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ABSTRACT 
We design and implement a cryptographic biometric 
authentication system using a microcoded architecture. The 
secure properties of the biometric matching process are obtained 
by means of a fuzzy vault scheme. The algorithm is implemented 
in a reprogrammable, microcoded coprocessor called FV16. We 
present the micro-architecture of FV16 as well as a dedicated 
assembler for this architecture. Our coprocessor can be attached 
to an ARM processor, and offers a 83-fold cycle count 
improvement when the fuzzy vault algorithm is migrated from 
embedded ARM software (13.8 million cycles) to the FV16 
coprocessor (166 thousand cycles).  

Categories and Subject Descriptors 
B.1.5   [Microcode Applications]:  Microcode Applications -- 
Special-purpose, Instruction set interpretation, Firmware support 
of operating systems/instruction sets  

General Terms 
Design, Security, Algorithms, Performance. 

Keywords 
Microcoded coprocessor, Cryptographic biometrics, Fuzzy vault 
scheme, Fingerprint verification.  

1. INTRODUCTION 
An authentication system based on biometric information offers 
greater security, and is more convenient than the traditional 
methods of personal verification. Along with the rapid growth of 
this emerging technology, the system performance, including the 

matching accuracy and speed, is continuously improved. In a 
fingerprint-based biometric matching system, the comparison is 
made between the features extracted from an input fingerprint 
image and a reference template. Because of the uniqueness and 
sensitivity of the reference template data, secure storage is a key 
factor for the biometric system security. This is especially an 
issue for embedded applications. Special precautions must 
therefore be taken to protect the template from possible attacks.  

A naive approach is to encrypt the template using a secret key 
such as a PIN. When a matching operation needs to be performed, 
the system decrypts the template using the PIN and then performs 
the biometric matching. However, this defeats the purpose of 
biometric devices: one tries to be independent of PIN codes 
entered by the user. Moreover, some dedicated attacks still could 
extract the secret key using a side-channel attack (SCA) [1], and 
in turn the template. A clean solution to this problem is to store a 
noninvertible transformed version, for instance a hash, of the 
template on the embedded device, and to perform the comparison 
in the transformed space. The main property of a cryptographic 
random hash function is that it is a one-way function, so that the 
output hash value will not give any information about the input 
[2]. Therefore, any similarity in the input will not reflect in the 
output hash value. For fingerprint verification, hashing is not 
suitable because different fingerprint scans are not exactly the 
same, which means that their output hash value will always be 
different. To address this problem, we adopt the idea of a fuzzy 
vault [3][4] to conduct the biometric authentication. In a fuzzy 
vault scheme, a transformed version of the minutiae together with 
a large set of noise data is stored. A suitable fuzzy vault matching 
algorithm then is able to distinguish between noise and input data 
points. In this work, we design and implement a fingerprint 
verification system using this novel technique. In order to 
construct the system efficiently and to make it reconfigurable, we 
build a domain-specific microcoded coprocessor, which is 
optimized for fuzzy vault algorithms. It can be used for a class of 
applications that require a fuzzy vault scheme.  
This paper is organized as follows. Section 2 introduces the 
algorithm we adopt and the possible design approaches. Section 3 
discusses the system implementation and design flow in details. 
Section 4 shows results and Section 5 draws the conclusions. 
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2. CRYPTOGRAPHIC BIOMETRICS 
2.1 Application 
A novel cryptographic technique called the fuzzy vault scheme 
has been proposed recently [3], [4]. It integrates well-known 
error-control coding methods and cryptographic techniques, and 
can be used to combine biometric authentication and encryption. 
The objective of this algorithm is to store biometrics data in a 
‘vault’, a cryptographically safe store. The classic fingerprint 
vault construction however is based on the assumption that the 
fingerprint features to match are perfectly aligned – a condition 
that is very difficult to achieve in practice. The algorithm we 
adopt in our work addresses this alignment problem in a 
systematic way to make a complete and adaptive authentication 
system based on fuzzy vault [8]. 
As shown in Fig. 1, in order to address the security problem posed 
by the leakage of the stored biometric information, instead of 
templates, we store a machine-generated bit stream as the PIN on 
the device and present it as the coefficients for a Galois Field 
encoding polynomial in the enrollment phase. This polynomial is 
used to encode the minutiae template, generating the lockset of 
the fingerprint fuzzy vault. The next step is to add a large number 
of noise points to conceal this lockset. The combination of the 
lockset and the noise points forms the fuzzy vault. In the 
fingerprint matching phase, fuzzy vault unlocking needs to be 
performed to generate a code PIN’. Comparison of PIN and PIN’ 
will indicate whether the matching is successful or not [8]. 

