUND
The STREW metric suite is a set of internal, in-process software
metrics that are leveraged to make an early estimation of defect
density and its associated confidence interval. Prior studies [1, 5-
7, 13, 14, 22, 25-27] have leveraged the structural aspects of the
code, but not metrics associated with the testing effort, to make an
estimate of defect density.

The STREW metric suites consist of measures of the
thoroughness of white-box testing and of some structural aspects
of the implementation code. The metrics are intended to cross-
check each other and to triangulate upon a defect density estimate.
For example, one developer may write fewer test cases, each with
multiple assertions checking various conditions. Another
developer might test the same conditions by writing many more
test cases, each with only one assertion. We intend for our metric
suite to provide useful guidance to each of these developers
without prescribing the style of writing the system code or test
cases.

The use of the STREW metrics is predicated on the existence of
an extensive suite of automated unit test cases being created as
development proceeds, such as is done with HUnit and
QuickCheck. STREW leverages the utility of automated test
suites by providing a defect density estimate. The defect density
estimate relative to historical data is calculated using multiple
linear regression analysis which is used to model the relationship
between software quality and selected software metrics [17, 19].

Current research involves the refinement of the language-
dependant STREW-J [20] and STREW-H metric suites. Metrics
will be added and deleted from the suites based on case studies
and validation efforts using various analysis techniques, such as
multiple linear regression analysis, Bayesian analysis, and
principal component analysis (PCA). Ultimately, the metric suites
will be comprised of a minimal set of metrics necessary to provide
an accurate defect density estimate while not imposing undue
overhead.

4. STREW-H
We utilized the STREW-J [20] metric suite as our starting point to
create the STREW-H metric suite. Metrics were eliminated that
were not applicable for functional languages and additions were
made based upon a review of the literature and upon expert
opinion, as will be discussed. The metrics taken directly from the
STREW-J, however, were changed somewhat to be used with the
Haskell language. For example, assertions take on a slightly
different meaning in Haskell. The STREW-J's assertions are
calculated by counting the assert keywords in JUnit testing cases.
The assertion/testing metric was changed to include the number of

QuickCheck properties and HUnit asserts that are checked. This
“number of test cases” metric effectively gives the same measure
of individual testing statements for STREW-H as the JUnit asserts
does for STREW-J.

Interviews were conducted with 12 Haskell researchers at Galois
Connections, Inc.4 and with members of the Programatica team5 at
The OGI School of Science & Engineering at OHSU
(OGI/OHSU) to elicit suggestions for the initial version of the
STREW-H metric suite. The suggestions included metrics that
measured structural and testing concepts that are unique to
functional languages.

One of these structural and testing concepts that is unique to
functional programming is monadic code. Monadic code is
effectively a written “building block” of code. Programmers can
put these “building blocks” together in an ordered way to create
sequences of computations. Haskell programs incorporate
monads to implement imperative functions [21]. Monads allow a
system written in a functional language, such as Haskell, to
perform tasks that require external information, such as user input.
Monads also allow Haskell developers to use algorithms that work
more efficiently in an imperative environment. Anecdotal
evidence from Galois and OGI/OHSU suggests that once the
system switches over into monadic code, there is a higher
likelihood of programmer error.

Another of the proposed metrics is concerned with warnings that
are reported by the Glasgow Haskell Compiler [18], one of the
most commonly used Haskell compilers. These warnings are
indicators of potential defects in the system. For instance, an
“incomplete pattern” warning indicates that there are base cases
not covered by a recursive function and could possibly produce a
program failure. These warnings are not necessarily defects in the
system, but could be an indication of programmer error [18].

A STREW-H feasibility study [23] was performed using a large
(200+ KLOC), open-source Haskell project. This study used the
initial version of STREW-H, Version 0.1. This study showed a
strong relationship between the STREW-H metric suite and
system defects and motivated further study of STREW-H in-
process metrics. Our most recent findings from an industrial case
study regarding the STREW-H suite is presented in this paper and
build upon concepts from our feasibility study.

From this feasibility study, we analyzed what metrics contributed
the most to the prediction model and how some metrics were
related to each other. This analysis prompted us to refine our
metric suite to five metrics that cover both testing information and
coding standards specific to the Haskell programming language.

