
Fragment Identifiers for Plain Text Files

Erik Wilde and Marcel Baschnagel
Computer Engineering and Networks Laboratory (TIK)

Swiss Federal Institute of Technology (ETH Zürich)

erik.wilde@ethz.ch

ABSTRACT
Hypermedia systems like the Web heavily depend on their
ability to link resources. One of the key features of the
Web’s URIs is their ability to not only specify a resource,
but to also identify a subresource within that resource, by
using a fragment identifier. Fragment identification enables
user to create better hypermedia. We present a proposal
for fragment identifiers for plain text files, which makes it
possible to identify character or line ranges, or subresources
identified by regular expressions. Using these fragment iden-
tifiers, it is possible to create more specific hyperlinks, by
not only linking to a complete plain text resource, but only
the relevant part of it. Along with this proposal, a proto-
type implementation is described which can be used both as
a server-side testbed and as a client-side extension for the
Firefox browser.

Categories and Subject Descriptors: I.7.2 [Document
and Text Processing]: Document Preparation — Hy-
pertext/Hypermedia; H.5.4 [Information Interfaces and
Presentation]: Hypertext/Hypermedia — Navigation

General Terms: Design, Standardization

Keywords: Plain Text, URI, XLink, Firefox

1. Introduction
The Web heavily depends on its ability to link resources.

Even though the vast majority of links on the Web is us-
ing references to complete documents, the ability to refer-
ence document fragments greatly enhances the power of a
hypermedia system, and its usefulness for the users. The
generic URI syntax [1] specifies fragment identifiers, and
thus enables Web links to point to document fragments. On
the Web, fragment identification depends on a resource’s
MIME type, and the most popular fragment identification
method is that of HTML. URIs with fragment identifiers
such as http://www.w3.org/TR/html/#C_8 reference a par-
ticular subresource within the resource, in case of HTML
fragment identifiers the element with the id attribute set to
C 8 (for example the anchor element ...).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HT’05, September 6–9, 2005, Salzburg, Austria.
Copyright 2005 ACM 1-59593-168-6/05/0009 ...$5.00.

Fragment identifiers have been defined for other widely
used resource types, such as XML (where fragment iden-
tifiers are XPointers [4]) and PDF (where it is possible to
identify pages and other subresources). However, since tool
support for working with URIs with fragment identifiers is
weak, and fragment identifiers often are less robust then ref-
erences to the resource only, only a small fraction of links
on the Web specify fragment identifiers.

As a proof of concept, a prototypical implementation for
plain text fragment identifiers has been developed, and there-
fore it is possible to test and use these fragment identifiers
in a server-based scenario as well as in the form of a Firefox
extension.

2. Plain Text Files and Hypertext
In terms of hypertext, plain text files have severe lim-

itations, because they cannot contain outgoing links, and
they cannot serve as targets for links to subresources. Inter-
estingly, defining fragment identifiers solves both problems,
because outgoing links can then be defined by using exter-
nal links (for example XLinks [3]1), and incoming links can
point to subresources of the plain text file.

The majority of files used on the Web are media types
other than plain text, but there still is a large number of
plain text files available. These are either legacy files, which
were never converted to a richer media type (a non-trivial
task, if structure needs to be added), or they are output
files from tools or systems which have plain text output, a
popular example is the Comma-Separated Values (CSV) for-
mat (a weakly structured format, but in terms of hypertext
usage simply treated as unstructured plain text). For all
these plain text resources, fragment identification makes it
possible to integrate them better into the hypermedia world
of the Web, even if only with incoming links.

In a Web with plain text fragment identification, it would
for example be possible to have a link pointing to a partic-
ular line in a log file and thus be able to make a statement
about this subresource, such as the comment that this log
entry requires further investigation.

3. Fragment Identifiers for Plain Text Files
Fragment identifiers are strings appended to a URI, us-

ing the # character as a separation between the resource
identification and the fragment identifier. The generic URI

1As pointed out by Bry and Eckstein [2], however, even after 4
years the XLink specification has not had any success as a Web
technology.

http://www.w3.org/TR/html/#C_8

syntax [1] states that “the fragment identifier component of
a URI allows indirect identification of a secondary resource
by reference to a primary resource and additional identify-
ing information. [. . .] The fragment’s format and resolution
is [. . .] dependent on the media type of a potentially re-
trieved representation, even though such a retrieval is only
performed if the URI is dereferenced.”