 

Fig. 1 Biometric fuzzy vault algorithm 

2.2 Design Approach 
The characteristics of fuzzy vault matching are complex decision-
making as well as complex data processing. In addition, we target 
an implementation on a portable, resource-constrained platform. 
This means we need a specialized architecture, as given by one of 
the options of Fig 2. 
A software solution based on standard program components such 
as a CPU can lack in execution speed, as well as in energy 
consumption. A full-hardware design in FPGA or ASIC, on the 
other hand, will achieve the required performance at the expense 
of flexibility and design cost. This leads to a specialized 
programmable solution, such as a DSP or an Application Specific 
Instruction Processor (ASIP). In our approach, we adopt a  
 

Fig. 2. Design approaches for embedded systems 
microcoded coprocessor architecture, where we have full control 
for over all the function blocks in the datapath, the 
communication network, and the controller. Instead of 
constructing the system based on a predefined processor core, we 
begin from the application specifications and define our own 
datapth, from which a specific microcoded coprocessor called 
FV16 is developed. In this work, FV16 is developed in three 
steps: (1) Identify recurring and intensively used operations, for 
which special hardware modules are constructed; (2) Platform 
design: create interconnect, storage and control architecture to 
integrate datapath elements. Together with this architecture, 
define an instruction set, which is an abstracted version of the 
design; (3) Decompose the C program into assembly instructions. 
Generate microcode using a customized assembler. 

3. IMPLEMENTATION 
3.1 Architecture 
The architecture of our coprocessor, FV16, is shown in Fig 3. In 
the fuzzy-vault algorithm, all operations execute in the ( )162GF  
field. Thus all the fingerprint minutiae feature elements are 
represented by 16-bit integers. The fuzzy vault construction and 
unlocking procedure can be fully described using 16-bit 
arithmetic. The coprocessor is microcoded, with a separate data 
path and controller. This benefits the design by introducing more 
programmability. As shown in the figure, our system includes an 
ALU, a register file (RF), a data RAM, as well as a data address  

Fig. 3. Architecture for the FV16 coprocessor 
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generator (DAG). The ALU computation unit can perform most 
of the regular operations, such as addition, subtraction, bit 
shifting, and bit-wise logic operations. The register file contains 
16 registers and each of them is 16-bit. A program counter (PC), 
an instruction register (IR), and a 1-bit condition register (Z) are 
included in the control unit. Since the PC is a 16-bit register, 64K 
bytes of program memory can be addressed. The Z register is 
used to store the result of the last compare operation. If the result 
was one, the Z register contains a "1"; otherwise it is "0". During 
execution, the FV16 coprocessor first fetches an instruction from 
program memory into the instruction register (IR) and sends it to 
the decoder. The decoded instruction is then executed. If the 
instruction performs a comparison operation, the condition 
register Z needs to be updated. For conditional branch 
instructions, the execution depends on the logic level of Z, which 
will combine with the inputs from IR to determine the proper 
sequence of control vectors. Therefore, each instruction requires 
at least three cycles to complete: fetching, decoding and 
executing. In order to speed up the system, a three-stage pipeline 
architecture is implemented. This allows a new instruction every 
clock cycle. For multiple-cycle instructions, such as RAM access 
and Galois Field multiplier, the assembler will add “NOP” 
instructions to avoid pipeline stalls. This simplifies the pipeline 
controller design. 
In a high-level language programming environment, the address 
generation is done by the compiler, which performs variable 
allocations, and which converts all index expressions into integer-
arithmetic operations. In the FV16 coprocessor, we implement a 
dedicated hardware data address generator (DAG), similar to DSP 
processors. Accepting a base address, this address generation unit 
can provides an address increase, address reset, or any particular 
address depending on the request. The use of such hardware 
address generation improves the execution performance, and 
eases the programming of the coprocessor. 
 