We thus propose the following five candidate metrics for the
STREW-H Version 0.2:

• test lines of code / source lines of code (M1) includes
HUnit, QuickCheck, and ad host tests and shows the
general testing effort with respect to the size of the
system;

• number of type signatures / number of methods in the
system (M2) shows the ratio of methods that utilize type

4 http://www.galois.com
5 http://www.cse.ogi.edu/PacSoft/projects/programatica/

signatures, which is a good programming practice in
Haskell;

• number of test cases / number of requirements (M3)
includes HUnit, QuickCheck, and ad host tests and
shows the general testing effort with regard to the scope
of the system;

• pattern warnings / KLOC (M4) shows some of the most
common errors in Haskell programming and includes
common errors in the creation of recursive methods,
such as incomplete patterns and overlapping patterns;

• monadic instances of code / KLOC (M5), identified as a
source of problems in Haskell programs, provides
information on likely problem areas;

The STREW-H metric suite will be refined through additional
research.

4.1 Case Study Description
We worked with Galois during the seven-month development of
an ASN.1 compiler system. The project consisted of developing
a proof-of-concept ASN.1 compiler (about 20 KLOC) that could
show that high-assurance, high-reliability software could be
created using a functional language.

During the course of the project, 20 in-process snapshots of the
system were taken at one- or two-week intervals over the seven-
month period. Also, logs were kept on the code base, indicating
when changes needed to be made to the code to rectify defects that
were discovered during the development process.

Galois’ development methodology could best be considered a
waterfall process, in which individual components of the ASN.1
compiler were designed, built, tested, and then integrated over the
course of the project. The team was small (three developers), so
all were involved in all aspects of design, development, and
testing and were knowledgeable about the code base. Due to the
aspects of this development methodology, all developers were
actively discovering and correcting defects during the coding and
integration process.

Two main tools were used to gather the various metrics on the in-
process snapshots of the ASN.1 compiler. Regular expression
tools, such as PowerGREP6, were used to identify and count
keywords in both code and compile logs to gather most of the
metrics. SLOCCounter7 was used to count source and test lines of
code.

4.2 Case Study Limitations
We counted in-process defects by manually reading Galois’s logs,
identifying instances where code had been checked into the code
base, run, and at some point determined to be incorrect. Due to
the nature of the logs, we could thus only count when defects were
discovered and corrected, not when defects were introduced into
the system. Also, it is impossible to classify the types of defects
that were logged, because the descriptions in the log were often
too vague to gather any information other than the fact a bug was
discovered and corrected.

6 http://www.powergrep.com/
7 http://www.dwheeler.com/sloccount/

Another limitation of the study is that the snapshots were taken
relatively close together. That is, there is not a great deal of time
between the snapshots that we analyzed. Due to the nature of the
project and the length of time involved (seven months), it was
decided that more data points were desired despite their proximity
in time. This is a possible explanation for why the data does not
change greatly from snapshot to snapshot. Additionally, the
changes in the projects across the snapshots may not have been
not large enough to avoid multi-collinearity. We tried to negate
this effect to an extent by employing a data splitting technique as
detailed below.

Finally, we propose that this method can and should be performed
in-process in order to allow developers to utilize feedback from
the method to help guide their development practices. However,
for the purposes of validating the study, our analysis of the ASN.1
project was performed post-mortem in order to ascertain the
method’s ability to predict defect density with as little bias
introduced as possible. The development team was aware that the
code would be used in this study, but did not know how or to what
extent.

4.3 Experimental Results
A multiple regression prediction model8 was created with the five
metrics of the STREW-H and the number of in-process defects
that were corrected and logged in the versioning system by Galois.
We created the multiple regression model with 14 random in-
process snapshots of the system and used this model to predict the
remaining six snapshots’ defect densities. This data splitting was
done five separate times with a different randomly-chosen set of
14 snapshots to help remove any bias. The analysis showed that
future defect densities in the system could be predicted based on
this historical data of the project with respect to the STREW-H
metric suite.

The R2 values from the five models were as follows:

• 0.943 (F=26.304, p<0.0005);

• 0.930 (F=21.232, p<0.0005);

• 0.962 (F=25.206, p<0.0005);

• 0.949, (F=29.974, p<0.0005); and

• 0.967 (F=42.237, p<0.0005).

We conservatively used the model with the lowest R2 value for the
prediction model in this case study. The results of the regression
model showed that the STREW-H metrics are associated with the
number of defects that were discovered and corrected during the
development process. Using the generated regression model, the
defect density of the remaining six snapshots was predicted to be
as shown in Figure 1. The graph in Figure 1 shows the closeness
of the fit of the regression equation. This regression model
predicted the number of defects within an acceptable range that
should be discovered in relation to the STREW-H metric values of
a system. Five of the six predictions were within .3
defects/KLOC, but one prediction was .8 defects/KLOC away
from the actual value. We believe this occurred for this particular
snapshot because it occurred during a time when new code

8 SPSS was used for the purpose of statistical analysis. SPSS does
not provide statistical significance beyond three decimal places.
p=0.000 is interpreted as p<0.0005.

development dropped and test code development increased. This
change in their general weekly development methodology
contributed to this outlier.