In an Internet Draft [6] currently under development (and
open for discussion on the relevant mailing lists), a fragment
identifier syntax and semantics for plain text resources has
been defined. The basic building blocks of these fragment
identifiers are the following:

• Positions and Ranges: Positions identify fragments of
length zero, which may be a useful concept if a link ex-
presses the concept of “insert some text here”. Ranges,
on the other hand, are fragments that span between
two positions, and thus can be thought of what users
normally can select with a mouse.

• Characters and Lines: The only plain text structures
that can be identified reasonably across different char-
acter encodings are individual characters and lines.
Both concept are important when dealing with plain
text files, and are usually supported by text tools (for
example providing a “go to line” function).

• Regular Expressions: While characters and lines easily
break when the file is modified, it may be more robust
to identify a subresource through string matching. By
using a regular expression, a fragment identifier selects
all character ranges matching this regular expression.

The concepts of positions/ranges and characters/lines may
be combined to use line ranges and similar concepts. Also,
different identification methods can be combined, and the
fragment identified by such a combination is the union of all
individually identified fragments. As with regular expres-
sions, this may easily lead to disjoint subresources, which is
not a problem and can be easily represented by using high-
lighting or similar concepts.

Finally, a hash value can be used to be able to detect
changes in the resource. This may be useful to be able to
detect potentially broken fragment identifiers. As long as
the hash value (with may be the length or the MD5 check-
sum) has not changed, the resource probably has not been
changed and the fragment identifier can safely be applied.

The following examples show how the concepts are used in
actual fragment identifiers. They are using some of the frag-
ment identification schemes defined by the fragment identi-
fier syntax. Both examples assume that the resource re-
trieved by dereferencing the URI is a plain text file.

1. http://example.com/text.txt#line=10,20

2. http://example.com/text.txt#match=[rR][fF][cC]

In the first example, the URI identifies a fragment consist-
ing of lines 11–20 of the identified resource. If the resource
does not have that many lines, the fragment is smaller or
may even be empty. The URI of the second example2 iden-
tifies a fragment of the resource which consists of a case-
insensitive match of the string “RFC”, which is likely to be
2Please note that the URI syntax requires the brackets to be
percent-encoded, which for better readability is not shown in the
example.

a disjoint subresource (if there is more than one occurrence
of the case-insensitive string “RFC” within the resource).

4. Implementation
Implementations of the fragment identification scheme for

plain text resources should be included in future Web brows-
ers, and in other tools handling plain text files (such as text
viewers and editors), so that these tools can generate frag-
ment identifiers for inclusion into Web resources. As a pro-
totype, we have implemented fragment identifier interpreta-
tion code that operates in three steps:

1. Identifier Analysis: The fragment identifier is analyzed
and it is tested whether it conforms to the syntax def-
inition.

2. Resource Analysis: The resource is retrieved, tested
for its MIME type, tested for its character encoding,
and tested against the fragment identifier’s hash sum
(if present).

3. Identifier Application: If the fragment identifier is cor-
rect and applicable, the subresource is located and pre-
sented to the user.

Since a prototype should be available for as many inter-
ested users as possible, it is available in two configurations,
as server-side and client-side implementation.

4.1 Server-Side Implementation
The server-side implementation is based on Perl, which

provides excellent string handling functionality and thus is
ideally suited to support the interpretation of fragment iden-
tifiers. The server-side implementation is available for test-
ing at http://dret.net/text-fragment/ and can be used
with any text file.

Figure 1: Demo Text with Fragment Identifier

A simple example is shown in Figure 1, which is the re-
sult of applying a three-part fragment identifier to a text
file containing this paper’s abstract. The line=1,3 part
selects the second and the third line, the char=600,800

part selects the 601st through the 800th character, and the
match=identif(y|iers?) part selects all strings which are
“identify”, “identifier”, or “identifiers”.

http://dret.net/text-fragment/

The figure shows the server-side implementation, which
displays an input form for selecting a resource and a frag-
ment identifier, an analysis of the fragment identifier, and fi-
nally the resource itself with the identified subresource high-
lighted. In the example, a disjoint subresource is identified,
which is not a problem.

While fragment identification typically is a client-side func-
tionality, the server-side implementation is an ideal platform
for users to test fragment identifiers for plain text files, and
to debug them by using the site’s step-by-step output of
fragment identifier processing.

4.2 Client-Side Implementation
Fragment identifier support is a typical client-side func-

tionality. As such, it suffers from the same problem as
many client-side technologies, namely slow adoption due to
the fact that the majority of users only rarely install new
browser software. To avoid this pitfall, the current client-
side implementation uses the extension mechanism of the
popular Firefox browser, which makes it possible to extend
the browser with new code without having to install a new
browser version. Installing extensions is done at run time,
and extensions plug into the browser without the need to
recompile or even restart the browser.