3.2 Special Functional Block Models 
Besides the blocks we discussed before, from the architecture 
diagram in Fig.3, there still are several function units left. These 
blocks are designed as special function modules to make the 
coprocessor more efficient in terms of speed. The special blocks 
are identified by means of algorithm analysis, where we find 
some functions are used extensively.  The underlying framework 
of our system is Galois Field ( )162GF  arithmetic and a Galois 
Field multiplier is included as special computation unit. During 
the vault construction, a large number of randomly distributed 
noise points are needed to protect the biometric information. Also 
in the unlock procedure, the unlocking matrix includes random 
elements. Therefore a pseudo-random number generator is 
included to generate the noise required by the algorithm. In 
addition, a triangle block is needed for calculating the physical 
distance between two elements. Next we will explain these blocks 
individually. 

3.2.1 Galois Field Multiplier 
All the calculations in the fuzzy vault algorithm are based on 

( )162GF  arithmetic. A Galois Field adder and a Galois Field 
multiplier are required. While the GF adder is implemented using 
logic XOR, the implementation of GF multiplication is more 

complicated. As shown in Fig.4, we use a bit-serial Galois Field 
architecture. First the shift register is initialized with all-zero 
state. For each clock cycle the partial product vector is added to 
the actual state. After 16 cycles the product is available. This 
entire unit we implemented as a single functional block, called the 
Galois Field Multiplier block (GFM). Besides using GFM, we 
considered two alternative implementations for Galois Field 
multiplication. One is to write the multiplication algorithm in C 
for a general purpose ARM processor and another one is 
programming it in assembly instructions for the FV16 
coprocessor’s ALU. The cycle numbers required by these three 
different methods are shown in Fig. 6 (GFM) in log scale. Taking 
advantage of the FV16 coprocessor with the GFM special block, 
the total execution cycles needed for the Galois Field multiplier is 
85K. In contrast, it takes 1.02M on the same coprocessor without 
GFM block and 7.79M for C software running on the ARM. Thus, 
an improvement of 90 times in cycle count can be obtained using 
the GFM functional unit inside of FV16. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Block diagram for bit-serial GF multiplier 

3.2.2 Pseudo-random Number Generator 
In order to provide the random elements for the vault construction 
and unlocking procedures, we adopt a 16-bit Linear Feedback 
Shift Register (LSFR) pseudo-random number generator in our 
design. The primitive polynomial used for minimal hardware is: 

123516 ++++ xxxx . Every clock cycle, the shift registers 
generate a 16bit random value. For comparison, we also 
implement the pseudo-random number generator in assembly 
code without the special hardware and in C targeting ARM, 
separately. The assembly code implements a LSFR in software 
and the C program uses the rand() function. Fig. 6 shows the 
performance results (RNG), indicating that the RNG block makes 
the system more than 3 times faster than the coprocessor-based 
design without RNG special module, and 580 times faster than the 
software only implementation on the ARM processor.   