Case Number

654321

D
ef

ec
ts

 /
K

LO
C

2.5

2.0

1.5

1.0

.5

0.0

-.5

Actual

Prediction

LCL

UCL

Figure 1: Actual vs. Estimated Defects/KLOC

One way to analyze which metrics are the most important would
be a PCA. When PCA is performed, Kaiser-Meyer-Olkin
coefficient (KMO) is used as a measure of sampling adequacy.
KMO values of 0.6 or better are an indication that PCA is an
acceptable technique to use with the data set [4]. The KMO
measure of sampling adequacy for this data set, however, was not
greater than the acceptable value of 0.6 at 0.522 to perform PCA.
One possibility for this is that some of the measures, such as the
number of requirements, remained constant through multiple
snapshots. This statistical indication may show that while the
combination of the metrics in the regression equation is indicative,
the metrics individually cannot be proven to be direct indicators of
defect density.

From this initial PCA analysis, however, we can gain some
information as to which aspects of the STREW-H suite contribute
the most to the prediction of defects. For example, pattern
warnings/KLOC was identified as a primary contributor to the
model in this experiment using factor analysis. Pattern errors
include two common Haskell programming errors, overlapping
patterns and incomplete patterns. An overlapping pattern is a
condition where a certain case of a recursive function cannot be
reached due to the fact that another function is called instead.
This is a similar problem to a variable reference in local scope
being called instead of one in the global scope – one superseded
the other. Incomplete patterns occur when some base cases of a
recursive function are not covered by a given function. This
finding is consistent with what we discovered during our
developer interviews during the creation of STREW-H.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have reported on a metric suite for providing an
early warning regarding system defect density for Haskell
programs. The STREW-H metric suite has been found to be a
practical early indicator of defect density. A case study involving
an industrial project indicates the promise of this approach. The
metric suite is intended to be easy to gather in the development
environment so that developers can receive an early indication of
system defect density throughout development. This indication

allows developers to take corrective actions earlier in the
development process.

We will continue to refine the metric suite by add/deleting new
metrics based on the results of further studies. Furthermore, we
also will assess, in the context of our suite, the relationship
between traditional software metrics, such as LOC and cyclomatic
complexity and system reliability. Based upon these results,
future versions of STREW-H may include these metrics. We will
continue to validate the metric suite under different industrial and
academic environments.

Future STREW-H case studies will involve the active use of the
method during the development cycle. In this study, data was
gathered post-mortem as to not introduce bias, but it is important
to analyze how the STREW-H information can actively influence
a development cycle. These future cases studies will involve
teams actively coding and correcting bugs, calculating the
STREW-H values, and then adjusting their development plans and
techniques accordingly for the next development cycle.

During the validation process, we will also incorporate the
STREW defect density estimation method into the Eclipse
integrated development environment as a plug-in. Work has
already begun on incorporating STREW-H into Eclipse [24].
This will enable the automatic gathering of the STREW metrics,
thus enabling developers to utilize the STREW defect density
estimation with little overhead for the software developer. The
plug-in provides this estimation in the developer’s programming
environment when corrective action can be taken to correct
defects when it is still economical.

6. AKNOWLEDGEMENTS
We would like to sincerely thank Galois Connections, Inc., and
the Programatica Team at OGI/OHSU for their contributions to
this work. We would also like to thank the NCSU Software
Engineering Reading group for their comments on earlier drafts of
this paper. This material is based upon work supported by the
National Science Foundation under CAREER award Grant No.
0346903. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National
Science Foundation.

7. REFERENCES
[1] Basili, V., Briand, L., Melo, W., "A Validation of Object

Oriented Design Metrics as Quality Indicators," IEEE
Transactions on Software Engineering, vol. 22, pp. 751 -
761, 1996.

[2] Beck, K., Test Driven Development- by Example. Boston:
Addison-Wesley, 2003.

[3] Boehm, B. W., Software Engineering Economics. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1981.

[4] Brace, N., Kemp, R., Snelgar, R., SPSS for Psychologists:
Palgrave Macmillan, 2003.

[5] Briand, L. C., Wuest, J., Daly, J.W., Porter, D.V., "Exploring
the Relationship between Design Measures and Software
Quality in Object Oriented Systems," Journal of Systems and
Software, vol. Vol. 51, pp. 245-273, 2000.