Another advantage of the extension concept is that new
functionality can be nicely packaged into an extension, with-
out a need to be tightly integrated with the browser’s code.
Naturally, extensions need to interact with the browser and
do so through well-defined interfaces, but this interaction is
limited and easier to handle than full integration into the
browser code.

Due to the way extensions are handled, the fragment iden-
tifier processing extension works as follows:

1. Request Analysis: After completing a request, the ex-
tension is notified and inspects the request’s result.
Only if the result is of MIME type text/plain and a
fragment identifier is present, the extension continues
with the following steps.

2. Identifier Processing: At this point, the basic fragment
identifier interpretation process as described above is
invoked, analyzing the identifier and the resource, and
evaluating the identifier’s result (i.e., the subresource).

3. Identifier Presentation: Because Firefox renders text/
plain files as HTML pages with a pre element contain-
ing the text file’s content, the subresource can be easily
presented by inserting span elements which highlight
the subresource.

Even though we have not done this, this would offer
a convenient way of defining a unique representation
of identified subresources across different media types
(such as HTML and plain text), which could then be
set via the browser’s preferences.3

After these steps, the identified subresource can be dis-
played as a highlighted part of the plain text file, making
it visually clear which fragment of the resource has been
selected by the fragment identifier.

3Currently, however, Firefox does not properly highlight an iden-
tified HTML subresource when navigating to it, but instead the
first link inside the identified subresource.

5. Generating Fragment Identifiers
The concept and the implementation of fragment identi-

fiers has been presented in this paper, but the question re-
mains whether these fragment identifiers will be used. Gen-
erating fragment identifiers by hand is feasible, due to the
simple syntax, but still is more complicated than what most
users are used to.

We envisage browser support for the creation of fragment
identifiers (this could also cover HTML fragment identi-
fiers), where users identify a fragment by selecting it with
the mouse, and then click a button to generate the appro-
priate fragment identifier. This functionality could also be
integrated into Firefox through the extension mechanism,
thus making this kind of functionality available through a
simple plug-in.

Another and possibly more interesting application area is
the area of generated content. Any plain text content that
is generated or managed by tools could be made better ac-
cessible by also generating toc/index documents (probably
in HTML) which add a layer of links to the otherwise un-
structured plain text files.

6. Related Work
Starting with Xanadu’s Tumblers and NLS’s addressing

scheme (which already used the # character for fragment ad-
dressing), a lot of addressing schemes for resource fragment
identification have been proposed. More recent examples are
HyTime’s location addresses and OHP’s LocSpec [5]. How-
ever, we are not aware of any concrete proposals for fragment
identification within plain text resources on the Web.

7. Conclusions and Future Plans
The main goal of this paper is to create awareness for

fragment identifiers for plain text files, to use this discus-
sion as input for the IETF process towards publication of
an RFC, and to provide interested parties with prototype
implementations (most importantly, the extension for the
Firefox browser) for experimenting with fragment identifiers.

8. References
[1] Tim Berners-Lee, Roy T. Fielding, and Larry

Masinter. Uniform Resource Identifier (URI): Generic
Syntax. Internet proposed standard RFC 3986, January
2005.

[2] François Bry and Michael Eckert. Processing Link
Structures and Linkbases in the Web’s Open World
Linking. In Proceedings of the Sixteenth ACM Conference
on Hypertext and Hypermedia, Salzburg, Austria, August
2005. ACM Press.

[3] Steven J. DeRose, Eve Maler, and David Orchard.
XML Linking Language (XLink) Version 1.0. World Wide
Web Consortium, Recommendation REC-xlink-20010627,
June 2001.

[4] Paul Grosso, Eve Maler, Jonathan Marsh, and
Norman Walsh. XPointer Framework. World Wide Web
Consortium, Recommendation
REC-xptr-framework-20030325, March 2003.

[5] Lloyd Rutledge, Lynda Hardman, and Jacco van
Ossenbruggen. Applying the HyTime Model to the Open
Hypermedia Protocol LocSpec. In 3rd Workshop on Open
Hypermedia Systems, Southampton, UK, April 1997.

[6] Erik Wilde. URI Fragment Identifiers for the text/plain
Media Type. Internet Draft draft-wilde-text-fragment-04,
June 2005.

	Introduction
	Plain Text Files and Hypertext
	Fragment Identifiers for Plain Text Files
	Implementation
	Server-Side Implementation
	Client-Side Implementation

	Generating Fragment Identifiers
	Related Work
	Conclusions and Future Plans
	References