3.2.3 Triangle Block 
At the beginning of the unlock procedure, the input value needs to 
be compared with the values in the fuzzy vault to find out the 
closest elements for constructing the unlock set. This comparison 
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needs to find out the physical distance between two feature points 
instead of a simple comparison between two numbers. According 
to the minutiae feature extraction procedure [8], the elements in 
the lock set and the unlock set are constructed by a pair of 
minutiae coordinates (r,θ ). Thus the distance between two 
elements is:  

 
Since the FV16 coprocessor has only one ALU unit, trying to 
implement this distance function using basic instructions will take 
a large number of cycles. In order to speed up the system, we 
design a function block especially for this calculation, whose 
function diagram is shown in Fig. 5. Fig. 6 presents the 
performance improvement by implementing the triangle 
computation block (TRI). The system requires 10 times less clock 
cycles compared to those without TRI block, and 100 times less 
clock cycles compared to C program running on an ARM 
processor. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Diagram for the triangle block 

 

Fig. 6. Performance comparison of different design methods 

 

3.3 Programmer’s Model 
Based on the architecture discussed before, we construct a 
programmer’s model to execute all the function blocks. Each 
instruction is 16-bit, which in most cases is divided into three 
fields: the operations, the address of the source register and the 
address of the destination register. The operation is encoded in the 
first 8-bit field. Table 1 presents the instructions and their 
corresponding operation codes. Some special data moving 
instructions and branch instructions belong to special types. Their 
operation codes are not encoded as 8bits, and we will discuss it in 
detail below. All the instructions can be classified as one of the 
following five types: 

Table 1. Instructions and corresponding operation code 

8bit opcode Instruction 8bit opcode Instruction 

0x01 ADD 0x10 DIS 

0x02 SUB 0x13 DAG 

0x04 XOR 0x16 MOV 

0x05 LSHIFT 0x20 GETDATA 

0x06 RSHIFT 0x21 WRAM 

0x07 INC 0x22 RRAM 

0x09 OR 0x23 DEC 

0x0e MULGF 0x24 COMP 

0x0f RNG 0x28 AND 

3.3.1 Addressing Modes 
There are three addressing modes for the registers of FV16 
coprocessor. One is register direct addressing, which move data 
from one register to another. The second mode is the immediate 
data addressing, in which the data is contained in the instruction. 
Another mode is inherent addressing, where the instructions 
always use the same source or destination.  

3.3.2  Data Transfer Operations 
The coprocessor uses an internal 8K×16bit RAM block, which 
can be accessed with dedicated instructions. These instructions 
read from and write to the memory, and take care of address 
generation: 

Mnemonics Operation Opcode 

MOV Rn,Rm Rn  Rm 0x16RnRm 
MOVDi   d d  Ri 0b00011iiidddddddd 

GETDATA Rn input  Rn 0x200Rn 
RRAM Rn,Rm read Rn of RAM into Rm 0x22RnRm 
WRAM Rn,Rm Write Rn of RAM into Rm 0x21RnRm 

DAG Rn,Rm Depending on Rn,       
Data address  Rm 0x13RnRm 

3.3.3 ALU and Comparison Operations 
ALU has various operations to perform the regular calculations: 

Mnemonics Operation Opcode 

ADD Rn,Rm Rn+Rm  Rm 0x01RnRm 

SUB Rn,Rm Rn-Rm  Rm 0x02RnRm 

( ) ( )22211
2
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CMP Rn,Rm cmp Rn&Rm, affect Z 0x24RnRm 

XOR Rn,Rm Rn^Rm  Rm 0x04RnRm 

LSHIFT Rn,Rm Rn<<8  Rm 0x05RnRm 

RSHIFT Rn,Rm Rn>>8  Rm 0x06RnRm 

INC Rn Rn + 1  Rn 0x07RnRn 

DEC Rn Rn – 1  Rn 0x23RnRn 

OR Rn,Rm Rn | Rm  Rm 0x09RnRm 

AND Rn,Rm Rn & Rm  Rm 0x28RnRm 

3.3.4 Branch Instructions 
Since loops are used extensively in the fuzzy vault scheme, 
branch instructions, including non-conditional jump and 
conditional jump, are designed to support decision-making and 
control flow. 