[6] Briand, L. C., Wuest, J., Ikonomovski, S., Lounis, H.,
"Investigating quality factors in object-oriented designs: an
industrial case study," ICSE, 1999.

[7] Chidamber, S. R., Darcy, D.P., Kemerer, C.F., "Managerial
Use of Metrics for Object Oriented Software: An Exploratory

Analysis," IEEE Transactions on Software Engineering, pp.
629-639, 1998.

[8] Chidamber, S. R., Kemerer, C.F., "A Metrics Suite for Object
Oriented Design," IEEE Transactions on Software
Engineering, vol. Vol. 20, pp. 476 - 493, 1994.

[9] Churcher, N. I. and Shepperd, M. J., "Comments on 'A
Metrics Suite for Object-Oriented Design'," IEEE
Transactions on Software Engineering, vol. 21, pp. 263-5,
1995.

[10] Classen, K. and Hughes, J., "QuickCheck: A Lightweight
Tool for Random Testing of Haskell Programs," International
Conference on Functional Programming, Montreal, Canada,
2000.

[11] Curtis, B., "Three Problems Overcome with Behavioral
Models of the Software Development Process (Panel),"
International Conference on Software Engineering,
Pittsburgh, PA, 1989.

[12] El Emam, K., "A Methodology for Validating Software
Product Metrics," National Research Council of Canada,
Ottawa, Ontario, Canada NCR/ERC-1076, June 2000 June
2000.

[13] El Emam, K., Benlarbi, S., Goel, N., Rai, S.N., "The
Confounding Effect of Class Size on the Validity of Object-
Oriented Metrics," IEEE Transactions on Software
Engineering, vol. Vol. 27, pp. 630 - 650, 2001.

[14] Harrison, R., Samaraweera, L. G., Dobie, M. R., and Lewis,
P. H., "Estimating the quality of functional programs: an
empirical investigation," Information and Software
Technology, vol. 37, pp. 701-707, 1995.

[15] Herrington, D., "HUnit User's Guide 1.0." Available Online.
http://hunit.sourceforge.net/HUnit-1.0/Guide.html. 2002.

[16] ISO/IEC, "DIS 14598-1 Information Technology - Software
Product Evaluation," 1996.

[17] Khoshgoftaar, T. M., Munson, J.C., Lanning, D.L., "A
Comparative Study of Predictive Models for Program
Changes During System Testing and Maintenance,"
International Conference on Software Maintenance, 1993.

[18] Marlow, S., "The Glasgow Haskell Compiler." Available
Online. http://www.haskell.org/ghc. 2004.

[19] Munson, J. C., Khoshgoftaar,T.M., "Regression Modelling of
Software quality: Empirical Investigation," Information and
Software Technology, pp. 106-114, 1990.

[20] Nagappan, N., "A Software Testing and Reliability Early
Warning (STREW) Metric Suite," in Department of
Computer Science, vol. PhD. Raleigh, NC: North Carolina
State University, 2005.

[21] Newbern, J., "All About Monads." Available Online. Web
Page. http://www.nomaware.com/monads/html/. Aug. 22,
2004.

[22] Nikora, A. P. and Munson, J. C., "Understanding the Nature
of Software Evolution," IEEE International Conference on
Software Maintenance, Amsterdam, The Netherlands, 2003.

[23] Sherriff, M., Williams, L., and Vouk, M. A., "Using In-
Process Metrics to Predict Defect Density in Haskell
Programs," Fast Abstract, International Symposium on
Software Reliability Engineering, St. Malo, France, 2004.

[24] Sherriff, M., Williams, L., "Tool Support For Estimating
Software Reliability in Haskell Programs," Student Paper,
IEEE International Symposium on Software Reliability
Engineering, St. Malo, France, 2004.

[25] Subramanyam, R., Krishnan, M.S., "Empirical Analysis of
CK Metrics for Object-Oriented Design Complexity:
Implications for Software Defects," IEEE Transactions on
Software Engineering, vol. Vol. 29, pp. 297 - 310, 2003.

[26] Tang, M.-H., Kao, M-H., Chen, M-H., "An empirical study
on object-oriented metrics," Sixth International Software
Metrics Symposium, 1999.

[27] Vouk, M. A., Tai, K.C., "Multi-Phase Coverage- and Risk-
Based Software Reliability Modeling," CASCON '93, 1993.

[28] Williams, L., Maximillian, E.M., Vouk, M.A., "Test-Driven
Development as a Defect-Reduction Practice.," International
Symposium on Software Reliability Engineering, Denver,
CO, 2003.