Mnemonics Operation Opcode 

GOTO k goto address k in program 0b010kkkkkkkkkkkkk 

CGOTO k on condition S, go to k 0b011kkkkkkkkkkkkk 

3.3.5 Special Block Instructions 
Besides the instructions described above, we also design several 
instructions corresponding to the three specialized function 
modules: 

Mnemonics Operation Opcode 

RNG Rn rand()  Rn 0x0f0Rn 
DIS Rn,Rm dis(Rn,Rm)  Rm 0x10RnRm 

MULGF Rn,Rm Rn * Rm  Rm 0x0eRnRm 

3.4 Design Flow 
In the previous sections we discussed the architecture of the 
microcoded coprocessor FV16, as well as the programmer’s 
model for writing assembly instructions. In this section, we 
present the system design flow, which is shown in Fig. 7. Given 
the application specifications, the designer will partition the C-
specification in driver software running on the embedded ARM 
and a specialized coprocessor. Both the coprocessor architecture 
and the software running on it need to be designed. A specialized 
language, GEZEL [9], is used to construct the datapath for the 
coprocessor. At the same time, the C program for the algorithm, 
which needs to run on the coprocessor, is converted to assembly 
code following the programmer’s model. Then the microcode is 
generated by the assembler and stored in the program ROM, 
which is part of the microcoded coprocessor. All three 
components, the C program for the driver, the GEZEL code for 
the coprocessor datapath and the microcode running on the 
coprocessor are co-simulated in GEZEL. GEZEL is an open 
design environment for domain-specific micro-architecture linked 
with the ARM instruction-set simulator [9]. As an example, Fig. 8 
shows the GEZEL design for the Galois Field multiplier used in 
the FV16 coprocessor.  
In order to compile the assembly instructions for the FV16 
microcoded coprocessor architecture, we build a dedicated 
assembler based on a public available universal retargetable 
assembler framework from Tomasz Sztekja [10]. This is a 
powerful assembler and linker package, which is written fully in 

Java. It is very flexible and can support almost any architecture. 
More important, it is open source for users to port to their own 
processors. 

 

Fig. 7. Design flow for programming on the FV16 microcoded 
coprocessor 
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Fig. 8. GEZEL code for Galois Field multiplier: (a) Datapath; 
(b) Finite State Machine 
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// bit-serial GF(s^16) multiplier
dp gfmul( in i1, i2 : ns(16); 

out mul: ns(16);
in mul_st: ns(1); 
out mul_done : ns(1)) {

reg acc, sr2, fpr, r1 : ns(16);
reg mul_st_cmd : ns(1);
reg reg_i1, reg_i2 : ns(16);
sfg ini {
fpr = 0b0000000000101101;
reg_i1 = 0;
reg_i2 = 0;
acc = 0;
mul_st_cmd = mul_st;

}

sfg assign_ab {
r1 = i1;

sr2 = i2;
acc = 0;

}  
sfg calc {

sr2 = (sr2 << 1);
acc = (acc << 1) ^ (r1 & (tc(1))  

sr2[15]) ^ (fpr & (tc(1)) acc[15]);
}

sfg omul {
mul = acc;
mul_done = 1;

}

sfg noout {
mul = 0;
mul_done = 0;

}
}

// bit-serial GF(s^16) multiplier
dp gfmul( in i1, i2 : ns(16); 

out mul: ns(16);
in mul_st: ns(1); 
out mul_done : ns(1)) {

reg acc, sr2, fpr, r1 : ns(16);
reg mul_st_cmd : ns(1);
reg reg_i1, reg_i2 : ns(16);
sfg ini {
fpr = 0b0000000000101101;
reg_i1 = 0;
reg_i2 = 0;
acc = 0;
mul_st_cmd = mul_st;

}

sfg assign_ab {
r1 = i1;

sr2 = i2;
acc = 0;

}  
sfg calc {

sr2 = (sr2 << 1);
acc = (acc << 1) ^ (r1 & (tc(1))  

sr2[15]) ^ (fpr & (tc(1)) acc[15]);
}

sfg omul {
mul = acc;
mul_done = 1;

}

sfg noout {
mul = 0;
mul_done = 0;

}
}

fsm gfmul_ctl(gfmul) {
state   s1, s2, s3, s4, s5, 

s6,s7,s8,s9,s10,s11,s12,s13,s14,s15,s16,s17,s18;
initial s0;
@s0 (ini, noout) -> s1;
@s1 if (mul_st_cmd) then (assign_ab, noout) -> s2;

else (ini, noout)  -> s1;
@s2 (calc, noout) -> s3;
@s3 (calc, noout) -> s4;
@s4 (calc, noout) -> s5;
@s5 (calc, noout) -> s6;
@s6 (calc, noout) -> s7;
@s7 (calc, noout) -> s8;
@s8 (calc, noout) -> s9;
@s9 (calc, noout) -> s10;
@s10 (calc, noout) -> s11;
@s11 (calc, noout) -> s12;
@s12 (calc, noout) -> s13;
@s13 (calc, noout) -> s14;
@s14 (calc, noout) -> s15;
@s15 (calc, noout) -> s16;
@s16 (calc, noout) -> s17;
@s17 (calc, noout) -> s18;
@s18 (ini, omul ) -> s1;

}

fsm gfmul_ctl(gfmul) {
state   s1, s2, s3, s4, s5, 

s6,s7,s8,s9,s10,s11,s12,s13,s14,s15,s16,s17,s18;
initial s0;
@s0 (ini, noout) -> s1;
@s1 if (mul_st_cmd) then (assign_ab, noout) -> s2;

else (ini, noout)  -> s1;
@s2 (calc, noout) -> s3;
@s3 (calc, noout) -> s4;
@s4 (calc, noout) -> s5;
@s5 (calc, noout) -> s6;
@s6 (calc, noout) -> s7;
@s7 (calc, noout) -> s8;
@s8 (calc, noout) -> s9;
@s9 (calc, noout) -> s10;
@s10 (calc, noout) -> s11;
@s11 (calc, noout) -> s12;
@s12 (calc, noout) -> s13;
@s13 (calc, noout) -> s14;
@s14 (calc, noout) -> s15;
@s15 (calc, noout) -> s16;
@s16 (calc, noout) -> s17;
@s17 (calc, noout) -> s18;
@s18 (ini, omul ) -> s1;

}
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4. RESULTS 
Following the design flow, we implement the fingerprint 
verification algorithm based on the fuzzy vault scheme on the 
application specific microcoded coprocessor FV16. Using the 
cycle true simulation of the GEZEL, we find out the cycle number 
for completing the whole procedure is 166K cycles. As a 
comparison, we also write the embedded software in C and cross-
compile it into an executable to be simulated on an ARM 
instruction-set simulator (ISS). The simulation shows that it takes 
over 13.8M cycles to finish the algorithm. In terms of source code 
size, 1400 lines of GEZEL code are used for the datapath 
description for FV16 coprocessor, and 1024 lines of assembly 
code are used to implement the algorithm. 
After performance evaluation, the secure vault fingerprint 
verification system based on the FV16 coprocessor can be 
converted into synthesizable VHDL and run on a reconfigurable 
FPGA platform. The Synplicity tool Synplify Pro is used to 
perform the synthesis using Xilinx Virtex2 XC2V1000 as the 
target platform. The system results are shown in Table 2: 
 

Table 2. Results of FV16 coprocessor 

Parameters Result Parameters Result 

GEZEL code for 
coprocessor 

1400 
lines Total LUTs 2960 

Microcode 1024 
lines 

Block RAMs 16  

Total cycle 166K Critical Path 22.231 ns 

 

5. CONCLUSIONS 
We design an application specific microcoded coprocessor called 
FV16, based on which a HW/SW co-design for a secure biometric 
authentication system is constructed. An instruction set, as well as 
the programmer’s model, is constructed for writing assembly 
programs targeting on this architecture. In this work we propose a 
complete design flow to show how the design tasks are integrated. 
From the design flow it is clear how other applications can be 
mapped onto this microcoded coprocessor. Also the results show 
that using our coprocessor makes the design over 83 times more 
efficient compared to software only implementations. 
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